WO2021027151A1 - 一种锂电池的制备方法 - Google Patents

一种锂电池的制备方法 Download PDF

Info

Publication number
WO2021027151A1
WO2021027151A1 PCT/CN2019/117830 CN2019117830W WO2021027151A1 WO 2021027151 A1 WO2021027151 A1 WO 2021027151A1 CN 2019117830 W CN2019117830 W CN 2019117830W WO 2021027151 A1 WO2021027151 A1 WO 2021027151A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
film
electrolyte
wipe
electrode layer
Prior art date
Application number
PCT/CN2019/117830
Other languages
English (en)
French (fr)
Inventor
张聪聪
王卫润东
Original Assignee
萨姆蒂萨(天津)数据信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萨姆蒂萨(天津)数据信息技术有限公司 filed Critical 萨姆蒂萨(天津)数据信息技术有限公司
Publication of WO2021027151A1 publication Critical patent/WO2021027151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium batteries, in particular to a method for preparing lithium batteries.
  • the energy of the battery configured in the mobile terminal is generally low, and a mobile power supply (also called a power bank) is often required to supplement the battery of the mobile terminal.
  • the sustainable energy of ion batteries is about 230wh/kg and the energy density is about 600wh/L, which cannot meet the requirements of high energy density, high power density, and long cycle life.
  • the performance of the battery is mainly determined by the material. The technical breakthrough of the material is very difficult, the cycle is very long, and it is not conducive to meeting the battery requirements of high energy density, high power density, and long cycle life.
  • the invention provides a method for preparing a lithium battery, which solves the problem that the material performance in the lithium battery preparation process is difficult to break through, and the lithium battery cannot meet the requirements of high energy density, high power density, and long cycle life.
  • an embodiment of the present invention provides a method for preparing a lithium battery, including:
  • At least one first electrode layer is prepared on the insulating film by wiping and pressing at least the first slurry; wherein the first slurry is obtained by mixing an electrolyte as a solvent with the first electrode raw material;
  • the second slurry is used for wiping and pressing to prepare an isolation wiping film on the first electrode layer; wherein, the second slurry is obtained by mixing an electrolyte as a solvent with an isolation raw material;
  • At least one second electrode layer is prepared on the isolation wipe pressing film by using at least a third slurry; wherein the third slurry is obtained by mixing the electrolyte as a solvent with the second electrode raw material of;
  • the insulating film and the prepared first electrode layer, the isolation wipe press film and the second electrode layer are packaged to obtain a lithium battery.
  • the first electrode layer includes: a first current collector film and a first wipe press film;
  • the method of wiping and pressing at least using the first slurry to prepare at least one first electrode layer on the insulating film includes:
  • the first wiping film is prepared on the first current collector film by vibrating the first slurry mixed with the electrolyte at a first predetermined frequency and/or a first predetermined amplitude.
  • the method of preparing the first current collector film on the insulating film or the first electrode layer by using a first conductive metal includes:
  • the first conductive metal is vapor-deposited on the insulating film or the first electrode layer by vacuum evaporation or magnetron sputtering to obtain the first current collector film.
  • the first slurry mixed with the electrolyte is vibrated and wiped at a first predetermined frequency and/or a first predetermined amplitude to prepare the first current collector film on the
  • the first press film includes:
  • the first slurry with a solid content of 55 to 90% by weight, a viscosity of 3500 to 20000 cP, and the electrolyte mixed with the first slurry is rubbed and pressed on the first slurry with a first predetermined frequency and/or a first predetermined amplitude vibration.
  • the first wiped press film is obtained.
  • the method of using the second slurry to wipe and press to prepare an isolation wipe and press film on the first electrode layer includes:
  • the second slurry with a solid content of 5 to 80% by weight, a viscosity of 500 to 15000 cP, and the electrolyte mixed with the second slurry is rubbed and pressed on the first slurry by means of a second predetermined frequency and/or a second predetermined amplitude vibration.
  • the isolation wipe press film is obtained on an electrode layer.
  • the second electrode layer includes: a second current collector film and a second wipe press film;
  • the method of using at least a third slurry for wipe pressing to prepare at least one second electrode layer on the isolation wipe pressing film includes:
  • the second wipe pressing film is prepared on the isolation wipe pressing film by using a third slurry mixed with the electrolyte to perform vibrating wipe pressing at a third predetermined frequency and/or a third predetermined amplitude;
  • the second current collector film is prepared by using a second conductive metal on the second wipe press film.
  • the third slurry mixed with the electrolyte is used to perform vibrating wiping at a third predetermined frequency and/or a third predetermined amplitude to prepare the first wiping film on the isolation wiper Two press film, including:
  • the third slurry with a solid content of 55 to 90% by weight, a viscosity of 3500 to 20000 cP, and the electrolyte mixed with the third slurry is applied to the isolation by means of a third predetermined frequency and/or a third predetermined amplitude vibration. Wiping the pressed film or the second electrode layer to obtain the second wiping pressed film.
  • the preparation of the second current collector film by using a second conductive metal on the second wipe press film includes:
  • the second conductive metal is vapor-deposited on the second wiped film by vacuum evaporation or magnetron sputtering to obtain a second current collector film; or,
  • the metal film made of the second conductive metal is adhered to the second wipe press film to obtain the second current collector film.
  • the preparation method of the lithium battery further includes at least one of the following:
  • the first electrode material is stirred by a planetary propeller at a temperature of 20 to 85°C to prepare the first slurry;
  • the isolation raw material is stirred by a planetary propeller at a temperature of 20 to 85°C to prepare a second slurry;
  • the second electrode raw material is stirred by a planetary propeller at a temperature of 20 to 85°C to prepare the third slurry;
  • the first slurry is one of a positive electrode slurry and a negative electrode slurry
  • the third slurry is the other one of the positive electrode slurry and the negative electrode slurry.
  • the preparation method of the lithium battery further includes at least one of the following:
  • the positive electrode slurry is one of the first slurry and the third slurry
  • the negative electrode slurry is the other one of the first slurry and the third slurry .
  • the first slurry, the second slurry, and the third slurry are prepared by using the electrolyte as the solvent, and then the first electrode layer is prepared by wiping the first slurry, and the second slurry is used for wiping
  • the second electrode layer is prepared by the method of preparing the isolation wipe pressing film and the third slurry for the wipe pressing method to ensure that the insulating film and the first electrode layer, the first electrode layer and the isolation wipe pressure
  • atomic or molecular adsorption is used, respectively
  • the type of gapless contact greatly improves the stability of the battery during charging and discharging, greatly reduces the intermediary substances, and reduces the conductive internal resistance, thereby solving the problem of low specific energy, low energy density, low specific power, and power density of lithium-ion batteries.
  • Figure 1 shows a flow chart of a method for preparing a lithium battery according to an embodiment of the present invention
  • Figure 2 shows one of the structural schematic diagrams of a lithium battery according to an embodiment of the present invention
  • FIG. 3 shows the second structural diagram of a lithium battery according to an embodiment of the present invention
  • Figure 4 shows one of the schematic diagrams of the wiper pressing device of the embodiment of the present invention
  • Fig. 5 shows the second schematic diagram of the wiping and pressing device according to the embodiment of the present invention.
  • an embodiment of the present invention provides a method for preparing a battery, including:
  • Step 11 Provide an insulating film.
  • the insulating film can be a polyethylene terephthalate (PET) film with a thickness in the range of 2-15 ⁇ m.
  • PET polyethylene terephthalate
  • Step 12 At least one first electrode layer is prepared on the insulating film by wiping and pressing at least the first slurry.
  • the first slurry is obtained by mixing an electrolyte as a solvent with the first electrode raw material.
  • the first electrode layer includes: a first current collector film and a first wipe press film; the above step 12 may specifically include:
  • the first current collector film is prepared by using a first conductive metal on the insulating film or the first electrode layer; the first slurry mixed with the electrolyte is used at a first predetermined frequency and/or first
  • the method of vibrating rubbing pressure with a predetermined amplitude is to prepare the first rubbing film on the first current collector film; for example, the weight solid content is 55-90%, the viscosity is 3500-20000 cP, and the electrolysis is mixed.
