WO2021025108A1 - 作業車両用の自動走行システム - Google Patents
作業車両用の自動走行システム Download PDFInfo
- Publication number
- WO2021025108A1 WO2021025108A1 PCT/JP2020/030164 JP2020030164W WO2021025108A1 WO 2021025108 A1 WO2021025108 A1 WO 2021025108A1 JP 2020030164 W JP2020030164 W JP 2020030164W WO 2021025108 A1 WO2021025108 A1 WO 2021025108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- automatic
- work vehicle
- control
- traveling
- work
- Prior art date
Links
- 238000013459 approach Methods 0.000 claims description 83
- 238000001514 detection method Methods 0.000 claims description 34
- 230000007704 transition Effects 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 48
- 238000005259 measurement Methods 0.000 description 37
- 238000012545 processing Methods 0.000 description 36
- 238000000034 method Methods 0.000 description 21
- 230000008859 change Effects 0.000 description 18
- 238000004891 communication Methods 0.000 description 17
- 238000003384 imaging method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000003971 tillage Methods 0.000 description 15
- 230000010354 integration Effects 0.000 description 14
- 238000010295 mobile communication Methods 0.000 description 14
- 238000003860 storage Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000003028 elevating effect Effects 0.000 description 5
- 238000003306 harvesting Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000009331 sowing Methods 0.000 description 4
- 239000012773 agricultural material Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000009347 mechanical transmission Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
- A01B69/007—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
- A01B69/008—Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
- G05D1/0236—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0251—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/027—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0285—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/20—Off-Road Vehicles
- B60Y2200/22—Agricultural vehicles
- B60Y2200/221—Tractors
Definitions
- the present invention relates to an automatic traveling system for a work vehicle that enables automatic traveling of a work vehicle such as a tractor or a combine.
- the automatic traveling system for a work vehicle as described above includes a control unit that automatically travels the work vehicle according to a work route generated according to the work area, a position detection unit that detects the position of the work vehicle, and a work vehicle. Some have an azimuth detection unit that detects the azimuth. Then, when the work vehicle is instructed to start the work when the work vehicle is located at the travel start position on the pillow ground set around the work area, the control unit determines the extension line of the work path and the position of the work vehicle. There is one configured to automatically drive the work vehicle from the travel start position on the pillow ground to the work start position of the work path while controlling the travel of the work vehicle so as to reduce the deviation from the above (for example, Patent Document 1). reference).
- Patent Document 1 reduces the deviation between the extension line of the work path and the position of the work vehicle while the work vehicle automatically travels from the travel start position on the pillow ground to the work start position of the work path.
- the control unit controls the running of the work vehicle. Therefore, the longer the distance from the running start position on the pillow ground to the work start position of the work path, the smaller the deviation between the extension line of the work path and the position of the work vehicle can be reduced. As a result, the work vehicle can be automatically driven with high accuracy according to the work route in the work area, and the work accuracy of the work vehicle can be improved.
- the pillow area becomes wider and the work area becomes narrower. Therefore, for example, when the work area is a field crop area. , The planted area becomes smaller and the yield of crops decreases. Further, when the work area is a reciprocating work area for reciprocating the work vehicle and the headland is a reciprocating work area for orbiting the work vehicle, the number of laps of the work vehicle on the headland increases and the work efficiency is improved. descend. In particular, when the work vehicle is manually driven around the work vehicle, the burden on the user becomes large.
- the narrower the headland the shorter the distance from the running start position on the pillow ground to the work start position on the work route.
- the deviation between the extension line of the work path and the position of the work vehicle when the work vehicle reaches the work start position of the work path becomes large.
- the control unit switches the work vehicle to the work state and automatically runs according to the work route, the larger the deviation, the more the work vehicle sways to the left and right with respect to the work route and automatically runs in an unstable state.
- Will start, and the mileage required for the wobbling to converge will also increase. Therefore, the work trace after the work vehicle has passed will continue to be in an irregular state in which the left-right swing width with respect to the work path becomes larger as it is closer to the work start position.
- the main problem of the present invention is to improve the work accuracy of the work vehicle by automatic running without causing a decrease in yield and work efficiency.
- the first characteristic configuration of the present invention is in an automatic traveling system for a work vehicle.
- An approach area setting unit that sets an approach area for a work vehicle for a plurality of parallel routes lined up at predetermined intervals,
- a positioning unit that measures the position and orientation of the work vehicle, and Based on the parallel route and the positioning information from the positioning unit, the automatic traveling control unit that executes the first automatic traveling control that automatically travels the work vehicle according to the parallel route in the working state.
- a deviation detection unit that detects an angular deviation and a lateral deviation of the work vehicle with respect to the parallel route when the work vehicle reaches the approach region based on the parallel path and positioning information from the positioning unit.
- the condition determination unit determines whether or not the start condition of the first automatic traveling control is satisfied based on the detection information from the deviation detection unit when the work vehicle reaches the approach area.
- the condition determination unit determines that the start condition of the first automatic driving control is satisfied when the angle deviation is less than a predetermined angle and the lateral deviation is less than a predetermined value.
- the automatic driving control unit determines that the start condition of the first automatic driving control is satisfied by the condition determination unit, the first automatic driving is performed.
- the control is executed and the condition determination unit determines that the start condition of the first automatic driving control is not satisfied, the work is performed so that the start condition of the first automatic driving control is satisfied.
- the automatic turning back running control for turning back the work vehicle is executed by a combined operation of the forward / backward switching operation of the vehicle and the steering operation.
- FIG. 1 is a diagram showing a schematic configuration of an automatic traveling system for a work vehicle.
- FIG. 2 is a block diagram showing a schematic configuration of an automatic traveling system for a work vehicle.
- FIG. 3 is a schematic view showing a transmission configuration of a tractor.
- FIG. 4 is a plan view showing an example of a target route for automatic driving.
- FIG. 5 is a block diagram showing a schematic configuration of an obstacle detection unit.
- FIG. 6 is an explanatory diagram showing a state in which the tractor is located in the approach region of the parallel path in a state where the start condition of the first automatic traveling control is satisfied.
- FIG. 7 is an explanatory diagram showing a state in which the tractor turns back and travels in the travelable region in which the approach region and the region on the upper side in the travel direction are selected.
- FIG. 8 is an explanatory diagram showing a forward state when the tractor turns back and travels in a travelable region in which an approach region and a region on the lower side in the traveling direction are selected.
- FIG. 9 is an explanatory diagram showing a reverse state when the tractor turns back and travels in a travelable region in which an approach region and a region on the lower side in the traveling direction are selected.
- FIG. 10 is a flowchart of the traveling control switching process.
- the automatic traveling system for a work vehicle according to the present invention includes, for example, a passenger work vehicle such as a riding grass mowing machine, a riding rice transplanter, a combine, a transport vehicle, a snowplow, a wheel loader, and an unmanned mowing machine. It can be applied to unmanned work vehicles such as.
- a rotary tillage device 3 which is an example of a working device is connected to the rear portion via a three-point link mechanism 2 so as to be able to move up and down and roll.
- the tractor 1 functions as a rotary tillage work vehicle.
- the tractor 1 can automatically travel in the field A shown in FIG. 4, which is an example of the work site, by using the automatic traveling system for the work vehicle.
- a rear mount type working device such as a plow, a disc halo, a cultivator, a subsoiler, a sowing device, a spraying device, an offset mower, and a harvesting device is connected to the rear part of the tractor 1 instead of the rotary tiller 3. be able to.
- a front mount type working device such as a front loader or a front moa conditioner can be connected to the front portion of the tractor 1.
- the automatic traveling system includes the automatic traveling unit 4 mounted on the tractor 1 and mobile communication which is an example of a wireless communication device set to enable wireless communication with the automatic traveling unit 4. Terminal 5, etc. are included.
- the mobile communication terminal 5 is provided with a multi-touch type display device (for example, a liquid crystal panel) 50 that enables various information displays and input operations related to automatic driving.
- a tablet-type personal computer, a smartphone, or the like can be adopted as the mobile communication terminal 5. Further, for wireless communication, wireless LAN (Local Area Network) such as Wi-Fi (registered trademark) and short-range wireless communication such as Bluetooth (registered trademark) can be adopted.
- wireless LAN Local Area Network
- Wi-Fi registered trademark
- Bluetooth registered trademark
- the tractor 1 includes driveable and steerable left and right front wheels 10, driveable left and right rear wheels 11, a cabin 13 forming a boarding-type driving unit 12, and a common rail system. It is provided with an electronically controlled diesel engine (hereinafter referred to as an engine) 14, a bonnet 15 that covers the engine 14, and a speed change unit 16 that shifts power from the engine 14. As a result, the tractor 1 is configured to have front wheel steering specifications capable of driving four wheels.
- An electronically controlled gasoline engine or the like having an electronic governor may be adopted as the engine 14.
- the tractor 1 is driven by a fully hydraulic power steering unit 17 that steers the left and right front wheels 10, a brake unit 18 that brakes the left and right rear wheels 11, and a rotary tiller 3.
- An electro-hydraulic control type work clutch unit 19 that interrupts transmission to the device, an electro-hydraulic control type elevating drive unit 20 that drives the rotary tiller 3 up and down, and an electro-hydraulic control type that drives the rotary tiller 3 in the roll direction.
- the rolling unit 21, the vehicle state detection device 22 including various sensors and switches for detecting various setting states of the tractor 1 and the operating state of each part, and an in-vehicle control unit 23 having various control units are provided. Has been done.
- the power steering unit 17 may be of an electric type having an electric motor for steering.
- the driver unit 12 includes a steering wheel 25 for manual steering, a seat 26 for passengers, and an operation terminal 27 that enables various information displays and input operations. Has been done.
- the driving unit 12 is provided with operating levers such as an accelerator lever and a main speed change lever, and operating pedals such as an accelerator pedal and a clutch pedal.
- the operation terminal 27 a multi-touch type liquid crystal monitor, an ISOBUS compatible virtual terminal, or the like can be adopted.
- the transmission unit 16 is provided with a traveling transmission system 16A for shifting the power from the engine 14 for traveling and a working transmission system 16B for shifting the power for work. Then, the power after shifting by the traveling transmission system 16A is transmitted to the left and right front wheels 10 via the transmission shaft 28 for driving the front wheels, the front wheel differential device 30 built in the front axle case 29, and the like. Further, the power after shifting by the work transmission system 16B is transmitted to the rotary tillage device 3.
- the speed change unit 16 is provided with left and right brakes 31 that individually brake the left and right rear wheels 11.
- the traveling transmission system 16A includes an electronically controlled main transmission 32 that shifts the power from the engine 14, and an electrohydraulic control type forward / backward switching device 33 that switches the power from the main transmission 32 between forward and reverse.
- a gear-type auxiliary transmission 34 that shifts the forward or reverse power from the forward / backward switching device 33 to two high / low speeds, and a forward / reverse power from the forward / backward switching device 33 that shifts to ultra-low speed.
- the power from the gear type creep transmission 35, the auxiliary transmission 34, or the creep transmission 35 is distributed to the left and right rear wheels 11, and the power from the rear wheel differential 36 and the rear wheel differential 36 is reduced.
- the left and right speed reducers 37 that transmit the power to the left and right rear wheels 11 and an electro-hydraulic control type power transmission switching device 38 that switches the transmission from the auxiliary transmission 34 or the creep transmission 35 to the left and right front wheels 10 are included. ing.
- the work transmission system 16B includes a hydraulic work clutch 39 that interrupts the power from the engine 14, a work transmission 40 that switches the power via the work clutch 39 between three forward speeds and one reverse speed, and work.
- the PTO shaft 41 which outputs the power from the transmission 40 for work, and the like are included. The power taken out from the PTO shaft 41 is transmitted to the work device via an external transmission shaft (not shown) when a drive-type work device such as the rotary tillage device 3 is connected to the rear part of the tractor 1. ..
- the main transmission 32 includes an I-HMT (Integrated Hydro-static Mechanical Transmission), which is an example of a hydraulic mechanical continuously variable transmission having higher transmission efficiency than a hydrostatic continuously variable transmission (HST: Hydro Static Transmission). It has been adopted.
- I-HMT Integrated Hydro-static Mechanical Transmission
- HST Hydro Static Transmission
- the main transmission 32 includes an HMT (Hydraulic Mechanical Transmission), which is an example of a hydraulic mechanical continuously variable transmission, a hydrostatic continuously variable transmission, or a belt-type continuously variable transmission.
- HMT Hydro Mechanical Transmission
- a continuously variable transmission such as, may be adopted.
- an electro-hydraulic control type stepped transmission having a plurality of hydraulic speed change clutches and a plurality of electromagnetic speed change valves for controlling the flow of oil with respect to them is adopted. You may.
- the transmission switching device 38 sets the transmission state to the left and right front wheels 10 to the transmission cutoff state in which the transmission to the left and right front wheels 10 is cut off, and the peripheral speeds of the left and right front wheels 10 are the same as the peripheral speeds of the left and right rear wheels 11.
- the tractor 1 is configured to be switchable between a two-wheel drive state, a four-wheel drive state, and a front wheel double speed state.
- the brake unit 18 includes left and right brakes 31, a foot brake system that operates the left and right brakes 31 in conjunction with the depression operation of the left and right brake pedals provided in the driver unit 12, and the driver unit 12.
- a parking brake system that operates the left and right brakes 31 in conjunction with the operation of the provided parking lever, and a turning brake system that operates the brakes 31 inside the turning in conjunction with steering of the left and right front wheels 10 at a set angle or more. Etc. are included.
- the vehicle state detection device 22 is a general term for various sensors and switches provided in each part of the tractor 1. Although not shown, the vehicle state detection device 22 detects the accelerator sensor that detects the operation position of the accelerator lever, the shift sensor that detects the operation position of the main shift lever, and the operation position of the reverser lever for forward / backward switching.
- a reverser sensor, a rotation sensor that detects the output rotation speed of the engine 14, a vehicle speed sensor that detects the vehicle speed of the tractor 1, a steering angle sensor that detects the steering angle of the front wheels 10, and the like are included.
- the in-vehicle control unit 23 includes an engine control unit 23A that controls the engine 14, a speed change unit control unit 23B that controls the speed change unit 16 such as switching the vehicle speed and forward / backward movement of the tractor 1, and steering.
- Steering control unit 23C that controls the above
- work device control unit 23D that controls the work device such as the rotary tiller 3
- display control unit 23E that controls the display and notification to the operation terminal 27, etc.
- controls related to automatic driving includes an automatic driving control unit 23F, a non-volatile vehicle-mounted storage unit 23G that stores a target route P (see FIG. 4) for automatic driving generated according to a traveling area divided in the field, and the like. ing.
- Each of the control units 23A to 23F is constructed by an electronic control unit in which a microcontroller or the like is integrated, various control programs, or the like.
- the control units 23A to 23F are connected to each other so as to be able to communicate with each other via a CAN (Control Area Area Network).
- CAN Control Area Area Network
- communication standards other than CAN and next-generation communication standards such as in-vehicle Ethernet and CAN-FD (CAN with FLexible Data rate), may be adopted.
- the engine control unit 23A executes engine speed maintenance control for maintaining the engine speed at the speed corresponding to the operation position of the accelerator lever based on the detection information from the accelerator sensor and the detection information from the rotation sensor. To do.
- the speed change unit control unit 23B sets the main speed change device 32 so that the vehicle speed of the tractor 1 is changed to a speed according to the operation position of the main speed change lever based on the detection information from the speed change sensor and the detection information from the vehicle speed sensor.
- the vehicle speed control that controls the operation of the vehicle, and the forward / backward switching control that switches the transmission state of the forward / backward switching device based on the detection information from the reverser sensor are executed.
- the vehicle speed control includes a deceleration stop process in which the main transmission 32 is decelerated to a zero speed state to stop the traveling of the tractor 1 when the speed change lever is operated to the zero speed position.
- the work device control unit 23D has a work clutch control that controls the operation of the work clutch unit 19 based on an operation of a PTO switch provided in the operation unit 12, and an operation and height of an elevating switch provided in the operation unit 12.
- Lifting control that controls the operation of the lifting drive unit 20 based on the setting value of the setting dial, and rolling that controls the operation of the rolling unit 21 based on the setting value of the roll angle setting dial provided in the driving unit 12. Perform control, etc.
- the PTO switch, the elevating switch, the height setting dial, and the roll angle setting dial are included in the vehicle condition detection device 22.
- the tractor 1 is provided with a positioning unit (an example of a positioning unit) 42 that measures the position and orientation of the tractor 1.
- the positioning unit 42 includes a satellite navigation device 43 that measures the position and orientation of the tractor 1 using GNSS (Global Navigation Satellite System), which is an example of a satellite positioning system, a three-axis gyroscope, and three directions.
- An inertial measurement unit (IMU) 44 which has an acceleration sensor or the like and measures the posture, orientation, etc. of the tractor 1, is included.
- Positioning methods using GNSS include DGNSS (Differential GNSS: relative positioning method) and RTK-GNSS (Real Time Kinetic GNSS: interference positioning method).
- RTK-GNSS suitable for positioning of a moving body is adopted. Therefore, as shown in FIG. 1, a base station 6 that enables positioning by RTK-GNSS is installed at a known position around the field.
- the tractor 1 and the base station 6 are respectively the GNSS antennas 45 and 60 that receive the radio waves transmitted from the positioning satellite 7 (see FIG. 1), and the tractor 1 and the base station.
