WO2021024696A1 - 駆動装置および駆動方法 - Google Patents

駆動装置および駆動方法 Download PDF

Info

Publication number
WO2021024696A1
WO2021024696A1 PCT/JP2020/027069 JP2020027069W WO2021024696A1 WO 2021024696 A1 WO2021024696 A1 WO 2021024696A1 JP 2020027069 W JP2020027069 W JP 2020027069W WO 2021024696 A1 WO2021024696 A1 WO 2021024696A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
unit
drive
frequency signal
Prior art date
Application number
PCT/JP2020/027069
Other languages
English (en)
French (fr)
Inventor
優 小山
陽平 鈴木
大 近藤
覚 野呂
大塚 秀樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080055517.4A priority Critical patent/CN114207470A/zh
Priority to DE112020003703.7T priority patent/DE112020003703T5/de
Publication of WO2021024696A1 publication Critical patent/WO2021024696A1/ja
Priority to US17/649,870 priority patent/US20220155428A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems
    • G01S7/536Extracting wanted echo signals

Definitions

  • the present disclosure relates to a device and a method for driving an ultrasonic transmitter having an ultrasonic transmission frequency.
  • a device that detects an object using an ultrasonic sensor is known.
  • this type of device is mounted on a vehicle and used for obstacle detection, the accuracy of object detection may decrease due to interference or the like.
  • Interference can occur, for example, when an ultrasonic sensor mounted on the own vehicle receives ultrasonic waves transmitted from an ultrasonic sensor mounted on another vehicle existing in the vicinity of the own vehicle.
  • interference can occur, for example, when one of the plurality of ultrasonic sensors mounted on the own vehicle receives ultrasonic waves transmitted from the other one.
  • Patent Document 1 discloses an ultrasonic multi-sensor array.
  • the ultrasonic multi-sensor array described in Patent Document 1 has at least two transmitting units and at least one receiving unit, and some transmitting units can operate in parallel.
  • ultrasonic pulses are encoded in order to enable parallel operation.
  • the frequency of the carrier signal is linearly modulated for individual pulse coding in a plurality of transmitting units operating simultaneously. That is, the frequency of the carrier signal of the first transmission unit is linearly increased during the pulse duration.
  • the frequency of the carrier signal of the second transmission unit is linearly reduced during the pulse duration.
  • the ultrasonic sensor mounted on the own vehicle can identify whether or not the received wave is a reflected wave of its own transmitted wave. Specifically, such identification is performed based on whether or not the received wave includes a frequency change similar to the frequency change of its own transmitted wave. If the desired identification accuracy is obtained, the problem of interference as described above can be solved.
  • the present disclosure provides, for example, an apparatus configuration and a method capable of improving the identification accuracy as compared with the conventional case.
  • the drive device for driving the ultrasonic transmitter having an ultrasonic transmission frequency is A drive signal for driving the ultrasonic transmitter is generated based on a basic signal in which unit frequency signals, which are frequency signals corresponding to each of the codes in a code string formed by a plurality of codes, are arranged in time series. It is equipped with a drive signal generator, which is configured in Of the two unit frequency signals that are adjacent in time series in the basic signal, the preceding one is the first unit frequency signal and the succeeding one is the second unit frequency signal, and further, the target of the transmission frequency.
  • the first unit frequency signal and the second unit frequency signal are from the target frequency corresponding to the first unit frequency signal to the second unit frequency.
  • the switching portion of the second unit frequency signal including at least immediately after the start. Is shifted in the same direction as the frequency change direction from the first unit frequency signal to the second unit frequency signal.
  • the driving method for driving the ultrasonic transmitter is A drive signal for driving the ultrasonic transmitter is generated based on a basic signal in which unit frequency signals, which are frequency signals corresponding to each of the codes in a code string formed by a plurality of codes, are arranged in time series.
  • unit frequency signals which are frequency signals corresponding to each of the codes in a code string formed by a plurality of codes
  • the preceding one is the first unit frequency signal
  • the succeeding one is the second unit frequency signal
  • the target of the transmission frequency is set as the target frequency
  • the first unit frequency signal and the second unit frequency signal are the second unit from the target frequency corresponding to the first unit frequency signal.
  • switching in the second unit frequency signal including at least immediately after the start is performed.
  • the frequency of the portion is shifted in the same direction as the frequency change direction from the first unit frequency signal to the second unit frequency signal.
  • each element may be given a reference code in parentheses.
  • reference numerals merely indicate a specific example of the correspondence between the same element and the specific means described in the embodiments described later. Therefore, the present disclosure is not limited to the description of the reference reference numerals above.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • 6 is a time chart showing frequency characteristics in still another example of the drive signal output by the drive signal generation unit shown in FIG. 1.
  • the object detection device 1 is configured to detect an object B around the vehicle V by being mounted on the vehicle V as a moving body.
  • the state in which the object detection device 1 is mounted on the vehicle V is hereinafter referred to as an "vehicle-mounted state”.
  • the vehicle V equipped with the object detection device 1 according to the present embodiment is hereinafter referred to as "own vehicle”.
  • the object detection device 1 has a configuration as a so-called sonar, that is, an ultrasonic sensor. Specifically, the object detection device 1 is configured to transmit a transmitted wave, which is an ultrasonic wave, to the outside. Further, the object detection device 1 is configured to detect a surrounding object B and acquire distance measurement information corresponding to the object B by receiving the reflected wave of the transmitted wave transmitted to the outside by the object B. ing.
  • the object detection device 1 includes a transmitter / receiver 2, a drive device 3, and a determination device 4.
  • the object detection device 1 is configured by supporting the transmitter / receiver 2, the drive device 3, and the determination device 4 by one sensor housing (not shown).
  • the object detection device 1 has a transmission / reception integrated configuration including one transmitter / receiver 2 whose transmission frequency and reception frequency are ultrasonic waves.
  • the transmitter / receiver 2 functions as an ultrasonic transmitter that transmits a transmitted wave to the outside and a function as an ultrasonic receiver that receives a received wave including a reflected wave of the transmitted wave by the object B. It is configured.
  • the transmitter / receiver 2 has a transmitter 20A and a receiver 20B. Further, the transmitter / receiver 2 has one transducer 21.
  • the transmitting unit 20A and the receiving unit 20B are configured to realize a transmitting function and a receiving function, respectively, by using a common transducer 21.
  • the transducer 21 has a configuration as a resonance type ultrasonic microphone in which an electric-mechanical energy conversion element such as a piezoelectric element is built in a microphone housing having a substantially cylindrical shape.
  • the transducer 21 is provided at a position facing the outer surface of the own vehicle so that the transmitted wave can be transmitted to the outside of the own vehicle and the reflected wave can be received from the outside of the own vehicle.
  • the transducer 21 has an outer plate so that the transmission / reception surface 21a is exposed to the external space of the own vehicle from the mounting hole V2 which is a through hole formed in the outer plate member V1 of the own vehicle in the vehicle-mounted state. It is attached to the member V1.
  • the outer plate member V1 is, for example, a bumper or a body panel, and is made of a synthetic resin or metal plate material.
  • the transmission / reception surface 21a is an outer surface of the microphone housing of the transducer 21, and is provided so as to function as a transmission surface of the transmission wave and a reception surface of the reception wave.
  • the transmitter / receiver 2 includes a transducer 21, a transmission circuit 22, and a reception circuit 23.
  • the transducer 21 is electrically connected to the transmission circuit 22 and the reception circuit 23.
  • the transmission unit 20A includes a transducer 21 and a transmission circuit 22.
  • the receiving unit 20B is composed of a transducer 21 and a receiving circuit 23.
  • the transmission circuit 22 is provided so that the transducer 21 transmits a transmission wave having a frequency corresponding to the frequency of the drive signal by driving the transducer 21 based on the input drive signal.
  • the frequency of the drive signal is hereinafter referred to as "drive frequency”.
  • the frequency of the transmitted wave is hereinafter referred to as “transmission frequency”.
  • the frequency of the received wave is hereinafter referred to as “received frequency”.
  • the transmission circuit 22 has a digital / analog conversion circuit and the like. That is, the transmission circuit 22 is configured to generate an element input signal by performing signal processing such as digital / analog conversion on the drive signal output from the drive signal generation unit 34.
  • the element input signal is an AC voltage signal for driving the transducer 21.
  • the transmission circuit 22 applies the generated element input signal to the transducer 21 to drive the electro-mechanical energy conversion element in the transducer 21 so as to excite the transmission / reception surface 21a and transmit the transmission wave to the outside. It is configured.
  • the reception circuit 23 is provided so as to generate a reception signal corresponding to the reception result of the reception wave by the transducer 21 and output it to the reception signal processing unit 41.
  • the receiving circuit 23 includes an amplifier circuit, an analog / digital conversion circuit, and the like. That is, the receiving circuit 23 is configured to generate a received signal by performing signal processing such as amplification and analog / digital conversion on the element output signal output by the transducer 21.
  • the element output signal is an AC voltage signal generated by the electric-mechanical energy conversion element provided in the transducer 21 when the transmission / reception surface 21a is excited by the reception of the received wave. Further, the receiving circuit 23 is configured to output the generated received signal including information on the amplitude and frequency of the received wave to the received signal processing unit 41.
  • the transmitter / receiver 2 transmits the transmitted wave by the transducer 21 and receives the reflected wave from the object B as the received wave, so that the receiver signal corresponds to the distance and the reception frequency between the transducer 21 and the object B. Is configured to generate.
  • the received wave when the transmitter / receiver 2 receives the reflected wave of the transmitted wave transmitted by itself is hereinafter referred to as a "normal wave”.
  • the received wave caused by the transmitted wave from another device is hereinafter referred to as "non-normal wave”.
  • the "other device” also includes another transmitter / receiver 2 mounted on the own vehicle.
  • the drive device 3 that drives the transmitter / receiver 2 is configured to control the transmission state of the transmitted wave from the transmitter / receiver 2.
  • the drive device 3 is provided in a control circuit (not shown) that controls the entire object detection operation in the object detection device 1.
  • the drive device 3 includes a transmission control unit 31, a code generation unit 32, a basic signal generation unit 33, a drive signal generation unit 34, and a temperature acquisition unit 35.
  • the transmission control unit 31 is provided so as to determine the waveform and the transmission timing in the transmission wave by controlling the overall operation of the drive device 3. That is, the transmission control unit 31 determines the transmission code string, which is the code string to be applied to the transmission wave.
  • the "code string” is formed by a plurality of codes. Specifically, the code string has a structure in which a plurality of three types of codes, for example, "1", "0", and "-1" are arranged, such as "1, -1". In the present embodiment, the transmission control unit 31 selects one of a plurality of predetermined code strings as the transmission code string.
  • the code generation unit 32 is provided so as to output the transmission code string determined by the transmission control unit 31 to the basic signal generation unit 33. Specifically, for example, when the transmission control unit 31 determines the transmission code string as the “code string F1”, the code generation unit 32 outputs the code string “1,0”, while the transmission control unit 31 outputs the code string “1,0”. When the transmission code string is determined to be "code string F2", the code string "1, 1" is output.
  • the basic signal generation unit 33 is provided so as to generate a basic signal corresponding to the transmission code string and output it to the drive signal generation unit 34.
  • the basic signal is a signal in which unit frequency signals are arranged in time series.
  • the unit frequency signal is a frequency signal corresponding to each of a plurality of codes in the transmission code string.
  • the "frequency signal” is a signal indicating a frequency modulation mode, that is, a frequency change mode with the passage of time. Specifically, for example, as a unit frequency signal corresponding to the reference numeral “1”, a frequency rise signal whose frequency rises within a predetermined time is set. Further, as a unit frequency signal corresponding to the reference numeral “-1”, a frequency reduction signal whose frequency decreases within a predetermined time is set.
  • a CW signal having a constant frequency within a predetermined time is set.
  • CW is an abbreviation for continuous waveform.
  • the CW signal is also called a CF signal.
  • CF is an abbreviation for continuous frequency.
  • the drive signal generation unit 34 is provided so as to generate a drive signal based on the control signal received from the transmission control unit 31 and the basic signal generated by the basic signal generation unit 33.
  • the drive signal is a signal for driving the transmitter / receiver 2, that is, the transmission unit 20A, to transmit a transmission wave from the transducer 21, and is, for example, a pulse-like signal having a frequency within the ultrasonic band. Specific examples of the drive signal will be described in the section of operation outline described later.
  • the control signal generated and output by the transmission control unit 31 includes waveform correction information for determining the final waveform of the drive signal and a timing signal for controlling the transmission timing of the transmission wave. That is, the drive signal generation unit 34 generates a drive signal based on the frequency signal generated by correcting the basic signal with the waveform correction information according to the code shift mode in the transmission code string determined by the transmission control unit 31. It is designed to do. The details of the waveform correction information will be described in the section of operation summary described later. Further, the drive signal generation unit 34 is provided so as to output the drive signal to the transmission unit 20A at a predetermined timing based on the timing signal.