  • the first liquid slurry is wiped and pressed on the first current collector film to obtain a first wiped and pressed film to reduce contact resistance caused by various welding.
  • step 12 may also specifically include:
  • the first current collector film is prepared on the insulating film or the first electrode layer by using a first conductive metal.
  • the first conductive metal is vapor-deposited on the insulating film or the first electrode layer by vacuum evaporation or magnetron sputtering to obtain the first current collector film.
  • the first current collector film may be a mesh film.
  • a mesh mold may be placed on the insulating film or the first electrode layer, and then the first conductive metal may be vapor deposited in the mold by vacuum evaporation or magnetron sputtering, and then the mold may be taken out. Then, a first current collector film with a mesh structure is formed on the insulating film or the first electrode layer. In this way, under the condition of ensuring that the first current collector film has a conductive current collection function, the amount of conductive metal can be reduced to achieve the purpose of saving costs, and it is also beneficial to increase the specific energy of the lithium battery.
  • the thickness of the first current collector film ranges from 0.2 to 10 ⁇ m.
  • the first wiping film is prepared on the first current collector film by vibrating the first slurry mixed with the electrolyte at a first predetermined frequency and/or a first predetermined amplitude.
  • the first slurry with a solid content of 55-90% by weight, a viscosity of 3500-20,000 cP, and the electrolyte mixed with the first slurry is rubbed and pressed on the place by means of a first predetermined frequency and/or a first predetermined amplitude vibration.
  • the first wipe press film is obtained.
  • the method of using the first slurry to perform vibratory wiping at a first predetermined frequency and/or a first predetermined amplitude specifically refers to the use of a high-frequency transducer to wipe and press during the wiping process of the first slurry.
  • the pressing tool applies a predetermined frequency and/or predetermined amplitude of vibration to vibrate and compact the slurry, thereby increasing the tap density of the slurry, thereby achieving the effect of the energy density of the lithium battery.
  • the value of the first predetermined frequency and/or the first predetermined amplitude may be 0, that is, the vibration may not be performed.
  • the first predetermined frequency and/or the first predetermined amplitude may be specifically set according to the characteristics of the first slurry (such as concentration, mixing state, etc.), which is not specifically limited in the present invention.
  • the thickness of the first application film ranges from 3 to 170 ⁇ m.
  • the first slurry may be prepared by using an electrolyte as a solvent and stirring the first electrode raw material through a planetary propeller at a temperature of 20 to 85°C.
  • the first electrode raw material may include: a first binder, a negative electrode material, and a first conductive agent; specifically, the negative electrode slurry can use an electrolyte as a solvent, It is prepared by dissolving the first binder, and mixing the negative electrode material and the first conductive agent through the dissolved first binder.
  • the first electrode raw material may include: a second binder, a negative electrode material, and a second conductive agent; specifically, the negative electrode slurry can be made by using an electrolyte as a solvent, It is prepared by dissolving the second binder, and mixing the positive electrode material and the second conductive agent through the dissolved second binder.
  • pure copper (Cu) is vapor-deposited on the insulating film by vacuum evaporation or magnetron sputtering to obtain a negative current collector film (such as a net-shaped negative current collector film);
  • the solid content is 55-90%, the viscosity is 3500-20000 cP, and the 360mAh/g artificial graphite mixed with electrolyte (namely the first slurry, or called the negative electrode slurry) is applied to the negative electrode current collector film (Or wipe and press on the negative electrode current collector film in the manner of a first predetermined frequency and/or a first predetermined amplitude vibration), thereby forming a negative electrode wipe pressure film.
  • the first slurry, or the negative electrode slurry uses the electrolyte as the solvent to dissolve the first binder (such as polyvinylidene fluoride (PVDF)), and mix the negative electrode material through the dissolved first binder And the first conductive agent.
  • first binder such as polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • the first conductive metal is vapor deposited on the insulating film by vacuum evaporation or magnetron sputtering to obtain a first-level first current collector Membrane;
  • the method for preparing the first current collector film in the above embodiments can be used to obtain a first current collector film with a mesh structure, so as to ensure that the first current collector film has a conductive collector
  • the amount of conductive metal can be reduced to save costs, and it is also beneficial to increase the specific energy of the lithium battery; then the electrolyte is used as the solvent to make the weight solid content of 55-90% and the viscosity
  • the first slurry mixed with electrolyte is applied to the first current collector film of the first stage (or the first predetermined frequency and/or the first predetermined amplitude vibration mode is wiped and pressed On the first current collector film), a first-level first wiped film is obtained, thereby obtaining a first-level first electrode layer
  • the first conductive metal is vapor-deposited on the first electrode layer of the first stage by vacuum evaporation or magnetron sputtering to obtain the first current collector film of the second stage (such as a mesh structure The first current collector film); and then use the electrolyte as a solvent to make a first slurry with a solid content of 55-90% by weight, a viscosity of 3500-20000 cP, and a mixture of electrolyte, and then apply pressure on the first slurry On the second-stage first current collector film (or rubbed on the first current collector film in a manner of first predetermined frequency and/or first predetermined amplitude vibration) to obtain a second-stage first wipe press film, Thus, the second-level first electrode layer is obtained; and so on, so that multiple first electrode layers can be prepared.
  • Step 13 Using the second slurry to wipe and press, prepare an isolation wipe and press film on the first electrode layer.
  • the second slurry is obtained by mixing an electrolyte as a solvent with the isolation material.
  • step 13 may specifically include:
  • a second slurry with a solid content of 3 to 80% by weight, a viscosity of 500 to 15000 cP, and an electrolyte mixed with the second slurry is wiped and pressed on the first electrode layer to obtain an isolation wipe press film.
  • step 13 may also specifically include:
  • the second slurry with a solid content of 5 to 80% by weight, a viscosity of 500 to 15000 cP, and the electrolyte mixed with the second slurry is rubbed and pressed on the first slurry by means of a second predetermined frequency and/or a second predetermined amplitude vibration.
  • the isolation wipe press film is obtained on an electrode layer.
  • the manner of using the second slurry to perform vibrating wiper pressing at a second predetermined frequency and/or second predetermined amplitude specifically refers to the use of a high-frequency transducer to wipe the wiper during the wiper process of the second slurry.
  • the pressing tool applies a predetermined frequency and/or predetermined amplitude of vibration to vibrate and compact the slurry, thereby increasing the tap density of the slurry, thereby achieving the effect of the energy density of the lithium battery.
  • the value of the second predetermined frequency and/or the second predetermined amplitude may be 0, that is, the vibration may not be performed.
  • the second predetermined frequency and/or the second predetermined amplitude can be specifically set according to the characteristics of the second slurry (such as concentration, mixing state, etc.), which is not specifically limited in the present invention.
  • the thickness of the isolation wipe pressing film ranges from 3 to 15 um.
  • the second slurry may be prepared by using electrolyte as a solvent and stirring the isolation raw material through a planetary propeller at a temperature of 20-85°C.
  • the electrolyte can be used as a solvent to dissolve the second binder (such as polyvinylidene fluoride (PVDF)), and the dissolved second binder can be mixed with the isolation materials to produce a weight solid content of 3 to 80 %, a viscosity of 500 to 15000 cP, and polyvinylidene fluoride (PVDF) mixed with electrolyte to obtain the second slurry.
  • the second binder such as polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • Step 14 At least one second electrode layer is prepared on the isolation wiping film by means of at least the third slurry.
  • the third slurry is obtained by mixing the electrolyte with the second electrode raw material as a solvent.
  • the second electrode layer includes: a second current collector film and a second wipe press film; the foregoing step 14 may specifically include:
  • the second wipe pressing film is prepared on the isolation wipe pressing film by using the third slurry mixed with the electrolyte to perform wipe pressing.