- Communication modules 46, 61, etc. that enable wireless communication of each information including positioning information with and from No. 6 are provided.
- the satellite navigation device 43 of the positioning unit 42 receives the positioning information obtained by the GNSS antenna 45 on the tractor side receiving the radio waves from the positioning satellite 7, and the GNSS antenna 60 on the base station side receives the radio waves from the positioning satellite 7.
- the position and orientation of the tractor 1 can be measured with high accuracy based on the positioning information obtained by receiving the radio wave.
- the positioning unit 42 has the satellite navigation device 43 and the inertial measurement unit 44, the position, orientation, and attitude angle (yaw angle, roll angle, pitch angle) of the tractor 1 can be measured with high accuracy. ..
- the inertial measurement unit 44 of the positioning unit 42, the GNSS antenna 45, and the communication module 46 are included in the antenna unit 47 shown in FIG.
- the antenna unit 47 is arranged at the center of the upper left and right on the front side of the cabin 13.
- the vehicle body position Vp when specifying the position of the tractor 1 is set to the rear wheel axle center position.
- the vehicle body position Vp can be obtained from the positioning information from the positioning unit 42 and the vehicle body information including the positional relationship between the mounting position of the GNSS antenna 45 on the tractor 1 and the center position of the rear axle.
- the mobile communication terminal 5 is provided with an electronic control unit in which a microcontroller and the like are integrated, a terminal control unit 51 having various control programs, and the like.
- the terminal control unit 51 is generated by a display control unit 51A that controls display and notification to the display device 50 and the like, a target route generation unit 51B that generates a target route P for automatic driving, and a target route generation unit 51B.
- a non-volatile terminal storage unit 51C for storing the target path P and the like is included.
- vehicle body information such as the turning radius of the tractor 1 and the working width of the rotary tillage device 3, and field information obtained from the positioning information described above, Etc. are remembered.
- a plurality of shape specifying points in the field A acquired by using GNSS when the tractor 1 is run along the outer peripheral edge of the field A.
- shape-specific coordinates Four corner points Pa to Pd (see FIG. 4) and rectangular shape specification that connects the corner points Pa to Pd to specify the shape and size of the field A.
- Line SL see FIG. 4
- the tractor 1 and the mobile communication terminal 5 include communication modules 48 and 52 that enable wireless communication of each information including positioning information between the vehicle-mounted control unit 23 and the terminal control unit 51. It is equipped.
- the communication module 48 of the tractor 1 functions as a converter that converts communication information into both directions of CAN and Wi-Fi.
- the terminal control unit 51 can acquire various information about the tractor 1 including the position and orientation of the tractor 1 by wireless communication with the vehicle-mounted control unit 23.
- the display device 50 of the mobile communication terminal 5 can display various information including the position and orientation of the tractor 1 with respect to the target path P.
- the target route generation unit 51B has the target route P based on the turning radius of the tractor 1 included in the vehicle body information, the working width of the rotary tilling device 3, the shape and size of the field A included in the field information, and the like. To generate.
- the target route generation unit 51B first sets the field A as a margin region adjacent to the outer peripheral edge of the field A based on the above-mentioned four corner points Pa to Pd and the rectangular shape specifying line SL. It is divided into A1 and a traveling area A2 located inside the margin area A1.
- the target route generation unit 51B sets the traveling area A2 at the ridges on each long side in the traveling area A2 based on the turning radius of the tractor 1 and the working width of the rotary tilling device 3. It is divided into a headland area A2a and a central area A2b set between a pair of headland areas A2a. After that, the target route generation unit 51B generates a plurality of parallel routes P1 arranged in parallel in the central region A2b at predetermined intervals according to the working width in the direction along the long side of the field A. Further, the target route generation unit 51B generates a plurality of connection routes P2 for connecting the plurality of parallel routes P1 in the traveling order of the tractor 1 in each headland region A2a.
- the target route generation unit 51B can generate a target route P capable of automatically traveling the tractor 1 from the start position p1 to the end position p2 of the automatic travel set in the field A shown in FIG. ..
- the margin area A1 prevents the rotary tiller 3 and the like from coming into contact with other objects such as the ridges adjacent to the field A when the tractor 1 automatically travels on the ridges of the traveling area A2.
- it is an area secured between the outer peripheral edge of the field A and the traveling area A2.
- Each headland area A2a is a turning area when the tractor 1 turns from the currently traveling parallel path P1 toward the next parallel path P1 according to the connecting path P2.
- the central region A2b is a work region in which the tractor 1 automatically travels in a working state according to each parallel path P1.
- each parallel route P1 is a work route in which the tractor 1 automatically travels while performing the tilling work by the rotary tilling device 3.
- Each connection path P2 is a non-working path in which the tractor 1 automatically travels without performing the tilling work by the rotary tilling device 3.
- the start end position p3 of each parallel path P1 is a work start position where the tractor 1 starts the tillage work by the rotary tillage device 3.
- the end position p4 of each parallel path P1 is a work stop position where the tractor 1 stops the tilling work by the rotary tilling device 3.
- the start position p3 of the parallel path P1 in which the traveling order of the tractor 1 is set first is the start position p1 of automatic traveling.
- the start end position p3 of the remaining parallel path P1 is the connection position with the end position of the connection path P2.
- the terminal position p4 of the parallel path P1 in which the traveling order of the tractor 1 is set last is the end position p2 of the automatic traveling.
- the target route P shown in FIG. 4 is merely an example, and the target route generation unit 51B has different vehicle body information depending on the model of the tractor 1 and the type of the working device, and different field A according to the field A. Based on field information such as shape and size, various target paths P suitable for them can be generated.
- each of the parallel path P1 and each connection path P2 is used as the work path.
- the target route P is stored in the terminal storage unit 51C in a state associated with vehicle body information, field information, and the like, and can be displayed on the display device 50 of the mobile communication terminal 5.
- the target route P includes the above-mentioned work start position p3 and work stop position p4, the azimuth angle of each parallel route P1, the target vehicle speed of the tractor 1 in each parallel route P1, the target vehicle speed of the tractor 1 in each connection route P2b, and each.
- the front wheel steering angle in the parallel path P1 and the front wheel steering angle in each connection path P2b are included.
- the terminal control unit 51 transmits field information, a target route P, etc. stored in the terminal storage unit 51C to the vehicle-mounted control unit 23 in response to a transmission request command from the vehicle-mounted control unit 23.
- the vehicle-mounted control unit 23 stores the received field information, the target route P, and the like in the vehicle-mounted storage unit 23G.
- the terminal control unit 51 transmits all of the target route P from the terminal storage unit 51C to the vehicle-mounted control unit 23 at once before the tractor 1 starts automatic traveling. It may be.
- the terminal control unit 51 divides the target route P into a plurality of divided route information for each predetermined distance, and each time the traveling distance of the tractor 1 reaches the predetermined distance from the stage before the tractor 1 starts automatic traveling. , A predetermined number of division route information according to the traveling order of the tractor 1 may be sequentially transmitted from the terminal storage unit 51C to the vehicle-mounted control unit 23.
- the automatic traveling control unit 23F can monitor various setting states in the tractor 1 and operating states of each unit.
- the automatic driving control unit 23F is manually operated to satisfy various automatic driving start conditions after the tractor 1 is moved to the automatic driving start position p1 by manual operation by a user such as a passenger or an administrator.
- the positioning unit 42 positions and orients the tractor 1.
- the automatic traveling control for automatically traveling the tractor 1 according to the target route P is started while acquiring the above.
- the automatic driving control unit 23F is, for example, when the user operates the display device 50 of the mobile communication terminal 5 to instruct the end of the automatic driving, or is on board the driving unit 12.
- the automatic driving control is terminated and the driving mode is switched from the automatic driving mode to the manual driving mode.
- the automatic driving control can be restarted by operating the display device 50 of the mobile communication terminal 5 to command the start of automatic driving.
- the automatic driving control by the automatic driving control unit 23F includes automatic driving control processing for the engine that transmits a control command for automatic driving related to the engine 14 to the engine control unit 23A, and control for automatic driving related to switching the vehicle speed and forward / backward movement of the tractor 1.
- the automatic driving control unit 23F issues an engine speed change command to the engine control unit 23A, which instructs the engine speed to be changed based on the set speed included in the target path P. Send.
- the engine control unit 23A executes engine speed change control that automatically changes the engine speed in response to various control commands regarding the engine 14 transmitted from the automatic travel control unit 23F.
- the automatic driving control unit 23F is included in the shift operation command for instructing the shift operation of the main transmission 32 based on the target vehicle speed included in the target path P, and the target path P.
- a forward / backward switching command for instructing the forward / backward switching operation of the forward / backward switching device 33 based on the traveling direction of the tractor 1 and the like are transmitted to the speed change unit control unit 23B.
- the speed change unit control unit 23B automatically controls the operation of the main speed changer 32 in response to various control commands related to the main speed changer 32, the forward / backward changeover device 33, and the like transmitted from the automatic travel control unit 23F.
- the vehicle speed control includes, for example, an automatic deceleration stop process in which the main transmission 32 is decelerated to a zero speed state to stop the running of the tractor 1 when the target vehicle speed included in the target path P is zero speed. It is included.
- the automatic driving control unit 23F transmits a steering command for instructing steering of the left and right front wheels 10 to the steering control unit 23C based on the front wheel steering angle and the like included in the target path P. ..
- the steering control unit 23C sets automatic steering control for controlling the operation of the power steering unit 17 to steer the left and right front wheels 10 and setting the left and right front wheels 10 in response to a steering command transmitted from the automatic driving control unit 23F.
- the brake unit 18 is operated to operate the brake 31 inside the turning, and automatic brake turning control is executed.
- the automatic traveling control unit 23F gives a work start command for instructing the rotary tillage device 3 to switch to the work state based on the work start position p3 included in the target path P, and the target route.
- a work stop command for instructing the switching of the rotary tillage device 3 to the non-work state based on the work stop position p4 included in P is transmitted to the work device control unit 23D.
- the work device control unit 23D controls the operation of the work clutch unit 19 and the elevating drive unit 20 in response to various control commands regarding the rotary tillage device 3 transmitted from the automatic traveling control unit 23F, and controls the rotary tillage device 3 to operate the rotary tillage device 3.
- Automatic work start control that lowers to the work height and drives it, automatic work stop control that stops the rotary tillage device 3 and raises it to the non-work height, and the like are executed.
- the above-mentioned automatic traveling unit 4 includes a power steering unit 17, a brake unit 18, a work clutch unit 19, an elevating drive unit 20, a rolling unit 21, a vehicle state detection device 22, an in-vehicle control unit 23, a positioning unit 42, and the like. , Communication modules 46, 48, and the like are included. Then, when these operate properly, the tractor 1 can be automatically driven accurately according to the target route P, and the tilling work by the rotary tilling device 3 can be properly performed.
- the tractor 1 is provided with an obstacle detection unit 80 that monitors the surroundings of the tractor 1 and detects obstacles existing around the tractor 1.
- the obstacles detected by the obstacle detection unit 80 include a person such as a worker working in the field A, another work vehicle, and an existing utility pole or tree in the field A.
- the obstacle detection unit 80 includes an imaging unit 80A that images the surroundings of the tractor 1, an active sensor unit 80B that measures the distance to a measurement object existing around the tractor 1. Also included is an information integration processing unit 80C that integrates and processes the information from the image pickup unit 80A and the measurement information from the active sensor unit 80B.
- the imaging unit 80A includes a front camera 81 in which a predetermined range in front of the cabin 13 is set as an imaging range, a rear camera 82 in which a predetermined range behind the cabin 13 is set as an imaging range, and a predetermined range to the right of the cabin 13. Includes a right camera 83 set in the imaging range, a left camera 84 in which a predetermined range to the left of the cabin 13 is set in the imaging range, and an image processing device 85 that processes images from the cameras 81 to 84. It has been.
- the active sensor unit 80B includes a front rider sensor 86 in which a predetermined range in front of the cabin 13 is set in the measurement range, a rear rider sensor 87 in which a predetermined range behind the cabin 13 is set in the measurement range, and a cabin 13.
- a sonar 88 in which a predetermined range on the right side and a predetermined range on the left side from the cabin 13 are set as measurement ranges is included.
- Each of the lidar sensors 86 and 87 has measurement units 86A and 87A and measurement units 86A and 87A that perform measurement in a measurement range using laser light (for example, pulsed near-infrared laser light) which is an example of measurement light.
- laser light for example, pulsed near-infrared laser light
- the lidar control units 86B and 87B that generate a distance image based on the measurement information from the above are included.
- the sonar 88 includes a right ultrasonic sensor 88A, a left ultrasonic sensor 88B, and a single sonar control unit 88C.
- the information integration processing unit 80C, the image processing device 85, the rider control units 86B and 87B, and the sonar control unit 88C are constructed by an electronic control unit in which a microcontroller and the like are integrated, various control programs, and the like.
- the information integration processing unit 80C, the image processing device 85, the rider control units 86B and 87B, and the sonar control unit 88C are connected to the vehicle-mounted control unit 23 via CAN so as to be able to communicate with each other.
- the front camera 81 and the rear camera 82 are arranged on the left and right center lines of the tractor 1.
- the front camera 81 is arranged at the center of the upper left and right of the front end side of the cabin 13 in a front-down posture in which the front side of the tractor 1 is viewed from the diagonally upper side.
- a predetermined range on the front side of the vehicle body with the left and right center lines of the tractor 1 as the axis of symmetry is set as the imaging range.
- the rear camera 82 is arranged at the center of the upper left and right on the rear end side of the cabin 13 in a rear-down posture in which the rear side of the tractor 1 is viewed from the diagonally upper side.
- a predetermined range on the rear side of the vehicle body with the left and right center lines of the tractor 1 as the axis of symmetry is set as the imaging range.
- the right camera 83 is arranged at the center of the upper part on the right end side of the cabin 13 in a downward-sloping posture looking down on the right side of the tractor 1 from the diagonally upper side.
- a predetermined range on the right side of the vehicle body is set as the imaging range.
- the left camera 84 is arranged at the center of the upper part on the left end side of the cabin 13 in a downward-sloping posture looking down on the left side of the tractor 1 from the diagonally upper side.
- a predetermined range on the left side of the vehicle body is set as the imaging range.
- each measuring unit 86A, 87A measures the distance to the AF point based on the round-trip time until the irradiated laser beam reaches the AF point and returns.
- TOF Time Of Flight
- Method is used to measure the distance from each measuring unit 86A, 87A to each AF point in the measurement range.
- Each of the measuring units 86A and 87A scans the laser beam vertically and horizontally at high speed over the entire measuring range, and sequentially measures the distance to the AF point for each scanning angle (coordinates), whereby 3 in each measuring range. Make a dimensional measurement.
- Each of the measuring units 86A and 87A sequentially measures the intensity of the reflected light (hereinafter, referred to as the reflected intensity) from each AF point obtained when the laser beam is scanned vertically and horizontally at high speed over the entire measurement range.
- the measuring units 86A and 87A repeatedly measure the distance to each AF point in the measurement range, each reflection intensity, and the like in real time.
- Each rider control unit 86B, 87B generates a distance image from measurement information such as the distance to each AF point measured by each measurement unit 86A, 87A and the scanning angle (coordinates) for each AF point, and also generates an obstacle.
- the distance measurement point cloud estimated to be estimated is extracted, and the measurement information regarding the extracted distance measurement point group is transmitted to the information integration processing unit 80C as the measurement information regarding the obstacle candidate.
- the front rider sensor 86 and the rear rider sensor 87 are arranged on the left and right center lines of the tractor 1 like the front camera 81 and the rear camera 82.
- the front rider sensor 86 is arranged at the center of the upper left and right of the front end side of the cabin 13 in a front-down posture in which the front side of the tractor 1 is viewed from the diagonally upper side.
- a predetermined range on the front side of the vehicle body with the left and right center lines of the tractor 1 as the axis of symmetry is set as the measurement range by the measuring unit 86A.
- the rear rider sensor 87 is arranged at the center of the upper left and right on the rear end side of the cabin 13 in a rearward lowering posture in which the rear side of the tractor 1 is viewed from the diagonally upper side. As a result, in the rear rider sensor 87, a predetermined range on the rear side of the vehicle body with the left and right center lines of the tractor 1 as the axis of symmetry is set as the measurement range by the measuring unit 87A.
- the sonar control unit 88C determines the presence or absence of a measurement object in the measurement range based on the transmission and reception of ultrasonic waves by the left and right ultrasonic sensors 88A and 88B.
- the sonar control unit 88C uses a TOF (Time Of Flight) method to measure the distance to the AF point based on the round-trip time until the transmitted ultrasonic wave reaches the AF point and returns to each ultrasonic sensor 88A, The distance from 88B to the measurement target is measured, and the measured distance to the measurement target and the direction of the measurement target are transmitted to the information integration processing unit 80C as measurement information regarding the obstacle candidate.
- TOF Time Of Flight
- the right ultrasonic sensor 88A is attached to the right side getting on and off step arranged between the right front wheel 10 and the right rear wheel 11 in a right outward posture of the vehicle body.
- a predetermined range on the right outer side of the vehicle body is set as the measurement range.
- the left ultrasonic sensor 88B is attached to the left side getting on / off step 24 arranged between the left front wheel 10 and the left side rear wheel 11 in a posture facing left outward of the vehicle body.
- a predetermined range on the left outer side of the vehicle body is set as the measurement range.