  • the temperature acquisition unit 35 is provided so as to acquire the operating temperature of the object detection device 1, that is, the transmitter / receiver 2. Specifically, the temperature acquisition unit 35 receives the detection value of the outside air temperature by the outside air temperature sensor (not shown) mounted on the vehicle V via the in-vehicle network (not shown).
  • the temperature acquisition unit 35 is provided so as to output the acquired operating temperature to the transmission control unit 31.
  • the transmission control unit 31 sets the waveform correction information according to the acquired operating temperature. Details of setting the waveform correction information according to the operating temperature will be described in the section of the operation outline described later.
  • the determination device 4 is configured to execute the detection determination process of the object B based on the received signal. Specifically, the determination device 4 has a reception signal processing unit 41 and an object detection unit 42.
  • the reception signal processing unit 41 is configured to generate an amplitude signal and a reception frequency signal by performing processing such as FFT on the reception signal.
  • FFT is an abbreviation for Fast Fourier Transform.
  • the amplitude signal is a signal corresponding to the amplitude of the received wave.
  • the received frequency signal is a frequency signal in the received wave, that is, a signal corresponding to the received frequency.
  • the reception frequency signal is a signal corresponding to the encoding-related waveform pattern in the reception signal.
  • the reception signal processing unit 41 is provided so as to output the generated amplitude signal and reception frequency signal to the object detection unit 42.
  • the object detection unit 42 is provided so as to detect the object B based on the amplitude signal and the reception frequency signal acquired from the reception signal processing unit 41. Specifically, the object detection unit 42 determines whether or not the received wave is a normal wave based on the predetermined reference signal and the acquired reception frequency signal. Further, when the received wave is a normal wave, the object detection unit 42 detects the existence of the object B and the distance between the transducer 21 and the object B based on the acquired amplitude signal.
  • the object detection device 1 When the predetermined object detection condition is satisfied, the object detection device 1 starts the object detection operation.
  • the object detection condition includes, for example, that the traveling speed of the own vehicle is within a predetermined range, that the shift position of the own vehicle is a traveling position including backward movement, and the like.
  • the object detection device 1 ends the object detection operation.
  • the transmission control unit 31 When the object detection operation is started, the transmission control unit 31 first determines a transmission code string which is a code string to be applied to the transmission wave. Further, the transmission control unit 31 outputs the determination result of the transmission code string to the code generation unit 32. The code generation unit 32 outputs the transmission code string determined by the transmission control unit 31 to the basic signal generation unit 33. The basic signal generation unit 33 generates a basic signal corresponding to the transmission code string output from the code generation unit 32 and outputs the basic signal to the drive signal generation unit 34.
  • the transmission control unit 31 determines the transmission code string as the “code string F1”
  • the code generation unit 32 outputs the code string “1,0” as the transmission code string.
  • the basic signal generation unit 33 generates the basic signal corresponding to the code string “1,0”.
  • a basic signal is a frequency rise signal which is a unit frequency signal corresponding to the code "1" of the first bit and a CW signal which is a unit frequency signal corresponding to the code "0" of the next second bit. It is formed by arranging in a series.
  • the transmission control unit 31 determines the arrival of the transmission timing at a predetermined cycle.
  • the predetermined cycle is, for example, a cycle of several hundred milliseconds.
  • the arrival determination of the transmission timing is executed by using a time measuring means such as a timer (not shown).
  • the transmission control unit 31 outputs the control signal toward the drive signal generation unit 34. That is, the transmission control unit 31 controls the output of the drive signal from the drive signal generation unit 34 to the transmitter / receiver 2.
  • the drive signal generation unit 34 When the basic signal and the control signal are input, the drive signal generation unit 34 generates a drive signal and outputs it to the transmission unit 20A, that is, the transmission circuit 22.
  • the transmission circuit 22 drives the transducer 21 based on the input drive signal. Then, the transducer 21 transmits a transmitted wave, which is an ultrasonic wave having a frequency corresponding to the frequency of the drive signal, toward the outside of the own vehicle. As a result, the transmitted wave is transmitted at a predetermined transmission timing.
  • the object detection device 1 executes the reception operation during the predetermined receivable period during the object detection operation.
  • the receivable period excludes the dead zone due to the influence of reverberation, etc., from the period between the end of transmission of the transmitted wave and the next transmission timing that arrives immediately after that.
  • the transducer 21 outputs an element output signal which is an AC voltage signal corresponding to the amplitude and frequency of the received wave during the receivable period.
  • the receiving circuit 23 generates a received signal by performing signal processing such as amplification and analog / digital conversion on the element output signal.
  • the reception signal processing unit 41 generates an amplitude signal and a reception frequency signal by performing processing such as FFT on the reception signal.
  • the reception signal processing unit 41 outputs the generated amplitude signal and reception frequency signal to the object detection unit 42.
  • the drive signal is frequency-modulated corresponding to each of the codes in the transmission code string determined by the transmission control unit 31.
  • the transmission frequency which is the frequency of the transmission wave, corresponds to the drive frequency, which is the frequency of the drive signal. Therefore, the transmission frequency has a frequency change corresponding to a temporal change of the drive frequency as a feature corresponding to the distinctiveness. Therefore, when the received wave is a normal wave, the received frequency should have the same characteristics as the transmitted frequency in terms of frequency modulation mode.
  • the "frequency modulation mode” also includes no modulation, that is, CW.
  • the object detection unit 42 determines whether or not the received wave is a normal wave based on the reception frequency signal output from the reception signal processing unit 41. Specifically, the object detection unit 42 collates the reception frequency signal corresponding to the waveform pattern in the reception signal with the reference signal corresponding to the transmission code string determined by the transmission control unit 31. This makes it possible to identify whether or not the received wave is a normal wave, that is, a reflected wave of its own transmitted wave.
  • the object detection unit 42 detects the presence of the object B and the distance between the transducer 21 and the object B based on the amplitude signal output from the received signal processing unit 41.
  • the transmitted wave is encoded to give it distinctiveness. Further, as a coding method, coding by a plurality of bits in which each bit is associated with a code corresponding to a frequency modulation mode is used. Therefore, according to the object detection device 1 according to the present embodiment and the object detection method executed by the object detection device 1, it is possible to improve the identification accuracy as compared with the conventional case.
  • FIG. 2A shows the time change of the drive frequency and the reception frequency corresponding to the code string “1,0”.
  • the horizontal axis t indicates time.
  • the vertical axis fD indicates the drive frequency.
  • the broken line indicates the target frequency, that is, the target value of the transmission frequency.
  • the vertical axis fR indicates the reception frequency.
  • FIG. 2B shows the time variation of the drive frequency and the reception frequency corresponding to the code string “1,1”. The significance of the vertical axis and the horizontal axis in FIG. 2B is the same as that of FIG. 2A.
  • the transmitter / receiver 2 provided with the transducer 21 which is a resonance type ultrasonic microphone has the same characteristics as the bandpass filter. That is, the frequency band that can be satisfactorily transmitted / received by the transmitter / receiver 2 is substantially limited to a width of ⁇ several% centered on the resonance frequency fC. Therefore, a predetermined transmission / reception frequency band is set for the transmitter / receiver 2.
  • the sensitivity is the sensitivity when the transmitter / receiver 2 is used as a receiver.
  • such a transmission / reception frequency band may also be referred to as a "resonance band", a "-3 dB band", or a "3 dB band”.
  • the target frequency corresponding to the reference numeral “1” is linear from the lower limit frequency fL toward the upper limit frequency fH with the passage of time as shown by the broken line rising to the right in FIGS. 2A and 2B. It is set to form an "up chirp" that rises to.
  • the target frequency corresponding to the symbol “-1” is set to have a “down chirp” shape that linearly decreases from the upper limit frequency fH toward the lower limit frequency fL with the passage of time.
  • the target frequency corresponding to the reference numeral “0” is set to be constant at the resonance frequency fC.
  • the frequency rise signal which is a unit frequency signal corresponding to the code "1" has a frequency characteristic in which the drive frequency rises from the lower limit frequency fL to the upper limit frequency fH.
  • the frequency reduction signal which is a unit frequency signal corresponding to the reference numeral “-1”, has a frequency characteristic in which the drive frequency decreases from the upper limit frequency fH toward the lower limit frequency fL.
  • the CW signal which is a unit frequency signal corresponding to the reference numeral “0”, has a frequency characteristic in which the drive frequency is constant at the resonance frequency fC.
  • the frequency followability is poor at a drive frequency far from the resonance frequency fC. Therefore, as shown in FIGS. 2A and 2B, when the first bit is different from the code "0", the period from the preburst start time ts before the first start time ts1 to the first start time ts1
  • the drive frequency is set to be constant at the resonance frequency fC.
  • the first start time ts1 is the start time of the first unit frequency signal U1 corresponding to the first bit. That is, the transmitter / receiver 2 is driven at the resonance frequency fC for a short time prior to being driven by the first unit frequency signal U1 that starts at a drive frequency away from the resonance frequency fC. This can improve the frequency followability.
  • the frequency rise signal corresponding to the symbol "1" has a rectangular wave-like frequency characteristic that changes stepwise from the lower limit frequency fL to the upper limit frequency fH.
  • the frequency decrease signal corresponding to the symbol "-1” has a rectangular wave-like frequency characteristic that changes stepwise from the upper limit frequency fH to the lower limit frequency fL. This can improve the frequency followability.
  • the drive frequency is set to a constant frequency, that is, the lower limit frequency fL.
  • the first end time te1 indicates the end time of the first unit frequency signal U1.
  • the drive frequency is set to a constant frequency, that is, the upper limit frequency fH from the first intermediate time tm1 to the first end time te1.
  • the drive frequency changes stepwise from the lower limit frequency fL to the upper limit frequency fH.
  • the actual transmission frequency characteristic becomes close to the target frequency characteristic in which the frequency linearly increases with the passage of time as shown by the broken line in FIG. 2A.
  • the time interval between the first start time ts1 and the first intermediate time tm1 in the first unit frequency signal U1 is from the first intermediate time tm1 to the first end time te1. It is set to be almost equal to the time interval between.
  • the second start time ts2 and the second end time te2 indicate the start time and the end time of the second unit frequency signal U2 corresponding to the second bit, respectively. In the present embodiment, it is assumed that the first end time te1 and the second start time ts2 are substantially the same.
  • the target frequency changes discontinuously from the upper limit frequency fH to the resonance frequency fC at the first end time te1 or the second start time ts2 at which the sign is switched.
  • the subsequent target frequency is constant at the resonance frequency fC.
  • the second unit frequency signal U2 is set so that the frequency becomes constant at the resonance frequency fC from the second start time ts2 to the second end time te2.
  • the time interval from the second start time ts2 to the second end time te2 is set to be the same as the time interval from the first start time ts1 to the first end time te1.
  • the basic signal has the following frequency characteristics.
  • the basic signals are a rectangular wave-shaped first unit frequency signal U1 that changes stepwise from the lower limit frequency fL to the upper limit frequency fH at the first intermediate time tm1, and a constant CW at the resonance frequency fC.
  • the wavy second unit frequency signal U2 is arranged in chronological order. Therefore, in the second unit frequency signal U2, which is a CW signal corresponding to the code “0”, the drive frequency is originally constant at the resonance frequency fC from the second start time ts2 to the second end time te2. Should be.
  • the followability to the switching of the drive frequency is poor. That is, even if the transmission frequency is changed, the transmission frequency does not actually change instantaneously but gradually changes.
  • the rate of change in frequency at this time depends on the characteristics of the transducer 21 and the transmission circuit 22. Therefore, assuming that the drive frequency between the second start time ts2 and the second end time te2 is constant at the resonance frequency fC, the actual transmission frequency and reception frequency are shown by dotted lines in the lower time chart in FIG. 2A. It changes over time as shown. Specifically, due to the influence of the frequency change in the rising region T1 where the frequency rises at the leading bit, the frequency overshoots in the bit switching region T2, and the frequency gradually approaches the resonance frequency fC in the subsequent convergence region T3.
  • the drive frequency of the switching portion including immediately after the second start time ts2 in the second unit frequency signal U2 is the original drive frequency. It shifts to a lower frequency side than the resonance frequency fC.
  • the direction of frequency shift is the same as the frequency change direction from the first unit frequency signal U1 to the second unit frequency signal U2 at the first end time te1, that is, the second start time ts2.
  • the apparatus and method according to the present embodiment have the second unit frequency signal U2 from the second start time ts2 to the second intermediate time tm2.
  • the drive frequency is corrected to the low frequency side in the time zone between them.