  • a third slurry with a solid content of 55-90% by weight, a viscosity of 3500-20,000 cP, and an electrolyte mixed with the third slurry is wiped and pressed on the isolation wiper film or the second electrode layer, Obtain a second wipe press film; then use a second conductive metal to prepare the second current collector film on the second wipe press film.
  • the above step 14 may specifically include:
  • the second wipe pressing film is prepared on the isolation wipe pressing film by using a third slurry mixed with the electrolyte to perform vibrating wipe pressing at a third predetermined frequency and/or a third predetermined amplitude;
  • a third slurry with a solid content of 55 to 90% by weight, a viscosity of 3500 to 20000 cP, and the electrolyte mixed with the third slurry is applied to the place by means of a third predetermined frequency and/or a third predetermined amplitude vibration.
  • a third predetermined frequency and/or a third predetermined amplitude vibration On the isolation wipe press film or the second electrode layer to obtain the second wipe press film.
  • the method of using the third slurry to perform vibrating wiper pressing at a third predetermined frequency and/or third predetermined amplitude specifically refers to the use of a high-frequency transducer to wipe the wiper during the wiper process of the third slurry.
  • the pressing tool applies a predetermined frequency and/or amplitude of vibration to vibrate and compact the slurry, thereby increasing the tap density of the slurry, thereby achieving the effect of the energy density of the lithium battery.
  • the value of the third predetermined frequency and/or the third predetermined amplitude may be 0, that is, the vibration may not be performed.
  • the third predetermined frequency and/or the third predetermined amplitude may be specifically set according to the characteristics of the third slurry (such as concentration, mixing state, etc.), which is not specifically limited in the present invention.
  • the thickness of the second application film ranges from 3 to 170 ⁇ m.
  • the third slurry may be prepared by using electrolyte as a solvent and stirring the second electrode raw material through a planetary propeller at a temperature of 20-85°C.
  • the second electrode material when used as the negative electrode slurry, may include: a first binder, a negative electrode material and a first conductive agent; specifically, the negative electrode slurry can be used as an electrolyte
  • the solvent dissolves the first binder, and is prepared by mixing the negative electrode material and the first conductive agent with the dissolved first binder.
  • the second electrode raw material may include: a second binder, a negative electrode material, and a second conductive agent; specifically, the negative electrode slurry can be prepared by using an electrolyte as a solvent. It is prepared by dissolving the second binder, and mixing the positive electrode material and the second conductive agent through the dissolved second binder.
  • the second current collector film is prepared by using a second conductive metal on the second wipe press film.
  • the second conductive metal may be vapor-deposited on the second wiping film by vacuum evaporation or magnetron sputtering to obtain a second current collector film.
  • the second current collector film may be a mesh film.
  • a mesh mold can be placed on the second wiping film first, and then the second conductive metal can be vapor-deposited in the mold by vacuum evaporation or magnetron sputtering.
  • a second current collector film with a network structure is formed on the second wiping press film. In this way, while ensuring that the second current collector film has a conductive current collection function, the adhesion of the pole piece on the current collector film is improved, and the safety and life of the battery are improved.
  • a metal film made of the second conductive metal can be adhered to the second wipe press film to obtain the second current collector film.
  • the metal mesh made of the second conductive metal is adhered to the second wipe pressing film by means of bonding to obtain a second current collector film, so as to ensure that the second current collector film has a conductive current collecting function Under the circumstances, the adhesion of the pole piece on the current collector film is improved, and the safety and life of the battery are improved.
  • the thickness of the second current collector film ranges from 0.2 to 10 ⁇ m.
  • 163mAh/g NCM622 (that is, the third slurry, or positive electrode slurry) with a solid content of 55 to 90% by weight, a viscosity of 3500 to 20000 cP, and an electrolyte mixed with the A positive wipe press film is formed on the isolation wipe press film (or a positive wipe press film is formed on the isolation wipe press film by means of a third predetermined frequency and/or third predetermined amplitude vibration), and then vacuum evaporation or Pure aluminum (Al) is vapor-deposited on the second wiped film by magnetron sputtering to obtain a positive electrode current collector film (such as a net-like structure of the positive current collector film), or adhesively bonded In this way, an aluminum mesh made of pure aluminum is adhered to the second wipe press film to obtain a positive electrode current collector film.
  • a positive electrode current collector film such as a net-like structure of the positive current collector film
  • the third slurry, or positive electrode slurry uses the electrolyte as a solvent to dissolve the first binder (such as polyvinylidene fluoride (PVDF)), and mix the positive electrode material through the dissolved first binder (Such as: positive electrode active material) and the second conductive agent.
  • first binder such as polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • the metal mesh made of the second conductive metal is bonded to the second wiping film of the first level to obtain the second current collector film of the first level, thereby obtaining the second electrode layer of the first level .
  • a third slurry with a solid content of 55 to 90% by weight, a viscosity of 3500 to 20000 cP, and an electrolyte mixed with a third slurry is wiped and pressed on the second current collector film in the first stage to obtain
  • the second level of the second wipe press film (or use the third predetermined frequency and/or third predetermined amplitude vibration method to wipe and press on the isolation wipe press film to form a positive wipe press film); then use vacuum evaporation or magnetic
  • the second conductive metal is vapor-deposited on the second wiping film of the second level by controlled sputtering to obtain the second current collector film of the second level, or the second conductive metal is bonded by adhesive.
  • a metal mesh made of metal is bonded to the second wiping film of the second stage to obtain the second current collector film of the second stage, thereby obtaining the second electrode layer of the second stage, and so on, so that A plurality of second electrode layers are prepared.
  • Step 15 encapsulate the insulating film, the prepared first electrode layer, the isolation wipe press film, and the second electrode layer to obtain a lithium battery.
  • the insulating film and the prepared first electrode layer, the isolation wipe press film, and the second electrode layer may be folded or wound, and after the electrolyte is soaked and refilled, the package is cured and packaged. Get a lithium battery.
  • the insulating film and the prepared first electrode layer, the isolation wipe press film and the second electrode layer are folded or wound, and the electrolyte is immersed for 0 to 4 hours for rehydration.
  • the lithium battery is obtained by pressurizing 0-2 MPa at a temperature of ⁇ 100° C. for curing and molding, and then packaging.
  • the lithium battery to be prepared such as length, width, height
  • battery capacity and voltage requirements then perform electrolyte soaking for 0 ⁇ 4h After refilling, pressure 0-2 MPa in a temperature environment of 60-100° C. for curing and molding, and then packaged in an aluminum plastic film to obtain a lithium battery.
  • processes such as battery formation, battery high temperature aging, battery shaping, and room temperature aging can be performed in sequence to obtain a lithium battery.
  • the lithium battery made according to the above process has a capacity of 8400mAh, a size of 6mm*65mm*80mm, a specific energy of 330-350wh/kg, an energy density of 1000-1500wh/L, a cycle life of 3500 times, and a cyclic state of charge ( The State of Charge (SOC) reaches 85% or more, and the safety performance of puncture and extrusion will not catch fire or explode.
  • SOC State of Charge
  • the method for preparing the lithium battery may further include at least one of the following:
  • the electrolyte is used as a solvent in advance, and the first electrode raw material is stirred by a planetary propeller at a temperature of 20 to 85° C. to prepare the first slurry; it is used for the subsequent wiping process.
  • the electrolyte is used as a solvent in advance, and the second electrode raw material is stirred by a planetary propeller at a temperature of 20 to 85° C. to prepare a third slurry; it is used for the subsequent wiping process.
  • the electrolyte is used as a solvent in advance, and the isolation raw material is stirred by a planetary propeller at a temperature of 20 to 85° C. to prepare the second slurry; for the subsequent wiping process.
  • the first slurry is one of the positive electrode slurry and the negative electrode slurry
  • the third slurry is the other one of the positive electrode slurry and the negative electrode slurry.
  • the electrolyte as a solvent to dissolve the first binder, and mix the negative electrode material and the first conductive agent through the dissolved first binder, and stir it with a planetary propeller.