- the image processing device 85 performs image processing on the images sequentially transmitted from the cameras 81 to 84.
- the image processing device 85 is subjected to learning processing for recognizing a person such as a worker working in the field A, another work vehicle, and an existing utility pole or tree in the field A as an obstacle. ..
- the image processing device 85 synthesizes the images sequentially transmitted from the cameras 81 to 84 to generate an omnidirectional image (for example, surround view) of the tractor 1, and also generates the omnidirectional image and the generated omnidirectional images and the cameras 81 to 84.
- the image is transmitted to the display control unit 23E of the tractor 1 and the display control unit 51A of the mobile communication terminal 5.
- the omnidirectional image generated by the image processing device 85, the image of the traveling direction of the tractor 1, and the like can be displayed on the operation terminal 27 of the tractor 1, the display device 50 of the mobile communication terminal 5, and the like. Then, by this display, the user can visually recognize the situation around the tractor 1 and the situation in the traveling direction.
- the image processing device 85 determines whether or not there is an obstacle affecting the running of the tractor 1 in any of the imaging ranges of the cameras 81 to 84. Determine.
- the image processing device 85 obtains the coordinates of the obstacle on the image in which the obstacle exists, and obtains the coordinates of the obtained obstacle, such as the mounting position and mounting angle of each camera 81 to 84.
- the coordinates are converted to the coordinates based on the vehicle body coordinate origin.
- the linear distance between the converted coordinates and the preset distance calculation reference point is obtained as the distance from the distance calculation reference point to the obstacle, and the converted coordinates and the calculated distance to the obstacle are obtained as the obstacle. It is transmitted to the information integration processing unit 80C as information about.
- the fact that the obstacle has not been detected is transmitted to the information integration processing unit 80C.
- the image processing device 85 transmits information about the obstacle to the information integration processing unit 80C, so that the information integration processing unit By receiving the information about the obstacle, the 80C can grasp that the obstacle exists in the imaging range of any of the cameras 81 to 84, and the position of the obstacle and the distance to the obstacle. Can be obtained. Further, when there is no obstacle in any of the imaging ranges of the cameras 81 to 84, the image processing device 85 transmits the undetected obstacle to the information integration processing unit 80C, so that the information integration processing unit 80C Can grasp that there is no obstacle in any of the imaging ranges of the cameras 81 to 84.
- the information integration processing unit 80C is an active sensor when the information on the obstacle from the image pickup unit 80A having high object discrimination accuracy and the measurement information on the obstacle candidate from the active sensor unit 80B having high distance measurement accuracy are matched.
- the distance from the unit 80B to the obstacle candidate is adopted as the distance to the obstacle.
- the obstacle detection unit 80 can acquire information on an obstacle having high object discrimination accuracy and distance measurement accuracy in the information integration processing unit 80C.
- the obstacle detection unit 80 transmits information about obstacles acquired by the information integration processing unit 80C to the automatic driving control unit 23F.
- the automatic driving control unit 23F executes collision avoidance control for avoiding a collision with an obstacle based on the information about the obstacle from the obstacle detection unit 80.
- the automatic driving control unit 23F acquires the distance to the obstacle based on the information about the obstacle from the obstacle detection unit 80, and the tractor according to the acquired distance to the obstacle.
- Notification processing that activates notification devices such as notification buzzers and notification lamps provided in 1 and the mobile communication terminal 5, automatic deceleration processing that automatically reduces the vehicle speed of the tractor 1, and automatic stopping of the running of the tractor 1. It is configured to appropriately perform various collision avoidance processes such as running stop processing.
- the automatic traveling control unit 23F starts automatic traveling control for automatically traveling the tractor 1 according to the target route P when the start of automatic traveling is commanded while the tractor 1 is located at the start position p1 of the automatic traveling.
- the automatic driving control includes the first automatic driving control in which the tractor 1 is automatically driven according to the parallel path P1 in the working state based on the parallel path P1 of the target route P and the positioning information from the positioning unit 42, and the connection of the target route P.
- a second automatic traveling control is included in which the tractor 1 is automatically traveled according to the connection route P2 in a non-working state based on the route P2 and the positioning information from the positioning unit 42.
- the automatic travel control unit 23F is provided with the approach area setting unit 23Fa for setting the approach area Aa (see FIG. 4) of the tractor 1 for each parallel path P1, the parallel path P1 and the positioning unit 42.
- the condition determination unit 23Fc which determines whether or not the condition is determined, is included.
- the approach area setting unit 23Fa sets a predetermined area including the start end position p3 of each parallel path P1 in the approach area Aa for each parallel path P1.
- a predetermined angle ⁇ for example, 10 degrees
- the above-mentioned lateral deviation ⁇ d is less than a predetermined value L (5 cm). It is determined that the start condition of the first automatic driving control is satisfied. As shown in FIGS.
- the condition determination unit 23Fc performs the first automatic traveling control when the above-mentioned angle deviation ⁇ is the predetermined angle ⁇ or more or when the above-mentioned lateral deviation ⁇ d is the predetermined value L or more. It is determined that the start condition is not satisfied.
- the automatic driving control unit 23F causes the condition determination unit 23Fc to start the first automatic driving control.
- the first automatic driving control is executed (see FIG. 6).
- the condition determination unit 23Fc determines that the start condition of the first automatic driving control is not satisfied, the forward / backward switching operation of the tractor 1 is performed so that the start condition of the first automatic driving control is satisfied.
- the automatic turning back running control for turning back and running the tractor 1 is executed by the combined operation with the steering operation (see FIGS. 7 to 9).
- the automatic driving control unit 23F executes the tractor 1 based on the determination of the condition determination unit 23Fc when the tractor 1 reaches the approach area Aa by manual driving by the user or automatic driving by the second automatic driving control.
- a running control switching process for switching the control between the first automatic running control and the automatic turning back running control is performed.
- step # 1 when the tractor 1 reaches the approach area Aa described above, the automatic travel control unit 23F first receives the condition determination unit 23Fc. Judgment processing for determining whether or not the start condition of automatic driving control is satisfied is performed (step # 1).
- the condition determination unit 23Fc determines that the start condition of the first automatic driving control is satisfied. Therefore, the automatic driving control unit 23F executes the first automatic driving control to work on the tractor 1. In this state, the vehicle is automatically driven according to the parallel route P1 (step # 2). As a result, the tractor 1 can perform the work while performing highly accurate automatic traveling with a small swing width with respect to the parallel path P1 from the stage when the automatic traveling by the first automatic traveling control is started.
- the condition determination unit 23Fc determines in the determination process that the start condition of the first automatic driving control is not satisfied, so that the automatic driving control unit 23F does not execute the first automatic driving control.
- the automatic turn-back running control is executed (step # 3), and the above-mentioned determination process is performed (step # 1).
- the parallel path P1 is caused by the fact that the first automatic traveling control is executed when the above-mentioned angle deviation ⁇ is equal to or greater than the predetermined angle ⁇ or when the above-mentioned lateral deviation ⁇ d is equal to or greater than the predetermined value L.
- the swing width of the tractor 1 with respect to the tractor 1 becomes large, and it takes a long distance for the swing to converge, so that it is possible to prevent the occurrence of inconvenience that the work accuracy is lowered during this period.
- the automatic traveling control unit 23F establishes the start condition of the first automatic traveling control by the turning-back traveling of the tractor 1, in order to facilitate the establishment of the starting condition of the first automatic traveling control, in each parallel path P1. It is not necessary to generate a long-distance movement path on the extension line on the start position p3 side. As a result, the longer the movement path in the field A, the shorter the parallel path P1 for automatically traveling the tractor 1 in the working state and the wider the headland area A2a.
- the headland area A2a becomes In the case of a lap work area in which the tractor 1 is lapped, it is possible to prevent inconveniences such as an increase in the number of laps of the tractor 1 in the lap work area and a decrease in work efficiency.
- the travelable area A3 of the tractor 1 in the automatic turn-back travel control is divided into the above-mentioned approach area Aa and the tractor 1 in each parallel path P1.
- a traveling area selection unit 23Fd that selects from a predetermined traveling direction upper side region Ab and a traveling direction lower side region Ac that sandwich the approaching region Aa in the traveling direction is included.
- the travel area selection unit 23Fd selects the travelable area A3 of the tractor 1 based on the size of the headland area A2a set by the user when the target route P is generated by the target route generation unit 51B, the type of the work device 3, and the like. To do.
- the headland width W (see FIG. 4) extending from the shape specifying line SL in the headland area A2a to the central area A2b is set wider than the work width of the work device 3.
- the working device 3 connected to the tractor 1 is used even if the tractor 1 is turned back in the area Ab on the upper side in the traveling direction. Since there is no risk of contact with other objects such as ridges adjacent to the field A, the region Ab on the upper side in the traveling direction can be selected as the traveling region A3 in addition to the approach region Aa.
- the traveling area selection unit 23Fd is set, for example, so that the headland width W of the heading area A2a is narrow enough to allow the turning traveling at the minimum turning radius of the tractor 1, and the traveling area upper region Ab in the traveling direction of the approaching area Aa.
- the working device 3 connected to the tractor 1 may come into contact with ridges or the like.
- the side region Ab is made unselectable into the travelable region A3.
- the type of the working device 3 is a rotary tiller (see FIG. 1) or a plow (not shown), and the tractor 1 enters the lower region Ac in the traveling direction and travels back and forth.
- the lower area Ac in the traveling direction can be selected as the travelable area A3 in addition to the approach area Aa.
- the tractor 1 enters the lower region Ac in the traveling direction and turns back. If it is easily affected by the subsequent work in the lower side region Ac in the traveling direction, the lower side region Ac in the traveling direction cannot be selected as the travelable region A3.
- the traveling direction upper side region Ab and the traveling direction lower side region Ac can be selected as the traveling region A3 in addition to the approach region Aa, and in addition to the approach region Aa, the traveling direction upper side region 23Fd
- the region Ab can be selected as the travelable region A3
- the approach region Aa and the region on the upper side in the travel direction Ab are selected as the travelable region A3.
- the automatic travel control unit 23F travels with the approach region Aa as shown in FIG. 7 in the automatic turning-back travel control when the approach region Aa and the travel direction upper side region Ab are selected as the travelable region A3.
- the above-mentioned angle deviation ⁇ becomes less than the predetermined angle ⁇ , and the above-mentioned lateral direction
- the deviation ⁇ d is set to be less than the predetermined value L.
- the traveling region selection unit 23Fd selects the approach region Aa and the traveling direction lower region Ac as the traveling region A3. ..
- the traveling region selection unit 23Fd selects the approach region Aa and the traveling direction lower region Ac as the traveling region A3. ..
- the automatic travel control unit 23F has the approach area Aa as shown in FIGS.
- the angle deviation ⁇ described above becomes less than the predetermined angle ⁇
- the angle deviation ⁇ described above becomes less than the predetermined angle ⁇ .
- the lateral deviation ⁇ d is set to be less than the predetermined value L.
- the travel area selection unit 23Fd selects only the approach area Aa as the travelable area A3.
- the travelable region A3 in which the tractor 1 is to be turned back while preventing the tractor 1 from entering the traveling direction upper side region Ab and the traveling direction lower side region Ac during the turning back traveling.
- the work device 3 connected to the tractor 1 may come into contact with other objects such as ridges due to the tractor 1 entering the upper region Ab in the traveling direction, and the tractor 1 may come into contact with other objects such as ridges. It is possible to satisfy the start condition of the first automatic traveling control while avoiding the possibility that the subsequent work by the working device 3 is hindered due to entering the Ac.
- the tractor 1 is set to enable multiple turn-back travels in the travelable area A3.
- the tractor 1 can be turned back and forth in the travelable area A3. 1
- the start condition of the automatic driving control can be surely satisfied.
- the automatic running control unit 23F is the first from the automatic turning back running control. Transition to automatic driving control.
- the tractor 1 immediately adjusts the swing width with respect to the parallel path P1 as the start condition is satisfied. Work will be performed while automatically traveling according to the parallel path P1 in a small and highly accurate state. As a result, it is possible to improve the work accuracy while improving the work efficiency.
- the target route P is a movement route extending over the standby position p0 of the tractor 1 deviating from each parallel route P1 and the starting position p3 of the parallel route P1 in which the traveling order of the tractor 1 is set first. It can be generated to include Rm (the path shown by the broken line in FIG. 4).
- the standby position p0 is set near the entrance / exit of the tractor 1 with respect to the field A. The setting of the standby position p0 can be variously changed according to the shape of the field and the like.
- the automatic travel control unit 23F sets the tractor 1 according to the movement route Rm based on the movement route Rm and the positioning information from the positioning unit 42 in the automatic travel control. It is possible to execute automatic movement control that automatically runs in a non-working state.
- the approach area setting unit 23F includes the start position p3 of the first parallel path P1 which is the connection position between the parallel path P1 in which the traveling order of the tractor 1 is set first and the movement path Rm.
- the predetermined area is set as the approach area Aa.
- the automatic traveling control unit 23F executes the automatic movement control, and the tractor 1 is moved from the standby position p0 according to the movement path Rm. It is automatically driven toward the approach area Aa in a non-working state. Then, when the tractor 1 reaches the approach area Aa in this automatic traveling, if the start condition of the first automatic traveling control is satisfied, the automatic traveling control unit 23F executes the first automatic traveling control. The tractor 1 is automatically driven according to the parallel path P1 in the working state.
- the automatic driving control unit 23F executes the automatic turning back running control without executing the first automatic running control to turn the tractor 1 back and forth. .. Then, when the start condition of the first automatic traveling control is satisfied in this turning-back traveling, the automatic traveling control unit 23F executes the first automatic traveling control to automatically drive the tractor 1 according to the parallel path P1 in the working state. ..
- the tractor 1 when the target route P includes the movement route Rm, the tractor 1 can be automatically driven with high accuracy over the entire length of the target route P including the movement route Rm. As a result, the user does not need to manually drive the tractor 1 to the start position p3 of the parallel path P1 in which the traveling order of the tractor 1 is set first, and the burden on the user can be reduced.
- the work vehicle 1 may be configured to have a semi-crawler specification in which left and right crawlers are provided instead of the left and right rear wheels 11.
- the work vehicle 1 may be configured to have a full crawler specification in which left and right crawlers are provided instead of the left and right front wheels 10 and the left and right rear wheels 11.
- the work vehicle 1 may be configured with rear wheel steering specifications in which the left and right rear wheels 11 function as steering wheels.
- the work vehicle 1 may be configured to have an electric specification including an electric motor instead of the engine 14.
- the work vehicle 1 may be configured in a hybrid specification including an engine 14 and an electric motor.
- the automatic driving control unit 23F executes the above-mentioned first automatic driving control and automatic turning-back driving control, and the work vehicle 1 is next to the parallel path P1 currently traveling.
- the turning movement to move to the parallel path P1 of the above may be configured to be performed manually by the user.
- the work vehicle 1 is a harvesting work vehicle such as a combine, and the fullness of the harvested product is detected by the fullness sensor during the execution of the first automatic running control, and the first automatic running control is performed.
- a predetermined region for example, the region indicated by the broken line in FIG. 4 including the interruption position of the work in the parallel path P1 at that time (for example, the position indicated by the reference numeral p5 in FIG. 4) is set. It may be configured to be set in the approach region Aa with respect to the parallel path P1.
- the approach area setting unit 23F is, for example, the work vehicle 1 is an agricultural material supply work vehicle such as a sowing machine or a rice transplanter that supplies agricultural materials such as seeds and seedlings to the field, and executes the first automatic traveling control. If the remaining amount sensor detects that the remaining amount of agricultural materials has reached the lower limit and it becomes necessary to interrupt the first automatic driving control, the interruption position of the work on the parallel path P1 at that time is determined.
- a predetermined region including the predetermined region may be configured to be set in the approach region Aa with respect to the parallel path P1.
- the first characteristic configuration of the present invention is in an automatic traveling system for a work vehicle.
- An approach area setting unit that sets an approach area for a work vehicle for a plurality of parallel routes lined up at predetermined intervals
- a positioning unit that measures the position and orientation of the work vehicle, and Based on the parallel route and the positioning information from the positioning unit, the automatic traveling control unit that executes the first automatic traveling control that automatically travels the work vehicle according to the parallel route in the working state, and
- a deviation detection unit that detects an angular deviation and a lateral deviation of the work vehicle with respect to the parallel route when the work vehicle reaches the approach region based on the parallel path and positioning information from the positioning unit.
- the condition determination unit determines whether or not the start condition of the first automatic traveling control is satisfied based on the detection information from the deviation detection unit when the work vehicle reaches the approach area.
- the condition determination unit determines that the start condition of the first automatic driving control is satisfied when the angle deviation is less than a predetermined angle and the lateral deviation is less than a predetermined value.
- the automatic driving control unit determines that the start condition of the first automatic driving control is satisfied by the condition determination unit, the first automatic driving is performed.
- the control is executed and the condition determination unit determines that the start condition of the first automatic driving control is not satisfied, the work is performed so that the start condition of the first automatic driving control is satisfied.
- the automatic turning back running control for turning back and running the work vehicle is executed by a combined operation of the forward / backward switching operation of the vehicle and the steering operation.
- the automatic traveling control unit when the work vehicle reaches the above-mentioned approach area, if the above-mentioned angle deviation is less than a predetermined angle and the above-mentioned lateral deviation is less than a predetermined value, the automatic traveling control unit can be used.
