WO2021027369A1 - 一种耐磨聚脲涂料及其制备方法和应用 - Google Patents

一种耐磨聚脲涂料及其制备方法和应用 Download PDF

Info

Publication number
WO2021027369A1
WO2021027369A1 PCT/CN2020/093648 CN2020093648W WO2021027369A1 WO 2021027369 A1 WO2021027369 A1 WO 2021027369A1 CN 2020093648 W CN2020093648 W CN 2020093648W WO 2021027369 A1 WO2021027369 A1 WO 2021027369A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant
parts
ceramic microspheres
component
Prior art date
Application number
PCT/CN2020/093648
Other languages
English (en)
French (fr)
Inventor
王道前
肖国亮
连联益
Original Assignee
王道前
肖国亮
连联益
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王道前, 肖国亮, 连联益 filed Critical 王道前
Publication of WO2021027369A1 publication Critical patent/WO2021027369A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/3243Polyamines aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention belongs to the field of chemical coatings, and specifically relates to a wear-resistant polyurea coating.
  • Polyurea elastomer is a new type of environmentally friendly coating.
  • the technology of spraying polyurea elastomer has been abroad for nearly ten years.
  • Low (no) pollution coating technologies such as high-solid coatings, water-based coatings, light-curing coatings, powder coatings, etc.
  • a new type of solvent-free and pollution-free green construction technology developed and developed to meet the requirements of environmental protection.
  • the spraying polyurea elastomer technology organically combines the excellent performance of polyurea with rapid spraying and on-site curing construction technology, so that it shows unparalleled superiority in engineering applications.
  • spray polyurea elastomer materials have the characteristics of solvent-free, fast curing, insensitive to humidity and temperature, short construction period, and excellent high temperature and aging resistance.
  • polyurea is a high polymer formed by the reaction of isocyanate-terminated prepolymer and amino compound component.
  • Polyurea material family currently has three branches, namely aromatic polyurea, conventional aliphatic polyurea and polyaspartate polyurea. Currently, aromatic polyurea and polyaspartate polyurea have the highest market share.
  • Polyaspartate polyurea material is a kind of aliphatic coating material with slow reaction characteristics and high performance in the polyurea industry, and is called the third generation polyurea.
  • Polyaspartic acid ester polyurea coatings are mainly used in automobiles, railway vehicles, bridge pipes, steel structures, containers and other fields, but they have disadvantages such as insufficient paint film hardness, poor wear resistance, and poor chemical resistance. Those skilled in the art have also made many technical improvements for the above shortcomings.
  • Patent document CN201110311641.5 discloses a thick-build, quick-drying, weather-resistant and wear-resistant coating for wind power blades and a preparation method thereof. It consists of two components: component A and component B; wherein component A is composed of: polyaspartame Acid ester A, polyaspartic acid ester B, wetting and dispersing agent, thixotropic agent, water absorbing agent, coupling agent, pigment, filler, matting agent, ultraviolet absorber, slip, anti-scratch and anti-staining agent , Leveling agent, defoamer, thinner.
  • the filler is ceramic powder, quartz powder, mica powder, whisker silicon, corundum powder, or a combination of several in any proportion. The particle size of the filler is required to be below 35 ⁇ m.
  • the coating has excellent weather resistance, high tensile strength and elongation at break, but it has many components and high preparation cost, and it is difficult to popularize and use.
  • Patent document CN201811396948.8 discloses one or anti-corrosion and wear-resistant polyurea coatings composed of two components A and B.
  • Group A is composed of DMD-3000, DDL-2000D, polyester polyol and TDI
  • component B is composed of amino-terminated polyurea coatings. It is composed of ether and liquid amine chain extender.
  • the anti-corrosion and wear-resistant polyurea coating has excellent anti-corrosion and wear-resistant properties, and is widely used in the fields of petroleum, chemical industry, pipeline, marine engineering, etc. However, the effect embodiment does not show that the polyurea coating has excellent properties The wear resistance.
  • Patent document CN201810415159.8 discloses a polyurea coating, the polyurea coating includes A component, B component and nano-paste;
  • the A component is prepared from raw materials including diisocyanate and polypropylene glycol;
  • the B component includes polyoxypropylene diammonium, diethyl maleate, dispersant, leveling agent and antifoaming agent;
  • the nano-size slurry includes nano-silica and accelerator.
  • the polyurea coating is added with nano-size slurry on the basis of common prior art, but the improvement of anti-corrosion and salt spray resistance is not significant.
  • Patent document CN201810712419.8 discloses a wear-resistant water-based architectural nano-waterproof coating, including water-based silicone acrylic emulsion, water-based polyurethane emulsion, titanium dioxide, heavy calcium carbonate, mica, hollow ceramic microspheres, hydroxyethyl cellulose, film forming Additives, other additives, deionized water.
  • the hollow ceramic microspheres are hollow ceramic microspheres coated with spherical silica with hollow ceramic microspheres as the core and nano-silica as the shell, which improves the wear resistance of the coating.
  • Patent document CN201811205987.5 discloses a high-performance ceramic composite coating and a preparation method thereof.
  • the high-performance ceramic composite coating includes a first component and a second component.
  • the first component includes: silicone resin, polyaspartate, potassium aluminosilicate, ceramic microspheres, wetting and dispersing agent , Rheology additives, defoamers, leveling agents; the second component is aliphatic polyisocyanate.
  • the ceramic composite coating not only has the advantages of high hardness, high wear resistance, high heat resistance, and high weather resistance, but also has excellent chemical resistance.
  • the present invention provides a polyurea coating, which improves the wear resistance of the coating coating by modifying ceramic microspheres.
  • the main purpose of the present invention is to provide a wear-resistant polyurea coating, in which a composite wear-resistant filler is added to the polyurea coating, and the composite wear-resistant filler is composed of nano alumina trioxide, polytetrafluoroethylene powder, silicon carbide and modified Composed of ceramic microspheres, the wear-resistant filler aims to increase the flexibility of the coating on the basis of improving the wear resistance of the coating, so that the wear-resistant effect of the coating is more prominent.
  • the present invention provides a wear-resistant polyurea coating, which includes component A and component B, wherein the raw materials for component A include: polyisocyanate, polytetramethylene ether glycol,
  • the raw materials for the preparation of component B include: amino-terminated polyether, amino chain extender, composite wear-resistant filler, anti-settling agent;
  • the composite wear-resistant filler includes nano-alumina, polytetrafluoroethylene powder, silicon carbide and modified ceramics Microspheres, wherein the raw materials for preparing modified ceramic microspheres include ceramic microspheres, aminosilane coupling agent, hyperbranched resin, and silica sol.
  • the polyurea coating includes the following raw materials in parts by mass, component A: 50-70 parts of polyisocyanate, 30-50 parts of polytetramethylene ether glycol, and component B: amino-terminated polyether 30 -45 parts, amino chain extender 20-30 parts, composite wear-resistant filler 10-25 parts, anti-settling agent 0-1 parts.
  • the polyisocyanate is selected from: polymethylene polyphenyl polyisocyanate, hexamethylene diisocyanate, phenylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, toluene One or a combination of two or more of diisocyanate and diphenylmethane diisocyanate (MDI).
  • the polyisocyanate is selected from diphenylmethane diisocyanate.
  • Polytetramethylene ether glycol is a polymer of tetrahydrofuran.
  • the main chain is composed of carbon chain and ether chain. It has a linear structure.