  • a negative electrode slurry is obtained at a temperature of 85°C;
  • the electrolyte as a solvent to dissolve the second binder, mix the isolating material with the dissolved second binder, and stir by a planetary propeller at a temperature of 20 to 85°C to obtain the second slurry material;
  • a positive electrode slurry is obtained.
  • the positive electrode slurry is one of the first slurry and the third slurry
  • the negative electrode slurry is the other one of the first slurry and the third slurry .
  • the preparation process of the lithium battery in the embodiment of the present invention includes: material baking, computer batching, high-viscosity mixing pulping, metal vacuum coating, wiping and pressing to form a film, wiping and pressing film folding, folding and wiping and pressing film curing and packaging, and composite wiping. Formation of laminated film batteries, high-temperature aging of composite wiped laminated batteries, plastic and normal temperature aging of composite wiped laminated batteries, screening and storage of composite wiped laminated batteries.
  • the process parameters include at least: the solid content and viscosity of the positive/negative electrode slurry, the thickness of the wiping film, the angle of the wiping tool, and the curing temperature of the folded wiping film.
  • the stirring temperature is controlled in the range of 60 ⁇ 10°C, the weight solid content is 55-90%, the viscosity is 3500-20000cP, and the high-viscosity positive/negative slurry (that is, the first Slurry/third slurry); and using the electrolyte as the solvent, the planetary propeller stirring method is adopted, the stirring temperature is controlled in the range of 60 ⁇ 10°C, the weight solid content is 5-50%, and the viscosity is 500-15000cP to obtain high-viscosity isolation Slurry (that is, the above-mentioned second slurry);
  • the material can be PET material
  • Conductive metals such as Cu or Ni are vapor-deposited on the insulating film 21 by methods such as vacuum evaporation or magnetron sputtering to obtain a negative current collector film 22 with a thickness of 0.2-10 ⁇ m;
  • the negative electrode slurry is wiped on the negative electrode current collector film 22 to obtain a negative electrode wiper film 23 with a thickness of 3 to 170 ⁇ m; Wipe and press on the negative electrode wipe press film 23 to obtain a separator wipe press film 24 with a thickness of 3-15um; wipe and press the positive electrode slurry on the separator wipe press film 24 to obtain a positive electrode wipe press film 25 with a thickness of 3 to 70um;
  • conductive metal such as Al is vapor-deposited on the positive electrode wiper film 25 by vacuum evaporation or magnetron sputtering, etc., to obtain the positive electrode current collector film 26 with a thickness of 0.2-10 ⁇ m; or directly use Al with a thickness of 0.2-10 ⁇ m
  • the net is adhered to the positive electrode wiper film 25 to obtain the positive electrode current collector film 26 to improve production efficiency.
  • the folded and encapsulated in an aluminum-plastic film According to the size of the designed battery and the battery capacity and voltage requirements, it is folded and encapsulated in an aluminum-plastic film; and then the lithium battery is made through the processes of battery formation, battery high temperature aging, battery shaping and room temperature aging.
  • the folded composite wiper film can be immersed in electrolyte for 0 to 4 hours for rehydration, then pressurized 0 to 2 MPa in a temperature environment of 60 to 100 °C, and then cured and molded, and then packaged in an aluminum plastic film; After battery formation, battery high temperature aging, battery shaping and normal temperature aging, the lithium battery is made.
  • the positive/negative ear connection of the lithium battery in this embodiment is realized by conductive metal vapor deposition coating, which can reduce contact resistance caused by various welding; it can be realized by metal mesh bonding, which can improve production efficiency.
  • the specific process flow can be set according to the performance and production requirements of the lithium battery, and the present invention is not limited thereto.
  • the wiping and pressing device shown in FIGS. 4 and 5 includes: a wiping and pressing platform 41, a wiping die 42, and a wiping tool 43; wherein the wiping and pressing platform 41 is fixed on the equipment foundation, and the wiping and pressing platform 41 can be used 304 stainless steel flat plate; the wiping die 42 is pressed and fixed on the wiping platform 41, the wiping die 42 can be made of 304 stainless steel sheet; the wiping tool 43 can be a polyethylene scraper; the wiping tool 43 is in contact with the wiping die 42 and passes Move left and right to wipe and press out the wipe press film 44 (such as: positive electrode wipe press film, or negative electrode wipe press film, or isolation wipe press film).