- the first automatic traveling control is executed to automatically drive the working vehicle according to the parallel route in the working state.
- the work vehicle can perform the work while performing the highly accurate automatic traveling with a small swing width with respect to the parallel path from the stage when the automatic traveling is started.
- the automatic traveling control unit first The automatic turning-back driving control is executed without executing the automatic driving control.
- the work vehicle moves with respect to the parallel route because the first automatic traveling control is executed when the above-mentioned angle deviation is equal to or greater than a predetermined angle or when the above-mentioned lateral deviation is equal to or greater than a predetermined value. It is possible to prevent the occurrence of inconvenience that the work accuracy is lowered during this period because it takes a long distance to start the automatic running with low accuracy in which the runout width becomes large and the runout converges.
- the automatic driving control unit establishes the start condition of the first automatic driving control by reducing the above-mentioned angle deviation and lateral deviation both when moving forward and when moving backward by turning back the work vehicle.
- it is not necessary to generate a moving route having a long distance on the extension line of the parallel route.
- the above-mentioned movement route is shortened because it is easier to align the work vehicle with respect to the parallel route when moving backward than when moving forward. It is suitable for steering.
- the parallel path generation area (work area) becomes shorter.
- the planted area is narrowed and the yield of crops is reduced, or the parallel path generation area is the reciprocating work area where the work vehicle travels back and forth, and the movement path generation area is the work vehicle.
- the orbiting work area in which the work vehicle is orbited it is possible to prevent the inconvenience that the work efficiency is lowered due to the increase in the number of times of the work vehicle in the orbiting work area.
- the work vehicle can be automatically driven with high accuracy according to the parallel route in the working state without causing a decrease in yield or work efficiency, and the work accuracy of the work vehicle by automatic running can be improved.
- the second characteristic configuration of the present invention is
- the travelable area of the work vehicle in the automatic turning-back travel control includes the approach region, the region on the upper side in the travel direction and the region on the lower side in the travel direction sandwiching the approach region in the travel direction of the work vehicle on the parallel route.
- the point is that it has a traveling area selection unit for selecting from.
- the approach region is a predetermined region including the start position of the parallel path
- the region on the upper side in the traveling direction is included in the headland region on the upper side in the traveling direction than the starting position of the parallel route. Therefore, the area on the lower side in the traveling direction is included in the work area in which the parallel path is arranged.
- the work content of the work vehicle is tillage work that is not easily affected by the subsequent work in the lower area in the traveling direction even if the work vehicle enters the lower area in the traveling direction and turns back.
- the area on the lower side in the traveling direction can be selected as the travelable area.
- the work content of the work vehicle is sowing work or seedling transplanting work, which is easily affected by the subsequent work in the lower side area in the traveling direction when the work vehicle enters the lower area in the traveling direction and runs back.
- the approach area and the area on the upper side in the traveling direction can be selected as the traveling area, and the area on the lower side in the traveling direction can be excluded from the traveling area.
- the travelable area is widened to facilitate the turning back running of the work vehicle in the travelable area. This makes it easier to establish the start condition of the first automatic driving control in the travelable area.
- the approach area is a predetermined area including the interruption position of the first automatic traveling control in the parallel route
- the area on the upper side in the traveling direction is included in the existing work area on the upper side in the traveling direction than the interruption position. Therefore, the area on the lower side in the traveling direction is included in the unworked area on the lower side in the traveling direction than the interrupted position.
- the approach area and the area on the upper side in the traveling direction can be selected as the traveling area, and the area on the lower side in the traveling direction can be excluded from the traveling area.
- the work vehicle can be turned back in the travelable area by widening the travelable area. It can be facilitated, and the start condition of the first automatic traveling control can be easily satisfied in the travelable region.
- the approach area and the lower side area in the traveling direction can be selected as the travelable area, and the upper area in the traveling direction can be excluded from the travelable area.
- the travelable area is widened to allow the work vehicle to turn back in the travelable area. It can be easily performed, and the start condition of the first automatic driving control can be easily satisfied in the travelable area.
- the third characteristic configuration of the present invention is In the automatic turn-back running control, the work vehicle is set to be able to turn back and run a plurality of times in the travelable area.
- the start condition of the first automatic driving control is surely determined by the turning back running of the work vehicle in the travelable area. It can be established.
- the fourth characteristic configuration of the present invention is When the condition determination unit determines that the start condition of the first automatic running control is satisfied in the turning back running of the work vehicle by the automatic turning back running control, the automatic running control unit performs the automatic turning back running. The point is that the control transitions to the first automatic driving control.
- the fifth characteristic configuration of the present invention is
- the automatic traveling control unit moves over the standby position of the work vehicle deviating from the parallel path and the start position of the parallel path in which the traveling order of the work vehicle among the plurality of parallel paths is set first.
- Execute automatic movement control to automatically drive the work vehicle in a non-working state according to the route.
- the approach area setting unit is at a point where a predetermined area including the start end position is set as the approach area with respect to the first parallel path.
- the automatic traveling control unit executes the automatic movement control and the work vehicle enters from the standby position according to the movement route. Automatically run toward the area in a non-working state. Then, when the work vehicle reaches the approach area in this automatic driving, if the start condition of the first automatic driving control is satisfied, the automatic driving control unit executes the first automatic driving control to execute the work vehicle. Is automatically driven according to the parallel route in the working state.
- the automatic traveling control unit executes the automatic turning-back running control without executing the first automatic traveling control to turn the work vehicle back and forth. Then, when the start condition of the first automatic traveling control is satisfied in this turning-back traveling, the automatic traveling control unit executes the first automatic traveling control to automatically drive the work vehicle according to the parallel route in the working state.
- the work vehicle in addition to the parallel route, the work vehicle can be automatically driven with high accuracy even on the movement route from the standby position to the start position of the parallel route.
- the user does not have to manually drive the work vehicle from the standby position to the start position of the parallel path, and the burden on the user can be reduced.
- the sixth characteristic configuration of the present invention is
- the automatic traveling control unit executes a second automatic traveling control for automatically traveling the work vehicle according to a connection route connecting a plurality of the parallel routes in the traveling order of the work vehicle.
- the approach area setting unit is at a point of setting a predetermined area including the start position of the parallel path connected to the connection path to the approach area.
- the automatic driving control unit is the first when the start condition of the first automatic driving control is satisfied when the work vehicle reaches the approach area by the automatic driving by the second automatic driving control. 1 Execute automatic driving control to automatically drive the work vehicle according to the parallel route in the working state. Further, when the start condition of the first automatic running control is not satisfied, the automatic running control unit executes the automatic turning back running control without executing the first automatic running control to turn the work vehicle back and forth. Then, when the start condition of the first automatic traveling control is satisfied in this turning-back traveling, the automatic traveling control unit executes the first automatic traveling control to automatically drive the working vehicle according to the parallel route in the working state.