  • the hydroxyl groups are located at both ends of the main chain. Because the main chain is composed of carbon chain and ether Chain composition, no unsaturated bonds, good flexibility, good mechanical properties, mainly used in the production of polyurethane elastomers, polyurethane elastic fibers and ester-ether copolymer elastomers.
  • the amino-terminated polyether is a polyetheramine with a molecular weight of 2000-5000.
  • the amino-terminated polyether is Jaffamine D-2000 or Jaffamine T-5000.
  • the amino chain extender is selected from one or more of diethyltoluenediamine (DETDA), 4,4-bis-sec-butylaminodiphenylmethane, and dimethylthiotoluenediamine (DMTDA) combination.
  • DETDA diethyltoluenediamine
  • DMTDA dimethylthiotoluenediamine
  • the amino chain extender is DETDA and 4,4-bis-sec-butylaminodiphenylmethane.
  • the anti-settling agent is selected from fumed silica or organic bentonite.
  • the mass ratio of nanometer aluminum oxide, polytetrafluoroethylene powder, silicon carbide and modified ceramic microspheres in the composite wear-resistant filler preparation raw material is 5-20:5-10:1:10-30 .
  • the modified ceramic microspheres include the following parts by mass of raw materials: 50-70 parts of ceramic microspheres, 6-10 parts of aminosilane coupling agent, 15-35 parts of hyperbranched resin, and 2-6 parts of silica sol.
  • the ceramic microspheres are 3M G-600, the density is 2.3 g/cc, and the average particle size is 10-24 ⁇ m.
  • the ceramic microspheres are solid ceramic microspheres or hollow ceramic microspheres, preferably selected from solid ceramic microspheres.
  • the aminosilane coupling agent is selected from one or two of ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and ⁇ -aminoethylaminopropyltrimethoxysilane The above composition.
  • the aminosilane coupling agent can simultaneously interact with the surface of the ceramic microspheres and the long molecular chains in the organic polymer to couple two materials with different properties.
  • the hyperbranched polymer is connected to the surface of the ceramic microspheres. Improve the strength, toughness and stability of the coating.
  • Silica sol is a dispersion of nano-scale silica particles in water or a solvent.
  • the function of the silica sol in the present invention is to assist the aminosilane coupling agent to make the polymer adhere more stable on the surface of the ceramic microspheres.
  • the hyperbranched resin is selected from: hyperbranched polyamide resin, hyperbranched polyacrylate or hyperbranched unsaturated resin.
  • the hyperbranched resin is selected from the hyperbranched polyamide resin HyPer HPN202, which is aromatic
  • the group polyamide hyperbranched polymer is the backbone hydroxyl-terminated hyperbranched polymer.
  • the present invention provides a method for preparing wear-resistant polyurea coatings, including: preparation of modified ceramic microspheres, preparation of composite wear-resistant fillers, preparation of component A of polyurea coating, and component B of polyurea coating
  • the preparation method of the modified ceramic microspheres includes: (1) formulating an aminosilane coupling agent into an isopropanol solution with a mass concentration of 10-20%; (2) placing the amino silane coupling agent into an isopropanol solution with a mass concentration of 10-20%; Heat the ceramic microspheres to 70-90°C, spray the aminosilane coupling agent solution, turn and mix to volatilize the solvent; (3) Spray the molten hyperbranched polymer and silica sol on the surface of the ceramic microspheres, turn and mix with cooling, It is lowered to room temperature in 20-30 minutes to obtain modified ceramic microspheres.
  • the preparation method of the composite wear-resistant filler includes: putting nanometer aluminum oxide, polytetrafluoroethylene powder, silicon carbide and modified ceramic microspheres into a mixing tank in a mass ratio of 5-20:5-10:1:10-30 , Stir at 500-600 rpm for 45-60 minutes, and mix well.
  • the preparation method of the A component of polyurea coating (1) Dehydrate the polytetramethylene ether glycol at 110-120°C and a vacuum of -0.08-0.1Mpa for 2-3 hours, and lower it to room temperature for later use;
  • the preparation method of the B component of polyurea coating put the amino-terminated polyether into the mixing tank, add the amino chain extender and stir for 0.5-1 hour, add the composite wear-resistant filler and anti-settling agent, and stir at 400-500 rpm 45-60 minutes, filter and pack for later use.
  • the application method of the wear-resistant polyurea coating of the present invention includes: brushing, dipping, flow coating or spraying, and the substrate material is selected from metal, plastic, concrete or wood; preferably, the application method is spraying, and the substrate is preferably For metal.
  • the present invention provides a method for applying wear-resistant polyurea coatings, which includes the following steps:
  • the substrate cleaning in step (1) includes degreasing, rust removal, polishing, phosphating treatment, and sandblasting treatment.
  • the A component and the B component are combined and mixed under high pressure.
  • the A component and the B component are directly subjected to impact mixing in the high pressure spraying equipment.
  • the A component and the B component are heated in two separate chambers, pressurized separately, and impact or collide with each other at high speeds to achieve tight mixing between the two components, and then apply to the On the substrate.
  • the marine engineering anticorrosive polyurea coating is sprayed by Graco polyurea spraying equipment HXP-3, and the heating temperature of component A is 60-65°C on the spraying equipment, and component B is heated The temperature is 60-65°C.
  • the dynamic pressure of component A and component B is 1900-2200PSI, and the static pressure is 2400-2500PSI.
  • the present invention provides an application of a wear-resistant polyurea coating in the manufacture of mechanical transmission parts in the coal, steel, mining, electric power, chemical, electronics, and textile fields, or in the manufacture of household wear-resistant products.
  • step S2 Add 50 parts of solid ceramic microspheres to the inverted mixing reactor, heat the ceramic microspheres to 80°C, spray a small amount of the ⁇ -aminopropyltriethoxysilane isopropanol solution prepared in step S1 several times, Turn and mix until the solvent evaporates;
  • step S2 Add 50 parts of hollow ceramic microspheres into the inverted mixing reactor, heat the ceramic microspheres to 80°C, spray a small amount of the ⁇ -aminopropyltriethoxysilane isopropanol solution prepared in step S1 several times, Turn and mix until the solvent evaporates;
  • Example 1 Put 25 parts of nano-alumina oxide, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, and 50 parts of modified solid ceramic microspheres prepared in Example 1 into the agitating tank, stirring at 600 rpm for 45 minutes, and mixing uniformly , The composite wear-resistant filler is obtained, and the mass ratio among the nano-alumina, polytetrafluoroethylene powder, silicon carbide, and modified ceramic microspheres is 5:5:1:10.
  • Example 2 Put 25 parts of nano-alumina oxide, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, and 50 parts of modified hollow ceramic microspheres prepared in Example 2 into the agitating tank, stir at 600 rpm for 45 minutes, and mix well , Get the composite wear-resistant filler.
  • component A Dehydrate 44 parts of polytetramethylene ether glycol with a molecular weight of 1000 at 120°C and a vacuum of -0.08Mpa for 2 hours, and lower to room temperature for later use; put 56 parts of polyisocyanate MDI into the reactor, Warm up to 45°C, slowly add polytetramethylene ether glycol dropwise, after 1 hour of dripping, heat up to 80°C, keep for 2 hours, take a sample and measure the NCO content to 15.0% when it drops to room temperature, filter, and seal with nitrogen for storage for later use ;
  • Preparation method of component B Put 50 parts of amino-terminated polyether D2000 into the mixing tank, add 20 parts of diethyltoluene diamine and 10 parts of 4,4-bis-sec-butylaminodiphenylmethane, stir for 0.5 hours, add 19.5 parts of the composite wear-resistant filler and 0.5 parts of organic bentonite prepared in Example 4 were stirred at 400 rpm for 60 minutes, filtered, and packaged for later use.
  • Preparation method of component B Put 50 parts of amino-terminated polyether D2000 into the mixing tank, add 20 parts of diethyltoluene diamine and 10 parts of 4,4-bis-sec-butylaminodiphenylmethane, stir for 0.5 hours, add 19.5 parts of the composite wear-resistant filler and 0.5 parts of organic bentonite prepared in Example 3 were stirred at 400 rpm for 60 minutes, filtered, and packaged for later use.