  • the included angle between the left and right movement directions of the wipe pressing tool 43 is 0-90°.
  • the first slurry, the second slurry, and the third slurry are prepared by using the electrolyte as the solvent, and then the first electrode layer is prepared by wiping the first slurry, and the second slurry is used for wiping
  • the second electrode layer is prepared by the method of preparing the isolation wipe pressing film and the third slurry for the wipe pressing method to ensure that the insulating film and the first electrode layer, the first electrode layer and the isolation wipe pressure
  • atomic or molecular adsorption is used, respectively
  • the type of gapless contact greatly improves the stability of the battery during charging and discharging, greatly reduces the intermediary substances, and reduces the conductive internal resistance, thereby solving the problem of low specific energy, low energy density, low specific power, and power density of lithium-ion batteries.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • a plurality of means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池的制备方法,包括:提供一绝缘膜;至少采用第一浆料进行抹压的方式在绝缘膜上制备得到至少一个第一电极层;第一浆料是以电解液作为溶剂与第一电极原料混合得到的;采用第二浆料进行抹压的方式在第一电极层上制备得到隔离抹压膜;第二浆料是以电解液作为溶剂与隔离原料混合得到的;至少采用第三浆料进行抹压的方式在隔离抹压膜上制备得到至少一个第二电极层;第三浆料是以电解液作为溶剂与第二电极原料混合得到的;将绝缘膜以及制备得到的第一电极层、隔离抹压膜和第二电极层进行封装得到锂电池。本发明解决了锂电池制备工艺中材料性能突破难度大,锂电池不能满足高能量密度、高功率密度、长循环寿命要求的问题。

Description

一种锂电池的制备方法 技术领域
本发明涉及锂电池技术领域,尤其涉及一种锂电池的制备方法。
背景技术
随着移动终端保有量的不断增加,电池作为移动终端的核心部件之一,其需求条件也越来越高。目前,动终端中配置的电池能量普遍偏低,往往需要移动电源(也被称为充电宝)为移动终端的电池进行电能补充。离子电池可持续能量约230wh/kg、能量密度约600wh/L,不能满足高能量密度、高功率密度、长循环寿命的要求。并且电池的性能主要是材料决定的,材料的技术突破难度很大、周期很长,也不利于满足高能量密度、高功率密度、长循环寿命的电池要求。
发明内容
本发明提供了一种锂电池的制备方法,解决了锂电池制备工艺中材料性能突破难度大,锂电池不能满足高能量密度、高功率密度、长循环寿命要求的问题。
为了解决上述技术问题,本发明实施例提供了一种锂电池的制备方法,包括:
提供一绝缘膜;
至少采用第一浆料进行抹压的方式,在所述绝缘膜上制备得到至少一个第一电极层;其中,所述第一浆料是以电解液作为溶剂与第一电极原料混合得到的;
采用第二浆料进行抹压的方式,在所述第一电极层上制备得到隔离抹压膜;其中,所述第二浆料是以电解液作为溶剂与隔离原料混合得到的;
至少采用第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到至少一 个第二电极层;其中,所述第三浆料是以电解液作为溶剂与第二电极原料混合得到的;
将所述绝缘膜以及制备得到的所述第一电极层、所述隔离抹压膜和所述第二电极层进行封装,得到锂电池。
可选的,所述第一电极层包括:第一集流体膜和第一抹压膜;
所述至少采用第一浆料进行抹压的方式,在所述绝缘膜上制备得到至少一个第一电极层,包括:
采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜;
采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,在所述第一集流体膜上制备得到所述第一抹压膜。
可选的,所述采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜,包括:
采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在所述绝缘膜或所述第一电极层上,得到所述第一集流体膜。
可选的,所述采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,在所述第一集流体膜上制备得到所述第一抹压膜,包括:
将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第一浆料,以第一预定频率和/或第一预定振幅振动的方式抹压在所述第一集流体膜上,得到所述第一抹压膜。
可选的,所述采用第二浆料进行抹压的方式,在所述第一电极层上制备得到隔离抹压膜,包括:
将重量固含量为5~80%、粘度为500~15000cP,且混合有所述电解液的第二浆料,以第二预定频率和/或第二预定振幅振动的方式抹压在所述第一电极层上,得到所述隔离抹压膜。
可选的,所述第二电极层包括:第二集流体膜和第二抹压膜;
所述至少采用第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到至少一个第二电极层,包括:
采用混合有所述电解液的第三浆料以第三预定频率和/或第三预定振幅进行振动抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜;
采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜。
可选的,所述采用混合有所述电解液的第三浆料以第三预定频率和/或第三预定振幅进行振动抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜,包括:
将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第三浆料,以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜或所述第二电极层上,得到所述第二抹压膜。
可选的,所述采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜,包括:
采用真空蒸镀或磁控溅射的方式将所述第二导电金属气相沉积在所述第二抹压膜上,得到第二集流体膜;或者,
将所述第二导电金属制成的金属膜粘接在所述第二抹压膜上,得到所述第二集流体膜。
可选的,所述的锂电池的制备方法还包括以下至少一项:
以电解液作为溶剂,将第一电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第一浆料;
以电解液作为溶剂,将隔离原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第二浆料;
以电解液作为溶剂,将第二电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到所述第三浆料;
其中,所述第一浆料为正极浆料和负极浆料中的一种,所述第三浆料为所述正极浆料和所述负极浆料中的另一种。
可选的,所述的锂电池的制备方法还包括以下至少一项:
以电解液作为溶剂,溶解第一粘结剂,并通过溶解的第一粘结剂混合负极材料、第一导电剂,得到负极浆料;
以电解液作为溶剂,溶解第二粘结剂,并通过溶解的第二粘结剂混合隔离材料,得到所述第二浆料;
以电解液作为溶剂,溶解第三粘结剂,并通过溶解的第三粘结剂混合正极材料、第二导电材料,得到正极浆料;
其中,所述正极浆料为所述第一浆料和所述第三浆料中的一种,所述负极浆料为所述第一浆料和所述第三浆料中的另一种。
本发明的实施例的有益效果是:
上述方案中,通过电解液作为溶剂制备第一浆料、第二浆料和第三浆料,进而采用第一浆料进行抹压的方式制备第一电极层、采用第二浆料进行抹压的方式制备隔离抹压膜和采用第三浆料进行抹压的方式制备第二电极层,以保证绝缘膜与所述第一电极层之间、所述第一电极层与所述隔离抹压膜之间、所述隔离抹压膜与所述第二电极层之间、至少两个所述第一电极层之间以及至少两个所述第二电极层之间,分别采用原子或分子吸附式的无间隙接触,从而大大提高了电池充放电过程中稳定性并大量减少了中介物质,减少了导电内阻,进而解决了锂离子电池比能量低、能量密度低、比功率低、功率密度低、安全性能差、循环次数少、工作温度范围窄、千瓦时投资密度大、生产周期长的问题。并且通过以电解液制浆的工艺,还减少了传统锂电池的制备工艺流程,有利于提高生产效率,降低生产成本。
附图说明