- the work vehicle can be satisfactorily automatically driven in a highly accurate state with a small swing width for each parallel path according to a plurality of parallel paths connected in the order of travel via each connection path.
- the user does not have to manually drive the work vehicle from the end position of the parallel path to the start position of the next parallel path, and the burden on the user can be reduced.
- the seventh characteristic configuration of the present invention is
- the approach area setting unit is at a point where, when the first automatic driving control is interrupted, a predetermined area including the interrupted position of the first automatic driving control in the parallel path is set in the approach area.
- the first automatic traveling control is interrupted and the work vehicle is placed in a predetermined discharge position. After moving to and discharging the harvested material, if the work vehicle is moved to the approach area including the interrupted position of the first automatic driving control and the automatic driving is restarted, the first automatic driving control is performed at this point.
- the automatic driving control unit executes the first automatic driving control to automatically drive the work vehicle from the interrupted position of the first automatic driving control according to the parallel route in the working state.
- the automatic driving control unit executes the automatic turning back running control to turn back the work vehicle in the approach area including the interrupted position. Then, when the start condition of the first automatic traveling control is satisfied in this turning-back traveling, the automatic traveling control unit executes the first automatic traveling control to automatically drive the work vehicle according to the parallel route in the working state.
- the automatic running can be restarted satisfactorily in a highly accurate state with a small swing width with respect to the parallel path. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental Sciences (AREA)
- Soil Sciences (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Guiding Agricultural Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
作業車両用の自動走行システムにおいて、自動走行制御部は、作業車両(1)が並列経路(P1)に対する進入領域(Aa)に達した時点において、条件判定部にて第1自動走行制御の開始条件が成立したと判定された場合には、作業車両(1)を作業状態で並列経路(P1)に従って自動走行させる第1自動走行制御を実行し、条件判定部にて第1自動走行制御の開始条件が成立していないと判定された場合には、第1自動走行制御の開始条件が成立するように、作業車両(1)の前後進切り換え操作とステアリング操作との複合操作で作業車両(1)を切り返し走行させる自動切り返し走行制御を実行する。
Description
本発明は、トラクタやコンバインなどの作業車両の自動走行を可能にする作業車両用の自動走行システムに関する。
上記のような作業車両用の自動走行システムとしては、作業領域に応じて生成された作業経路に従って作業車両を自動走行させる制御部と、作業車両の位置を検出する位置検出部と、作業車両の方位角を検出する方位角検出部とを有するものがある。そして、制御部は、作業車両が作業領域の周囲に設定された枕地上の走行開始位置に位置しているときに作業開始が指示された場合には、作業経路の延長線と作業車両の位置との偏差が小さくなるように作業車両の走行を制御しながら、作業車両を枕地上の走行開始位置から作業経路の作業開始位置まで自動走行させるように構成されたものがある(例えば特許文献1参照)。
特許文献1に記載の技術は、作業車両が枕地上の走行開始位置から作業経路の作業開始位置に向けて自動走行する間において、作業経路の延長線と作業車両の位置との偏差が小さくなるように、制御部が作業車両の走行を制御するものである。そのため、枕地上の走行開始位置から作業経路の作業開始位置までの距離を長くするほど、作業経路の延長線と作業車両の位置との偏差を小さくすることができる。これにより、作業領域においては作業車両を作業経路に従って精度良く自動走行させることができ、作業車両の作業精度を高めることができる。
その反面、枕地上の走行開始位置から作業経路の作業開始位置までの距離を長くするために、枕地が広くなって作業領域が狭くなることから、例えば、作業領域が畑作領域である場合は、作付面積が狭くなって作物の収穫量が減少する。又、作業領域が作業車両を往復走行させる往復作業領域であり、枕地が作業車両を周回走行させる周回作業領域である場合は、枕地での作業車両の周回数が多くなって作業効率が低下する。特に、作業車両の周回走行を手動運転で行う場合にはユーザにかかる負担が大きくなる。
このような収穫量の減少や作業効率の低下などを回避するために枕地を狭くすると、枕地が狭くなるほど、枕地上の走行開始位置から作業経路の作業開始位置までの距離が短くなり、作業車両が作業経路の作業開始位置に到達した時点での作業経路の延長線と作業車両の位置との偏差が大きくなる。このような状態で、制御部が作業車両を作業状態に切り換えて作業経路に従って自動走行させると、その偏差が大きいほど、作業車両が作業経路に対して左右に大きくふらつく不安定な状態で自動走行を開始することになり、そのふらつきが収束するまでに要する走行距離も長くなる。そのため、作業車両が通過した後の作業跡も、作業開始位置に近いほど作業経路に対する左右の振れ幅が大きくなる不揃いの状態が長く続くことになる。
この実情に鑑み、本発明の主たる課題は、収穫量の減少や作業効率の低下などを招くことなく自動走行による作業車両の作業精度を高める点にある。
本発明の第1特徴構成は、作業車両用の自動走行システムにおいて、
所定間隔を置いて並ぶ複数の並列経路に対して作業車両の進入領域を設定する進入領域設定部と、
前記作業車両の位置及び方位を測定する測位部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両を作業状態で前記並列経路に従って自動走行させる第1自動走行制御を実行する自動走行制御部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両が前記進入領域に達した時点での前記並列経路に対する前記作業車両の角度偏差と横方向偏差とを検出する偏差検出部と、
前記作業車両が前記進入領域に達した場合に、前記偏差検出部からの検出情報に基づいて前記第1自動走行制御の開始条件が成立したか否かを判定する条件判定部とを有し、
前記条件判定部は、前記角度偏差が所定角度未満で前記横方向偏差が所定値未満である場合に前記第1自動走行制御の開始条件が成立したと判定し、
前記自動走行制御部は、前記作業車両が前記進入領域に達した時点において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合には前記第1自動走行制御を実行し、前記条件判定部にて前記第1自動走行制御の開始条件が成立していないと判定された場合には、前記第1自動走行制御の開始条件が成立するように、前記作業車両の前後進切り換え操作とステアリング操作との複合操作で前記作業車両を切り返し走行させる自動切り返し走行制御を実行する点にある。
所定間隔を置いて並ぶ複数の並列経路に対して作業車両の進入領域を設定する進入領域設定部と、
前記作業車両の位置及び方位を測定する測位部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両を作業状態で前記並列経路に従って自動走行させる第1自動走行制御を実行する自動走行制御部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両が前記進入領域に達した時点での前記並列経路に対する前記作業車両の角度偏差と横方向偏差とを検出する偏差検出部と、
前記作業車両が前記進入領域に達した場合に、前記偏差検出部からの検出情報に基づいて前記第1自動走行制御の開始条件が成立したか否かを判定する条件判定部とを有し、
前記条件判定部は、前記角度偏差が所定角度未満で前記横方向偏差が所定値未満である場合に前記第1自動走行制御の開始条件が成立したと判定し、
前記自動走行制御部は、前記作業車両が前記進入領域に達した時点において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合には前記第1自動走行制御を実行し、前記条件判定部にて前記第1自動走行制御の開始条件が成立していないと判定された場合には、前記第1自動走行制御の開始条件が成立するように、前記作業車両の前後進切り換え操作とステアリング操作との複合操作で前記作業車両を切り返し走行させる自動切り返し走行制御を実行する点にある。
本構成によれば、収穫量の減少や作業効率の低下などを招くことなく自動走行による作業車両の作業精度を高めることができる。
以下、本発明を実施するための形態の一例として、本発明に係る作業車両用の自動走行システムを、作業車両の一例であるトラクタに適用した実施形態を図面に基づいて説明する。尚、本発明に係る作業車両用の自動走行システムは、トラクタ以外に、例えば乗用草刈機、乗用田植機、コンバイン、運搬車、除雪車、ホイールローダ、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
図1に示すように、本実施形態に例示されたトラクタ1は、その後部に3点リンク機構2を介して、作業装置の一例であるロータリ耕耘装置3が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1はロータリ耕耘仕様の作業車両として機能する。トラクタ1は、作業車両用の自動走行システムを使用することにより、作業地の一例である図4に示す圃場Aなどにおいて自動走行することができる。
尚、トラクタ1の後部には、ロータリ耕耘装置3に代えて、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、噴霧装置、オフセットモア、収穫装置、などのリアマウント式の作業装置を連結することができる。又、トラクタ1の前部には、フロントローダやフロントモアコンディショナなどのフロントマウント式の作業装置を連結することができる。
図1~2に示すように、自動走行システムには、トラクタ1に搭載された自動走行ユニット4、及び、自動走行ユニット4と無線通信可能に通信設定された無線通信機器の一例である携帯通信端末5、などが含まれている。携帯通信端末5には、自動走行に関する各種の情報表示や入力操作などを可能にするマルチタッチ式の表示デバイス(例えば液晶パネル)50などが備えられている。
尚、携帯通信端末5には、タブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。又、無線通信には、Wi-Fi(登録商標)などの無線LAN(Local Area Network)やBluetooth(登録商標)などの近距離無線通信などを採用することができる。
図1、図3に示すように、トラクタ1には、駆動可能で操舵可能な左右の前輪10、駆動可能な左右の後輪11、搭乗式の運転部12を形成するキャビン13、コモンレールシステムを有する電子制御式のディーゼルエンジン(以下、エンジンと称する)14、エンジン14などを覆うボンネット15、及び、エンジン14からの動力を変速する変速ユニット16、などが備えられている。これにより、このトラクタ1は4輪駆動可能な前輪ステアリング仕様に構成されている。尚、エンジン14には、電子ガバナを有する電子制御式のガソリンエンジンなどを採用してもよい。
図2に示すように、トラクタ1には、左右の前輪10を操舵する全油圧式のパワーステアリングユニット17、左右の後輪11を制動するブレーキユニット18、ロータリ耕耘装置3などの駆動式の作業装置への伝動を断続する電子油圧制御式の作業クラッチユニット19、ロータリ耕耘装置3を昇降駆動する電子油圧制御式の昇降駆動ユニット20、ロータリ耕耘装置3をロール方向に駆動する電子油圧制御式のローリングユニット21、トラクタ1における各種の設定状態や各部の動作状態などを検出する各種のセンサやスイッチなどを含む車両状態検出機器22、及び、各種の制御部を有する車載制御ユニット23、などが備えられている。尚、パワーステアリングユニット17には、操舵用の電動モータを有する電動式を採用してもよい。
図1~2に示すように、運転部12には、手動操舵用のステアリングホイール25、搭乗者用の座席26、及び、各種の情報表示や入力操作などを可能にする操作端末27、が備えられている。図示は省略するが、運転部12には、アクセルレバーや主変速レバーなどの操作レバー類、及び、アクセルペダルやクラッチペダルなどの操作ペダル類、などが備えられている。操作端末27には、マルチタッチ式の液晶モニタやISOBUS(イソバス)対応のバーチャルターミナルなどを採用することができる。
図3に示すように、変速ユニット16には、エンジン14からの動力を走行用に変速する走行伝動系16Aと作業用に変速する作業伝動系16Bとが備えられている。そして、走行伝動系16Aによる変速後の動力が、前輪駆動用の伝動軸28、及び、前車軸ケース29に内蔵された前輪用差動装置30、などを介して左右の前輪10に伝えられる。又、作業伝動系16Bによる変速後の動力がロータリ耕耘装置3に伝えられる。変速ユニット16には、左右の後輪11を個別に制動する左右のブレーキ31が備えられている。
走行伝動系16Aには、エンジン14からの動力を変速する電子制御式の主変速装置32、主変速装置32からの動力を前進用と後進用とに切り換える電子油圧制御式の前後進切換装置33、前後進切換装置33からの前進用又は後進用の動力を高低2段に変速するギア式の副変速装置34、前後進切換装置33からの前進用又は後進用の動力を超低速段に変速するギア式のクリープ変速装置35、副変速装置34又はクリープ変速装置35からの動力を左右の後輪11に分配する後輪用差動装置36、後輪用差動装置36からの動力を減速して左右の後輪11に伝える左右の減速装置37、及び、副変速装置34又はクリープ変速装置35から左右の前輪10への伝動を切り換える電子油圧制御式の伝動切換装置38、などが含まれている。
作業伝動系16Bには、エンジン14からの動力を断続する油圧式の作業クラッチ39、作業クラッチ39を経由した動力を正転3段と逆転1段とに切り換える作業用変速装置40、及び、作業用変速装置40からの動力を作業用として出力するPTO軸41、などが含まれている。PTO軸41から取り出された動力は、ロータリ耕耘装置3などの駆動式の作業装置がトラクタ1の後部に連結された場合に、外部伝動軸(図示せず)などを介して作業装置に伝えられる。
主変速装置32には、静油圧式無段変速装置(HST:Hydro Static Transmission)よりも伝動効率が高い油圧機械式無段変速装置の一例であるI-HMT(Integrated Hydro-static Mechanical Transmission)が採用されている。
尚、主変速装置32には、I-HMTの代わりに、油圧機械式無段変速装置の一例であるHMT(Hydraulic Mechanical Transmission)、静油圧式無段変速装置、又は、ベルト式無段変速装置、などの無段変速装置を採用してもよい。又、無段変速装置の代わりに、複数の油圧式の変速クラッチ、及び、それらに対するオイルの流れを制御する複数の電磁式の変速バルブ、などを有する電子油圧制御式の有段変速装置を採用してもよい。
伝動切換装置38は、左右の前輪10への伝動状態を、左右の前輪10への伝動を遮断する伝動遮断状態と、左右の前輪10の周速が左右の後輪11の周速と同じになるように左右の前輪10に伝動する等速伝動状態と、左右の後輪11の周速に対して左右の前輪10の周速が約2倍になるように左右の前輪10に伝動する倍速伝動状態とに切り換える。これにより、このトラクタ1は、2輪駆動状態と4輪駆動状態と前輪倍速状態とに切り換え可能に構成されている。
図示は省略するが、ブレーキユニット18には、左右のブレーキ31、運転部12に備えられた左右のブレーキペダルの踏み込み操作に連動して左右のブレーキ31を作動させるフットブレーキ系、運転部12に備えられたパーキングレバーの操作に連動して左右のブレーキ31を作動させるパーキングブレーキ系、及び、左右の前輪10の設定角度以上の操舵に連動して旋回内側のブレーキ31を作動させる旋回ブレーキ系、などが含まれている。
車両状態検出機器22は、トラクタ1の各部に備えられた各種のセンサやスイッチなどの総称である。図示は省略するが、車両状態検出機器22には、アクセルレバーの操作位置を検出するアクセルセンサ、主変速レバーの操作位置を検出する変速センサ、前後進切り換え用のリバーサレバーの操作位置を検出するリバーサセンサ、エンジン14の出力回転数を検出する回転センサ、トラクタ1の車速を検出する車速センサ、及び、前輪10の操舵角を検出する舵角センサ、などが含まれている。
図2に示すように、車載制御ユニット23には、エンジン14に関する制御を行うエンジン制御部23A、トラクタ1の車速や前後進の切り換えなどの変速ユニット16に関する制御を行う変速ユニット制御部23B、ステアリングに関する制御を行うステアリング制御部23C、ロータリ耕耘装置3などの作業装置に関する制御を行う作業装置制御部23D、操作端末27などに対する表示や報知に関する制御を行う表示制御部23E、自動走行に関する制御を行う自動走行制御部23F、及び、圃場内に区分けされた走行領域に応じて生成された自動走行用の目標経路P(図4参照)などを記憶する不揮発性の車載記憶部23G、などが含まれている。各制御部23A~23Fは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各制御部23A~23Fは、CAN(Controller Area Network)を介して相互通信可能に接続されている。
尚、各制御部23A~23Fの相互通信には、CAN以外の通信規格や次世代通信規格である、例えば、車載EthernetやCAN-FD(CAN with FLexible Data rate)などを採用してもよい。
エンジン制御部23Aは、アクセルセンサからの検出情報と回転センサからの検出情報とに基づいて、エンジン回転数をアクセルレバーの操作位置に応じた回転数に維持するエンジン回転数維持制御、などを実行する。
変速ユニット制御部23Bは、変速センサからの検出情報と車速センサからの検出情報などに基づいて、トラクタ1の車速が主変速レバーの操作位置に応じた速度に変更されるように主変速装置32の作動を制御する車速制御、及び、リバーサセンサからの検出情報に基づいて前後進切換装置の伝動状態を切り換える前後進切り換え制御、などを実行する。車速制御には、変速レバーが零速位置に操作された場合に、主変速装置32を零速状態まで減速制御してトラクタ1の走行を停止させる減速停止処理が含まれている。
作業装置制御部23Dには、運転部12に備えられたPTOスイッチの操作などに基づいて作業クラッチユニット19の作動を制御する作業クラッチ制御、運転部12に備えられた昇降スイッチの操作や高さ設定ダイヤルの設定値などに基づいて昇降駆動ユニット20の作動を制御する昇降制御、及び、運転部12に備えられたロール角設定ダイヤルの設定値などに基づいてローリングユニット21の作動を制御するローリング制御、などを実行する。PTOスイッチ、昇降スイッチ、高さ設定ダイヤル、及び、ロール角設定ダイヤルは、車両状態検出機器22に含まれている。
図2に示すように、トラクタ1には、トラクタ1の位置や方位などを測定する測位ユニット(測位部の一例)42が備えられている。測位ユニット42には、衛星測位システムの一例であるGNSS(Global Navigation Satellite System)を利用してトラクタ1の位置と方位とを測定する衛星航法装置43、及び、3軸のジャイロスコープ及び3方向の加速度センサなどを有してトラクタ1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)44、などが含まれている。GNSSを利用した測位方法には、DGNSS(Differential GNSS:相対測位方式)やRTK-GNSS(Real Time Kinematic GNSS:干渉測位方式)などがある。本実施形態においては、移動体の測位に適したRTK-GNSSが採用されている。そのため、図1に示すように、圃場周辺の既知位置には、RTK-GNSSによる測位を可能にする基地局6が設置されている。