  • Preparation method of component B Put 50 parts of amino-terminated polyether D2000 into the mixing tank, add 20 parts of diethyltoluene diamine and 10 parts of 4,4-bis-sec-butylaminodiphenylmethane, stir for 0.5 hours, add 0.5 part of organic bentonite, stirred at 400 rpm for 60 minutes, filtered and packaged for later use.
  • Preparation of composite wear-resistant filler Put 25 parts of nano-alumina, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, and 50 parts of silica-modified solid ceramic microspheres into a mixing tank at 600 revolutions per minute. Stir for 45 minutes, mix well;
  • Preparation of composite wear-resistant filler Put 25 parts of nano-alumina oxide, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, and 50 parts of solid ceramic microspheres with no surface modification into the mixing tank, and stir at 600 rpm Mix well for 45 minutes;
  • Preparation of composite wear-resistant filler Put 25 parts of nano-alumina, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, and 50 parts of glass microspheres with no surface modification into the mixing tank, and stir 45 parts at 600 rpm Minutes, mix well;
  • Example 5 and Example 6 The polyurea coating prepared in Example 5 and Example 6 was used as the test group, and the polyurea coating prepared in Comparative Example 1 was used as the control group. Under the conditions of a temperature of 25°C and a relative humidity of 55%, a 120 ⁇ 50 ⁇ 0.28mm tinplate was used as the base material, and the base material was degreasingly polished before the test. Use Graco polyurea spray equipment HPX-3 for spraying. The A component and B component are mixed according to 1:3, and sprayed according to the amount of 0.25kg/m2. The thickness of the coating is kept relatively uniform, and the coating is cured quickly. Perform performance testing after days of curing, and the results are shown in the following table:
  • the modified ceramic microspheres in the polyurea coating prepared in Example 5 are hollow microspheres
  • the modified ceramic microspheres in Example 6 are solid microspheres
  • the polyurea coating in Comparative Example 1 does not contain composite wear-resistant fillers. From the data in the table, it can be seen that the choice of solid or hollow ceramic microspheres has little effect on the hardness, adhesion, heat resistance, and artificial weathering resistance of the coating.
  • the wear resistance of the hollow microspheres is 7.2mg
  • the wear resistance of the ball group is 5.0 mg. Although the difference is not significant, the test results show that the wear resistance of solid ceramic microspheres is better.
  • the coating hardness of Comparative Example 1 is low, cracking occurs in the heat resistance test, and the wear resistance is poor at 22.7 mg, which shows that the composite wear-resistant filler does increase the wear resistance of the coating.
  • composite wear-resistant fillers has a significant impact on the breaking strength and elongation of polyurea coatings.
  • the tensile strength of polyurea coatings with composite wear-resistant fillers is 26-27MPa, while the control The breaking strength is only 18Mpa, and the breaking elongation is correspondingly reduced from about 90% to 55%.
  • the composite wear-resistant filler is composed of nano-alumina, polytetrafluoroethylene powder, silicon carbide and modified ceramic microspheres. Analysis of the reasons shows that the increase in the toughness of the coating may be due to the modified ceramic microsphere surface modified by hyperbranched resin. effect.
  • the purpose of the experiment to prepare different composite wear-resistant fillers by changing the addition amount of each component, and then prepare different polyurea coatings, and optimize the distribution ratio of each component in the composite wear-resistant filler by testing the coating wear resistance.
  • Test method The preparation method of composite wear-resistant filler is shown in Example 3.
  • the modified microspheres are all modified solid ceramic microspheres prepared in Example 1.
  • a total of 4 sets of composite wear-resistant fillers are prepared, namely Group A: Nano 25 parts of aluminum oxide, 25 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, 50 parts of modified ceramic microspheres;
  • Group B 50 parts of nanometer aluminum oxide, 25 parts of PTFE powder, 5 parts of silicon carbide, 100 parts of modified ceramic microspheres;
  • Group C 50 parts of nano-alumina, 25 parts of PTFE powder, 5 parts of silicon carbide, 150 parts of modified ceramic microspheres;
  • Group D 100 parts of nanometer aluminum oxide, 50 parts of polytetrafluoroethylene powder, 5 parts of silicon carbide, 150 parts of modified ceramic microspheres; the preparation method of polyurea coating is the same as that shown in Example 6, and the prepared coatings are respectively A , B, C, D polyurea coatings.
  • the final polyurea coating exhibits different wear resistance when the amount of nano-alumina, polytetrafluoroethylene powder, silicon carbide and modified ceramic microspheres in the composite wear-resistant filler is different.
  • the wear resistance of the coating is less than or equal to 5.0mg, the wear resistance of the coating is already at an advantageous level in the field of wear resistant coatings. Therefore, in the present invention, the mass ratio of nano alumina trifluoroethylene, polytetrafluoroethylene powder, silicon carbide and modified ceramic microspheres is preferably 5-10:5:1:10-30, and more preferably, the mass of each component The ratio is 10:5:1:20-30, and the most preferred mass ratio is 10:5:1:30.
  • the modified ceramic microspheres are essential to improve the wear resistance of coatings. It can be seen from the tensile strength and elongation data of the coating that the higher the proportion of the modified ceramic microspheres in the system, the better the toughness parameters, which can prove that the modified ceramic microspheres have a strong Greater impact.
  • Test purpose to detect the influence of modified ceramic microspheres on the wear resistance of the coating.
  • Test method The coatings prepared in Example 6 and Comparative Example 2-4 were used as the test group. Under the conditions of a temperature of 25°C and a relative humidity of 55%, a 120 ⁇ 50 ⁇ 0.28mm tinplate was used as the substrate. Degrease and polish the base material before the test. Graco Polyurea Spraying Equipment HPX-3 was used for spraying, and the performance was tested after curing for 7 days. The results are shown in the following table:
  • the ceramic microspheres in Comparative Example 2 are ceramic microspheres modified with surface silica
  • Comparative Example 3 is ordinary ceramic microspheres with no surface modification
  • Example 4 is ordinary glass microspheres.
  • those skilled in the art improve the wear resistance of the coating by adding ceramic microspheres and glass microspheres to the raw materials for the coating preparation.
  • the coatings with hyperbranched resin modified ceramic microspheres are resistant to The abrasion resistance is the best, followed by the coating with silica modified ceramic microspheres.
  • the ceramic microspheres and glass microspheres without any modification have the worst abrasion resistance.
  • the aminosilane coupling agent and silica sol work together to couple the hyperbranched resin with ceramic microspheres, and with the ceramic microspheres with surface modified silica and the ordinary ceramic microspheres with no surface modification.
  • the modified ceramic microspheres make the coating tougher due to the stable surface modification of the hyperbranched polymer, and overall improve the wear resistance of the coating film. Therefore, while improving the abrasion resistance of the coating system, it increases its toughness, and the final abrasion resistance effect is better.
  • Test purpose the wear resistance of the wear-resistant polyurea coating prepared by the present invention and the commonly used polymer wear-resistant coating are compared.
  • Test group The paint names are: wear-resistant polyurea paint, epoxy-polyamide, epoxy-phenolic, ring-opened epoxy polyurethane, epoxy-modified silicone, natural rubber, butyl rubber, butadiene rubber prepared by the present invention Benzene rubber, nitrile rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