图1表示本发明实施例的锂电池的制备方法的流程图;
图2表示本发明实施例的锂电池的结构示意图之一;
图3表示本发明实施例的锂电池的结构示意图之二;
图4表示本发明实施例的抹压装置的示意图之一;
图5表示本发明实施例的抹压装置的示意图之二。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
如图1所示,本发明的实施例提供了一种提电池的制备方法,包括:
步骤11:提供一绝缘膜。
可选的,绝缘膜可以采用聚对苯二甲酸乙二醇酯(PET)膜,厚度范围为2~15μm。
步骤12:至少采用第一浆料进行抹压的方式,在所述绝缘膜上制备得到至少一个第一电极层。
其中,所述第一浆料是以电解液作为溶剂与第一电极原料混合得到的。
可选的,所述第一电极层包括:第一集流体膜和第一抹压膜;上述步骤12可以具体包括:
采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜;采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,在所述第一集流体膜上制备得到所述第一抹压膜;如:将重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的第一浆料抹压在所述第一集流体膜上,得到第一抹压膜,以减少各种焊接造成的接触电阻。
可选的,上述步骤12还可以具体包括:
采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜。
例如:采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在所述绝缘膜或所述第一电极层上,得到第一集流体膜。
作为一种实现方式,该第一集流体膜可以是网状膜。具体的,可以在所述绝缘膜或所述第一电极层上先放置一网状模具,进而采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在模具内,再取出模具后即在所述绝缘膜或所述第一电极层上,形成网状结构的第一集流体膜。这样,在保证第一集流体膜具有导电集流功能的情况下,可以减少导电金属的用量,达到节约成本的目的,还有利于提高锂电池的比能量。
可选的,所述第一集流体膜的厚度范围为:0.2~10μm。
采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,在所述第一集流体膜上制备得到所述第一抹压膜。
例如:将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第一浆料,以第一预定频率和/或第一预定振幅振动的方式抹压在所述第一集流体膜上,得到所述第一抹压膜。
其中,所述采用第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,具体是指在第一浆料抹压的过程中,利用高频换能器对抹压刀具施以预定频率和/或预定振幅的振动,对浆料振动压实,以此提高浆料的振实密度,从而达到锂电池能量密度的效果。
需要说明的是,如第一浆料的特性满足制备条件时,该第一预定频率和/或第一预定振幅的取值可以为0,即也可以不进行振动。具体的,该第一预定频率和/或第一预定振幅可以根据第一浆料的特性(如浓度、混合状态等)进行具体设置,本发明不作具体限定。
可选的,所述第一抹压膜的厚度范围为:3~170μm。
可选的,该第一浆料可以是以电解液作为溶剂,将第一电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下制备得到的。其中,当第一浆料作为负极浆料时,该第一电极原料可以包括:第一粘结剂、负极材料和第一导电剂;具体的,该负极浆料可以通过以电解液作为溶剂,溶解第一粘结剂,并通过溶解的第一粘结剂混合负极材料、第一导电剂制备得到。
其中,当第一浆料作为正极浆料时,该第一电极原料可以包括:第二粘结剂、负极材料和第二导电剂;具体的,该负极浆料可以通过以电解液作为溶剂,溶解第二粘结剂,并通过溶解的第二粘结剂混合正极材料、第二导电剂制备得到。
以下针对第一电极层作为负极的情况对上述方法具体说明:
具体的,采用真空蒸镀或磁控溅射的方式将纯铜(Cu)气相沉积在所述绝缘膜上,得到负极集流体膜(如:网状结构的负极集流体膜);再将重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的360mAh/g人造石墨(即第一浆料,或称为负极浆料),抹压在所述负极集流体膜上(或者以第一预定频率和/或第一预定振幅振动的方式抹压在所述负极集流体膜),从而形成负极抹压膜。
其中,第一浆料或称为负极浆料,是以电解液为溶剂,溶解第一粘结剂(如: 聚偏氟乙烯(PVDF)),并通过溶解的第一粘结剂混合负极材料和第一导电剂制成的。
可选的,当第一电极层为多个时,首先将采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在所述绝缘膜上,得到第一级的第一集流体膜;如:作为一种优选的实现方式,可以是采用上述实施例中第一集流体膜的制备方法,得到网状结构的第一集流体膜,以在保证第一集流体膜具有导电集流功能的情况下,可以减少导电金属的用量,达到节约成本的目的,还有利于提高锂电池的比能量;再将以电解液为溶剂,制成的重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的第一浆料,抹压在所述第一级的第一集流体膜上(或者以第一预定频率和/或第一预定振幅振动的方式抹压在所述第一集流体膜上),得到第一级的第一抹压膜,从而得到第一级的第一电极层。
进一步地,采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在所述第一级的第一电极层上,得到第二级的第一集流体膜(如网状结构的第一集流体膜);再将以电解液为溶剂,制成的重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的第一浆料,抹压在所述第二级的第一集流体膜上(或者以第一预定频率和/或第一预定振幅振动的方式抹压在所述第一集流体膜上),得到第二级的第一抹压膜,从而得到第二级的第一电极层;依此类推从而可以制备多个第一电极层。
步骤13:采用第二浆料进行抹压的方式,在所述第一电极层上制备得到隔离抹压膜。
其中,所述第二浆料是以电解液作为溶剂与隔离原料混合得到的。
可选的,上述步骤13可以具体包括:
将重量固含量为3~80%、粘度为500~15000cP,且混合有电解液的第二浆料抹压在所述第一电极层上,得到隔离抹压膜。
可选的,上述步骤13还可以具体包括:
将重量固含量为5~80%、粘度为500~15000cP,且混合有所述电解液的第二浆料,以第二预定频率和/或第二预定振幅振动的方式抹压在所述第一电极层上,得到所述隔离抹压膜。
其中,所述采用第二浆料以第二预定频率和/或第二预定振幅进行振动抹 压的方式,具体是指在第二浆料抹压的过程中,利用高频换能器对抹压刀具施以预定频率和/或预定振幅的振动,对浆料振动压实,以此提高浆料的振实密度,从而达到锂电池能量密度的效果。
需要说明的是,如第二浆料的特性满足制备条件时,该第二预定频率和/或第二预定振幅的取值可以为0,即也可以不进行振动。具体的,该第二预定频率和/或第二预定振幅可以根据第二浆料的特性(如浓度、混合状态等)进行具体设置,本发明不作具体限定。
可选的,所述隔离抹压膜的厚度范围为:3~15um。
可选的,该第二浆料可以是以电解液作为溶剂,将隔离原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下制备得到的。例如:可以是以电解液为溶剂,溶解第二粘结剂(如:聚偏氟乙烯(PVDF)),并通过溶解的第二粘结剂混合隔离原料,制成重量固含量为3~80%、粘度为500~15000cP,且混合有电解液的聚偏氟乙烯(PVDF),即得到第二浆料。
步骤14:至少采用第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到至少一个第二电极层。
其中,所述第三浆料是以电解液作为溶剂与第二电极原料混合得到的。
可选的,所述第二电极层包括:第二集流体膜和第二抹压膜;上述步骤14可以具体包括:
采用混合有所述电解液的第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜。如:将重量固含量为55~90%、粘度为:3500~20000cP,且混合有电解液的第三浆料抹压在所述在所述隔离抹压膜或所述第二电极层上,得到第二抹压膜;再采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜。可选的,上述步骤14还可以具体包括:
采用混合有所述电解液的第三浆料以第三预定频率和/或第三预定振幅进行振动抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜;
例如:将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第三浆料,以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜或所述第二电极层上,得到所述第二抹压膜。
其中,所述采用第三浆料以第三预定频率和/或第三预定振幅进行振动抹 压的方式,具体是指在第三浆料抹压的过程中,利用高频换能器对抹压刀具施以预定频率和/或振幅的振动,对浆料振动压实,以此提高浆料的振实密度,从而达到锂电池能量密度的效果。
需要说明的是,如第三浆料的特性满足制备条件时,该第三预定频率和/或第三预定振幅的取值可以为0,即也可以不进行振动。具体的,该第三预定频率和/或第三预定振幅可以根据第三浆料的特性(如浓度、混合状态等)进行具体设置,本发明不作具体限定。
可选的,所述第二抹压膜的厚度范围为:3~170μm。
可选的,该第三浆料可以是以电解液作为溶剂,将第二电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下制备得到的。
其中,其中,当第二浆料作为负极浆料时,该第二电极原料可以包括:第一粘结剂、负极材料和第一导电剂;具体的,该负极浆料可以通过以电解液作为溶剂,溶解第一粘结剂,并通过溶解的第一粘结剂混合负极材料、第一导电剂制备得到。
其中,当第二浆料作为正极浆料时,该第二电极原料可以包括:第二粘结剂、负极材料和第二导电剂;具体的,该负极浆料可以通过以电解液作为溶剂,溶解第二粘结剂,并通过溶解的第二粘结剂混合正极材料、第二导电剂制备得到。
采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜。