図1~2に示すように、トラクタ1と基地局6とのそれぞれには、測位衛星7(図1参照)から送信された電波を受信するGNSSアンテナ45,60、及び、トラクタ1と基地局6との間における測位情報を含む各情報の無線通信を可能にする通信モジュール46,61、などが備えられている。これにより、測位ユニット42の衛星航法装置43は、トラクタ側のGNSSアンテナ45が測位衛星7からの電波を受信して得た測位情報と、基地局側のGNSSアンテナ60が測位衛星7からの電波を受信して得た測位情報とに基づいて、トラクタ1の位置及び方位を高い精度で測定することができる。又、測位ユニット42は、衛星航法装置43と慣性計測装置44とを有することにより、トラクタ1の位置、方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。
このトラクタ1において、測位ユニット42の慣性計測装置44、GNSSアンテナ45、及び、通信モジュール46は、図1に示すアンテナユニット47に含まれている。アンテナユニット47は、キャビン13の前面側における上部の左右中央箇所に配置されている。
図6~9に示すように、トラクタ1の位置を特定するときの車体位置Vpは後輪車軸中心位置に設定されている。車体位置Vpは、測位ユニット42からの測位情報、及び、トラクタ1におけるGNSSアンテナ45の取り付け位置と後輪車軸中心位置との位置関係を含む車体情報から求めることができる。
図2に示すように、携帯通信端末5には、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどを有する端末制御ユニット51などが備えられている。端末制御ユニット51には、表示デバイス50などに対する表示や報知に関する制御を行う表示制御部51A、自動走行用の目標経路Pを生成する目標経路生成部51B、及び、目標経路生成部51Bが生成した目標経路Pなどを記憶する不揮発性の端末記憶部51C、などが含まれている。端末記憶部51Cには、目標経路Pの生成に使用する各種の情報として、トラクタ1の旋回半径やロータリ耕耘装置3の作業幅などの車体情報、及び、前述した測位情報から得られる圃場情報、などが記憶されている。圃場情報には、圃場Aの形状や大きさなどを特定する上において、トラクタ1を圃場Aの外周縁に沿って走行させたときにGNSSを利用して取得した圃場Aにおける複数の形状特定地点(形状特定座標)となる4つの角部地点Pa~Pd(図4参照)、及び、それらの角部地点Pa~Pdを繋いで圃場Aの形状や大きさなどを特定する矩形状の形状特定線SL(図4参照)、などが含まれている。
図2に示すように、トラクタ1及び携帯通信端末5には、車載制御ユニット23と端末制御ユニット51との間における測位情報などを含む各情報の無線通信を可能にする通信モジュール48,52が備えられている。トラクタ1の通信モジュール48は、携帯通信端末5との無線通信にWi-Fiが採用される場合には、通信情報をCANとWi-Fiとの双方向に変換する変換器として機能する。端末制御ユニット51は、車載制御ユニット23との無線通信にてトラクタ1の位置や方位などを含むトラクタ1に関する各種の情報を取得することができる。これにより、携帯通信端末5の表示デバイス50にて、目標経路Pに対するトラクタ1の位置や方位などを含む各種の情報を表示させることができる。
目標経路生成部51Bは、車体情報に含まれたトラクタ1の旋回半径やロータリ耕耘装置3の作業幅、及び、圃場情報に含まれた圃場Aの形状や大きさ、などに基づいて目標経路Pを生成する。
例えば、図4に示すように、矩形状の圃場Aにおいて、自動走行の開始位置p1と終了位置p2とが設定され、トラクタ1の作業走行方向が圃場Aの短辺に沿う方向に設定されている場合は、目標経路生成部51Bは、先ず、圃場Aを、前述した4つの角部地点Pa~Pdと矩形状の形状特定線SLとに基づいて、圃場Aの外周縁に隣接するマージン領域A1と、マージン領域A1の内側に位置する走行領域A2とに区分けする。
次に、目標経路生成部51Bは、トラクタ1の旋回半径やロータリ耕耘装置3の作業幅などに基づいて、走行領域A2を、走行領域A2における各長辺側の畦際に設定される一対の枕地領域A2aと、一対の枕地領域A2aの間に設定される中央側領域A2bとに区分けする。その後、目標経路生成部51Bは、中央側領域A2bに、圃場Aの長辺に沿う方向に作業幅に応じた所定間隔を置いて並列に配置される複数の並列経路P1を生成する。又、目標経路生成部51Bは、各枕地領域A2aに、複数の並列経路P1をトラクタ1の走行順に接続する複数の接続経路P2を生成する。
これにより、目標経路生成部51Bは、図4に示す圃場Aに設定された自動走行の開始位置p1から終了位置p2にわたってトラクタ1を自動走行させることが可能な目標経路Pを生成することができる。
図4に示す圃場Aにおいて、マージン領域A1は、トラクタ1が走行領域A2の畦際を自動走行するときに、ロータリ耕耘装置3などが圃場Aに隣接する畦などの他物に接触するのを防止するために、圃場Aの外周縁と走行領域A2との間に確保された領域である。各枕地領域A2aは、トラクタ1が現在走行中の並列経路P1から次の並列経路P1に向けて接続経路P2に従って旋回移動するときの旋回領域である。中央側領域A2bは、トラクタ1が各並列経路P1に従って作業状態で自動走行する作業領域である。
図4に示す目標経路Pにおいて、各並列経路P1は、トラクタ1がロータリ耕耘装置3による耕耘作業を行いながら自動走行する作業経路である。各接続経路P2は、トラクタ1がロータリ耕耘装置3による耕耘作業を行わずに自動走行する非作業経路である。各並列経路P1の始端位置p3は、トラクタ1がロータリ耕耘装置3による耕耘作業を開始する作業開始位置である。各並列経路P1の終端位置p4は、トラクタ1がロータリ耕耘装置3による耕耘作業を停止する作業停止位置である。各並列経路P1の始端位置p3のうち、トラクタ1の走行順位が一番目に設定された並列経路P1の始端位置p3が自動走行の開始位置p1である。そして、残りの並列経路P1の始端位置p3が、接続経路P2の終端位置との接続位置である。又、トラクタ1の走行順位が最後に設定された並列経路P1の終端位置p4が自動走行の終了位置p2である。
尚、図4に示す目標経路Pはあくまでも一例であり、目標経路生成部51Bは、トラクタ1の機種や作業装置の種類などに応じて異なる車体情報、及び、圃場Aに応じて異なる圃場Aの形状や大きさなどの圃場情報、などに基づいて、それらに適した種々の目標経路Pを生成することができる。
ちなみに、図4に示す目標経路Pにおいて、トラクタ1が代掻き装置による代掻き作業を行う場合には、各並列経路P1と各接続経路P2とのそれぞれが作業経路として使用される。
目標経路Pは、車体情報や圃場情報などに関連付けされた状態で端末記憶部51Cに記憶されており、携帯通信端末5の表示デバイス50にて表示することができる。目標経路Pには、前述した作業開始位置p3及び作業停止位置p4とともに、各並列経路P1の方位角、各並列経路P1におけるトラクタ1の目標車速、各接続経路P2bにおけるトラクタ1の目標車速、各並列経路P1における前輪操舵角、及び、各接続経路P2bにおける前輪操舵角、などが含まれている。
端末制御ユニット51は、車載制御ユニット23からの送信要求指令に応じて、端末記憶部51Cに記憶されている圃場情報や目標経路Pなどを車載制御ユニット23に送信する。車載制御ユニット23は、受信した圃場情報や目標経路Pなどを車載記憶部23Gに記憶する。目標経路Pの送信に関しては、例えば、端末制御ユニット51が、トラクタ1が自動走行を開始する前の段階において、目標経路Pの全てを端末記憶部51Cから車載制御ユニット23に一挙に送信するようにしてもよい。又、端末制御ユニット51が、目標経路Pを所定距離ごとの複数の分割経路情報に分割して、トラクタ1が自動走行を開始する前の段階からトラクタ1の走行距離が所定距離に達するごとに、トラクタ1の走行順位に応じた所定数の分割経路情報を端末記憶部51Cから車載制御ユニット23に逐次送信するようにしてもよい。
車載制御ユニット23において、自動走行制御部23Fには、車両状態検出機器22に含まれた各種のセンサやスイッチなどからの検出情報が、変速ユニット制御部23Bやステアリング制御部23Cなどを介して入力されている。これにより、自動走行制御部23Fは、トラクタ1における各種の設定状態や各部の動作状態などを監視することができる。
自動走行制御部23Fは、搭乗者や管理者などのユーザによる手動運転でトラクタ1が自動走行の開始位置p1まで移動された後に、各種の自動走行開始条件を満たすための手動操作が行われてトラクタ1の走行モードが自動走行モードに切り換えられた状態において、携帯通信端末5の表示デバイス50が操作されて自動走行の開始が指令された場合に、測位ユニット42にてトラクタ1の位置や方位などを取得しながら目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。
自動走行制御部23Fは、自動走行制御の実行中に、例えば、ユーザにより携帯通信端末5の表示デバイス50が操作されて自動走行の終了が指令された場合や、運転部12に搭乗しているユーザにてステアリングホイール25やアクセルペダルなどの手動操作具が操作された場合は、自動走行制御を終了するとともに走行モードを自動走行モードから手動走行モードに切り換える。このように自動走行制御が終了された後に自動走行制御を再開させる場合は、先ず、ユーザが運転部12に乗り込んで、トラクタ1の走行モードを自動走行モードから手動走行モードに切り換える。次に、各種の自動走行開始条件を満たすための手動操作を行ってから、トラクタ1の走行モードを手動走行モードから自動走行モードに切り換える。そして、この状態において、携帯通信端末5の表示デバイス50を操作して自動走行の開始を指令することで、自動走行制御を再開させることができる。
自動走行制御部23Fによる自動走行制御には、エンジン14に関する自動走行用の制御指令をエンジン制御部23Aに送信するエンジン用自動制御処理、トラクタ1の車速や前後進の切り換えに関する自動走行用の制御指令を変速ユニット制御部23Bに送信する車速用自動制御処理、ステアリングに関する自動走行用の制御指令をステアリング制御部23Cに送信するステアリング用自動制御処理、及び、ロータリ耕耘装置3などの作業装置に関する自動走行用の制御指令を作業装置制御部23Dに送信する作業用自動制御処理、などが含まれている。
自動走行制御部23Fは、エンジン用自動制御処理においては、目標経路Pに含まれた設定回転数などに基づいてエンジン回転数の変更を指示するエンジン回転数変更指令、などをエンジン制御部23Aに送信する。エンジン制御部23Aは、自動走行制御部23Fから送信されたエンジン14に関する各種の制御指令に応じてエンジン回転数を自動で変更するエンジン回転数変更制御、などを実行する。
自動走行制御部23Fは、車速用自動制御処理においては、目標経路Pに含まれた目標車速に基づいて主変速装置32の変速操作を指示する変速操作指令、及び、目標経路Pに含まれたトラクタ1の進行方向などに基づいて前後進切換装置33の前後進切り換え操作を指示する前後進切り換え指令、などを変速ユニット制御部23Bに送信する。変速ユニット制御部23Bは、自動走行制御部23Fから送信された主変速装置32や前後進切換装置33などに関する各種の制御指令に応じて、主変速装置32の作動を自動で制御する自動車速制御、及び、前後進切換装置33の作動を自動で制御する自動前後進切り換え制御、などを実行する。自動車速制御には、例えば、目標経路Pに含まれた目標車速が零速である場合に、主変速装置32を零速状態まで減速制御してトラクタ1の走行を停止させる自動減速停止処理などが含まれている。
自動走行制御部23Fは、ステアリング用自動制御処理においては、目標経路Pに含まれた前輪操舵角などに基づいて左右の前輪10の操舵を指示する操舵指令、などをステアリング制御部23Cに送信する。ステアリング制御部23Cは、自動走行制御部23Fから送信された操舵指令に応じて、パワーステアリングユニット17の作動を制御して左右の前輪10を操舵する自動ステアリング制御、及び、左右の前輪10が設定角度以上に操舵された場合に、ブレーキユニット18を作動させて旋回内側のブレーキ31を作動させる自動ブレーキ旋回制御、などを実行する。
自動走行制御部23Fは、作業用自動制御処理においては、目標経路Pに含まれた作業開始位置p3に基づいてロータリ耕耘装置3の作業状態への切り換えを指示する作業開始指令、及び、目標経路Pに含まれた作業停止位置p4に基づいてロータリ耕耘装置3の非作業状態への切り換えを指示する作業停止指令、などを作業装置制御部23Dに送信する。作業装置制御部23Dは、自動走行制御部23Fから送信されたロータリ耕耘装置3に関する各種の制御指令に応じて、作業クラッチユニット19と昇降駆動ユニット20の作動を制御して、ロータリ耕耘装置3を作業高さまで下降させて駆動させる自動作業開始制御、及び、ロータリ耕耘装置3を停止させて非作業高さまで上昇させる自動作業停止制御、などを実行する。
つまり、前述した自動走行ユニット4には、パワーステアリングユニット17、ブレーキユニット18、作業クラッチユニット19、昇降駆動ユニット20、ローリングユニット21、車両状態検出機器22、車載制御ユニット23、測位ユニット42、及び、通信モジュール46,48、などが含まれている。そして、これらが適正に作動することにより、トラクタ1を目標経路Pに従って精度よく自動走行させることができるとともに、ロータリ耕耘装置3による耕耘作業を適正に行うことができる。
図2、図5に示すように、トラクタ1には、トラクタ1の周囲を監視して、その周囲に存在する障害物を検出する障害物検出ユニット80が備えられている。障害物検出ユニット80が検出する障害物には、圃場Aにて作業する作業者などの人物や他の作業車両、及び、圃場Aに既存の電柱や樹木などが含まれている。
図1、図5に示すように、障害物検出ユニット80には、トラクタ1の周囲を撮像する撮像ユニット80A、トラクタ1の周囲に存在する測定対象物までの距離を測定するアクティブセンサユニット80B、及び、撮像ユニット80Aからの情報とアクティブセンサユニット80Bからの測定情報とを統合して処理する情報統合処理部80C、が含まれている。
撮像ユニット80Aには、キャビン13から前方の所定範囲が撮像範囲に設定された前カメラ81、キャビン13から後方の所定範囲が撮像範囲に設定された後カメラ82、キャビン13から右方の所定範囲が撮像範囲に設定された右カメラ83、キャビン13から左方の所定範囲が撮像範囲に設定された左カメラ84、及び、各カメラ81~84からの画像を処理する画像処理装置85、が含まれている。
アクティブセンサユニット80Bには、キャビン13から前方の所定範囲が測定範囲に設定された前ライダーセンサ86、キャビン13から後方の所定範囲が測定範囲に設定された後ライダーセンサ87、及び、キャビン13から右方の所定範囲とキャビン13から左方の所定範囲とが測定範囲に設定されたソナー88、が含まれている。各ライダーセンサ86,87は、測定光の一例であるレーザ光(例えばパルス状の近赤外レーザ光)を使用して測定範囲での測定を行う測定部86A,87Aと、測定部86A,87Aからの測定情報に基づいて距離画像の生成などを行うライダー制御部86B,87Bと、が含まれている。ソナー88には、右超音波センサ88Aと左超音波センサ88Bと単一のソナー制御部88Cとが含まれている。
情報統合処理部80C、画像処理装置85、各ライダー制御部86B,87B、及び、ソナー制御部88Cは、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。情報統合処理部80C、画像処理装置85、各ライダー制御部86B,87B、及び、ソナー制御部88Cは、車載制御ユニット23にCANを介して相互通信可能に接続されている。
前カメラ81及び後カメラ82は、トラクタ1の左右中心線上に配置されている。前カメラ81は、キャビン13の前端側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前カメラ81は、トラクタ1の左右中心線を対称軸とする車体前方側の所定範囲が撮像範囲に設定されている。後カメラ82は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後カメラ82は、トラクタ1の左右中心線を対称軸とする車体後方側の所定範囲が撮像範囲に設定されている。右カメラ83は、キャビン13の右端側における上部の前後中央箇所に、トラクタ1の右方側を斜め上方側から見下ろす右下がり姿勢で配置されている。これにより、右カメラ83は、車体右方側の所定範囲が撮像範囲に設定されている。左カメラ84は、キャビン13の左端側における上部の前後中央箇所に、トラクタ1の左方側を斜め上方側から見下ろす左下がり姿勢で配置されている。これにより、左カメラ84は、車体左方側の所定範囲が撮像範囲に設定されている。
各ライダーセンサ86,87において、各測定部86A,87Aは、照射したレーザ光が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、各測定部86A,87Aから測定範囲の各測距点までの距離を測定する。各測定部86A,87Aは、測定範囲の全体にわたって、レーザ光を高速で縦横に走査して、走査角(座標)ごとの測距点までの距離を順次測定することで、各測定範囲において3次元の測定を行う。各測定部86A,87Aは、測定範囲の全体にわたってレーザ光を高速で縦横に走査したときに得られる各測距点からの反射光の強度(以下、反射強度と称する)を順次測定する。各測定部86A,87Aは、測定範囲の各測距点までの距離や各反射強度などをリアルタイムで繰り返し測定する。各ライダー制御部86B,87Bは、各測定部86A,87Aが測定した各測距点までの距離や各測距点に対する走査角(座標)などの測定情報から、距離画像を生成するとともに障害物と推定される測距点群を抽出し、抽出した測距点群に関する測定情報を、障害物候補に関する測定情報として情報統合処理部80Cに送信する。
前ライダーセンサ86及び後ライダーセンサ87は、前カメラ81及び後カメラ82と同様にトラクタ1の左右中心線上に配置されている。前ライダーセンサ86は、キャビン13の前端側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前ライダーセンサ86は、トラクタ1の左右中心線を対称軸とする車体前方側の所定範囲が測定部86Aによる測定範囲に設定されている。後ライダーセンサ87は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後ライダーセンサ87は、トラクタ1の左右中心線を対称軸とする車体後方側の所定範囲が測定部87Aによる測定範囲に設定されている。
ソナー88において、ソナー制御部88Cは、左右の超音波センサ88A,88Bによる超音波の送受信に基づいて、測定範囲における測定対象物の存否を判定する。ソナー制御部88Cは、発信した超音波が測距点に到達して戻るまでの往復時間に基づいて測距点までの距離を測定するTOF(Time Of Flight)方式により、各超音波センサ88A,88Bから測定対象物までの距離を測定し、測定した測定対象物までの距離と測定対象物の方向とを、障害物候補に関する測定情報として情報統合処理部80Cに送信する。
図示は省略するが、右超音波センサ88Aは、右側の前輪10と右側の後輪11との間に配置された右側の乗降ステップに車体右外向き姿勢で取り付けられている。これにより、右超音波センサ88Aは、車体右外側の所定範囲が測定範囲に設定されている。図1に示すように、左超音波センサ88Bは、左側の前輪10と左側の後輪11との間に配置された左側の乗降ステップ24に車体左外向き姿勢で取り付けられている。これにより、左超音波センサ88Bは、車体左外側の所定範囲が測定範囲に設定されている。
画像処理装置85は、各カメラ81~84から順次送信される画像に対して画像処理を行う。画像処理装置85には、圃場Aにて作業する作業者などの人物や他の作業車両、及び、圃場Aに既存の電柱や樹木などを障害物として認識するための学習処理が施されている。
画像処理装置85は、各カメラ81~84から順次送信される画像を合成してトラクタ1の全周囲画像(例えばサラウンドビュー)を生成するとともに、生成した全周囲画像や各カメラ81~84からの画像を、トラクタ1の表示制御部23Eや携帯通信端末5の表示制御部51Aに送信する。
これにより、画像処理装置85が生成した全周囲画像やトラクタ1の走行方向の画像などを、トラクタ1の操作端末27や携帯通信端末5の表示デバイス50などにおいて表示することができる。そして、この表示により、トラクタ1の周囲の状況や走行方向の状況をユーザに視認させることができる。
画像処理装置85は、各カメラ81~84から順次送信される画像に基づいて、各カメラ81~84のいずれかの撮像範囲においてトラクタ1の走行に影響を及ぼす障害物が存在するか否かを判別する。画像処理装置85は、障害物が存在する場合は、障害物が存在する画像上での障害物の座標を求め、求めた障害物の座標を、各カメラ81~84の搭載位置や搭載角度などに基づいて、車体座標原点を基準にした座標に変換する。そして、その変換後の座標と予め設定した距離算出基準点とにわたる直線距離を、距離算出基準点から障害物までの距離として求め、変換後の座標と求めた障害物までの距離とを障害物に関する情報として情報統合処理部80Cに送信する。一方、障害物が存在しない場合は、障害物が未検出であることを情報統合処理部80Cに送信する。
このように、各カメラ81~84の撮像範囲のいずれかに障害物が存在する場合は、画像処理装置85が、障害物に関する情報を情報統合処理部80Cに送信することから、情報統合処理部80Cは、その障害物に関する情報を受け取ることにより、各カメラ81~84のいずれかの撮像範囲に障害物が存在することを把握することができるとともに、その障害物の位置及び障害物までの距離を取得することができる。又、各カメラ81~84の撮像範囲のいずれにも障害物が存在しない場合は、画像処理装置85が、障害物の未検出を情報統合処理部80Cに送信することから、情報統合処理部80Cは、各カメラ81~84の撮像範囲のいずれにも障害物が存在しないことを把握することができる。
情報統合処理部80Cは、物体の判別精度が高い撮像ユニット80Aからの障害物に関する情報と、測距精度が高いアクティブセンサユニット80Bからの障害物候補に関する測定情報とが整合した場合に、アクティブセンサユニット80Bから得た障害物候補までの距離を障害物までの距離として採用する。これにより、障害物検出ユニット80は、情報統合処理部80Cにおいて物体の判別精度及び測距精度の高い障害物に関する情報を取得することができる。障害物検出ユニット80は、情報統合処理部80Cにて取得した障害物に関する情報を自動走行制御部23Fに送信する。
自動走行制御部23Fは、障害物検出ユニット80からの障害物に関する情報に基づいて障害物との衝突を回避する衝突回避制御を実行する。自動走行制御部23Fは、衝突回避制御においては、障害物検出ユニット80からの障害物に関する情報に基づいて障害物までの距離などを取得し、取得した障害物までの距離などに応じて、トラクタ1及び携帯通信端末5に備えられた報知ブザーや報知ランプなどの報知器を作動させる報知処理、トラクタ1の車速を自動で低下させる自動減速処理、及び、トラクタ1の走行を自動で停止させる自動走行停止処理、などの各種の衝突回避処理を適宜行うように構成されている。