一种耐磨聚脲涂料,所述聚脲涂料包括A组分和B组分,其中,A组分包括:多异氰酸酯、聚四亚甲基醚二醇,B组分包括:端氨基聚醚、氨基扩链剂、复合耐磨填料、防沉剂;所述复合耐磨填料包括纳米氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球。所述耐磨聚脲涂料的耐磨性能显著优于常用的高分子耐磨涂料。

Description

一种耐磨聚脲涂料及其制备方法和应用 技术领域
本发明属于化工涂料领域,具体涉及一种耐磨聚脲涂料。
背景技术
聚脲弹性体是一种新型环保涂料,喷涂聚脲弹性体技术是国外近十年来,继高固体份涂料、水性涂料、光固化涂料、粉末涂料等低(无)污染涂装技术之后,为适应环保要求而研制、开发的一种新型无溶剂、无污染的绿色施工技术。喷涂聚脲弹性体技术是将聚脲的优异性能和快速喷涂、现场固化的施工技术等有机的结合在一起,使其在工程应用上显示出无可比拟的优越性。喷涂聚脲弹性体材料与传统涂料相比,具有无溶剂、固化快、对湿度及温度不敏感、施工周期短、耐高温耐老化性能优异等特点。
聚脲的定义是由异氰酸酯封端的预聚物与氨基化合物组分反应生成的高聚物。聚脲材料家族目前有三个分支,分别为芳香族聚脲、常规脂肪族聚脲和聚天门冬氨酸酯聚脲。目前应用芳香族聚脲和聚天门冬氨酸酯聚脲市场占有率最高。
聚天门冬氨酸酯聚脲材料是聚脲工业领域出现的一种具有慢反应特性的、高性能的脂肪族涂层材料,被称为第三代聚脲。聚天门冬氨酸酯聚脲涂料主要应用于汽车、铁路车辆、桥梁管道、钢结构、集装箱等领域,但其存在漆膜硬度不够高、耐磨性差、耐化学性差等缺点。本领域技术人员也针对以上缺点进行了许多技术改进。
专利文献CN201110311641.5公开一种风电叶片用厚浆快干型耐候耐磨涂料及其制备方法,由甲组份、乙组份两种组份构成;其中甲组份组成为:聚天门冬氨酸酯A、聚天门冬氨酸酯B、润湿分散剂、触变剂、吸水剂、偶联剂、颜料、填料、消光剂、紫外线吸收剂、增滑、抗划伤及防沾污剂、流平剂、消泡剂、稀释剂。填料为陶瓷粉、石英粉、云母粉、晶须硅、刚玉粉中的一种或几种任意比例的组合,填料的粒度要求在35μm以下。该涂料耐候性能优异,具有较高的拉伸强度与断裂伸长率,但其组分多,制备成本高,难以推广使用。
专利文献CN201811396948.8公开了一种或防腐耐磨聚脲涂料由A、B两组分组成,A 组由DMD-3000、DDL-2000D、聚酯多元醇和TDI组成,B组分由端氨基聚醚和液态胺扩链剂组成。所述防腐耐磨聚脲涂料,具有优良的防腐耐磨性能,在石油,化工,管道,海洋工程等领域的应用十分广泛,但在效果实施例中并没有体现出所述聚脲涂料具有优良的耐磨性能。
专利文献CN201810415159.8公开了一种聚脲涂料,所述聚脲涂料包括A组分、B组分和纳米浆料;所述A组分由包括二异氰酸酯和聚丙二醇的原料制备得到;所述B组分包括聚氧化丙烯二铵、马来酸二乙酯、分散剂、流平剂和消泡剂;所述纳米浆料包括纳米二氧化硅和促进剂。所述聚脲涂料在普通现有技术基础上添加了纳米浆料,但对防腐、耐盐雾能力提升并不显著。
目前喷涂聚脲弹性体主要应用在防水方面,在耐磨防护方面研究较少。虽然喷涂聚脲材料耐磨性能优越,随着人类的发展,对其耐磨性有了更高的要求,如何降低喷涂聚脲材料的摩擦损耗,是当前的研究方向。
专利文献CN201810712419.8公开了一种耐磨水性建筑纳米防水涂料,包括水性硅丙乳液、水性聚氨酯乳液、钛白粉、重质碳酸钙、云母、空心陶瓷微球、羟乙基纤维素、成膜助剂、其他助剂、去离子水。所述空心陶瓷微球是以空心陶瓷微球为核、纳米二氧化硅为壳的球形二氧化硅包覆空心陶瓷微球,提高了涂料的耐磨性能。
专利文献CN201811205987.5公开一种高性能陶瓷复合涂料及其制备方法。所述高性能陶瓷复合涂料包括第一组分及第二组分,所述第一组分包括:有机硅树脂,聚天门冬氨酸酯,铝硅酸钾,陶瓷微球,润湿分散剂,流变助剂,消泡剂,流平剂;所述第二组分为脂肪族聚异氰酸酯。所述陶瓷复合涂料不仅具有高硬度、高耐磨性、高耐热性、高耐候性的优点,而且具有优异的耐化学品性。
虽然现有技术在改善聚脲涂料耐磨性能方面已经做了很多工作,当前利用陶瓷微球提高涂料耐磨性是研究者们的首选,但本发明的发明人发现,想要提高涂料耐磨性还需要与其柔韧性相辅相成,如果涂料本身柔韧性较差,一味的只通过添加耐磨陶瓷微球、耐磨玻璃微球等提高耐磨性,实际上效果提高并不显著。
发明内容
为了克服现有技术的缺陷,本发明提供一种聚脲涂料,通过改性陶瓷微球提高涂料涂层的耐磨性能。
本发明的主要目的是提供一种耐磨聚脲涂料,所述聚脲涂料中添加复合耐磨填料,所述复合耐磨填料由纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球组成,耐磨填料旨在提高涂层耐磨性基础上增加涂层柔韧性,使得涂层表现的耐磨效果更突出。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明提供一种耐磨聚脲涂料,所述聚脲涂料包括A组分和B组分,其中,A组分制备原料包括:多异氰酸酯、聚四亚甲基醚二醇,B组分制备原料包括:端氨基聚醚、氨基扩链剂、复合耐磨填料、防沉剂;所述复合耐磨填料包括纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球,其中,改性陶瓷微球制备原料包括:陶瓷微球、氨基硅烷偶联剂、超支化树脂、硅溶胶。
优选的,所述聚脲涂料包括以下质量份数的制备原料,A组分:多异氰酸酯50-70份、聚四亚甲基醚二醇30-50份,B组分:端氨基聚醚30-45份、氨基扩链剂20-30份、复合耐磨填料10-25份、防沉剂0-1份。
在本发明中,所述多异氰酸酯选自:多亚甲基多苯基多异氰酸酯、六亚甲基二异氰酸酯、亚苯基二异氰酸酯、二环己基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯(MDI)中的一种或两种以上的组合。优选的,所述多异氰酸酯选自二苯基甲烷二异氰酸酯。
聚四亚甲基醚二醇(PTMEG)是四氢呋喃的聚合物,主链由碳链和醚链组成的二醇类,线性结构,羟基位于主链的两端,由于主链由碳链和醚链组成,不含不饱和键,柔顺性好,力学性能佳,主要用于生产聚氨酯弹性体、聚氨酯弹性纤维和酯醚共聚弹性体。
所述端氨基聚醚为分子量为2000-5000的聚醚胺,本发明的优选实施方式中,所述端氨基聚醚为Jaffamine D-2000或Jaffamine T-5000。
所述氨基扩链剂选自二乙基甲苯二胺(DETDA)、4,4-双仲丁氨基二苯基甲烷、二甲 硫基甲苯二胺(DMTDA)中的一种或两种以上的组合。在本发明的优选实施方式中,所述氨基扩链剂为DETDA和4,4-双仲丁氨基二苯基甲烷。