  • the time zone between the second start time ts2 and the second intermediate time tm2 is the portion of the second unit frequency signal U2 immediately after the second start time ts2.
  • FIG. 2B shows an example of the code string “1,1”.
  • the target frequency corresponding to the code “1” of the first bit linearly increases from the lower limit frequency fL toward the upper limit frequency fH with the passage of time.
  • the target frequency corresponding to the code “1” of the next second bit also linearly rises from the lower limit frequency fL toward the upper limit frequency fH with the passage of time.
  • the target frequency changes discontinuously from the upper limit frequency fH to the lower limit frequency fL.
  • the frequency characteristic of the target frequency corresponding to the sign "1" of the first bit and the frequency characteristic of the target frequency corresponding to the sign "1" of the next second bit are completely the same. Therefore, originally, the first unit frequency signal U1 corresponding to the code "1" of the first bit and the second unit frequency signal U2 corresponding to the code "1" of the next second bit have completely the same waveform. Should be. Specifically, the drive frequency between the second start time ts2 and the second intermediate time tm2 in the second unit frequency signal U2 is originally the first intermediate time from the first start time ts1 in the first unit frequency signal U1. Similar to the drive frequency up to tm1, it should be constant at the lower limit frequency fL.
  • the second unit frequency signal U2 has exactly the same waveform as the first unit frequency signal U1
  • the actual transmission frequency and reception frequency are shown by dotted lines in the lower time chart in FIG. 2B.
  • the drive frequency of the switching portion of the second unit frequency signal U2 including immediately after the second start time ts2 is lower than the lower limit frequency fL which is the original drive frequency. Shift to the frequency side.
  • the direction of frequency shift is the same as the frequency change direction from the first unit frequency signal U1 to the second unit frequency signal U2 at the first end time te1, that is, the second start time ts2.
  • the apparatus and method correct the drive frequency to the low frequency side in the time zone between the second start time ts2 and the second intermediate time tm2 in the second unit frequency signal U2.
  • the amount of frequency fall in the frequency fall region T4 becomes large. Then, the rising amount or rising gradient of the frequency in the recurrence region T5 where the frequency rises at the second bit becomes large. Therefore, in the second bit, a predetermined amount of frequency change corresponding to the symbol "1" whose frequency changes in an "up chirp" shape can be satisfactorily obtained. That is, the characteristics of the received signal can be enhanced. Therefore, the accuracy of pattern matching is improved.
  • the preceding first unit frequency signal U1 and the succeeding second unit frequency signal U2 of the two unit frequency signals adjacent in time series in the basic signal are different from the continuous switching state. It may switch in the continuous switching state.
  • the first unit frequency is changed so that the target frequency continuously changes from the target frequency corresponding to the first unit frequency signal U1 to the target frequency corresponding to the second unit frequency signal U2 at substantially the same rate of change.
  • the signal U1 and the second unit frequency signal U2 are switched.
  • the target frequency changes discontinuously.
  • the target frequency changes in a "line" shape by changing the rate of change of the target frequency, that is, the gradient.
  • the drive signal generation unit 34 sets the frequency of the switching portion of the second unit frequency signal U2, including immediately after the start, from the first unit frequency signal U1 to the second unit frequency signal U2. Shift in the same direction as the change direction.
  • the target frequency corresponding to the first unit frequency signal U1 linearly increases from the lower limit frequency fL to the upper limit frequency fH.
  • the target frequency corresponding to the second unit frequency signal U2 is constant at the resonance frequency fC.
  • the switching from the first unit frequency signal U1 to the second unit frequency signal U2 is performed in such a manner that the corresponding target frequency is discontinuously changed from the upper limit frequency fH to the resonance frequency fC.
  • the gradient of the target frequency before and after the target frequency changes discontinuously from the upper limit frequency fH to the resonance frequency fC is also different. Therefore, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 sets the drive frequency on the lower frequency side than the original resonance frequency fC in the time zone between the second start time ts2 and the second intermediate time tm2 in the second unit frequency signal U2. Shift to.
  • the frequency shift direction at this time is the same direction as the frequency change direction from the first unit frequency signal U1 to the second unit frequency signal U2 at the first end time te1 and the second start time ts2, that is, the upper limit frequency fH. It is a frequency decrease direction toward the resonance frequency fC.
  • the target frequency corresponding to the first unit frequency signal U1 linearly increases from the lower limit frequency fL to the upper limit frequency fH.
  • the target frequency corresponding to the second unit frequency signal U2 linearly rises from the lower limit frequency fL toward the upper limit frequency fH.
  • the switching from the first unit frequency signal U1 to the second unit frequency signal U2 is performed in such a manner that the corresponding target frequency is discontinuously changed from the upper limit frequency fH to the lower limit frequency fL. Therefore, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 sets the drive frequency on the lower frequency side than the original lower limit frequency fL in the time zone between the second start time ts2 and the second intermediate time tm2 in the second unit frequency signal U2. Shift to.
  • the frequency shift direction at this time is the same direction as the frequency change direction from the first unit frequency signal U1 to the second unit frequency signal U2 at the first end time te1 and the second start time ts2, that is, the upper limit frequency fH. It is a frequency decrease from to the lower limit frequency fL.
  • the frequency change rate depends on the sensor characteristics, and the frequency does not change instantaneously but gradually changes. Therefore, with a short signal length, the characteristics of the received signal become small and high discriminability cannot be obtained, that is, there is a limit to shortening the signal length.
  • the signal length is increased in order to increase the characteristics and improve the identification performance, it becomes difficult to increase the number of bits per unit time as described above. Specifically, for example, only one bit can transmit the code. Since 8 to 12 sonars are mounted on one vehicle V, good identification is difficult with a 1-bit code.
  • switching of two adjacent codes in time series can be performed quickly and satisfactorily.
  • the drive signal generation unit 34 sets the frequency shift mode of the second unit frequency signal U2 shown in FIGS. 2A and 2B according to the operating temperature of the transmitter / receiver 2. That is, the temperature acquisition unit 35 acquires the operating temperature of the object detection device 1, that is, the transmitter / receiver 2, and outputs the operating temperature to the transmission control unit 31.
  • the transmission control unit 31 sets the waveform correction information according to the acquired operating temperature.
  • the transmission control unit 31 has a time interval from the second start time ts2 to the second intermediate time tm2 in the second unit frequency signal U2 according to the operating temperature. To set. Further, the transmission control unit 31 sets the deviation amount, that is, the correction amount of the drive frequency from the resonance frequency fC in the time zone between the second start time ts2 and the second intermediate time tm2 according to the operating temperature. .. Further, in the example shown in FIG. 2B, the transmission control unit 31 starts from the lower limit frequency fL of the drive frequency in the time zone between the second start time ts2 and the second intermediate time tm2, depending on the operating temperature. The amount of deviation, that is, the amount of correction is set.
  • the influence of the operating temperature on the frequency waveform in the transmitted wave can be reduced as much as possible. Therefore, the identification accuracy can be further improved as compared with the conventional case.
  • 3 to 5 show an example of encoding the transmitted wave with a 4-bit code string.
  • fT indicates a target frequency
  • fD indicates a drive frequency.
  • the unit basic signal before deviation, that is, before correction is shown by a thick dotted line.
  • t0 indicates the start time of the first bit and corresponds to the first start time ts1 in FIG. 2A.
  • t1 indicates the end time of the first bit and the start time of the second bit.
  • t2 indicates the end time of the second bit and the start time of the third bit
  • t3 indicates the end time of the third bit and the start time of the fourth bit
  • t4 indicates the end time of the fourth bit.
  • the target frequency corresponding to the symbol “1” has an “up-chirp” frequency characteristic that linearly and monotonically rises.
  • the target frequency corresponding to the symbol “-1” has a “down chirp” -like frequency characteristic that linearly and monotonically decreases.
  • the target frequency corresponding to the reference numeral “0” has a CW wavy frequency characteristic.
  • the frequency rise signal which is a unit frequency signal corresponding to the code "1”
  • the frequency reduction signal which is a unit frequency signal corresponding to the reference numeral “-1”
  • the CW signal which is a unit frequency signal corresponding to the reference numeral “0”
  • the transmitted wave is encoded by the code sequence “-1,1, -1,1”.
  • the target frequency corresponding to the first bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the second bit linearly and monotonically rises from the resonance frequency fC to the upper limit frequency fH.
  • the target frequency corresponding to the third bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the fourth bit linearly and monotonically rises from the resonance frequency fC to the upper limit frequency fH.
  • the first unit frequency signal U1 linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the second unit frequency signal U2 linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the third unit frequency signal U3 linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the fourth unit frequency signal U4 linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order. When the frequency shift process is not executed, the basic signal substantially matches the frequency signal indicating the frequency characteristic in the drive signal.
  • the target frequency corresponding to the first bit is the lower limit frequency fL. Further, at time t1, the target frequency corresponding to the second bit is the lower limit frequency fL. Therefore, the target frequency continuously changes at time t1. However, the changing direction of the target frequency corresponding to the first bit and the changing direction of the target frequency corresponding to the second bit are opposite directions. Therefore, at time t1, the target frequency changes in the shape of a "line chart". That is, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the frequency rising direction in the direction opposite to the frequency change in the fixed direction, that is, the falling direction in the first unit frequency signal U1. .. Specifically, the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire second unit frequency signal U2 having an “up-chirp” -like frequency characteristic to the high frequency side. To do.
  • the target frequency corresponding to the second bit is the resonance frequency fC.
  • the target frequency corresponding to the third bit is the resonance frequency fC. Therefore, the target frequency continuously changes at time t2.
  • the changing direction of the target frequency corresponding to the second bit and the changing direction of the target frequency corresponding to the third bit are opposite directions. Therefore, at time t2, the target frequency changes in the shape of a "line chart". Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the third unit frequency signal U3 in a certain direction, that is, in a frequency decreasing direction opposite to the frequency change in the ascending direction in the second unit frequency signal U2. .. Specifically, the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire third unit frequency signal U3 having a “down chirp” -like frequency characteristic to the low frequency side. To do.
  • the target frequency corresponding to the third bit is the lower limit frequency fL.
  • the target frequency corresponding to the fourth bit is the lower limit frequency fL. Therefore, the target frequency continuously changes at time t3.
  • the changing direction of the target frequency corresponding to the third bit and the changing direction of the target frequency corresponding to the fourth bit are opposite directions. Therefore, at time t3, the target frequency changes in a “line” shape. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the fourth unit frequency signal U4 in the frequency rising direction in the direction opposite to the frequency change in the fixed direction, that is, the falling direction in the third unit frequency signal U3. .. Specifically, the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire fourth unit frequency signal U4 having an “up chirp” -like frequency characteristic to the high frequency side. To do.
  • the transmitted wave is encoded by the code string "-1,1,0,0".
  • the target frequency corresponding to the first bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the second bit linearly and monotonically rises from the resonance frequency fC to the upper limit frequency fH.
  • the target frequencies corresponding to the third bit and the fourth bit are constant at the resonance frequency fC.
  • the first unit frequency signal U1 linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the second unit frequency signal U2 linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the third unit frequency signal U3 and the fourth unit frequency signal U4 are constant at the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the direction of frequency increase in the direction opposite to the frequency change in the decreasing direction of the first unit frequency signal U1.
  • the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire second unit frequency signal U2 having an “up-chirp” -like frequency characteristic to the high frequency side. To do.
  • the target frequency corresponding to the second bit is the resonance frequency fC.
  • the target frequency corresponding to the third bit is the resonance frequency fC. Therefore, the target frequency continuously changes at time t2.
  • the change gradient of the target frequency corresponding to the second bit is a positive value other than 0, whereas the change gradient of the target frequency corresponding to the third bit is 0. Therefore, at time t2, the target frequency changes in the shape of a "line chart". Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the third unit frequency signal U3 in the direction of frequency decrease in the direction opposite to the frequency change in the ascending direction of the second unit frequency signal U2.
  • the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to shift the frequency of the switching portion between the time t2-tm of the third unit frequency signal U3 in the frequency decrease direction.
  • the frequency after the shift is the lower limit frequency fL at time t2, and rises from the lower limit frequency fL in an "up chirp" manner between time t2-tm.
  • the time interval between the times t2-tm is set according to the operating temperature and the like.
  • the target frequency corresponding to the third bit is the resonance frequency fC.
  • the target frequency corresponding to the fourth bit is the resonance frequency fC.
  • the frequency gradient of the third unit frequency signal U3 and the frequency gradient of the fourth unit frequency signal U4 in the vicinity of time t3 are both equal to 0. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a continuous switching state.
  • the drive signal generation unit 34 does not shift the frequency with respect to the fourth unit frequency signal U4. That is, the transmission control unit 31 does not correct the frequency pattern for the fourth unit frequency signal U4.
  • the transmitted wave is encoded by the code sequence "-1, 1, 1, -1".