自動走行制御部23Fは、トラクタ1が自動走行の開始位置p1に位置する状態で自動走行の開始が指令された場合に、目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。自動走行制御には、目標経路Pの並列経路P1と測位ユニット42からの測位情報とに基づいてトラクタ1を作業状態で並列経路P1に従って自動走行させる第1自動走行制御と、目標経路Pの接続経路P2と測位ユニット42からの測位情報とに基づいてトラクタ1を非作業状態で接続経路P2に従って自動走行させる第2自動走行制御とが含まれている。
図2に示すように、自動走行制御部23Fには、各並列経路P1に対してトラクタ1の進入領域Aa(図4参照)を設定する進入領域設定部23Fa、並列経路P1と測位ユニット42からの測位情報とに基づいて、トラクタ1が進入領域Aaに達した時点での並列経路P1に対するヨー方向でのトラクタ1の角度偏差Δθ(図6~8参照)と横方向偏差Δd(図6~8参照)とを検出する偏差検出部23Fb、及び、トラクタ1が進入領域Aaに達した場合に、偏差検出部23Fbからの検出情報に基づいて第1自動走行制御の開始条件が成立したか否かを判定する条件判定部23Fc、が含まれている。
図4、図6~9に示すように、進入領域設定部23Faは、各並列経路P1の始端位置p3を含む所定領域を各並列経路P1に対する進入領域Aaに設定する。図6に示すように、条件判定部23Fcは、前述した角度偏差Δθが所定角度θ(例えば10度)未満で、かつ、前述した横方向偏差Δdが所定値L(5cm)未満である場合に第1自動走行制御の開始条件が成立したと判定する。図7~8に示すように、条件判定部23Fcは、前述した角度偏差Δθが所定角度θ以上である場合や前述した横方向偏差Δdが所定値L以上である場合に第1自動走行制御の開始条件が成立していないと判定する。
自動走行制御部23Fは、トラクタ1が、ユーザによる手動運転、又は、第2自動走行制御による自動走行で進入領域Aaに達した時点において、条件判定部23Fcにて第1自動走行制御の開始条件が成立したと判定された場合に第1自動走行制御を実行する(図6参照)。又、条件判定部23Fcにて第1自動走行制御の開始条件が成立していないと判定された場合は、第1自動走行制御の開始条件が成立するように、トラクタ1の前後進切り換え操作とステアリング操作との複合操作でトラクタ1を切り返し走行させる自動切り返し走行制御を実行する(図7~9参照)。
つまり、自動走行制御部23Fは、トラクタ1が、ユーザによる手動運転、又は、第2自動走行制御による自動走行で進入領域Aaに達したときに、条件判定部23Fcの判定に基づいて実行する走行制御を第1自動走行制御と自動切り返し走行制御とに切り換える走行制御切り換え処理を行う。
そして、図10のフローチャートに示すように、この走行制御切り換え処理においては、先ず、自動走行制御部23Fは、トラクタ1が前述した進入領域Aaに達したときに、条件判定部23Fcにて第1自動走行制御の開始条件が成立しているか否かを判定する判定処理を行う(ステップ#1)。
そして、図6に示すように、トラクタ1が前述した進入領域Aaに達したときに、前述した角度偏差Δθが所定角度θ未満で、前述した横方向偏差Δdが所定値L未満である場合には、判定処理において、条件判定部23Fcが第1自動走行制御の開始条件が成立していると判定することから、自動走行制御部23Fは、第1自動走行制御を実行してトラクタ1を作業状態で並列経路P1に従って自動走行させる(ステップ#2)。これにより、トラクタ1は、第1自動走行制御による自動走行を開始した段階から、並列経路P1に対する振れ幅の小さい精度の高い自動走行を行いながら作業を行うことができる。
一方、図7~9に示すように、トラクタ1が前述した進入領域Aaに達したときに、前述した角度偏差Δθが所定角度θ以上である場合や前述した横方向偏差Δdが所定値L以上である場合には、判定処理において、条件判定部23Fcが第1自動走行制御の開始条件が成立していないと判定することから、自動走行制御部23Fは、第1自動走行制御を実行せずに自動切り返し走行制御を実行し(ステップ#3)、かつ、前述した判定処理を行う(ステップ#1)。
これにより、前述した角度偏差Δθが所定角度θ以上である場合や前述した横方向偏差Δdが所定値L以上である場合に第1自動走行制御が実行されることに起因して、並列経路P1に対するトラクタ1の振れ幅が大きくなり、この振れが収束するまでに長い距離を要して、この間の作業精度が低下する不都合の発生を防止することができる。
又、自動走行制御部23Fは、トラクタ1の切り返し走行によって第1自動走行制御の開始条件を成立させることから、第1自動走行制御の開始条件を成立させ易くするために、各並列経路P1における始端位置p3側の延長線上に距離の長い移動経路を生成する必要がなくなる。これにより、圃場Aでの移動経路を長くするほど、トラクタ1を作業状態で自動走行させる並列経路P1が短くなるとともに枕地領域A2aが広くなることに起因して、例えば、枕地領域A2aがトラクタ1を周回走行させる周回作業領域である場合に、周回作業領域でのトラクタ1の周回数が多くなって作業効率が低下する、などの不都合の発生を防止することができる。
図2、図7~8に示すように、自動走行制御部23Fには、自動切り返し走行制御におけるトラクタ1の走行可能領域A3を、前述した進入領域Aaと、各並列経路P1でのトラクタ1の走行方向において進入領域Aaを挟んだ所定の走行方向上手側領域Abと走行方向下手側領域Acとから選択する走行領域選択部23Fdが含まれている。走行領域選択部23Fdは、目標経路生成部51Bによる目標経路Pの生成時にユーザにて設定された枕地領域A2aの広さや作業装置3の種類などに基づいてトラクタ1の走行可能領域A3を選択する。
具体的には、走行領域選択部23Fdは、例えば、枕地領域A2aにおける形状特定線SLから中央側領域A2bにわたる枕地幅W(図4参照)が作業装置3の作業幅以上に広く設定されていて、進入領域Aaの走行方向上手側領域Abが広くなっている場合には、走行方向上手側領域Abにおいてトラクタ1の切り返し走行が行われても、トラクタ1に連結された作業装置3が圃場Aに隣接する畦などの他物に接触する虞がないことから、進入領域Aaに加えて走行方向上手側領域Abを走行可能領域A3に選択可能にする。
走行領域選択部23Fdは、例えば、枕地領域A2aの枕地幅Wがトラクタ1の最小旋回半径での旋回走行を許容する程度に狭く設定されていて、進入領域Aaの走行方向上手側領域Abが狭くなっている場合には、走行方向上手側領域Abにおいてトラクタ1の切り返し走行が行われると、トラクタ1に連結された作業装置3が畦などに接触する虞があることから、走行方向上手側領域Abを走行可能領域A3に選択不能にする。
走行領域選択部23Fdは、例えば作業装置3の種類がロータリ耕耘装置(図1参照)やプラウ(図示せず)などのように、トラクタ1が走行方向下手側領域Acに入り込んで切り返し走行しても、その後の走行方向下手側領域Acでの作業において影響を受け難いものである場合には、進入領域Aaに加えて走行方向下手側領域Acを走行可能領域A3に選択可能にする。
走行領域選択部23Fdは、例えば作業装置3の種類が播種装置(図示せず)や収穫装置(図示せず)などのように、トラクタ1が走行方向下手側領域Acに入り込んで切り返し走行すると、その後の走行方向下手側領域Acでの作業に影響を受け易いものである場合には、走行方向下手側領域Acを走行可能領域A3に選択不能にする。
走行領域選択部23Fdは、進入領域Aaに加えて走行方向上手側領域Abと走行方向下手側領域Acとが走行可能領域A3に選択可能な場合、及び、進入領域Aaに加えて走行方向上手側領域Abが走行可能領域A3に選択可能な場合は、進入領域Aaと走行方向上手側領域Abとを走行可能領域A3に選択する。これにより、トラクタ1が切り返し走行時に走行方向下手側領域Acに入り込むことを回避しながら、切り返し走行が行われる走行可能領域A3を広くすることができる。その結果、トラクタ1が走行方向下手側領域Acに入り込むことに起因して、その後の作業装置3による作業に支障を来たす虞を回避しながら、第1自動走行制御の開始条件を成立させ易くすることができる。
ちなみに、自動走行制御部23Fは、進入領域Aaと走行方向上手側領域Abとが走行可能領域A3に選択された場合の自動切り返し走行制御においては、図7に示すように、進入領域Aaと走行方向上手側領域Abとを含む走行可能領域A3において、トラクタ1を前後進させながら左右の前輪10を操舵することで、前述した角度偏差Δθが所定角度θ未満になり、かつ、前述した横方向偏差Δdが所定値L未満になるようにする。
走行領域選択部23Fdは、進入領域Aaに加えて走行方向下手側領域Acが走行可能領域A3に選択可能な場合は、進入領域Aaと走行方向下手側領域Acとを走行可能領域A3に選択する。これにより、トラクタ1が切り返し走行時に走行方向上手側領域Abに入り込むことを回避しながら、切り返し走行が行われる走行可能領域A3を広くすることができる。その結果、トラクタ1が走行方向上手側領域Abに入り込むことに起因して、トラクタ1に連結された作業装置3が畦などの他物に接触する虞を回避しながら、第1自動走行制御の開始条件を成立させ易くすることができる。
ちなみに、自動走行制御部23Fは、進入領域Aaと走行方向下手側領域Acとが走行可能領域A3に選択された場合の自動切り返し走行制御においては、図8~9に示すように、進入領域Aaと走行方向下手側領域Acとを含む走行可能領域A3において、トラクタ1を前後進させながら左右の前輪10を操舵することで、前述した角度偏差Δθが所定角度θ未満になり、かつ、前述した横方向偏差Δdが所定値L未満になるようにする。
走行領域選択部23Fdは、進入領域Aaのみが走行可能領域A3に選択可能な場合は、進入領域Aaのみを走行可能領域A3に選択する。これにより、トラクタ1が切り返し走行時に走行方向上手側領域Ab及び走行方向下手側領域Acに入り込むことを回避しながら、切り返し走行が行われる走行可能領域A3を確保することができる。その結果、トラクタ1が走行方向上手側領域Abに入り込むことに起因して、トラクタ1に連結された作業装置3が畦などの他物に接触する虞、及び、トラクタ1が走行方向下手側領域Acに入り込むことに起因して、その後の作業装置3による作業に支障を来たす虞を回避しながら、第1自動走行制御の開始条件を成立させることができる。
自動切り返し走行制御においては、走行可能領域A3におけるトラクタ1の複数回の切り返し走行が可能に設定されている。これにより、例えば、走行領域選択部23Fdにて進入領域Aaのみが走行可能領域A3に選択されて走行可能領域A3が狭くなった場合においても、走行可能領域A3でのトラクタ1の切り返し走行によって第1自動走行制御の開始条件を確実に成立させることができる。
自動走行制御部23Fは、自動切り返し走行制御によるトラクタ1の切り返し走行において、条件判定部23Fcにて第1自動走行制御の開始条件が成立したと判定された場合に、自動切り返し走行制御から第1自動走行制御に遷移する。これにより、自動切り返し走行制御によるトラクタ1の切り返し走行によって第1自動走行制御の開始条件が成立した場合には、その開始条件の成立に伴って、トラクタ1が、直ちに並列経路P1に対する振れ幅の小さい精度の高い状態で、並列経路P1に従って自動走行しながら作業を行うようになる。その結果、作業効率の向上を図りながら、作業精度の向上を図ることができる。
図4に示すように、目標経路Pは、各並列経路P1から外れたトラクタ1の待機位置p0と、トラクタ1の走行順位が一番目に設定された並列経路P1の始端位置p3とにわたる移動経路Rm(図4において破線で示す経路)を含むように生成することが可能である。図4において、待機位置p0は、圃場Aに対するトラクタ1の入出口付近に設定されている。待機位置p0の設定は、圃場の形状などに応じて種々の変更が可能である。
自動走行制御部23Fは、目標経路Pに移動経路Rmが含まれている場合には、自動走行制御において、移動経路Rmと測位ユニット42からの測位情報とに基づいて移動経路Rmに従ってトラクタ1を非作業状態で自動走行させる自動移動制御の実行が可能になる。
進入領域設定部23Faは、自動移動制御においては、トラクタ1の走行順位が一番目に設定された並列経路P1と移動経路Rmとの接続位置である一番目の並列経路P1の始端位置p3を含む所定領域を進入領域Aaに設定する。
これにより、トラクタ1を待機位置p0に位置させた後に自動走行を開始させるようにすれば、自動走行制御部23Fが自動移動制御を実行して、トラクタ1を、移動経路Rmに従って待機位置p0から進入領域Aaに向けて非作業状態で自動走行させる。そして、この自動走行においてトラクタ1が進入領域Aaに達したときに、第1自動走行制御の開始条件が成立している場合は、自動走行制御部23Fが、第1自動走行制御を実行してトラクタ1を作業状態で並列経路P1に従って自動走行させる。又、第1自動走行制御の開始条件が成立していない場合には、自動走行制御部23Fが、第1自動走行制御を実行せずに自動切り返し走行制御を実行してトラクタ1を切り返し走行させる。そして、この切り返し走行で第1自動走行制御の開始条件が成立した場合には、自動走行制御部23Fが、第1自動走行制御を実行してトラクタ1を作業状態で並列経路P1に従って自動走行させる。
つまり、目標経路Pに移動経路Rmが含まれている場合には、移動経路Rmを含めた目標経路Pの全長にわたってトラクタ1を精度良く自動走行させることができる。これにより、ユーザはトラクタ1の走行順位が一番目に設定された並列経路P1の始端位置p3までトラクタ1を手動走行させる必要がなくなり、ユーザにかかる負担を軽減することができる。
〔別実施形態〕
本発明の別実施形態について説明する。なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
本発明の別実施形態について説明する。なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
(1)作業車両1の構成に関する代表的な別実施形態は以下の通りである。例えば、作業車両1は、左右の後輪11に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。例えば、作業車両1は、左右の前輪10及び左右の後輪11に代えて左右のクローラを備えるフルクローラ仕様に構成されていてもよい。例えば、作業車両1は、左右の後輪11が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。例えば、作業車両1は、エンジン14の代わりに電動モータを備える電動仕様に構成されていてもよい。例えば、作業車両1は、エンジン14と電動モータとを備えるハイブリッド仕様に構成されていてもよい。
(2)作業車両用の自動走行システムとしては、自動走行制御部23Fが、前述した第1自動走行制御と自動切り返し走行制御とを実行し、作業車両1を現在走行中の並列経路P1から次の並列経路P1に移動させる旋回移動は、ユーザによる手動運転で行われるように構成されていてもよい。
(3)進入領域設定部23Faは、例えば作業車両1がコンバインなどの収穫作業車両であり、第1自動走行制御の実行中に収穫物の満杯が満杯センサにて検出されて第1自動走行制御を中断する必要が生じた場合には、その時の並列経路P1における作業の中断位置(例えば図4にて符号p5で示す位置)を含む所定領域(例えば図4にて破線で示す領域)を、その並列経路P1に対する進入領域Aaに設定するように構成されていてもよい。
(4)進入領域設定部23Faは、例えば作業車両1が、種子や苗などの農用資材を圃場に供給する播種機や田植機などの農用資材供給作業車両であり、第1自動走行制御の実行中に農用資材の残量が下限値に達したことが残量センサにて検出されて第1自動走行制御を中断する必要が生じた場合には、その時の並列経路P1における作業の中断位置を含む所定領域を、その並列経路P1に対する進入領域Aaに設定するように構成されていてもよい。
[発明の付記]
本発明の第1特徴構成は、作業車両用の自動走行システムにおいて、
所定間隔を置いて並ぶ複数の並列経路に対して作業車両の進入領域を設定する進入領域設定部と、
前記作業車両の位置及び方位を測定する測位部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両を作業状態で前記並列経路に従って自動走行させる第1自動走行制御を実行する自動走行制御部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両が前記進入領域に達した時点での前記並列経路に対する前記作業車両の角度偏差と横方向偏差とを検出する偏差検出部と、
前記作業車両が前記進入領域に達した場合に、前記偏差検出部からの検出情報に基づいて前記第1自動走行制御の開始条件が成立したか否かを判定する条件判定部とを有し、
前記条件判定部は、前記角度偏差が所定角度未満で前記横方向偏差が所定値未満である場合に前記第1自動走行制御の開始条件が成立したと判定し、
前記自動走行制御部は、前記作業車両が前記進入領域に達した時点において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合には前記第1自動走行制御を実行し、前記条件判定部にて前記第1自動走行制御の開始条件が成立していないと判定された場合には、前記第1自動走行制御の開始条件が成立するように、前記作業車両の前後進切り換え操作とステアリング操作との複合操作で前記作業車両を切り返し走行させる自動切り返し走行制御を実行する点にある。
本発明の第1特徴構成は、作業車両用の自動走行システムにおいて、
所定間隔を置いて並ぶ複数の並列経路に対して作業車両の進入領域を設定する進入領域設定部と、
前記作業車両の位置及び方位を測定する測位部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両を作業状態で前記並列経路に従って自動走行させる第1自動走行制御を実行する自動走行制御部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両が前記進入領域に達した時点での前記並列経路に対する前記作業車両の角度偏差と横方向偏差とを検出する偏差検出部と、
前記作業車両が前記進入領域に達した場合に、前記偏差検出部からの検出情報に基づいて前記第1自動走行制御の開始条件が成立したか否かを判定する条件判定部とを有し、
前記条件判定部は、前記角度偏差が所定角度未満で前記横方向偏差が所定値未満である場合に前記第1自動走行制御の開始条件が成立したと判定し、
前記自動走行制御部は、前記作業車両が前記進入領域に達した時点において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合には前記第1自動走行制御を実行し、前記条件判定部にて前記第1自動走行制御の開始条件が成立していないと判定された場合には、前記第1自動走行制御の開始条件が成立するように、前記作業車両の前後進切り換え操作とステアリング操作との複合操作で前記作業車両を切り返し走行させる自動切り返し走行制御を実行する点にある。
本構成によれば、作業車両が前述した進入領域に達したときに、前述した角度偏差が所定角度未満で、前述した横方向偏差が所定値未満である場合には、自動走行制御部が、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。これにより、作業車両は、自動走行を開始した段階から、並列経路に対する振れ幅の小さい精度の高い自動走行を行いながら作業を行うことができる。
一方、作業車両が前述した進入領域に達したときに、前述した角度偏差が所定角度以上である場合や前述した横方向偏差が所定値以上である場合には、自動走行制御部が、第1自動走行制御を実行せずに自動切り返し走行制御を実行する。これにより、前述した角度偏差が所定角度以上である場合や前述した横方向偏差が所定値以上である場合に第1自動走行制御が実行されることに起因して、作業車両が、並列経路に対する振れ幅が大きくなる精度の低い自動走行を開始し、その振れが収束するまでに長い距離を要して、この間の作業精度が低下する不都合の発生を防止することができる。
又、自動走行制御部は、作業車両の切り返し走行により、前進時と後進時との双方において前述した角度偏差と横方向偏差とを小さくして第1自動走行制御の開始条件を成立させることから、第1自動走行制御の開始条件を成立させ易くするために、並列経路の延長線上に距離の長い移動経路を生成する必要がなくなる。特に、前輪ステアリング仕様に構成されることが多い農用の作業車両においては、前進時よりも後進時の方が並列経路に対する作業車両の位置合わせ操作が行い易くなることから、前述した移動経路を短くする上において好適である。
これにより、作業地での移動経路を長くすることに応じて、作業車両を作業状態で自動走行させる並列経路が短くなり、これに起因して、例えば、並列経路の生成領域(作業領域)が畑作領域である場合に、作付面積が狭くなって作物の収穫量が減少する不都合、又は、並列経路の生成領域が作業車両を往復走行させる往復作業領域であり、移動経路の生成領域が作業車両を周回走行させる周回作業領域である場合に、周回作業領域での作業車両の周回数が多くなって作業効率が低下する不都合、などの発生を防止することができる。
その結果、収穫量の減少や作業効率の低下などを招くことなく、作業車両を作業状態で並列経路に従って精度良く自動走行させることができ、自動走行による作業車両の作業精度を高めることができる。
本発明の第2特徴構成は、
前記自動切り返し走行制御における前記作業車両の走行可能領域を、前記進入領域と、前記並列経路での前記作業車両の走行方向において前記進入領域を挟んだ走行方向上手側領域と走行方向下手側領域とから選択する走行領域選択部を有している点にある。
前記自動切り返し走行制御における前記作業車両の走行可能領域を、前記進入領域と、前記並列経路での前記作業車両の走行方向において前記進入領域を挟んだ走行方向上手側領域と走行方向下手側領域とから選択する走行領域選択部を有している点にある。
本構成によれば、例えば、進入領域が並列経路の始端位置を含む所定領域である場合は、走行方向上手側領域は並列経路の始端位置よりも走行方向上手側の枕地領域に含まれることになり、走行方向下手側領域は並列経路が配置された作業領域に含まれることになる。
この場合に、作業車両の作業内容が、作業車両が走行方向下手側領域に入り込んで切り返し走行しても、その後の走行方向下手側領域での作業に影響を受け難い耕耘作業などであれば、少なくとも進入領域に加えて走行方向下手側領域を走行可能領域に選択することができる。これにより、走行可能領域を広くして走行可能領域における作業車両の切り返し走行を行い易くすることができ、走行可能領域において第1自動走行制御の開始条件を成立させ易くすることができる。