所述的防沉剂选自气相二氧化硅或有机膨润土。
在本发明中,所述复合耐磨填料制备原料中纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球的质量比为5-20:5-10:1:10-30。
所述改性陶瓷微球包括以下质量份数的原料:陶瓷微球50-70份、氨基硅烷偶联剂6-10份、超支化树脂15-35份、硅溶胶2-6份。
在本发明中,陶瓷微球为3M的G-600,密度为2.3g/cc,平均粒径为10-24μm。
所述陶瓷微球为实心陶瓷微球或空心陶瓷微球,优选的,选自实心陶瓷微球。
所述氨基硅烷偶联剂选自:γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-氨乙基氨丙基三甲氧基硅烷中的一种或两种以上的组合物。氨基硅烷偶联剂能同时与陶瓷微球表面和有机聚合物中长分子链相互作用,将两种不同性质的材料偶联起来,在本发明中将超支化聚合物连接在陶瓷微球表面,改善涂层的强度、韧性和稳定性。
硅溶胶为纳米级的二氧化硅颗粒在水中或溶剂中的分散液,本发明中硅溶胶的作用是辅助氨基硅烷偶联剂,使聚合物在陶瓷微球表面附着更稳定。
超支化树脂选自:超支化聚酰胺树脂、超支化聚丙烯酸酯或超支化不饱和树脂,在本发明的优选实施方式中,所述超支化树脂选自超支化聚酰胺树脂HyPer HPN202,以芳香族聚酰胺超支化聚合物为骨架的端羟基超支化聚合物。
第二方面,本发明提供一种耐磨聚脲涂料的制备方法,包括:改性陶瓷微球的制备、复合耐磨填料的制备、聚脲涂料A组分的制备、聚脲涂料B组分的制备,其中,改性陶瓷微球制备方法包括:(1)将氨基硅烷偶联剂配制成质量浓度为10-20%的异丙醇溶液;(2)在翻转式混合反应釜内,将陶瓷微球加热到70-90℃,喷洒氨基硅烷偶联剂溶液,翻转混合使溶剂挥发;(3)将熔化的超支化聚合物与硅溶胶混合喷洒在陶瓷微球表面,翻转混合伴随降温,20-30分钟降至室温,得到改性陶瓷微球。
复合耐磨填料的制备方法包括:将纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷 微球按照质量比为5-20:5-10:1:10-30投入搅拌缸中,以500-600转/分钟搅拌45-60分钟,混合均匀即可。
聚脲涂料A组分的制备方法:(1)将聚四亚甲基醚二醇在110-120℃,真空度为-0.08-0.1Mpa下脱水2-3小时,降至室温备用;
(2)将多异氰酸酯投入反应釜中,升温至45-50℃,滴加聚四亚甲基醚二醇,滴加完毕升温至80-90℃,保温2-2.5小时,取样测NCO含量,当NCO含量为15.0-18.0%时降至室温,过滤,充氮气密封保存备用。
聚脲涂料B组分的制备方法:将端氨基聚醚投入搅拌缸中,加入氨基扩链剂后搅拌0.5-1小时,加入复合耐磨填料、防沉剂,以400-500转/分钟搅拌45-60分钟,过滤,包装备用。
本发明所述的耐磨聚脲涂料施用方法包括:刷涂、浸涂、流涂或喷涂,基底材料选自金属、塑料、混凝土或木材;优选的,所述施用方法为喷涂,基材优选为金属。
第三方面,本发明提供一种耐磨聚脲涂料的施用方法,包括如下步骤:
(1)清除底材旧漆膜,对底材进行清洁;
(2)将涂料的A组份和B组份按1:1-4的比例充分搅拌混匀;
(3)放置熟化1-10分钟后进行喷涂。
其中,所述步骤(1)的底材清洁包括除油,除锈,打磨,磷化处理、喷砂处理。
优选的,所述步骤(2)中是将所述A组分和B组分在高压下合并混合,优选的,A组分和B组分在高压喷涂设备中直接进行冲击混合。具体的,A组分和B组分分别在两个分开的腔室中加热,分别加压,并以高速彼此冲击或撞击,以实现两种组分间的紧密混合,再通过喷枪涂布到基材上。
在本发明的优选实施方式中,所述海洋工程防腐聚脲涂料通过固瑞克聚脲喷涂设备HXP-3喷涂,其喷涂设备上设置A组分加热温度为60-65℃,B组分加热温度为60-65℃,喷涂时,A组分及B组分动态压力为1900-2200PSI,静态压力为2400-2500PSI。
第四方面,本发明提供一种耐磨聚脲涂料在煤炭、钢铁、矿山、电力、化工、电子、 纺织领域机械传动件,或家居耐磨产品制造中的应用。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1 改性实心陶瓷微球的制备
S1:将γ-氨丙基三乙氧基硅烷6份加入异丙醇配制成质量浓度为20%的溶液;
S2:将实心陶瓷微球50份加入到翻转式混合反应釜内,将陶瓷微球加热至80℃,少量多次喷洒步骤S1制备的γ-氨丙基三乙氧基硅烷异丙醇溶液,翻转混合至溶剂挥发;
S3:将20份超支化聚酰胺树脂HyPer HPN202加热熔化,加入2份硅溶胶混合均匀,少量多次喷洒在陶瓷微球表面,翻转混合伴随降温,30分钟降至室温,得到改性陶瓷微球。
实施例2 改性空心陶瓷微球的制备
S1:同实施例1;
S2:将空心陶瓷微球50份加入到翻转式混合反应釜内,将陶瓷微球加热至80℃,少量多次喷洒步骤S1制备的γ-氨丙基三乙氧基硅烷异丙醇溶液,翻转混合至溶剂挥发;
S3:同实施例1。
实施例3 复合耐磨填料的制备
将纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、实施例1制备的改性实心陶瓷微球50份投入搅拌缸中,以600转/分钟搅拌45分钟,混合均匀,得到复合耐磨填料,纳米三氧化铝、聚四氟乙烯粉、碳化硅、改性陶瓷微球之间质量比为5:5:1:10。
实施例4 复合耐磨填料的制备
将纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、实施例2制备的改性空心陶瓷微球50份投入搅拌缸中,以600转/分钟搅拌45分钟,混合均匀,得到复合耐磨填料。
实施例5 耐磨聚脲涂料的制备
A组分的制备:将分子量1000的聚四亚甲基醚二醇44份在120℃,真空度为-0.08Mpa下脱水2小时,降至室温备用;将多异氰酸酯MDI56份投入反应釜中,升温至45℃,缓慢滴加聚四亚甲基醚二醇,1小时滴加完毕升温至80℃,保温2小时,取样测NCO含量为15.0%时降至室温,过滤,充氮气密封保存备用;
B组分的制备方法:将50份端氨基聚醚D2000投入搅拌缸中,加入二乙基甲苯二胺20份、4,4-双仲丁氨基二苯基甲烷10份后搅拌0.5小时,加入实施例4制备的复合耐磨填料19.5份、有机膨润土0.5份,以400转/分钟搅拌60分钟,过滤,包装备用。
实施例6 耐磨聚脲涂料的制备
A组分的制备:同实施例5;