具体的,作为一种实现方式,可以采用真空蒸镀或磁控溅射的方式将所述第二导电金属气相沉积在所述第二抹压膜上,得到第二集流体膜。优选的,该第二集流体膜可以是网状膜。具体的,可以在所述第二抹压膜上先放置一网状模具,进而采用真空蒸镀或磁控溅射的方式将第二导电金属气相沉积在模具内,再取出模具后即在所述第二抹压膜上,形成网状结构的第二集流体膜。这样,在保证第二集流体膜具有导电集流功能的情况下,提高了极片在集流体膜上的附着力,提高电池安全性和寿命。
作为另一种实现方式,可以将所述第二导电金属制成的金属膜粘接在所述第二抹压膜上,得到所述第二集流体膜。优选的,采用粘接的方式将第二导电金属制成的金属网粘接在所述第二抹压膜上,得到第二集流体膜,以在保证第 二集流体膜具有导电集流功能的情况下,提高极片在集流体膜上的附着力,提高电池安全性和寿命。可选的,所述第二集流体膜的厚度范围为:0.2~10μm。
以下针对第二电极层作为正极的情况对上述方法进行具体说明:
具体的,可以将重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的163mAh/g NCM622(即第三浆料,或称为正极浆料),抹压在所述隔离抹压膜上形成正极抹压膜(或者以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜上形成正极抹压膜),再采用真空蒸镀或磁控溅射的方式将纯铝(Al)气相沉积在所述第二抹压膜上,得到正极集流体膜(如:网状结构的正极集流体膜),或采用粘接剂粘接的方式将纯铝制成的铝网粘接在所述第二抹压膜上,得到正极集流体膜。
其中,第三浆料或称为正极浆料,是以电解液为溶剂,溶解第一粘结剂(如:聚偏氟乙烯(PVDF)),并通过溶解的第一粘结剂混合正极材料(如:正极活性物质)和第二导电剂制成的。
可选的,在第二电极层为多个时,首先将重量固含量为55~90%、粘度为3500~20000cP,且混合有电解液的第三浆料,抹压在所述在所述隔离抹压膜上(或者以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜上形成正极抹压膜),得到第一级的第二抹压膜;再采用真空蒸镀或磁控溅射的方式将第二导电金属气相沉积在所述第一级的第二抹压膜上,得到第一级的第二集流体膜,或采用粘接剂粘接的方式将第二导电金属制成的金属网粘结在所述第一级的第二抹压膜上,得到第一级的第二集流体膜,从而得到第一级的第二电极层。
进一步地,将重量固含量为55~90%、粘度为:3500~20000cP,且混合有电解液的第三浆料抹压在所述在所述第一级的第二集流体膜上,得到第二级的第二抹压膜(或者以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜上形成正极抹压膜);再采用真空蒸镀或磁控溅射的方式将第二导电金属气相沉积在所述第二级的第二抹压膜上,得到第二级的第二集流体膜,或者采用粘接剂粘接的方式将第二导电金属制成的金属网粘结在所述第二级的第二抹压膜上,得到第二级的第二集流体膜,从而得到第二级的第二电极层,依此类推,从而可以制备得到多个第二电极层。
步骤15:将所述绝缘膜以及制备得到的所述第一电极层、所述隔离抹压膜和所述第二电极层进行封装,得到锂电池。
具体的,可以是将所述绝缘膜以及制备得到的所述第一电极层、所述隔离抹压膜和所述第二电极层进行折叠或者卷绕,并进行电解液浸泡补液后,固化封装得到锂电池。
例如:将所述绝缘膜以及制备得到的所述第一电极层、所述隔离抹压膜和所述第二电极层进行折叠或者卷绕,并进行电解液浸泡0~4h补液后,在60~100℃的温度下加压0~2MPa进行固化成型,再封装得到所述锂电池。
具体的,可以根据待制备的锂电池的尺寸(如:长、宽、高)以及电池容量和电压要求等参数折叠成:容量8400mAh,尺寸6mm*65mm*80mm;然后进行电解液浸泡0~4h补液后,在60~100℃温度环境中加压0~2MPa固化成型后再封装在铝塑膜中,得到锂电池。
可选的,在封装后还可以依次进行电池化成、电池高温老化、电池整形及常温老化等工艺,进而得到锂电池。
这样,按照上述工艺制成的锂电池容量8400mAh、尺寸6mm*65mm*80mm、比能量可达330~350wh/kg、能量密度可达1000~1500wh/L,循环寿命3500次、循环荷电状态(State of Charge,SOC)达到85%以上,安全性能穿刺挤压不着火、不爆炸。
可选的,上述锂电池的制备方法,还可以包括以下至少一项:
预先以电解液为溶剂,将第一电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第一浆料;以备后续抹压工艺之用。
预先以电解液为溶剂,将第二电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第三浆料;以备后续抹压工艺之用。
预先以电解液为溶剂,将隔离原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到所述第二浆料;以备后续抹压工艺之用。
其中,所述第一浆料为正极浆料和负极浆料中的一种,所述第三浆料为正极浆料和负极浆料中的另一种。更进一步地,还可以是预先以电解液作为溶剂,溶解第一粘结剂,并通过溶解的第一粘结剂混合负极材料、第一导电剂,并通过行星螺旋桨搅拌的方式,在20~85℃的温度下,得到负极浆料;
预先以电解液作为溶剂,溶解第二粘结剂,并通过溶解的第二粘结剂混合隔离材料,并通过行星螺旋桨搅拌的方式,在20~85℃的温度下,得到所述第二浆料;
以及预先以电解液作为溶剂,溶解第三粘结剂,并通过溶解的第三粘结剂混合正极材料、第二导电材料,并通过行星螺旋桨搅拌的方式,在20~85℃的温度下,得到正极浆料。
其中,所述正极浆料为所述第一浆料和所述第三浆料中的一种,所述负极浆料为所述第一浆料和所述第三浆料中的另一种。
如图2和图3所示,为采用上述制备方法制备得到的锂电池,以下对本发明实施例的锂电池的制备方法进行具体说明:
本发明实施例的锂电池的制备流程依次包括:物料烘烤、电脑配料、高粘度混料制浆、金属真空镀膜、抹压成膜、抹压膜折叠、折叠抹压膜固化封装、复合抹压膜电池化成、复合抹压膜电池高温老化、复合抹压膜电池整形及常温老化、复合抹压膜电池筛选入库。
工艺参数至少包括:正/负极浆料的固含量及粘度、抹压膜厚度、抹压刀具角度、折叠抹压膜固化温度。
以下结合具体参数对上述锂电池的制备流程进行具体说明:
预先以电解液为溶剂,采用行星螺旋桨搅拌方法,搅拌温度控制在60±10℃范围,重量固含量55~90%、粘度3500~20000cP,得到高粘度的正/负极浆料(即上述第一浆料/第三浆料);以及以电解液为溶剂,采用行星螺旋桨搅拌方法,搅拌温度控制在60±10℃范围,重量固含量5~50%、粘度500~15000cP,得到高粘度的隔离浆料(即上述第二浆料);
提供一绝缘膜21,材料可以是PET材料;
采用Cu或Ni等导电金属通过真空蒸镀或磁控溅射等方法气相沉积在绝缘膜21上,得到负极集流体膜22,厚度为0.2~10μm;
再依次采用图2所示的抹压装置,根据以上至少一个实施例,将负极浆料抹压在负极集流体膜22上,得到负极抹压膜23,厚度为3~170μm;将隔离浆料抹压在负极抹压膜23上,得到隔离抹压膜24,厚度为3~15um;将正极浆料抹压在隔离抹压膜24上,得到正极抹压膜25,厚度为3~70um;
然后采用Al等导电金属通过真空蒸镀或磁控溅射等方法气相沉积在正极抹压膜25上,得到正极集流体膜26,厚度为0.2~10μm;或者直接采用厚度为0.2~10μm的Al网粘接在正极抹压膜25上,得到正极集流体膜26,以提高生产效率。
根据设计电池的尺寸以及电池容量和电压需求进行折叠,封装在铝塑膜中;再依次经过电池化成、电池高温老化、电池整形及常温老化等工艺后制成锂电池。可选的,还可以将折叠完毕的复合抹压膜进行电解液浸泡0~4h补液后,在60~100℃温度环境中加压0~2MPa固化成型后,封装在铝塑膜中;再依次经过电池化成、电池高温老化、电池整形及常温老化等工艺后制成锂电池。
可选的,该实施例中的锂电池正/负极耳联接选择采用导电金属气相沉积镀膜实现,可以减少各种焊接造成的接触电阻;选择采用金属网粘接的方式实现,可以提高生产效率。具体工艺流程可以根据锂电池的性能和生产需求设置,本发明不以此为限。
具体的,如图4和图5所示的抹压装置包括:抹压平台41、抹压模具42、抹压刀具43;其中,抹压平台41固定在设备基础上,抹压平台41可以采用304不锈钢平板;抹压模具42按压固定在抹压平台41上,抹压模具42可以采用304不锈钢薄片;抹压刀具43可以采用聚乙烯刮板;抹压刀具43与抹压模具42接触,通过左右运动抹压出抹压膜44(如:正极抹压膜,或负极抹压膜,或隔离抹压膜)。可选的,抹压刀具43左右运动方向的夹角为0~90°。
上述方案中,通过电解液作为溶剂制备第一浆料、第二浆料和第三浆料,进而采用第一浆料进行抹压的方式制备第一电极层、采用第二浆料进行抹压的方式制备隔离抹压膜和采用第三浆料进行抹压的方式制备第二电极层,以保证绝缘膜与所述第一电极层之间、所述第一电极层与所述隔离抹压膜之间、所述隔离抹压膜与所述第二电极层之间、至少两个所述第一电极层之间以及至少两个所述第二电极层之间,分别采用原子或分子吸附式的无间隙接触,从而大大提高了电池充放电过程中稳定性并大量减少了中介物质,减少了导电内阻,进而解决了锂离子电池比能量低、能量密度低、比功率低、功率密度低、安全性能差、循环次数少、工作温度范围窄、千瓦时投资密度大、生产周期长的问题。并且通过以电解液制浆的工艺,还减少了传统锂电池的制备工艺流程,有利于 提高生产效率,降低生产成本。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (10)

  1. 一种锂电池的制备方法,其特征在于,包括:
    提供一绝缘膜;
    至少采用第一浆料进行抹压的方式,在所述绝缘膜上制备得到至少一个第一电极层;其中,所述第一浆料是以电解液作为溶剂与第一电极原料混合得到的;
    采用第二浆料进行抹压的方式,在所述第一电极层上制备得到隔离抹压膜;其中,所述第二浆料是以电解液作为溶剂与隔离原料混合得到的;
    至少采用第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到至少一个第二电极层;其中,所述第三浆料是以电解液作为溶剂与第二电极原料混合得到的;
    将所述绝缘膜以及制备得到的所述第一电极层、所述隔离抹压膜和所述第二电极层进行封装,得到锂电池。
  2. 根据权利要求1所述的锂电池的制备方法,其特征在于,所述第一电极层包括:第一集流体膜和第一抹压膜;
    所述至少采用第一浆料进行抹压的方式,在所述绝缘膜上制备得到至少一个第一电极层,包括:
    采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜;