  • the target frequency corresponding to the first bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the second bit linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the target frequency corresponding to the third bit linearly and monotonically rises from the resonance frequency fC to the upper limit frequency fH.
  • the target frequency corresponding to the fourth bit linearly and monotonically decreases from the upper limit frequency fH to the resonance frequency fC.
  • the first unit frequency signal U1 linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the second unit frequency signal U2 linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the third unit frequency signal U3 linearly and monotonically rises from the resonance frequency fC to the upper limit frequency fH.
  • the fourth unit frequency signal U4 linearly and monotonically decreases from the upper limit frequency fH to the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order.
  • the setting state of the target frequency in the first bit and the second bit is the same as the example shown in FIGS. 3 and 4. Therefore, the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the direction of frequency increase in the direction opposite to the frequency change in the decreasing direction of the first unit frequency signal U1. Specifically, the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire second unit frequency signal U2 having an “up-chirp” -like frequency characteristic to the high frequency side. To do.
  • the target frequency corresponding to the second bit is the resonance frequency fC.
  • the target frequency corresponding to the third bit is the resonance frequency fC. Therefore, the target frequency continuously changes at time t2. Further, the frequency gradient of the second unit frequency signal U2 and the frequency gradient of the third unit frequency signal U3 in the vicinity of time t2 are both equal to 0. Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a continuous switching state.
  • the drive signal generation unit 34 does not shift the frequency with respect to the third unit frequency signal U3. That is, the transmission control unit 31 does not correct the frequency pattern for the third unit frequency signal U3.
  • the target frequency corresponding to the third bit is the upper limit frequency fH.
  • the target frequency corresponding to the fourth bit is the upper limit frequency fH. Therefore, the target frequency continuously changes at time t3.
  • the changing direction of the target frequency corresponding to the third bit and the changing direction of the target frequency corresponding to the fourth bit are opposite directions. Therefore, at time t3, the target frequency changes in a “line” shape. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the fourth unit frequency signal U4 in the direction of frequency decrease in the direction opposite to the frequency change in the ascending direction of the third unit frequency signal U3.
  • the transmission control unit 31 outputs waveform correction information to the drive signal generation unit 34 so as to offset the entire fourth unit frequency signal U4 having a “down chirp” -like frequency characteristic to the low frequency side. To do.
  • FIGS. 6 to 8 show that the drive frequency waveforms in the examples shown in FIGS. 3 to 5 are changed to the same waveforms as in the examples shown in FIGS. 2A and 2B.
  • FIG. 6 corresponds to FIG. 3
  • FIG. 7 corresponds to FIG. 4
  • FIG. 8 corresponds to FIG.
  • the waveform corresponding to the target value of the transmission frequency fT is shown by a broken line.
  • the transmitted wave is encoded by the code sequence “-1,1, -1,1”.
  • the target frequency is the same as the example shown in FIG.
  • the drive signal generation unit 34 generates a transmission wave in which the transmission frequency changes in an “up chirp” shape by changing the CW wave-like drive frequency in a step-like manner. Generate.
  • the drive signal generation unit 34 changes the CW wave-like drive frequency in steps to generate a transmission wave in which the transmission frequency changes in a “down chirp” shape.
  • the first unit frequency signal U1 and the third unit frequency signal U3 are constant at the lower limit frequency fL.
  • the second unit frequency signal U2 and the fourth unit frequency signal U4 are constant at the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order.
  • the target frequency corresponding to the first bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the second bit linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the first unit frequency signal U1 is set to be constant at the lower limit frequency fL.
  • the second unit frequency signal U2 is set to be constant at the resonance frequency fC.
  • the target frequency changes in a "line" shape. That is, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the same direction as the frequency change from the first unit frequency signal U1 to the second unit frequency signal U2. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire second unit frequency signal U2 is offset to the high frequency side to the drive signal generation unit 34.
  • the target frequency corresponding to the second bit linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the target frequency corresponding to the third bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the second unit frequency signal U2 is set to be constant at the resonance frequency fC.
  • the third unit frequency signal U3 is set to be constant at the lower limit frequency fL.
  • the target frequency changes in a "line" shape. Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the same direction as the frequency change from the second unit frequency signal U2 to the third unit frequency signal U3. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire third unit frequency signal U3 is offset to the low frequency side to the drive signal generation unit 34.
  • the target frequency corresponding to the third bit linearly and monotonically decreases from the resonance frequency fC to the lower limit frequency fL.
  • the target frequency corresponding to the fourth bit linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC.
  • the third unit frequency signal U3 is set to be constant at the lower limit frequency fL.
  • the fourth unit frequency signal U4 is set to be constant at the resonance frequency fC.
  • the target frequency changes in a "line" shape. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the fourth unit frequency signal U4 in the same direction as the frequency change from the third unit frequency signal U3 to the fourth unit frequency signal U4. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire fourth unit frequency signal U4 is offset to the high frequency side to the drive signal generation unit 34.
  • the transmitted wave is encoded by the code string "-1,1,0,0".
  • the target frequency is the same as the example shown in FIG.
  • the first unit frequency signal U1 is constant at the lower limit frequency fL.
  • the second unit frequency signal U2 is constant at the resonance frequency fC.
  • the third unit frequency signal U3 and the fourth unit frequency signal U4 are constant at the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order.
  • the target frequency changes in a "line" shape. That is, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the same direction as the frequency change from the first unit frequency signal U1 to the second unit frequency signal U2. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire second unit frequency signal U2 is offset to the high frequency side to the drive signal generation unit 34.
  • the target frequency changes in a "line" shape. Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the third unit frequency signal U3 in the same direction as the frequency change from the second unit frequency signal U2 to the third unit frequency signal U3. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire third unit frequency signal U3 is offset to the low frequency side to the drive signal generation unit 34.
  • the target frequency continuously changes with the same gradient. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a continuous switching state. Therefore, the drive signal generation unit 34 does not shift the frequency with respect to the fourth unit frequency signal U4. That is, the transmission control unit 31 does not correct the frequency pattern for the fourth unit frequency signal U4.
  • the transmitted wave is encoded by the code sequence "-1, 1, 1, -1".
  • the target frequency is the same as the example shown in FIG.
  • the first unit frequency signal U1 is constant at the lower limit frequency fL.
  • the second unit frequency signal U2 is constant at the resonance frequency fC.
  • the third unit frequency signal U3 is constant at the upper limit frequency fH.
  • the fourth unit frequency signal U4 is constant at the resonance frequency fC.
  • the basic signal is formed by arranging the first unit frequency signal U1, the second unit frequency signal U2, the third unit frequency signal U3, and the fourth unit frequency signal U4 in this order in chronological order.
  • the target frequency changes in a "line" shape. Therefore, the first unit frequency signal U1 and the subsequent second unit frequency signal U2 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the second unit frequency signal U2 in the same direction as the frequency change from the first unit frequency signal U1 to the second unit frequency signal U2. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire second unit frequency signal U2 is offset to the high frequency side to the drive signal generation unit 34.
  • the target frequency continuously changes with the same gradient. Therefore, the second unit frequency signal U2 and the subsequent third unit frequency signal U3 are switched in a continuous switching state. Therefore, the drive signal generation unit 34 does not shift the frequency with respect to the third unit frequency signal U3. That is, the transmission control unit 31 does not correct the frequency pattern for the third unit frequency signal U3.
  • the target frequency changes in a "line" shape. Therefore, the third unit frequency signal U3 and the subsequent fourth unit frequency signal U4 are switched in a discontinuous switching state.
  • the drive signal generation unit 34 shifts the frequency of at least the switching portion of the fourth unit frequency signal U4 in the same direction as the frequency change from the third unit frequency signal U3 to the fourth unit frequency signal U4. Let me. Specifically, the transmission control unit 31 outputs waveform correction information such that the entire fourth unit frequency signal U4 is offset to the low frequency side to the drive signal generation unit 34.
  • the drive frequency waveform is set in a rectangular wave shape that changes in a step shape.
  • the desired transmission frequency change in the resonance type transmitter / receiver 2 can be realized in the shortest possible time, and thus the signal length per bit can be shortened as much as possible.
  • FIG. 9 is a modification of the frequency shift mode in the example shown in FIG.
  • the frequency of the portion of the unit frequency signal other than the switching portion is not shifted, while the frequency of the switching portion is shifted.
  • the drive signal generation unit 34 does not shift the frequency of the portion other than the switching portion of the second unit frequency signal U2, while shifting the frequency of the switching portion.
  • the switching portion is a portion between time t1-tm1.
  • the part other than the switching part is the part between the times tm1-t2.
  • the drive signal generation unit 34 shifts the frequency of the switching portion between the times t2-tm2 in the third unit frequency signal U3, but does not shift the frequency of the portion other than the switching portion. Further, the drive signal generation unit 34 shifts the frequency of the switching portion between the times t3-tm3 in the fourth unit frequency signal U4, but does not shift the frequency of the portion other than the switching portion.
  • FIG. 10 is a modification of the frequency shift mode in the example shown in FIG.
  • the frequency pattern after the shift is set to have an "up chirp" shape that linearly and monotonically rises with the passage of time.
  • the frequency pattern after the shift is set to a fixed frequency signal having no temporal frequency change.
  • the drive signal generation unit 34 sets the frequency after the shift of the portion between the times t1-tm1 in the second unit frequency signal U2 to a fixed frequency that does not change with time. Similarly, the drive signal generation unit 34 sets the frequency after the shift of the portion between the times t2-tm2 in the third unit frequency signal U3 to a fixed frequency with no temporal frequency change.
  • the desired transmission frequency change in the resonance type transmitter / receiver 2 can be realized in the shortest possible time, and thus the signal length per bit can be shortened as much as possible.
  • FIG. 11 is a modification of the frequency shift mode in the example shown in FIG.
  • the duration of the switching portion where the frequency is shifted is set longer as the difference between the frequency after the shift and the resonance frequency fC becomes larger. That is, the drive signal generation unit 34 has a duration "tm1-t1" as the difference between the shifted frequency and the resonance frequency fC increases in the portion between the times t1-tm1 in the second unit frequency signal U2.
  • the duration "tm1-t1" of the switching portion is set so as to be longer.
  • the resonance frequency fC corresponds to the center frequency in the frequency bands fC to fH of the basic signal.
  • the frequency after the shift has a larger difference from the resonance frequency fC. Therefore, the duration "tm2-t2" of the switching portion in the third unit frequency signal U3 is set longer than the duration "tm1-t1" of the switching portion in the second unit frequency signal U2.
  • the drive signal generation unit 34 sets the frequency after the shift to a frequency different from the resonance frequency fC.
  • the desired transmission frequency change in the resonance type transmitter / receiver 2 can be realized in the shortest possible time, and thus the signal length per bit can be shortened as much as possible.
  • the target frequency linearly decreases from the resonance frequency fC to the lower limit frequency fL between the times t0 and t1, and the lower limit frequency between the times t1-t2. It rises linearly from fL to the resonance frequency fC. Before and after time t1, the target frequency changes from a decrease to an increase at a lower limit frequency fL away from the resonance frequency fC.
  • the resonance type transmitter / receiver 2 has poor followability to the switching of the drive frequency. Therefore, when trying to change the transmission frequency from a frequency away from the resonance frequency fC toward the resonance frequency fC, it is difficult to obtain sufficient followability simply by directing the target value toward the resonance frequency fC. Therefore, in this case, it is necessary to excessively shift the actual drive frequency in the direction in which the frequency is desired to be changed from the default value in the basic signal.
  • the drive signal generation unit 34 changes the drive frequency from the default value on the lower frequency side than the resonance frequency fC in the basic signal before the shift to the higher frequency side than the resonance frequency fC during the time t1-tm1. Shift. That is, the transmission control unit 31 outputs waveform correction information so that the frequency after the shift is on the “opposite side” of the frequency before the shift with the resonance frequency fC in between.
  • the vehicle V on which the object detection device 1 is mounted is not limited to automobiles. Further, the object detection device 1 is not limited to the in-vehicle configuration mounted on the vehicle V. Therefore, specifically, for example, the object detection device 1 can be mounted on a ship or an air vehicle.
  • the object detection device 1 is not limited to the configuration including one transmitter / receiver 2 and one drive device 3 as shown in FIG. That is, the object detection device 1 may include a plurality of transmitters / receivers 2.
  • the drive device 3 may be configured to control the drive of a plurality of transmitters / receivers 2.
  • the transmitter / receiver 2 and the drive device 3 may be provided in a one-to-one relationship.