B组分的制备方法:将50份端氨基聚醚D2000投入搅拌缸中,加入二乙基甲苯二胺20份、4,4-双仲丁氨基二苯基甲烷10份后搅拌0.5小时,加入实施例3制备的复合耐磨填料19.5份、有机膨润土0.5份,以400转/分钟搅拌60分钟,过滤,包装备用。
对比实施例1 无复合耐磨填料的聚脲涂料的制备
A组分的制备:同实施例5;
B组分的制备方法:将50份端氨基聚醚D2000投入搅拌缸中,加入二乙基甲苯二胺20份、4,4-双仲丁氨基二苯基甲烷10份后搅拌0.5小时,加入有机膨润土0.5份,以400转/分钟搅拌60分钟,过滤,包装备用。
对比实施例2 二氧化硅改性陶瓷微球耐磨聚脲涂料的制备
根据专利文献CN201810712419.8公开的方法制备以实心陶瓷微球为核、纳米二氧化硅为壳的球形二氧化硅改性陶瓷微球。
复合耐磨填料的制备:将纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、二氧化硅改性的实心陶瓷微球50份投入搅拌缸中,以600转/分钟搅拌45分钟,混合均匀;
A组分的制备:同实施例5;
B组分的制备方法:同实施例5。
对比实施例3 无改性陶瓷微球耐磨聚脲涂料的制备
复合耐磨填料的制备:将纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、表面无改性的实心陶瓷微球50份投入搅拌缸中,以600转/分钟搅拌45分钟,混合均匀;
A组分的制备:同实施例5;
B组分的制备方法:同实施例5。
对比实施例4 玻璃微球耐磨聚脲涂料的制备
复合耐磨填料的制备:将纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、表面无改性的玻璃微球50份投入搅拌缸中,以600转/分钟搅拌45分钟,混合均匀;
A组分的制备:同实施例5;
B组分的制备方法:同实施例5。
效果实施例1 复合耐磨填料在耐磨聚脲涂料中的作用
以实施例5、实施例6制备的聚脲涂料作为试验组,对比实施例1制备的聚脲涂料作为对照组。在温度为25℃,空气相对湿度为55%的条件下,使用120×50×0.28mm马口铁板作为基材,试验前对基材进行除油打磨。采用固瑞克聚脲喷涂设备HPX-3进行喷涂,A组分和B组分按照1:3混合,按0.25kg/㎡的用量喷涂,保持涂层厚度相对均一,涂层快速固化,通过7天养护后进行性能检测,结果如下表所示:
表1耐磨聚脲涂料基本性能测试
Figure PCTCN2020093648-appb-000001
Figure PCTCN2020093648-appb-000002
实施例5制备的聚脲涂料中改性陶瓷微球是空心微球,实施例6中的改性陶瓷微球是实心微球,对比实施例1中聚脲涂料不含复合耐磨填料。由表中数据可以看出,陶瓷微球选择实心或空心,对涂层硬度、附着力、耐热性、耐人工气候老化性影响不大,空心微球组耐磨性为7.2mg,实心微球组耐磨性为5.0mg,虽然差异不大,但是检测结果表明选择实心陶瓷微球耐磨性效果更好。对比实施例1涂层硬度偏低,耐热性检测出现开裂现象,耐磨性差,为22.7mg,由此说明复合耐磨填料确实有增加涂层耐磨性的作用。
另外,复合耐磨填料的添加对于聚脲涂料涂层的扯断强度及断裂伸长率有明显的影响,添加复合耐磨填料的聚脲涂层扯断强度为26-27MPa,而对照组扯断强度只有18Mpa,断裂伸长率也相应的从90%左右降至55%。这说明添加了复合耐磨填料还能增加聚脲涂料的柔韧性。复合耐磨填料由纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球组成,分析原因,涂料韧性的增加可能是因为改性陶瓷微球表面修饰了超支化树脂产生的有益效果。
效果实施例2 复合耐磨填料组分配比优化
实验目的:通过改变各组分添加量,制备不同的复合耐磨填料,进而制备不同的聚脲涂料,通过检测涂层耐磨强度优化复合耐磨填料中各组分配比。
试验方法:复合耐磨填料的制备方法如实施例3所示,改性微球均为实施例1制备的改性实心陶瓷微球,共制备4组复合耐磨填料,分别是A组:纳米三氧化铝25份、聚四氟乙烯粉25份、碳化硅5份、改性陶瓷微球50份;
B组:纳米三氧化铝50份、聚四氟乙烯粉25份、碳化硅5份、改性陶瓷微球100份;
C组:纳米三氧化铝50份、聚四氟乙烯粉25份、碳化硅5份、改性陶瓷微球150份;
D组:纳米三氧化铝100份、聚四氟乙烯粉50份、碳化硅5份、改性陶瓷微球150 份;聚脲涂料的制备方法同实施例6所示,制备的涂料分别是A、B、C、D聚脲涂料。
在温度为25℃,空气相对湿度为55%的条件下,使用120×50×0.28mm马口铁板作为基材,试验前对基材进行除油打磨。采用固瑞克聚脲喷涂设备HPX-3进行喷涂,固化后通过7天养护进行性能检测。通过涂料耐磨性和韧性指标优化配比,结果如下表所示:
表2聚脲涂料耐磨性对比
Figure PCTCN2020093648-appb-000003
由上表检测数据可以看出,当复合耐磨填料中纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球添加量不同时,最终聚脲涂料表现出的耐磨性不同,当涂层耐磨性小于等于5.0mg时,所述涂料的耐磨性已经在耐磨涂料领域处于优势水平。因此,在本发明中,纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球质量比优选为5-10:5:1:10-30,更优选的,各组分质量比为10:5:1:20-30,最优选的质量比为10:5:1:30。由此可以看出改性陶瓷微球对改善涂料耐磨性至关重要。通过涂料的扯断强度及断裂伸长率数据可以看出,当体系中改性陶瓷微球含量占比越高时,韧性参数越好,由此可以证明,改性陶瓷微球对涂料韧性强度影响较大。
效果实施例3 改性陶瓷微球对于改善涂料耐磨性影响
试验目的:检测改性陶瓷微球对涂层耐磨性能的影响。
试验方法:以实施例6、对比实施例2-4制备的涂料为试验组,在温度为25℃,空气相对湿度为55%的条件下,使用120×50×0.28mm马口铁板作为基材,试验前对基材进行除油打磨。采用固瑞克聚脲喷涂设备HPX-3进行喷涂,固化后通过7天养护进行性能检 测,结果如下表所示:
表3聚脲涂料耐磨性对比
  实施例6 对比实施例2 对比实施例3 对比实施例4
耐磨性(700g,500r) 5.0mg 9.0mg 12.1mg 13.7mg
扯断强度 27.1MPa 18.7MPa 18.0MPa 17.2MPa
断裂伸长率 93% 55% 50% 55%