逆に、作業車両の作業内容が、作業車両が走行方向下手側領域に入り込んで切り返し走行すると、その後の走行方向下手側領域での作業に影響を受け易い播種作業や苗移植作業などであれば、進入領域と走行方向上手側領域とを走行可能領域に選択して、走行方向下手側領域を走行可能領域から外すことができる。これにより、走行方向下手側領域にて作業車両が切り返し走行することに起因した作業精度の低下を回避しながら、走行可能領域を広くして走行可能領域における作業車両の切り返し走行を行い易くすることができ、走行可能領域において第1自動走行制御の開始条件を成立させ易くすることができる。
一方、例えば、進入領域が並列経路における第1自動走行制御の中断位置を含む所定領域である場合は、走行方向上手側領域は中断位置よりも走行方向上手側の既作業領域に含まれることになり、走行方向下手側領域は中断位置よりも走行方向下手側の未作業領域に含まれることになる。
この場合に、作業車両の作業内容が収穫作業であれば、進入領域と走行方向上手側領域とを走行可能領域に選択して、走行方向下手側領域を走行可能領域から外すことができる。これにより、走行方向下手側領域にて作業車両が切り返し走行することで未収穫物が踏み倒される不都合の発生を回避しながら、走行可能領域を広くして走行可能領域における作業車両の切り返し走行を行い易くすることができ、走行可能領域において第1自動走行制御の開始条件を成立させ易くすることができる。
又、作業車両の作業内容が耕耘作業などであれば、進入領域と走行方向下手側領域とを走行可能領域に選択して、走行方向上手側領域を走行可能領域から外すことができる。これにより、走行方向上手側領域にて作業車両が切り返し走行することで既作業地が踏み荒らされる不都合の発生を回避しながら、走行可能領域を広くして走行可能領域における作業車両の切り返し走行を行い易くすることができ、走行可能領域において第1自動走行制御の開始条件を成立させ易くすることができる。
つまり、作業車両の作業内容などに適した走行可能領域を設定することができ、これにより、作業車両による作業に支障を来たすことなく、走行可能領域での作業車両の切り返し走行を行い易くすることができ、第1自動走行制御の開始条件を成立させ易くすることができる。
本発明の第3特徴構成は、
前記自動切り返し走行制御においては、前記走行可能領域における前記作業車両の複数回の切り返し走行が可能に設定されている点にある。
前記自動切り返し走行制御においては、前記走行可能領域における前記作業車両の複数回の切り返し走行が可能に設定されている点にある。
本構成によれば、進入領域のみが走行可能領域に選択されて走行可能領域が狭くなった場合においても、走行可能領域での作業車両の切り返し走行によって第1自動走行制御の開始条件を確実に成立させることができる。
本発明の第4特徴構成は、
前記自動走行制御部は、前記自動切り返し走行制御による前記作業車両の切り返し走行において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合に、前記自動切り返し走行制御から前記第1自動走行制御に遷移する点にある。
前記自動走行制御部は、前記自動切り返し走行制御による前記作業車両の切り返し走行において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合に、前記自動切り返し走行制御から前記第1自動走行制御に遷移する点にある。
本構成によれば、自動切り返し走行制御による作業車両の切り返し走行によって第1自動走行制御の開始条件が成立した場合には、その開始条件の成立に伴って、作業車両が、直ちに並列経路に対する振れ幅の小さい精度の高い状態で、並列経路に従って自動走行しながら作業を行うようになる。その結果、作業効率の向上を図りながら、作業精度の向上を図ることができる。
本発明の第5特徴構成は、
前記自動走行制御部は、前記並列経路から外れた前記作業車両の待機位置と、複数の前記並列経路のうちの前記作業車両の走行順位が一番目に設定された並列経路の始端位置とにわたる移動経路に従って前記作業車両を非作業状態で自動走行させる自動移動制御を実行し、
前記進入領域設定部は、前記自動移動制御においては、前記始端位置を含む所定領域を前記一番目の並列経路に対する前記進入領域に設定する点にある。
前記自動走行制御部は、前記並列経路から外れた前記作業車両の待機位置と、複数の前記並列経路のうちの前記作業車両の走行順位が一番目に設定された並列経路の始端位置とにわたる移動経路に従って前記作業車両を非作業状態で自動走行させる自動移動制御を実行し、
前記進入領域設定部は、前記自動移動制御においては、前記始端位置を含む所定領域を前記一番目の並列経路に対する前記進入領域に設定する点にある。
本構成によれば、作業車両を待機位置に位置させた後に自動走行を開始させるようにすれば、自動走行制御部が自動移動制御を実行して、作業車両を、移動経路に従って待機位置から進入領域に向けて非作業状態で自動走行させる。そして、この自動走行において作業車両が進入領域に達した時点において、第1自動走行制御の開始条件が成立している場合は、自動走行制御部が、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。又、第1自動走行制御の開始条件が成立していない場合には、自動走行制御部が、第1自動走行制御を実行せずに自動切り返し走行制御を実行して作業車両を切り返し走行させる。そして、この切り返し走行で第1自動走行制御の開始条件が成立した場合には、自動走行制御部が、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。
つまり、並列経路に加えて待機位置から並列経路の始端位置にわたる移動経路においても、作業車両を精度良く自動走行させることができる。これにより、ユーザは待機位置から並列経路の始端位置まで作業車両を手動走行させる必要がなくなり、ユーザにかかる負担を軽減することができる。
本発明の第6特徴構成は、
前記自動走行制御部は、複数の前記並列経路を前記作業車両の走行順に接続する接続経路に従って前記作業車両を自動走行させる第2自動走行制御を実行し、
前記進入領域設定部は、前記第2自動走行制御においては、前記接続経路に接続される並列経路の始端位置を含む所定領域を前記進入領域に設定する点にある。
前記自動走行制御部は、複数の前記並列経路を前記作業車両の走行順に接続する接続経路に従って前記作業車両を自動走行させる第2自動走行制御を実行し、
前記進入領域設定部は、前記第2自動走行制御においては、前記接続経路に接続される並列経路の始端位置を含む所定領域を前記進入領域に設定する点にある。
本構成によれば、自動走行制御部は、作業車両が第2自動走行制御による自動走行で進入領域に達した時点において、第1自動走行制御の開始条件が成立している場合には、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。又、自動走行制御部は、第1自動走行制御の開始条件が成立していない場合には、第1自動走行制御を実行せずに自動切り返し走行制御を実行して作業車両を切り返し走行させる。そして、この切り返し走行で第1自動走行制御の開始条件が成立した場合には、自動走行制御部は、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。
つまり、作業車両を、各接続経路を介して走行順に接続された複数の並列経路に従って、各並列経路に対する振れ幅の小さい精度の高い状態で良好に自動走行させることができる。これにより、ユーザは並列経路の終端位置から次の並列経路の始端位置まで作業車両を手動走行させる必要がなくなり、ユーザにかかる負担を軽減することができる。
本発明の第7特徴構成は、
前記進入領域設定部は、前記第1自動走行制御が中断された場合には、前記並列経路における前記第1自動走行制御の中断位置を含む所定領域を前記進入領域に設定する点にある。
前記進入領域設定部は、前記第1自動走行制御が中断された場合には、前記並列経路における前記第1自動走行制御の中断位置を含む所定領域を前記進入領域に設定する点にある。
本構成によれば、例えば、作業車両がコンバインなどの収穫作業車両である場合には、収穫物が満杯になったときに、第1自動走行制御を中断して、作業車両を所定の排出位置まで移動させて収穫物を排出させた後、作業車両を第1自動走行制御の中断位置を含む進入領域まで移動させて自動走行を再開させるようにすれば、この時点において、第1自動走行制御の開始条件が成立している場合には、自動走行制御部が第1自動走行制御を実行して、作業車両を第1自動走行制御の中断位置から作業状態で並列経路に従って自動走行させる。又、第1自動走行制御の開始条件が成立していない場合には、自動走行制御部が自動切り返し走行制御を実行して、中断位置を含む進入領域において作業車両を切り返し走行させる。そして、この切り返し走行で第1自動走行制御の開始条件が成立した場合には、自動走行制御部が、第1自動走行制御を実行して作業車両を作業状態で並列経路に従って自動走行させる。
つまり、作業車両を第1自動走行制御の中断位置に復帰させて作業車両の自動走行を再開させる場合においても、並列経路に対する振れ幅の小さい精度の高い状態で良好に自動走行を再開させることができる。
Claims (7)
- 所定間隔を置いて並ぶ複数の並列経路に対して作業車両の進入領域を設定する進入領域設定部と、
前記作業車両の位置及び方位を測定する測位部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両を作業状態で前記並列経路に従って自動走行させる第1自動走行制御を実行する自動走行制御部と、
前記並列経路と前記測位部からの測位情報とに基づいて、前記作業車両が前記進入領域に達した時点での前記並列経路に対する前記作業車両の角度偏差と横方向偏差とを検出する偏差検出部と、
前記作業車両が前記進入領域に達した場合に、前記偏差検出部からの検出情報に基づいて前記第1自動走行制御の開始条件が成立したか否かを判定する条件判定部とを有し、
前記条件判定部は、前記角度偏差が所定角度未満で前記横方向偏差が所定値未満である場合に前記第1自動走行制御の開始条件が成立したと判定し、
前記自動走行制御部は、前記作業車両が前記進入領域に達した時点において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合には前記第1自動走行制御を実行し、前記条件判定部にて前記第1自動走行制御の開始条件が成立していないと判定された場合には、前記第1自動走行制御の開始条件が成立するように、前記作業車両の前後進切り換え操作とステアリング操作との複合操作で前記作業車両を切り返し走行させる自動切り返し走行制御を実行する作業車両用の自動走行システム。 - 前記自動切り返し走行制御における前記作業車両の走行可能領域を、前記進入領域と、前記並列経路での前記作業車両の走行方向において前記進入領域を挟んだ走行方向上手側領域と走行方向下手側領域とから選択する走行領域選択部を有している請求項1に記載の作業車両用の自動走行システム。
- 前記自動切り返し走行制御においては、前記走行可能領域における前記作業車両の複数回の切り返し走行が可能に設定されている請求項2に記載の作業車両用の自動走行システム。
- 前記自動走行制御部は、前記自動切り返し走行制御による前記作業車両の切り返し走行において、前記条件判定部にて前記第1自動走行制御の開始条件が成立したと判定された場合に、前記自動切り返し走行制御から前記第1自動走行制御に遷移する請求項1~3のいずれか一項に記載の作業車両用の自動走行システム。
- 前記自動走行制御部は、前記並列経路から外れた前記作業車両の待機位置と、複数の前記並列経路のうちの前記作業車両の走行順位が一番目に設定された並列経路の始端位置とにわたる移動経路に従って前記作業車両を非作業状態で自動走行させる自動移動制御を実行し、
前記進入領域設定部は、前記自動移動制御においては、前記始端位置を含む所定領域を前記一番目の並列経路に対する前記進入領域に設定する請求項1~4のいずれか一項に記載の作業車両用の自動走行システム。 - 前記自動走行制御部は、複数の前記並列経路を前記作業車両の走行順に接続する接続経路に従って前記作業車両を自動走行させる第2自動走行制御を実行し、
前記進入領域設定部は、前記第2自動走行制御においては、前記接続経路に接続される並列経路の始端位置を含む所定領域を前記進入領域に設定する請求項1~5のいずれか一項に記載の作業車両用の自動走行システム。 - 前記進入領域設定部は、前記第1自動走行制御が中断された場合には、前記並列経路における前記第1自動走行制御の中断位置を含む所定領域を前記進入領域に設定する請求項1~6のいずれか一項に記載の作業車両用の自動走行システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217034710A KR20220039646A (ko) | 2019-08-08 | 2020-08-06 | 작업 차량용의 자동 주행 시스템 |
EP20850004.1A EP4011185A4 (en) | 2019-08-08 | 2020-08-06 | AUTOMATIC TRAVEL SYSTEM FOR WORK VEHICLE |
CN202080056303.9A CN114207543A (zh) | 2019-08-08 | 2020-08-06 | 作业车辆用的自动行驶系统 |
US17/633,581 US20220304215A1 (en) | 2019-08-08 | 2020-08-06 | Automatic Travel System for Work Vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146425A JP7132191B2 (ja) | 2019-08-08 | 2019-08-08 | 作業車両用の自動走行システム |
JP2019-146425 | 2019-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021025108A1 true WO2021025108A1 (ja) | 2021-02-11 |
Family
ID=74503629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030164 WO2021025108A1 (ja) | 2019-08-08 | 2020-08-06 | 作業車両用の自動走行システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220304215A1 (ja) |
EP (1) | EP4011185A4 (ja) |
JP (3) | JP7132191B2 (ja) |
KR (1) | KR20220039646A (ja) |
CN (1) | CN114207543A (ja) |
WO (1) | WO2021025108A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4245107A1 (de) * | 2022-03-14 | 2023-09-20 | Lemken GmbH & Co KG | Verfahren zur fahrroutenoptimierung |
EP4245108A1 (de) * | 2022-03-14 | 2023-09-20 | KRONE Agriculture SE | Verfahren zur fahrroutenoptimierung |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7515436B2 (ja) * | 2021-04-14 | 2024-07-12 | 株式会社クボタ | 経路生成システム |
JP7515437B2 (ja) * | 2021-04-14 | 2024-07-12 | 株式会社クボタ | 走行管理システム |
JP7125681B1 (ja) | 2021-04-27 | 2022-08-25 | 井関農機株式会社 | 穀稈の刈取作業方法 |
CN114115214B (zh) | 2021-05-14 | 2024-04-05 | 丰疆智能科技股份有限公司 | 一种基于视觉的农机驾驶方法、系统、设备及存储介质 |
US20220410803A1 (en) * | 2021-06-23 | 2022-12-29 | Caterpillar Paving Products Inc. | Asphalt compactor birds eye camera integration |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170144702A1 (en) * | 2015-11-19 | 2017-05-25 | Agjunction Llc | K-turn path controller |
JP2017162373A (ja) | 2016-03-11 | 2017-09-14 | ヤンマー株式会社 | 作業車両 |
WO2017159615A1 (ja) * | 2016-03-16 | 2017-09-21 | ヤンマー株式会社 | 経路生成装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6564725B2 (ja) * | 2016-03-18 | 2019-08-21 | ヤンマー株式会社 | 走行指示装置 |
JP6765312B2 (ja) * | 2017-01-20 | 2020-10-07 | 株式会社クボタ | 作業車遠隔制御システム |
JP6735685B2 (ja) * | 2017-01-20 | 2020-08-05 | 株式会社クボタ | 走行制御装置 |
JP7112846B2 (ja) * | 2018-01-23 | 2022-08-04 | 株式会社クボタ | 作業車両 |
JP7113708B2 (ja) * | 2018-09-19 | 2022-08-05 | 株式会社クボタ | 圃場作業車 |
-
2019
- 2019-08-08 JP JP2019146425A patent/JP7132191B2/ja active Active
-
2020
- 2020-08-06 CN CN202080056303.9A patent/CN114207543A/zh active Pending
- 2020-08-06 WO PCT/JP2020/030164 patent/WO2021025108A1/ja unknown
- 2020-08-06 US US17/633,581 patent/US20220304215A1/en active Pending
- 2020-08-06 EP EP20850004.1A patent/EP4011185A4/en active Pending
- 2020-08-06 KR KR1020217034710A patent/KR20220039646A/ko unknown
-
2022
- 2022-08-25 JP JP2022133755A patent/JP7355902B2/ja active Active
-
2023
- 2023-09-21 JP JP2023154145A patent/JP7526333B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170144702A1 (en) * | 2015-11-19 | 2017-05-25 | Agjunction Llc | K-turn path controller |
JP2017162373A (ja) | 2016-03-11 | 2017-09-14 | ヤンマー株式会社 | 作業車両 |
WO2017159615A1 (ja) * | 2016-03-16 | 2017-09-21 | ヤンマー株式会社 | 経路生成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4245107A1 (de) * | 2022-03-14 | 2023-09-20 | Lemken GmbH & Co KG | Verfahren zur fahrroutenoptimierung |
EP4245108A1 (de) * | 2022-03-14 | 2023-09-20 | KRONE Agriculture SE | Verfahren zur fahrroutenoptimierung |
Also Published As
Publication number | Publication date |
---|---|
JP2021026674A (ja) | 2021-02-22 |
EP4011185A1 (en) | 2022-06-15 |
KR20220039646A (ko) | 2022-03-29 |
JP7526333B2 (ja) | 2024-07-31 |
JP7355902B2 (ja) | 2023-10-03 |
US20220304215A1 (en) | 2022-09-29 |
EP4011185A4 (en) | 2023-08-02 |
JP2022172213A (ja) | 2022-11-15 |
CN114207543A (zh) | 2022-03-18 |
JP7132191B2 (ja) | 2022-09-06 |
JP2023174679A (ja) | 2023-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021025108A1 (ja) | 作業車両用の自動走行システム | |
WO2020235471A1 (ja) | 作業車両用の自動走行システム | |
WO2021100373A1 (ja) | 作業車両用の自動走行システム | |
JP7044694B2 (ja) | 作業車両用の障害物検知システム | |
JP7356829B2 (ja) | 自動走行システム | |
JP7349277B2 (ja) | 作業車両用の自動走行システム | |
WO2022065091A1 (ja) | 自動走行システム、自動走行方法、及び自動走行プログラム | |
JP2021065115A (ja) | 障害物検知システム | |
JP7470843B2 (ja) | 自動走行システム及び自動走行方法 | |
JP2023126466A (ja) | 自動走行方法及び自動走行システム | |
JP2022188155A (ja) | 作業車両用の自動走行システム | |
WO2021085053A1 (ja) | 作業支援システム | |
JP2020137439A (ja) | 作業車両用の制御システム | |
JP7438718B2 (ja) | 作業車両用の自動走行システム | |
JP7317165B2 (ja) | 作業車両用の障害物検知システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20850004 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020850004 Country of ref document: EP Effective date: 20220309 |