  • the object detection device 1 is not limited to the transmission / reception integrated configuration. That is, the object detection device 1 is not limited to a configuration in which ultrasonic waves can be transmitted and received by a single transducer 21. Therefore, for example, the transmitting transducer 21 electrically connected to the transmitting circuit 22 and the receiving transducer 21 electrically connected to the receiving circuit 23 may be provided in parallel. In other words, the transmitting unit 20A and the receiving unit 20B may each include one transducer 21. In this case, the transmitting unit 20A and the receiving unit 20B may be supported by separate sensor housings, respectively.
  • the two-dimensional position of the object B with respect to the own vehicle may be detected by triangulation using a plurality of transducers 21.
  • a transmission wave having the same frequency characteristic, that is, a code arrangement can be transmitted from each of the plurality of transducers 21 mounted on the own vehicle.
  • the "normal wave” is the received wave when the reflected wave of the transmitted wave transmitted from the own vehicle is received by the own vehicle.
  • the "non-normal wave” is a received wave when the reflected wave of the transmitted wave transmitted from another vehicle is received by the own vehicle.
  • the time per bit can be shortened, and more code patterns can be transmitted than before. Therefore, for example, different code patterns can be assigned to each of the plurality of transducers 21 mounted on the own vehicle. Then, a transmission wave having a different frequency characteristic, that is, a code arrangement can be transmitted from each of the plurality of transducers 21 mounted on the own vehicle. This facilitates the distinction between the direct wave and the indirect wave, and thus erroneous recognition due to the influence of multiple reflections and the like can be satisfactorily suppressed.
  • each part of the transmission circuit 22, the reception circuit 23, etc. is not limited to the specific example shown in the above embodiment. That is, for example, the digital / analog conversion circuit may be provided in the drive signal generation unit 34 instead of the transmission circuit 22. That is, the drive signal may be the element input signal itself for the transducer 21.
  • All or part of the drive device 3 may be provided outside the sensor housing (not shown) that supports the transmitter / receiver 2 in the ultrasonic sensor. That is, for example, all or a part of the drive device 3 may be provided in a so-called sonar ECU electrically connected to the ultrasonic sensor.
  • ECU is an abbreviation for Electronic Control Unit.
  • the code string may be changeable or immutable. That is, for example, the transmission control unit 31 may be configured to change the code string applied to the transmission wave when the object detection unit 42 detects interference. Specifically, for example, when the object detection unit 42 detects interference, the transmission control unit 31 selects a code string different from the code string currently selected as the transmission code string as a new transmission code string. It may be. Alternatively, the transmission control unit 31 may use a random number or the like to cause the code generation unit 32 to generate a code string each time the object detection device 1 is activated.
  • the drive signal generation unit 34 may be configured to output only one type of drive signal SD to one transmitter / receiver 2.
  • the drive signal generation unit 34 in the object detection device 1 mounted on the own vehicle outputs only the drive signal SD corresponding to the 3-bit code "110".
  • the drive signal generation unit 34 in the object detection device 1 mounted on one other vehicle outputs only the drive signal SD corresponding to the 3-bit code "100”.
  • the drive signal generation unit 34 in the object detection device 1 mounted on another vehicle outputs only the drive signal SD corresponding to the 3-bit code "111".
  • the code generation unit 32 may be omitted.
  • the drive signal generation unit 34 may be configured to input drive signal SDs having different code sequences to each of the plurality of transmitters / receivers 2. Specifically, for example, when two transmitters / receivers 2 are provided, a drive signal SD corresponding to a 3-bit code of "110" is input to one of them, and a 3-bit code of "100" is input to the other. The corresponding drive signal SD can be input.
  • FC may be the center frequency in the transmission / reception frequency band between the upper limit frequency fH and the lower limit frequency fL.
  • the center frequency in this case may be a frequency different from the resonance frequency of the transmitter / receiver 2.
  • the code string and the frequency characteristics corresponding thereto are not limited to the above specific examples. 12 to 17 show another example of a code string having a 4-bit code.
  • FIG. 12 shows a code sequence “1, -1, 1, -1” which is an inverted version of the code string “-1,1, -1,1” shown in FIG.
  • FIG. 13 shows a code sequence “1, -1, -1, 1” which is an inverted version of the code string “-1, 1, 1, -1” shown in FIG.
  • FIG. 14 shows a code sequence “1, -1, 0, 1”.
  • the predetermined frequency in the case of the code "0" corresponding to the CW signal is not limited to the resonance frequency fC. That is, for example, the first unit frequency signal U1 corresponding to the first bit “1" in the code string "1,0, -1,0" shown in FIG. 15 linearly extends from the resonance frequency fC to the upper limit frequency fH. It rises monotonically. Therefore, the second unit frequency signal U2 corresponding to the code "0" of the second bit is set to be constant at the upper limit frequency fH so as to be continuous with the frequency at the end of the first unit frequency signal U1 before that. To.
  • the third unit frequency signal U3 corresponding to the third bit "-1" linearly and monotonically decreases from the upper limit frequency fH to the resonance frequency fC. Therefore, the fourth unit frequency signal U4 corresponding to the code "0" of the fourth bit is constantly set at the resonance frequency fC so as to be continuous with the frequency at the end of the third unit frequency signal U3 before that.
  • the first unit frequency signal U1 corresponding to the first bit “1” in the code string “-1,0,1,0” shown in FIG. 16 is linearly monotonous from the resonance frequency fC to the lower limit frequency fL. descend. Therefore, the second unit frequency signal U2 corresponding to the code "0" of the second bit is constantly set at the lower limit frequency fL so as to be continuous with the frequency at the end of the first unit frequency signal U1 before that. To.
  • the third unit frequency signal U3 corresponding to the third bit "1" linearly and monotonically rises from the lower limit frequency fL to the resonance frequency fC. Therefore, the fourth unit frequency signal U4 corresponding to the code "0" of the fourth bit is set to be constant at the resonance frequency fC so as to be continuous with the frequency at the end of the third unit frequency signal U3 before that.
  • the start frequency of the first bit is not limited to the resonance frequency fC. That is, for example, as shown in FIG. 17, the start frequency of the first bit may be the lower limit frequency fL. Alternatively, the start frequency of the first bit may be the upper limit frequency fH. Alternatively, the start frequency of the first bit may be a frequency different from the upper limit frequency fH, the resonance frequency fC, and the lower limit frequency fL.
  • the leading bit has some frequency modulation that is not "0" or CW wave. This improves the distinctiveness.
  • the present disclosure is not limited to such embodiments. That is, for example, the first bit may be "0", that is, a CW wave.
  • the drive device 3 linearly changed the target frequency.
  • the present disclosure is not limited to such embodiments. That is, for example, the drive device 3 may change the target frequency in a curve. Alternatively, the drive device 3 may change the target frequency in steps.
  • FIG. 18 shows an example of an ideal FSK signal in sonar.
  • FSK is an abbreviation for Frequency Shift Keying.
  • FIG. 19 shows an example of an actual FSK signal corresponding to FIG.
  • td indicates a bit determination time
  • Tb indicates a bit determination cycle.
  • C1, C2, C3, and C4 represent the first bit, the second bit, the third bit, and the fourth bit, respectively.
  • the sonar is a resonance type, so the frequency does not switch suddenly. Therefore, as shown in FIGS. 18 and 19, the FSK signal in the sonar has a frequency gradient, that is, a slew rate, when the frequency is switched.
  • the maximum absolute value of this slew rate depends on the characteristics of the transducer 21 and the transmission / reception circuit. Further, an overshoot occurs at the beginning of the upper limit frequency fH and the lower limit frequency fL, which are bit determination frequencies. Therefore, it is necessary to set the bit length in consideration of the sonar characteristic slew rate and overshoot.
  • the signal length can be shortened by rapidly forming a constant frequency state at the upper limit frequency fH and the lower limit frequency fL, which are bit determination frequencies, while increasing the slew rate. Therefore, the present disclosure may also be well applied to FSK.
  • the "target frequency" in this case is the frequency signal showing the waveform in the ideal FSK signal shown in FIG.
  • the bit determination frequency is not limited to the upper limit frequency fH and the lower limit frequency fL. That is, the bit determination frequency may be within the above transmission / reception frequency band.
  • the conversion to frequency is not limited to FFT, and of course DFT may be used, or a plurality of BPFs for each frequency may be prepared and the frequency may be detected as the mounting method.
  • DFT is an abbreviation for Discrete Fourier Transform.
  • BPF is an abbreviation for Band-pass Filter.
  • the frequency may be measured from the interval of the zero cross time between the AC received signal and the threshold value.
  • the frequency shift processing does not have to be executed for all of them. That is, it goes without saying that if the frequency shift process is executed at least once during the transmission process corresponding to one code string, that aspect is included in the present disclosure.
  • Each of the above functional configurations and methods may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. .. Alternatively, each of the above functional configurations and methods may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, each of the above functional configurations and methods comprises a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers.
  • the drive device 3 is not limited to a configuration including a well-known microcomputer having a CPU or the like. That is, all or a part of the drive device 3 may be configured to include an ASIC or FPGA such as a gate array or a digital circuit configured to realize the above functions.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the computer program may be stored in a computer-readable non-transitional substantive storage medium as an instruction executed by the computer. That is, the device or method according to the present disclosure can also be expressed as a computer program including a procedure for realizing each of the above functions or methods, or as a non-transitional substantive storage medium that stores the program.