与实施例6制备的聚脲涂料相比,对比实施例2中的陶瓷微球为表面二氧化硅改性的陶瓷微球,对比实施例3是表面没有经过改性的普通陶瓷微球,对比实施例4是普通玻璃微球。通常情况下,本领域技术人员通过在涂料制备原料中添加陶瓷微球和玻璃微球改善涂料的耐磨性,但通过上表数据可以看出,添加超支化树脂改性陶瓷微球的涂料耐磨性最好,其次是添加二氧化硅改性陶瓷微球的涂料,表面无任何改性的陶瓷微球和玻璃微球耐磨性最差。分析原因,在本发明中,氨基硅烷偶联剂和硅溶胶共同作用,将超支化树脂与陶瓷微球偶联,与表面修饰二氧化硅的陶瓷微球和表面无改性的普通陶瓷微球相比,改性后的陶瓷微球由于表面稳定修饰超支化聚合物使涂料韧性更强,整体改善了涂膜的耐磨性。因此,在改善涂料体系耐磨性的同时增加其韧性,最终耐磨性效果更好。
效果实施例4 聚脲涂料耐磨性优势
试验目的:本发明制备的耐磨聚脲涂料与常用高分子耐磨涂料耐磨性对比。
试验组:涂料名称分别是:本发明制备的耐磨聚脲涂料、环氧-聚酰胺、环氧-酚醛、开环环氧聚氨酯、环氧改性有机硅、天然橡胶、丁基橡胶、丁苯橡胶、丁腈橡胶。
试验方法:在温度为25℃,空气相对湿度为55%的条件下,使用120×50×0.28mm马口铁板作为基材,试验前对基材进行除油打磨。采用固瑞克聚脲喷涂设备HPX-3进行喷涂,固化后通过7天养护进行性能检测,结果如下表所示:
表4涂料耐磨性对比
材料名称 耐磨性(700g,500r)
耐磨聚脲涂料 3.0mg
环氧-聚酰胺涂料 19.2mg
环氧-酚醛树脂涂料 14.9mg
开环环氧聚氨酯涂料 11.0mg
环氧改性有机硅涂料 9.3mg
天然橡胶 147mg
丁基橡胶 205mg
丁苯橡胶 181mg
丁腈橡胶 43mg
从上表对比数据可以看出,本发明制备的耐磨聚脲涂料与目前常用的高分子耐磨涂料相比耐磨优势显著。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种耐磨聚脲涂料,所述聚脲涂料包括A组分和B组分,其中,A组分制备原料包括:多异氰酸酯、聚四亚甲基醚二醇,B制备原料组分包括:端氨基聚醚、氨基扩链剂、复合耐磨填料、防沉剂;所述复合耐磨填料包括纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球,其中,改性陶瓷微球制备原料包括:陶瓷微球、氨基硅烷偶联剂、超支化树脂、硅溶胶;其特征在于,所述的耐磨聚脲涂料通过如下方法步骤制备得到:
    所述聚脲涂料A组分的制备方法如下:
    (1)将聚四亚甲基醚二醇在110-120℃,真空度为-0.08至-0.1Mpa下脱水2-3小时,降至室温备用;
    (2)将多异氰酸酯投入反应釜中,升温至45-50℃,滴加聚四亚甲基醚二醇,滴加完毕升温至80-90℃,保温2-2.5小时,取样测NCO含量,当NCO含量为15.0-18.0%时降至室温,过滤,充氮气密封保存备用;
    所述聚脲涂料B组分的制备方法如下:将端氨基聚醚投入搅拌缸中,加入氨基扩链剂后搅拌0.5-1小时,加入复合耐磨填料、防沉剂,以400-500转/分钟搅拌45-60分钟,过滤,包装备用。
  2. 根据权利要求1所述的耐磨聚脲涂料,其特征在于,所述聚脲涂料包括以下质量份数的制备原料,A组分:多异氰酸酯50-70份、聚四亚甲基醚二醇30-50份,B组分:端氨基聚醚30-45份、氨基扩链剂20-30份、复合耐磨填料10-25份、防沉剂0-1份。
  3. 根据权利要求1所述的耐磨聚脲涂料,其特征在于,所述复合耐磨填料制备原料中纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球的质量比为5-20:5-10:1:10-30。
  4. 根据权利要求1所述的耐磨聚脲涂料,其特征在于,所述改性陶瓷微球包括以下质量份数的原料:陶瓷微球50-70份、氨基硅烷偶联剂6-10份、超支化树脂15-35份、硅溶胶2-6份。
  5. 根据权利要求4所述的耐磨聚脲涂料,其特征在于,所述陶瓷微球为实心陶瓷微球或空心陶瓷微球;
    所述氨基硅烷偶联剂选自:γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-氨乙基氨丙基三甲氧基硅烷中的一种或两种以上的组合物;
    超支化树脂选自:超支化聚酰胺树脂、超支化聚丙烯酸酯或超支化不饱和树脂。
  6. 一种权利要求1所述的耐磨聚脲涂料的制备方法,包括:改性陶瓷微球的制备、复合耐磨填料的制备、聚脲涂料A组分的制备、聚脲涂料B组分的制备,其中,改性陶瓷微球制备方法包括:(1)将氨基硅烷偶联剂配制成质量浓度为10-20%的异丙醇溶液;(2)在翻转式混合反应釜内,将陶瓷微球加热到70-90℃,喷洒氨基硅烷偶联剂溶液,翻转混合使溶剂挥发;(3)将熔化的超支化聚合物与硅溶胶混合喷洒在陶瓷微球表面,翻转混合伴随降温,20-30分钟降至室温,得到改性陶瓷微球。
  7. 根据权利要求6所述的制备方法,其特征在于,复合耐磨填料的制备方法为:将纳米三氧化铝、聚四氟乙烯粉、碳化硅和改性陶瓷微球按照质量比为5-20:5-10:1:10-30投入搅拌缸中,以500-600转/分钟搅拌45-60分钟,混合均匀即可。
  8. 一种权利要求1所述的耐磨聚脲涂料的施用方法,包括:刷涂、浸涂、流涂或喷涂,基底材料选自金属、塑料、混凝土或木材。
  9. 根据权利要求8所述的施用方法,其特征在于,耐磨聚脲涂料的喷涂方法,包括如下步骤:
    (1)清除底材旧漆膜,对底材进行清洁;
    (2)将涂料的A组份和B组份按1:1-4的比例充分搅拌混匀;
    (3)放置熟化1-10分钟后进行喷涂;
    其中,所述步骤(1)的底材清洁包括除油,除锈,打磨,磷化处理、喷砂处理。
  10. 一种权利要求1-5任一所述的耐磨聚脲涂料在煤炭、钢铁、矿山、电力、化工、电子、纺织领域机械传动件,或家居耐磨产品制造中的应用。
PCT/CN2020/093648 2019-08-12 2020-05-31 一种耐磨聚脲涂料及其制备方法和应用 WO2021027369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910740009.9 2019-08-12
CN201910740009.9A CN110564274B (zh) 2019-08-12 2019-08-12 一种耐磨聚脲涂料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021027369A1 true WO2021027369A1 (zh) 2021-02-18