    采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压的方式,在所述第一集流体膜上制备得到所述第一抹压膜。
  3. 根据权利要求2所述的锂电池的制备方法,其特征在于,所述采用第一导电金属在所述绝缘膜或所述第一电极层上制备得到所述第一集流体膜,包括:
    采用真空蒸镀或磁控溅射的方式将第一导电金属气相沉积在所述绝缘膜或所述第一电极层上,得到所述第一集流体膜。
  4. 根据权利要求2所述的锂电池的制备方法,其特征在于,所述采用混合有所述电解液的第一浆料以第一预定频率和/或第一预定振幅进行振动抹压 的方式,在所述第一集流体膜上制备得到所述第一抹压膜,包括:
    将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第一浆料,以第一预定频率和/或第一预定振幅振动的方式抹压在所述第一集流体膜上,得到所述第一抹压膜。
  5. 根据权利要求1所述的锂电池的制备方法,其特征在于,所述采用第二浆料进行抹压的方式,在所述第一电极层上制备得到隔离抹压膜,包括:
    将重量固含量为5~80%、粘度为500~15000cP,且混合有所述电解液的第二浆料,以第二预定频率和/或第二预定振幅振动的方式抹压在所述第一电极层上,得到所述隔离抹压膜。
  6. 根据权利要求1所述的锂电池的制备方法,其特征在于,所述第二电极层包括:第二集流体膜和第二抹压膜;
    所述至少采用第三浆料进行抹压的方式,在所述隔离抹压膜上制备得到至少一个第二电极层,包括:
    采用混合有所述电解液的第三浆料以第三预定频率和/或第三预定振幅进行振动抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜;
    采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜。
  7. 根据权利要求6所述的锂电池的制备方法,其特征在于,所述采用混合有所述电解液的第三浆料以第三预定频率和/或第三预定振幅进行振动抹压的方式,在所述隔离抹压膜上制备得到所述第二抹压膜,包括:
    将重量固含量为55~90%、粘度为3500~20000cP,且混合有所述电解液的第三浆料,以第三预定频率和/或第三预定振幅振动的方式抹压在所述隔离抹压膜或所述第二电极层上,得到所述第二抹压膜。
  8. 根据权利要求6所述的锂电池的制备方法,其特征在于,所述采用第二导电金属在所述第二抹压膜上制备得到所述第二集流体膜,包括:
    采用真空蒸镀或磁控溅射的方式将所述第二导电金属气相沉积在所述第二抹压膜上,得到第二集流体膜;或者,
    将所述第二导电金属制成的金属膜粘接在所述第二抹压膜上,得到所述第二集流体膜。
  9. 根据权利要求1至8中任一项所述的锂电池的制备方法,其特征在于, 还包括以下至少一项:
    以电解液作为溶剂,将第一电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第一浆料;
    以电解液作为溶剂,将隔离原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到第二浆料;
    以电解液作为溶剂,将第二电极原料通过行星螺旋桨搅拌的方式,在20~85℃的温度下,制备得到所述第三浆料;
    其中,所述第一浆料为正极浆料和负极浆料中的一种,所述第三浆料为所述正极浆料和所述负极浆料中的另一种。
  10. 根据权利要求1至8中任一项所述的锂电池的制备方法,其特征在于,还包括以下至少一项:
    以电解液作为溶剂,溶解第一粘结剂,并通过溶解的第一粘结剂混合负极材料、第一导电剂,得到负极浆料;
    以电解液作为溶剂,溶解第二粘结剂,并通过溶解的第二粘结剂混合隔离材料,得到所述第二浆料;
    以电解液作为溶剂,溶解第三粘结剂,并通过溶解的第三粘结剂混合正极材料、第二导电材料,得到正极浆料;
    其中,所述正极浆料为所述第一浆料和所述第三浆料中的一种,所述负极浆料为所述第一浆料和所述第三浆料中的另一种。
PCT/CN2019/117830 2019-08-15 2019-11-13 一种锂电池的制备方法 WO2021027151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910752663.1A CN110459810A (zh) 2019-08-15 2019-08-15 一种锂电池的制备方法
CN201910752663.1 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027151A1 true WO2021027151A1 (zh) 2021-02-18

Family

ID=68486714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117830 WO2021027151A1 (zh) 2019-08-15 2019-11-13 一种锂电池的制备方法

Country Status (2)

Country Link
CN (1) CN110459810A (zh)
WO (1) WO2021027151A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403715A (zh) * 2020-03-27 2020-07-10 清华大学深圳国际研究生院 半固态金属锂负电极及锂电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128679A1 (ja) * 2012-02-29 2013-09-06 新神戸電機株式会社 リチウムイオン電池
CN103413966A (zh) * 2013-07-18 2013-11-27 中国科学院金属研究所 一种具有膜电极结构的锂离子电池及其制备方法
CN109873161A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种电池
CN109923699A (zh) * 2016-11-07 2019-06-21 日产自动车株式会社 锂离子电池用负极和锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2877049Y (zh) * 2006-03-15 2007-03-07 上海南都能源科技有限公司 超小型聚合物锂离子电池
CN101615667B (zh) * 2008-06-26 2012-01-04 上海比亚迪有限公司 一种电池极片的制备方法及制备装置
CN108417774B (zh) * 2018-02-23 2020-05-22 江西安驰新能源科技有限公司 一种具有预锂化效应的负极浆料合浆工艺及锂电池
CN109360978A (zh) * 2018-10-09 2019-02-19 瑞声科技(南京)有限公司 锂离子电池负极材料及非水电解质电池
CN109638357A (zh) * 2018-11-23 2019-04-16 浙江衡远新能源科技有限公司 一种锂离子电池极片/隔膜一体化的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128679A1 (ja) * 2012-02-29 2013-09-06 新神戸電機株式会社 リチウムイオン電池
CN103413966A (zh) * 2013-07-18 2013-11-27 中国科学院金属研究所 一种具有膜电极结构的锂离子电池及其制备方法
CN109923699A (zh) * 2016-11-07 2019-06-21 日产自动车株式会社 锂离子电池用负极和锂离子电池
CN109873161A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种电池

Also Published As

Publication number Publication date
CN110459810A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US11121356B2 (en) Battery electrode plate preparation method
CN105489898B (zh) 导电水性粘结剂及其制备方法、锂离子电池
CN108390101A (zh) 一种锂离子电池电芯及其制备方法、锂离子电池
TW200541135A (en) Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
CN101714669B (zh) 凝胶聚合物锂离子电池及其制造方法
CN108011152A (zh) 硫化物全固体电池
CN107959077A (zh) 一种石墨负极的回收再生方法
CN109742402A (zh) 一种增强型聚偏二氟乙烯锂电池导电粘结剂的制备方法
CN110911734A (zh) 一种软包锂离子电池
CN108428856B (zh) 一种全固态锂离子电池界面改善热压工艺
CN109698334A (zh) 正极片、钛酸锂电池及其制备方法
CN101393975A (zh) 胶态聚合物电池及其复合隔膜的制备方法
WO2013044680A1 (zh) 一种高能镍碳超级电容器的制备方法
WO2021027151A1 (zh) 一种锂电池的制备方法
CN112909262A (zh) 一种硅负极及其制备方法与应用
CN105932290A (zh) 单体大容量聚合物锂离子电池正极片及其制造方法
CN101794671B (zh) 一种超级电容器及其制造方法
CN105958012A (zh) 单体大容量聚合物锂离子电池负极片及其制造方法
WO2021000493A1 (zh) 一种锂电池
KR20150042350A (ko) 전고상 리튬이차전지용 탄소섬유 시트 집전체의 제조방법 및 탄소섬유 시트 집전체를 포함하는 전고상 리튬이차전지
CN109560327A (zh) 一种硅胶垫及其在锂离子电池制备中的应用
CN102522600B (zh) 长寿宽温镍氢电池
WO2021000492A1 (zh) 一种锂电池的制备方法
CN102386440A (zh) 一种大功率高安全性锂离子二次电池及其制备方法
JP4487505B2 (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941309

Country of ref document: EP

Kind code of ref document: A1