  • the modified example is not limited to the above example. Also, a plurality of variants can be combined with each other. Further, all or part of the above embodiments and all or part of the modifications may be combined with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

駆動信号生成部(34)は、符号列における符号の各々に対応した単位周波数信号を時系列に配列した基本信号に基づいて、超音波送信器(2)を駆動する駆動信号を生成する。基本信号にて時系列的に隣接する2つの単位周波数信号のうちの先行するものを第一単位周波数信号とし後行するものを第二単位周波数信号とする。送信周波数の目標値を目標周波数とする。駆動信号生成部は、第一単位周波数信号と第二単位周波数信号とが、第一単位周波数信号に対応する目標周波数から第二単位周波数信号に対応する目標周波数に略同一の変化率で連続的に変化する連続切替状態とは異なる非連続切替状態で切替わる場合、第二単位周波数信号における、少なくとも、開始直後を含む切替部分の周波数を、第一単位周波数信号から第二単位周波数信号への周波数変化方向と同一方向に偏移させる。

Description

駆動装置および駆動方法 関連出願への相互参照
 本出願は、2019年8月7日に出願された日本特許出願番号2019-145565号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、送信周波数が超音波である超音波送信器を駆動する装置および方法に関する。
 超音波センサを用いて物体を検知する装置が知られている。この種の装置を車両に搭載して障害物検知に用いた場合、混信等により物体の検知精度が低下する場合があり得る。混信は、例えば、自車両の周辺に存在する他車両に搭載された超音波センサから送信された超音波を、自車両に搭載された超音波センサが受信することで生じ得る。あるいは、混信は、例えば、自車両に搭載された複数の超音波センサのうちの一つが、他の一つから送信された超音波を受信することで生じ得る。
 ところで、特許文献1は、超音波マルチセンサアレイを開示する。特許文献1に記載の超音波マルチセンサアレイは、少なくとも2つの送信ユニットと少なくとも1つの受信ユニットとを有し、いくつかの送信ユニットは並列動作することが可能である。
 特許文献1に記載の超音波マルチセンサアレイにおいては、並列動作を可能とするために、超音波パルスが符号化される。具体的には、同時に動作する複数の送信ユニットにおける個々のパルス符号化のため、搬送波信号の周波数が線形変調される。すなわち、第一の送信ユニットの搬送波信号の周波数は、パルス持続時間中に線形的に増加される。一方、第二の送信ユニットの搬送波信号の周波数は、パルス持続時間中に線形的に低減される。
独国特許出願公開第10106142号明細書
 特許文献1に開示された技術を利用することで、自車両に搭載された超音波センサは、受信波が自身の送信波の反射波であるか否かを識別することが可能となる。具体的には、かかる識別は、自身の送信波の周波数変化と同様の周波数変化が受信波に含まれるか否かに基づいて行われる。所望の識別精度が得られれば、上記のような混信の問題は解決され得る。
 しかしながら、上記のような、超音波の送受信を利用した物体検知において、さらなる識別精度の向上が求められている。本開示は、上記に例示した事情等に鑑みてなされたものである。すなわち、本開示は、例えば、識別精度を従来よりも向上し得る装置構成および方法を提供する。
 本開示の1つの観点によれば、送信周波数が超音波である超音波送信器を駆動する駆動装置は、
 複数の符号により形成された符号列における前記符号の各々に対応した周波数信号である単位周波数信号を時系列に配列した基本信号に基づいて、前記超音波送信器を駆動する駆動信号を生成するように構成された、駆動信号生成部を備え、
 前記基本信号にて時系列的に隣接する2つの前記単位周波数信号のうちの先行するものを第一単位周波数信号とし且つ後行するものを第二単位周波数信号とし、さらに、前記送信周波数の目標値を目標周波数とした場合に、前記駆動信号生成部は、前記第一単位周波数信号と前記第二単位周波数信号とが、前記第一単位周波数信号に対応する前記目標周波数から前記第二単位周波数信号に対応する前記目標周波数に略同一の変化率で連続的に変化する連続切替状態とは異なる非連続切替状態で切替わる場合、前記第二単位周波数信号における、少なくとも、開始直後を含む切替部分の周波数を、前記第一単位周波数信号から前記第二単位周波数信号への周波数変化方向と同一方向に偏移させる。
 本開示の他の1つの観点によれば、超音波送信器を駆動する駆動方法は、
 複数の符号により形成された符号列における前記符号の各々に対応した周波数信号である単位周波数信号を時系列に配列した基本信号に基づいて、前記超音波送信器を駆動する駆動信号を生成し、
 前記基本信号にて時系列的に隣接する2つの前記単位周波数信号のうちの先行するものを第一単位周波数信号とし且つ後行するものを第二単位周波数信号とし、さらに、前記送信周波数の目標値を目標周波数とした場合に、前記駆動信号の生成にて、前記第一単位周波数信号と前記第二単位周波数信号とが、前記第一単位周波数信号に対応する前記目標周波数から前記第二単位周波数信号に対応する前記目標周波数に略同一の変化率で連続的に変化する連続切替状態とは異なる非連続切替状態で切替わる場合、前記第二単位周波数信号における、少なくとも、開始直後を含む切替部分の周波数を、前記第一単位周波数信号から前記第二単位周波数信号への周波数変化方向と同一方向に偏移させる。
 なお、出願書類の各欄において、各要素に括弧付きの参照符号が付される場合がある。しかしながら、かかる参照符号は、同要素と後述する実施形態に記載の具体的手段との対応関係の、単なる一具体例を示すものにすぎない。よって、本開示は、上記の参照符号の記載によって、何ら限定されるものではない。
実施形態に係る駆動装置を備えた物体検知装置の概略構成を示すブロック図である。 図1に示された駆動信号生成部が出力する駆動信号の一例における送受信の周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号の他の一例における送受信の周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 図1に示された駆動信号生成部が出力する駆動信号のさらに他の一例における周波数特性を示すタイムチャートである。 4個の符号を含む符号列の一例を示すタイムチャートである。 4個の符号を含む符号列の他の一例を示すタイムチャートである。 4個の符号を含む符号列のさらに他の一例を示すタイムチャートである。 4個の符号を含む符号列のさらに他の一例を示すタイムチャートである。 4個の符号を含む符号列のさらに他の一例を示すタイムチャートである。 4個の符号を含む符号列のさらに他の一例を示すタイムチャートである。 理想的なFSK信号の一例を示すタイムチャートである。 図18に対応する実際のFSK信号の一例を示すタイムチャートである。
 (実施形態)
 以下、本開示の実施形態を、図面に基づいて説明する。なお、一つの実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがある。このため、変形例は、実施形態の説明の後にまとめて記載する。
 図1を参照すると、物体検知装置1は、移動体としての車両Vに搭載されることで、当該車両Vの周囲の物体Bを検知するように構成されている。物体検知装置1が車両Vに搭載された状態を、以下「車載状態」と称する。また、本実施形態に係る物体検知装置1を搭載する車両Vを、以下「自車両」と称する。
 物体検知装置1は、いわゆるソナーすなわち超音波センサとしての構成を有している。具体的には、物体検知装置1は、超音波である送信波を外部に向けて送信するように構成されている。また、物体検知装置1は、外部に送信した送信波の物体Bによる反射波を受信することで、周囲の物体Bを検知するとともに当該物体Bに対応する測距情報を取得するように構成されている。
 物体検知装置1は、送受信器2と、駆動装置3と、判定装置4とを備えている。本実施形態においては、物体検知装置1は、送受信器2、駆動装置3、および判定装置4を、一個の不図示のセンサ筐体により支持することにより構成されている。
 すなわち、物体検知装置1は、送信周波数および受信周波数が超音波である一個の送受信器2を備えた、送受信一体型の構成を有している。送受信器2は、送信波を外部に向けて送信する超音波送信器としての機能と、物体Bによる送信波の反射波を含む受信波を受信する超音波受信器としての機能とを奏するように構成されている。
 具体的には、送受信器2は、送信部20Aと受信部20Bとを有している。また、送受信器2は、一個のトランスデューサ21を有している。送信部20Aおよび受信部20Bは、共通のトランスデューサ21を用いて、送信機能および受信機能をそれぞれ実現するように構成されている。トランスデューサ21は、略円筒形状のマイクロフォン筐体に圧電素子等の電気-機械エネルギー変換素子を内蔵した、共振型の超音波マイクロフォンとしての構成を有している。
 車載状態にて、トランスデューサ21は、自車両の外表面に面する位置に配置されることで、送信波を自車両の外部に送信可能および反射波を自車両の外部から受信可能に設けられている。具体的には、トランスデューサ21は、車載状態にて、自車両における外板部材V1に形成された貫通孔である装着孔V2から送受信面21aが自車両の外部空間に露出するように、外板部材V1に装着されている。外板部材V1は、例えば、バンパーまたはボディパネルであって、合成樹脂または金属製の板材によって形成されている。送受信面21aは、トランスデューサ21におけるマイクロフォン筐体の外表面であって、送信波の送信面および受信波の受信面として機能するように設けられている。
 送受信器2は、トランスデューサ21と、送信回路22と、受信回路23とを備えている。トランスデューサ21は、送信回路22および受信回路23と電気接続されている。送信部20Aは、トランスデューサ21と送信回路22とによって構成されている。また、受信部20Bは、トランスデューサ21と受信回路23とによって構成されている。
 送信回路22は、入力された駆動信号に基づいてトランスデューサ21を駆動することで、トランスデューサ21にて駆動信号の周波数に対応する周波数の送信波を発信させるように設けられている。駆動信号の周波数を、以下「駆動周波数」と称する。また、送信波の周波数を、以下「送信周波数」と称する。これに対し、受信波の周波数を、以下「受信周波数」と称する。
 具体的には、送信回路22は、デジタル/アナログ変換回路等を有している。すなわち、送信回路22は、駆動信号生成部34から出力された駆動信号に対してデジタル/アナログ変換等の信号処理を施すことで、素子入力信号を生成するように構成されている。素子入力信号は、トランスデューサ21を駆動するための交流電圧信号である。そして、送信回路22は、生成した素子入力信号をトランスデューサ21に印加してトランスデューサ21における電気-機械エネルギー変換素子を駆動することで、送受信面21aを励振して送信波を外部に送信するように構成されている。
 受信回路23は、トランスデューサ21による受信波の受信結果に対応する受信信号を生成して受信信号処理部41に出力するように設けられている。具体的には、受信回路23は、増幅回路およびアナログ/デジタル変換回路等を有している。すなわち、受信回路23は、トランスデューサ21が出力した素子出力信号に対して、増幅およびアナログ/デジタル変換等の信号処理を施すことで、受信信号を生成するように構成されている。素子出力信号は、受信波の受信により送受信面21aが励振された際に、トランスデューサ21に設けられた電気-機械エネルギー変換素子にて発生する、交流電圧信号である。また、受信回路23は、受信波の振幅および周波数に関する情報が含まれる、生成した受信信号を、受信信号処理部41に出力するように構成されている。
 このように、送受信器2は、トランスデューサ21により、送信波を送信するとともに物体Bからの反射波を受信波として受信することで、トランスデューサ21と物体Bとの距離および受信周波数に応じた受信信号を生成するように構成されている。送受信器2が、自身の送信した送信波の反射波を受信した場合の受信波を、以下「正規波」と称する。これに対し、他装置からの送信波に起因する受信波を、以下「非正規波」と称する。「他装置」には、自車両に搭載された他の送受信器2も含まれる。
 送受信器2を駆動する駆動装置3は、送受信器2からの送信波の送信状態を制御するように構成されている。本実施形態においては、駆動装置3は、物体検知装置1における物体検知動作の全体を制御する不図示の制御回路に設けられている。駆動装置3は、送信制御部31と、符号生成部32と、基本信号生成部33と、駆動信号生成部34と、温度取得部35とを備えている。
 送信制御部31は、駆動装置3の全体の動作を制御することで、送信波における波形および送信タイミングを決定するように設けられている。すなわち、送信制御部31は、送信波に付与する符号列である送信符号列を決定するようになっている。「符号列」は、複数の符号により形成されている。具体的には、符号列は、例えば、「1」と「0」と「-1」という3種類の符号を、「1,-1」のように複数配列した構造を有している。本実施形態においては、送信制御部31は、あらかじめ定められた複数の符号列の中から1つを送信符号列として選択するようになっている。
 符号生成部32は、送信制御部31が決定した送信符号列を、基本信号生成部33に出力するように設けられている。具体的には、符号生成部32は、例えば、送信制御部31が送信符号列を「符号列F1」に決定した場合には符号列「1,0」を出力する一方、送信制御部31が送信符号列を「符号列F2」に決定した場合には符号列「1,1」を出力するようになっている。
 基本信号生成部33は、送信符号列に対応する基本信号を生成して駆動信号生成部34に出力するように設けられている。基本信号は、単位周波数信号を時系列に配列した信号である。単位周波数信号は、送信符号列における複数の符号の各々に対応した周波数信号である。「周波数信号」は、周波数の変調態様、すなわち、時間経過に伴う周波数の変化態様を示す信号である。具体的には、例えば、符号「1」に対応する単位周波数信号として、所定時間内にて周波数が上昇する周波数上昇信号が設定されている。また、符号「-1」に対応する単位周波数信号として、所定時間内にて周波数が低下する周波数低下信号が設定されている。さらに、符号「0」に対応する単位周波数信号として、所定時間内にて周波数が一定のCW信号が設定されている。CWはcontinuous waveformの略である。CW信号はCF信号とも称される。CFはcontinuous frequencyの略である。
 駆動信号生成部34は、送信制御部31から受信した制御信号と、基本信号生成部33により生成された基本信号とに基づいて、駆動信号を生成するように設けられている。駆動信号は、送受信器2すなわち送信部20Aを駆動して、トランスデューサ21から送信波を送信させるための信号であって、例えば超音波帯域内の周波数を有するパルス状信号である。駆動信号の具体例については、後述の動作概要の欄にて説明する。