Family

ID=68775113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093648 WO2021027369A1 (zh) 2019-08-12 2020-05-31 一种耐磨聚脲涂料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110564274B (zh)
WO (1) WO2021027369A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110564274B (zh) * 2019-08-12 2020-12-22 王道前 一种耐磨聚脲涂料及其制备方法和应用
CN110845685B (zh) * 2019-12-12 2021-11-09 中国科学院长春应用化学研究所 一种修补汽车仪表板聚氨酯泡沫的聚天门冬氨酸酯聚脲基修补材料、其制备方法及修补方法
CN111393972A (zh) * 2020-04-24 2020-07-10 长沙盾甲新材料科技有限公司 一种碳化硅纳米线增强聚脲涂料及制备方法
CN111925722A (zh) * 2020-07-31 2020-11-13 湖北琼霸防水科技有限公司 一种耐磨防水涂料及其制备方法
CN112760030B (zh) * 2021-02-01 2023-08-18 湖南湘龙建材有限公司 耐磨高强型涂料及其制备方法
CN113045990B (zh) * 2021-03-30 2022-09-20 苏州群鹰防腐材料有限公司 一种无溶剂超耐磨弹性防腐涂料
CN113637398B (zh) * 2021-08-25 2022-03-08 黄山中邦孚而道涂料有限公司 一种底面合一型无溶剂聚天门冬氨酸酯重防腐涂料、制备方法及其应用
CN113683947B (zh) * 2021-08-30 2022-03-08 黄山中邦孚而道涂料有限公司 一种机车用高耐磨耐候耐腐蚀涂料、制备方法及其应用
CN113736210A (zh) * 2021-11-05 2021-12-03 昱垠科技有限公司 一种防水防腐耐磨复合材料的制备及其使用方法
CN114197786A (zh) * 2021-11-18 2022-03-18 深圳市奇信集团股份有限公司 一种瓷砖填缝结构及其施工方法
CN114806361B (zh) * 2022-05-13 2023-05-02 中国地质科学院 一种纳米二氧化硅改性的聚脲涂料及其制备方法、在非常规能源钻采领域的应用
CN116285662B (zh) * 2023-02-23 2024-04-09 深圳优易材料科技有限公司 一种低温省煤器防露点腐蚀涂层及其制备方法和应用
CN116144252B (zh) * 2023-04-04 2023-06-30 四川星利涂装材料有限公司 一种无溶剂自清洁弹性聚脲涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266671A (en) * 1989-09-25 1993-11-30 Texaco Chemical Co. Spray polyurea elastomers with abrasion resistance
CN101302393A (zh) * 2008-06-19 2008-11-12 青岛佳联化工新材料有限公司 应用于矿山的喷涂聚脲弹性体及其制备方法和施工方法
CN102108243A (zh) * 2010-12-17 2011-06-29 上海瑞鹏化工材料科技有限公司 一种高耐磨聚脲弹性体喷涂层的制造技术
CN102993930A (zh) * 2012-09-29 2013-03-27 北京东方雨虹防水技术股份有限公司 高耐磨喷涂聚脲弹性涂料及其制备方法
CN109575703A (zh) * 2018-12-19 2019-04-05 南京红枫环保材料有限公司 一种强附着力内墙底漆
CN110564274A (zh) * 2019-08-12 2019-12-13 王道前 一种耐磨聚脲涂料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001427B (zh) * 2015-07-21 2017-08-29 立邦工业涂料(上海)有限公司 一种经胺类修饰的超支化羟基聚合物及在快干和颜料分散体系中的应用
GR1009055B (el) * 2015-11-23 2017-06-21 Σιδερατου, Ωραιοζηλη Νικολαου Καινοτομα νανοσυνθετα υλικα με ιδιοτητες ελεγχου οργανικης μικροστοιβαδας για εφαρμογες σε επικαλυψεις απομακρυνσης θαλασσιων επικαθισεων

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266671A (en) * 1989-09-25 1993-11-30 Texaco Chemical Co. Spray polyurea elastomers with abrasion resistance
CN101302393A (zh) * 2008-06-19 2008-11-12 青岛佳联化工新材料有限公司 应用于矿山的喷涂聚脲弹性体及其制备方法和施工方法
CN102108243A (zh) * 2010-12-17 2011-06-29 上海瑞鹏化工材料科技有限公司 一种高耐磨聚脲弹性体喷涂层的制造技术
CN102993930A (zh) * 2012-09-29 2013-03-27 北京东方雨虹防水技术股份有限公司 高耐磨喷涂聚脲弹性涂料及其制备方法
CN109575703A (zh) * 2018-12-19 2019-04-05 南京红枫环保材料有限公司 一种强附着力内墙底漆
CN110564274A (zh) * 2019-08-12 2019-12-13 王道前 一种耐磨聚脲涂料及其制备方法和应用

Also Published As

Publication number Publication date
CN110564274A (zh) 2019-12-13
CN110564274B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2021027369A1 (zh) 一种耐磨聚脲涂料及其制备方法和应用
CN105802460B (zh) 刮涂型聚脲弹性体耐蚀耐磨材料及其制备方法
CN109354987B (zh) 表干时间适中、可以适应环境变化的聚天门冬氨酸酯聚脲涂料、制备方法、使用方法及应用
CN101481576B (zh) 一种超厚膜无溶剂热喷快干重防腐涂料及其制备方法
KR101740239B1 (ko) 유ㆍ무기 복합수지를 이용하여 중성화 및 염해방지 기능이 향상된 콘크리트 구조물 보호용 코팅제
WO2021027368A1 (zh) 一种海洋工程防腐聚脲涂料及其制备方法
CN102702947A (zh) 机采井环境有机硅-纳米复合改性聚脲耐蚀涂层及制备方法
AU2021402785B2 (en) Polyurethane modified graphene microsheet and preparation method therefor
CN101805588A (zh) 一种耐久性优越的聚氨酯道路嵌缝胶及生产工艺
CN111548712A (zh) 一种快速固化的建筑用聚脲防爆涂料及其制备方法
CN113292901A (zh) 用于高炉煤气发电机叶片的防腐涂料及其制备方法和用途
CN114316777A (zh) 一种喷涂型聚氨酯防水涂料及其制备方法和施工方法
CN112126329A (zh) 一种喷涂型水利大坝抗冰拔耐磨的聚脲涂料及其加工工艺
CN112011248A (zh) 长输管线的内壁减阻环保涂料及其制备方法
CN115044278A (zh) 一种耐温防腐修补剂
CN109135527A (zh) 一种改性聚脲涂料的制备工艺
CN103834034B (zh) 一种主链含硅氧烷结构单元的聚脲共聚物及其制备方法
CN114713479A (zh) 一种通过激光固化提高液料喷涂EP+PDMS/SiO2超疏水涂层耐久性能的方法
CN1912033A (zh) 管道用聚脲外防腐涂料及制造方法
CN108129974B (zh) 一种机车车辆用聚硅氧烷面漆及其制备方法
CN113480925A (zh) 一种高性能无溶剂阻燃型聚脲涂料的制造方法
WO2024109020A1 (zh) 一种聚脲组合物及其制备方法和应用
CN113045974A (zh) 一种用于叶轮表面抗冲击石墨烯聚脲复合涂层的制备方法
CN115895352A (zh) 一种风电叶片涂料组合
CN115124719B (zh) 一种封端含poss的多异氰酸酯固化剂及耐候抗污防腐型聚氨酯粉末涂料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853195

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20853195

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20853195

Country of ref document: EP

Kind code of ref document: A1