 送信制御部31が生成および出力する制御信号は、駆動信号の最終的な波形を決定するための波形補正情報と、送信波の送信タイミングを制御するためのタイミング信号とを含む。すなわち、駆動信号生成部34は、送信制御部31が決定した送信符号列における符号偏移態様に応じた波形補正情報により基本信号を補正することで生成した周波数信号に基づいて、駆動信号を生成するようになっている。波形補正情報の詳細については、後述の動作概要の欄にて説明する。また、駆動信号生成部34は、タイミング信号に基づいて、駆動信号を所定のタイミングで送信部20Aに向けて出力するように設けられている。
 温度取得部35は、物体検知装置1すなわち送受信器2の動作温度を取得するように設けられている。具体的には、温度取得部35は、車両Vに搭載された不図示の外気温センサによる外気温の検出値を、不図示の車載ネットワーク経由で受信するようになっている。
 温度取得部35は、取得した動作温度を、送信制御部31に出力するように設けられている。送信制御部31は、取得した動作温度に応じて、波形補正情報を設定するようになっている。動作温度に応じた波形補正情報の設定の詳細については、後述の動作概要の欄にて説明する。
 判定装置4は、受信信号に基づいて、物体Bの検知判定処理を実行するように構成されている。具体的には、判定装置4は、受信信号処理部41と物体検知部42とを有している。
 受信信号処理部41は、受信信号に対してFFT等の処理を施すことで、振幅信号と受信周波数信号とを生成するように構成されている。FFTはFast Fourier Transformの略である。振幅信号は、受信波の振幅に対応する信号である。受信周波数信号は、受信波における周波数信号、すなわち、受信周波数に対応する信号である。換言すれば、受信周波数信号は、受信信号における、符号化に関連する波形パターンに対応する信号である。また、受信信号処理部41は、生成した振幅信号および受信周波数信号を、物体検知部42に出力するように設けられている。
 物体検知部42は、受信信号処理部41から取得した振幅信号および受信周波数信号に基づいて、物体Bを検知するように設けられている。具体的には、物体検知部42は、所定の参照信号と取得した受信周波数信号とに基づいて、受信波が正規波であるか否かを判定するようになっている。また、物体検知部42は、受信波が正規波である場合に、取得した振幅信号に基づいて、物体Bの存在およびトランスデューサ21と物体Bとの距離を検知するようになっている。
 (動作概要)
 以下、本実施形態の構成による動作の概要について、典型的な動作例、および、同構成により奏される効果とともに、各図面を参照しつつ説明する。
 所定の物体検知条件が成立すると、物体検知装置1は、物体検知動作を開始する。物体検知条件は、例えば、自車両の走行速度が所定範囲内であること、自車両のシフトポジションが後退を含む走行ポジションであること、等を含む。物体検知条件が不成立となると、物体検知装置1は、物体検知動作を終了する。
 物体検知動作が開始されると、まず、送信制御部31は、送信波に付与する符号列である送信符号列を決定する。また、送信制御部31は、送信符号列の決定結果を、符号生成部32に出力する。符号生成部32は、送信制御部31が決定した送信符号列を、基本信号生成部33に出力する。基本信号生成部33は、符号生成部32から出力された送信符号列に対応する基本信号を生成して、駆動信号生成部34に出力する。
 具体的には、例えば、送信制御部31が送信符号列を「符号列F1」に決定した場合に、符号生成部32は符号列「1,0」を送信符号列として出力する。すると、基本信号生成部33は、符号列「1,0」に対応する基本信号を生成する。かかる基本信号は、先頭ビットの符号「1」に対応した単位周波数信号である周波数上昇信号と、その次の第二ビットの符号「0」に対応した単位周波数信号であるCW信号とを、時系列に配列することにより形成される。
 送信制御部31は、物体検知条件が成立すると、所定周期で送信タイミングの到来を判定する。所定周期は、例えば、数百ミリ秒周期である。送信タイミングの到来判定は、不図示のタイマ等の計時手段を用いて実行される。送信タイミングが到来すると、送信制御部31は、制御信号を駆動信号生成部34に向けて出力する。すなわち、送信制御部31は、駆動信号生成部34から送受信器2への駆動信号の出力を制御する。
 基本信号および制御信号が入力されると、駆動信号生成部34は、駆動信号を生成して送信部20Aすなわち送信回路22に向けて出力する。送信回路22は、入力された駆動信号に基づいて、トランスデューサ21を駆動する。すると、トランスデューサ21は、駆動信号の周波数に対応する周波数の超音波である送信波を、自車両の外部に向けて送信する。これにより、所定の送信タイミングにて送信波が送信される。
 物体検知動作中における所定の受信可能期間にて、物体検知装置1は、受信動作を実行する。受信可能期間は、送受信一体型である本実施形態の構成においては、送信波の送信終了とその直後に到来する次の送信タイミングとの間の期間のうち、残響等の影響による不感帯を除いた期間である。トランスデューサ21は、受信可能期間にて、受信波の振幅および周波数に応じた交流電圧信号である素子出力信号を出力する。
 受信回路23は、素子出力信号に対して増幅およびアナログ/デジタル変換等の信号処理を施すことで、受信信号を生成する。受信信号処理部41は、受信信号に対してFFT等の処理を施すことで、振幅信号および受信周波数信号を生成する。受信信号処理部41は、生成した振幅信号および受信周波数信号を、物体検知部42に出力する。
 駆動信号は、送信制御部31が決定した送信符号列における符号の各々に対応して周波数変調されている。送信波の周波数である送信周波数は、駆動信号の周波数である駆動周波数に応じたものとなる。このため、送信周波数は、駆動周波数の時間的変化に対応する周波数変化を、識別性に対応する特徴として有することとなる。したがって、受信波が正規波である場合、受信周波数は、周波数変調態様について、送信周波数と同様の特徴を有しているはずである。なお、「周波数変調態様」には、無変調すなわちCWも含まれる。
 そこで、物体検知部42は、受信信号処理部41から出力された受信周波数信号に基づいて、受信波が正規波であるか否かを判定する。具体的には、物体検知部42は、受信信号における波形パターンに対応する受信周波数信号と、送信制御部31により決定された送信符号列に対応する参照信号とを照合する。これにより、受信波が、正規波すなわち自身の送信波の反射波であるか否かを、識別することが可能となる。物体検知部42は、受信波が正規波である場合に、受信信号処理部41から出力された振幅信号に基づいて、物体Bの存在およびトランスデューサ21と物体Bとの距離を検知する。
 上記の通り、送信波は、識別性を付与するために符号化されている。また、符号化方式として、各ビットに対して周波数変調態様に応じた符号を対応付けた複数ビットによる符号化が用いられている。したがって、本実施形態に係る物体検知装置1、および、これにより実行される物体検知方法によれば、識別精度を従来よりも向上することが可能となる。
 図2Aは、符号列「1,0」に対応する、駆動周波数および受信周波数の時間変化を示す。図2A中、横軸tは時間を示す。図2A中の、上側のタイムチャートにおいて、縦軸fDは駆動周波数を示す。また、破線は、目標周波数、すなわち、送信周波数の目標値を示す。さらに、図2A中の、下側のタイムチャートにおいて、縦軸fRは受信周波数を示す。同様に、図2Bは、符号列「1,1」に対応する、駆動周波数および受信周波数の時間変化を示す。図2Bにおける縦軸および横軸の意義は図2Aと同様である。
 ところで、共振型の超音波マイクロフォンであるトランスデューサ21を備えた、送受信器2は、帯域通過フィルタと同様の特性を有する。すなわち、送受信器2により良好に送受信可能な周波数帯域は、実質的に、共振周波数fCを中心とした±数%の幅に限定される。このため、送受信器2に対しては、所定の送受信周波数帯域が設定される。
 かかる送受信周波数帯域は、出力あるいは感度をSとし、共振周波数fCにてS=0[dB]とした場合の、S=0~Sb[dB]となる範囲である。すなわち、送受信器2により良好に送受信可能な周波数範囲である送受信周波数帯域は、上限周波数fHと下限周波数fLとの間のS=0~Sb[dB]となる帯域である。Sbは、典型的には、例えば、-3[dB]である。感度は、送受信器2を受信器として用いた場合の感度である。なお、このような送受信周波数帯域は、「共振帯」、「-3dB帯域」、あるいは「3dB帯域」とも称され得る。fL<fC<fHである。fL-fC≒fC-fHである。
 そこで、本実施形態においては、符号「1」に対応する目標周波数は、図2Aおよび図2Bにて右上がりの破線で示された如く下限周波数fLから時間経過とともに上限周波数fHに向かって線形的に上昇する「アップチャープ」状となるように設定されている。一方、符号「-1」に対応する目標周波数は、上限周波数fHから時間経過とともに下限周波数fLに向かって線形的に低下する「ダウンチャープ」状となるように設定されている。また、符号「0」に対応する目標周波数は、共振周波数fCにて一定となるように設定されている。
 したがって、符号「1」に対応する単位周波数信号である周波数上昇信号は、駆動周波数が下限周波数fLから上限周波数fHに向かって上昇する周波数特性を有している。一方、符号「-1」に対応する単位周波数信号である周波数低下信号は、駆動周波数が上限周波数fHから下限周波数fLに向かって低下する周波数特性を有している。また、符号「0」に対応する単位周波数信号であるCW信号は、駆動周波数が共振周波数fCにて一定となる周波数特性を有している。
 また、共振型の送受信器2においては、共振周波数fCから離れた駆動周波数では、周波数の追従性が悪い。このため、図2Aおよび図2Bに示されたように、先頭ビットが符号「0」とは異なる場合、第一開始時刻ts1より前のプレバースト開始時刻tsから第一開始時刻ts1までの間、駆動周波数が共振周波数fCにて一定に設定される。第一開始時刻ts1は、先頭ビットに対応する第一単位周波数信号U1の開始時刻である。すなわち、共振周波数fCから離れた駆動周波数にて開始する第一単位周波数信号U1による駆動に先立って、送受信器2が共振周波数fCにて短時間駆動される。これにより、周波数の追従性が改善され得る。
 さらに、本実施形態においては、符号「1」に対応する周波数上昇信号は、下限周波数fLから上限周波数fHにステップ状に変化するような矩形波状の周波数特性を有している。一方、符号「-1」に対応する周波数低下信号は、上限周波数fHから下限周波数fLにステップ状に変化するような矩形波状の周波数特性を有している。これにより、周波数の追従性が改善され得る。
 具体的には、図2Aに示された例においては、周波数上昇信号である第一単位周波数信号U1にて、第一開始時刻ts1から、第一終了時刻te1より前の第一中間時刻tm1までの間、駆動周波数が一定周波数すなわち下限周波数fLに設定される。第一終了時刻te1は、第一単位周波数信号U1の終了時刻を示す。一方、第一中間時刻tm1から第一終了時刻te1までの間、駆動周波数が一定周波数すなわち上限周波数fHに設定される。そして、第一開始時刻ts1と第一終了時刻te1との間の第一中間時刻tm1にて、駆動周波数が下限周波数fLから上限周波数fHにステップ状に変化する。これにより、実際の送信周波数特性は、図2Aにて破線で示された如く時間経過とともに周波数が線形的に上昇する目標の周波数特性に近いものとなる。
 なお、図2Aに示された例においては、第一単位周波数信号U1における、第一開始時刻ts1から第一中間時刻tm1までの間の時間間隔は、第一中間時刻tm1から第一終了時刻te1までの間の時間間隔とほぼ等しくなるように設定される。また、第二開始時刻ts2および第二終了時刻te2は、それぞれ、第二ビットに対応する第二単位周波数信号U2の開始時刻および終了時刻を示す。本実施形態においては、第一終了時刻te1と第二開始時刻ts2とは、ほぼ一致しているものとする。
 (周波数偏移処理)
 図2Aに示された例においては、符号の切り替えが行われる第一終了時刻te1すなわち第二開始時刻ts2にて、目標周波数は、上限周波数fHから共振周波数fCに不連続的に変化する。その後の目標周波数は、共振周波数fCにて一定である。これに対応して、基本信号にて、第二単位周波数信号U2は、第二開始時刻ts2から第二終了時刻te2まで周波数が共振周波数fCにて一定となるように設定される。第二開始時刻ts2から第二終了時刻te2までの時間間隔は、第一開始時刻ts1から第一終了時刻te1までの時間間隔と同一に設定される。
 このため、図2Aに示された符号列「1,0」の例においては、基本信号は、下記のような周波数特性を有している。具体的には、基本信号は、第一中間時刻tm1にて下限周波数fLから上限周波数fHにステップ状に変化するような矩形波状の第一単位周波数信号U1と、共振周波数fCにて一定のCW波状の第二単位周波数信号U2とを時系列に配列したものである。したがって、符号「0」に対応するCW信号である第二単位周波数信号U2において、駆動周波数は、第二開始時刻ts2から第二終了時刻te2までの間、本来、共振周波数fCにて一定となるはずである。
 しかしながら、共振型の送受信器2においては、駆動周波数の切替えに対する追従性が悪い。すなわち、送信周波数を変えようよしても、実際は、送信周波数は、瞬時には切り替わらず徐々に変化する。このときの周波数の変化率は、トランスデューサ21および送信回路22の特性に依存する。よって、第二開始時刻ts2から第二終了時刻te2までの間の駆動周波数を共振周波数fCにて一定とすると、実際の送信周波数および受信周波数は、図2Aにおける下側のタイムチャートにて点線で示されたように時間変化する。具体的には、先頭ビットにて周波数が立ち上がる立ち上がり領域T1における周波数変化の影響で、ビット切替え領域T2にて周波数がオーバーシュートし、その後の収斂領域T3にて周波数が共振周波数fCに漸近する。
 このような、オーバーシュート周波数から共振周波数fCへの漸近により、図2Aにおける下側のタイムチャートにて点線で示されたように、収斂領域T3にて、周波数が低下する波形パターンが出現する。かかる周波数低下の波形パターンが「ダウンチャープ」すなわち符号「-1」として誤って判定されると、識別精度が低下する。あるいは、周波数変化の傾きがCW信号のように平坦化するまでの所要時間により、1ビットあたりの信号長が長くなってしまう。信号長が長くなると、単位時間あたりのビット数を大きくすることが困難となり、設定可能な符号パターンのバリエーションにも限界が生じる。
 そこで、本実施形態に係る駆動装置3およびこれにより実行される駆動方法は、第二単位周波数信号U2における、第二開始時刻ts2の直後を含む切替部分の駆動周波数を、本来の駆動周波数である共振周波数fCよりも低周波数側に偏移させる。周波数偏移の方向は、第一終了時刻te1すなわち第二開始時刻ts2における第一単位周波数信号U1から第二単位周波数信号U2への周波数変化方向と同一方向である。基本信号のうちの偏移される時刻ts2-tm2間の部分における偏移後の周波数信号と、基本信号のうちの偏移されない時刻ts1-te1間および時刻tm2-te2間の部分の周波数信号とにより、駆動周波数における周波数信号が構成される。
 具体的には、図2Aにおける上側のタイムチャートに示されたように、本実施形態に係る装置および方法は、第二単位周波数信号U2における、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯にて、駆動周波数を低周波数側に補正する。図2Aに示された例においては、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯は、第二単位周波数信号U2における、第二開始時刻ts2の直後の部分である。
 本実施形態によれば、図2Aにおける下側のタイムチャートにて実線で示されたように、ビット切替え領域T2における周波数のオーバーシュートが可及的に抑制される。これにより、第二ビットにおける周波数変化が早期に平坦化する。よって、パターンマッチングの精度が向上する。また、1ビットあたりの信号長を可及的に短くすることで単位時間あたりのビット数を大きくすることができ、設定可能な符号パターンのバリエーションが増加する。すると、車両Vに複数のソナーを搭載した場合において、各ソナーにユニークなすなわち互いに重複しない符号を割り当てることが可能となり、受信判定にて如何なるソナーから送信された信号であるかを識別しやすくなる。したがって、本実施形態によれば、識別性を従来よりも向上することが可能となる。
 図2Bは、符号列「1,1」の例を示す。この例においては、先頭ビットの符号「1」に対応する目標周波数は、下限周波数fLから時間経過とともに上限周波数fHに向かって線形的に上昇する。その次の第二ビットの符号「1」に対応する目標周波数も、下限周波数fLから時間経過とともに上限周波数fHに向かって線形的に上昇する。符号の切り替えが行われる第一終了時刻te1すなわち第二開始時刻ts2にて、目標周波数は、上限周波数fHから下限周波数fLに不連続的に変化する。
 上記の通り、先頭ビットの符号「1」に対応する目標周波数の周波数特性と、その次の第二ビットの符号「1」に対応する目標周波数の周波数特性とは、完全に同一である。このため、本来、先頭ビットの符号「1」に対応する第一単位周波数信号U1と、その次の第二ビットの符号「1」に対応する第二単位周波数信号U2とは、完全に同一波形となるはずである。具体的には、第二単位周波数信号U2における第二開始時刻ts2から第二中間時刻tm2までの間の駆動周波数は、本来、第一単位周波数信号U1における第一開始時刻ts1から第一中間時刻tm1までの間の駆動周波数と同様に、下限周波数fLにて一定となるはずである。
 しかしながら、第二単位周波数信号U2を第一単位周波数信号U1と完全に同一波形とした場合、実際の送信周波数および受信周波数は、図2Bにおける下側のタイムチャートにて点線で示されたように時間変化する。具体的には、共振型の送受信器2における、駆動周波数の切替えに対する追従性の悪さのため、周波数切替後の周波数立ち下がり領域T4における周波数の立ち下がり量が小さくなる。すると、第二ビットにて周波数が立ち上がる再立ち上がり領域T5における、周波数の立ち上がり量あるいは立ち上がり勾配が小さくなる。このため、第二ビットにて、「アップチャープ」状に周波数が変化する符号「1」に対応する所定量の周波数変化が得られ難くなる。すなわち、受信信号の特徴が小さくなる。
 そこで、本実施形態に係る装置および方法は、第二単位周波数信号U2における、少なくとも、第二開始時刻ts2の直後を含む切替部分の駆動周波数を、本来の駆動周波数である下限周波数fLよりも低周波数側に偏移させる。周波数偏移の方向は、第一終了時刻te1すなわち第二開始時刻ts2における第一単位周波数信号U1から第二単位周波数信号U2への周波数変化方向と同一方向である。具体的には、当該装置および方法は、第二単位周波数信号U2における、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯にて、駆動周波数を低周波数側に補正する。
 本実施形態によれば、図2Bにおける下側のタイムチャートにて実線で示されたように、周波数立ち下がり領域T4における周波数の立ち下がり量が大きくなる。すると、第二ビットにて周波数が立ち上がる再立ち上がり領域T5における、周波数の立ち上がり量あるいは立ち上がり勾配が大きくなる。このため、第二ビットにて、「アップチャープ」状に周波数が変化する符号「1」に対応する所定量の周波数変化が良好に得られる。すなわち、受信信号の特徴を大きくすることができる。よって、パターンマッチングの精度が向上する。
 このように、基本信号にて時系列的に隣接する2つの単位周波数信号のうちの先行する第一単位周波数信号U1と後行する第二単位周波数信号U2とが、連続切替状態とは異なる非連続切替状態で切替わる場合がある。連続切替状態は、第一単位周波数信号U1に対応する目標周波数から第二単位周波数信号U2に対応する目標周波数に略同一の変化率で連続的に目標周波数が変化するように、第一単位周波数信号U1と第二単位周波数信号U2とが、切替わる状態である。例えば、非連続切替状態の場合、目標周波数が不連続的に変化する。あるいは、非連続切替状態の場合、目標周波数の変化率すなわち勾配が変化することで、目標周波数が「折れ線」状に変化する。非連続切替状態の場合、駆動信号生成部34は、第二単位周波数信号U2における、少なくとも、開始直後を含む切替部分の周波数を、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化方向と同一方向に偏移させる。
 具体的には、図2Aに示された例においては、第一単位周波数信号U1に対応する目標周波数は、下限周波数fLから上限周波数fHに向かって線形的に上昇する。一方、第二単位周波数信号U2に対応する目標周波数は、共振周波数fCにて一定である。第一単位周波数信号U1から第二単位周波数信号U2への切替えは、対応する目標周波数が上限周波数fHから共振周波数fCへ不連続的に変化する態様で行われる。また、目標周波数が上限周波数fHから共振周波数fCへ不連続的に変化する前後における、目標周波数の勾配も異なる。よって、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2における、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯にて、駆動周波数を本来の共振周波数fCよりも低周波数側に偏移させる。このときの周波数の偏移方向は、第一終了時刻te1および第二開始時刻ts2における、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化方向と同一方向、すなわち、上限周波数fHから共振周波数fCに向かう周波数低下方向である。
 同様に、図2Bに示された例においては、第一単位周波数信号U1に対応する目標周波数は、下限周波数fLから上限周波数fHに向かって線形的に上昇する。同様に、第二単位周波数信号U2に対応する目標周波数は、下限周波数fLから上限周波数fHに向かって線形的に上昇する。第一単位周波数信号U1から第二単位周波数信号U2への切替えは、対応する目標周波数が上限周波数fHから下限周波数fLへ不連続的に変化する態様で行われる。よって、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2における、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯にて、駆動周波数を本来の下限周波数fLよりも低周波数側に偏移させる。このときの周波数の偏移方向は、第一終了時刻te1および第二開始時刻ts2における、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化方向と同一方向、すなわち、上限周波数fHから下限周波数fLに向かう周波数低下である。
 特許文献1の開示に代表される従来の構成において、周波数変化率はセンサ特性に依存し、周波数は瞬時には切り替わらず徐々に変化する。このため、短い信号長では、受信信号の特徴が小さくなり、高い識別性が得られない、すなわち、信号長を短くすることには限界がある。一方、特徴を大きくして識別性能を向上するために信号長を長くしても、上記の通り、単位時間あたりのビット数を大きくすることが困難となる。具体的には、例えば、1ビットしか符号を送信できなくなる。1台の車両Vに8~12個のソナーが搭載されるため、1ビットの符号では良好な識別が困難となる。これに対し、本実施形態に係る装置および方法によれば、時系列的に隣接する2つの符号の切替えが、迅速且つ良好に行われ得る。このため、CW波におけるオーバーシュートを抑制したり、チャープ波における受信信号の特徴を大きくしたりすることができる。また、1ビットあたりの信号長を短くすることができる。よって、同一または異なる複数の周波数パターンを時系列的に配列することにより符号化した送信波が、良好な識別性で形成され得る。したがって、本実施形態によれば、識別精度を従来よりも向上し得る装置構成および方法が提供される。
 共振型の送受信器2において、共振周波数fCおよび送受信周波数帯域を含む、送受信の周波数特性は、温度により変動する。よって、本実施形態においては、駆動信号生成部34は、送受信器2の動作温度に応じて、図2Aおよび図2Bに示された第二単位周波数信号U2の周波数偏移態様を設定する。すなわち、温度取得部35は、物体検知装置1すなわち送受信器2の動作温度を取得して送信制御部31に出力する。送信制御部31は、取得した動作温度に応じて、波形補正情報を設定する。
 具体的には、図2Aに示された例においては、送信制御部31は、動作温度に応じて、第二単位周波数信号U2における、第二開始時刻ts2から第二中間時刻tm2までの時間間隔を設定する。また、送信制御部31は、動作温度に応じて、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯における、駆動周波数の共振周波数fCからの偏移量すなわち補正量を設定する。また、図2Bに示された例においては、送信制御部31は、動作温度に応じて、第二開始時刻ts2から第二中間時刻tm2までの間の時間帯における、駆動周波数の下限周波数fLからの偏移量すなわち補正量を設定する。
 本実施形態に係る装置および方法によれば、送信波における周波数波形への動作温度の影響を可及的に減殺させることができる。したがって、識別精度が従来よりもよりいっそう向上し得る。
 (多ビット処理)
 以上の、図2Aおよび図2Bを用いた動作概要説明においては、主として、符号列における先頭ビットと第二ビットとの切替について説明した。以下、3ビット以上の符号を有する符号列に対する具体的処理について説明する。
 送信波には、3ビット以上の符号を付与することが可能である。送信波を3ビット以上の多ビットで符号化することで、設定可能な符号パターンのバリエーションよりいっそう増加させることができ、以て識別精度を従来よりも向上することが可能となる。
 (具体例1)
 図3~図5は、送信波を4ビットの符号列で符号化する例を示す。図3~図5において、fTは目標周波数を示し、fDは駆動周波数を示す。図3~図5にて下側に示された駆動周波数fDのタイムチャート上にて、偏移前すなわち補正前の単位基本信号が太い点線で示されている。また、横軸の時間tにおいて、t0は、先頭ビットの開始時刻を示し、図2Aにおける第一開始時刻ts1に対応する。t1は、先頭ビットの終了時刻且つ第二ビットの開始時刻を示す。同様に、t2は第二ビットの終了時刻且つ第三ビットの開始時刻を示し、t3は第三ビットの終了時刻且つ第四ビットの開始時刻を示し、t4は第四ビットの終了時刻を示す。
 図3~図5に示された例において、符号「1」に対応する目標周波数は、線形的に単調上昇する「アップチャープ」状の周波数特性を有している。一方、符号「-1」に対応する目標周波数は、線形的に単調低下する「ダウンチャープ」状の周波数特性を有している。また、符号「0」に対応する目標周波数は、CW波状の周波数特性を有している。
 これに対応して、符号「1」に対応する単位周波数信号である周波数上昇信号は、駆動周波数が線形的に単調上昇する「アップチャープ」状の周波数特性を有している。一方、符号「-1」に対応する単位周波数信号である周波数低下信号は、駆動周波数が線形的に単調低下する「ダウンチャープ」状の周波数特性を有している。また、符号「0」に対応する単位周波数信号であるCW信号は、駆動周波数が一定となるCW波状の周波数特性を有している。
 図3に示された例においては、送信波は、符号列「-1,1,-1,1」により符号化される。この場合、先頭ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第二ビットに対応する目標周波数は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。第三ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第四ビットに対応する目標周波数は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。
 これに対応して、基本信号にて、第一単位周波数信号U1は、共振周波数fCから下限周波数fLまで線形的に単調低下する。また、第二単位周波数信号U2は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。また、第三単位周波数信号U3は、共振周波数fCから下限周波数fLまで線形的に単調低下する。また、第四単位周波数信号U4は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。周波数偏移処理が実行されない場合、基本信号は、駆動信号における周波数特性を示す周波数信号とほぼ一致する。
 時刻t1にて、先頭ビットに対応する目標周波数は、下限周波数fLである。また、時刻t1にて、第二ビットに対応する目標周波数は、下限周波数fLである。よって、目標周波数は、時刻t1にて、連続的に変化する。しかしながら、先頭ビットに対応する目標周波数の変化方向と、第二ビットに対応する目標周波数の変化方向とは、逆方向である。よって、時刻t1にて、目標周波数は、「折れ線」状に変化する。すなわち、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第一単位周波数信号U1における一定方向すなわち低下方向の周波数変化とは逆方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「アップチャープ」状の周波数特性を有する第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 時刻t2にて、第二ビットに対応する目標周波数は、共振周波数fCである。また、時刻t2にて、第三ビットに対応する目標周波数は、共振周波数fCである。よって、目標周波数は、時刻t2にて、連続的に変化する。しかしながら、第二ビットに対応する目標周波数の変化方向と、第三ビットに対応する目標周波数の変化方向とは、逆方向である。よって、時刻t2にて、目標周波数は、「折れ線」状に変化する。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2における一定方向すなわち上昇方向の周波数変化とは逆方向の周波数低下方向に、第三単位周波数信号U3における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「ダウンチャープ」状の周波数特性を有する第三単位周波数信号U3の全体を低周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 時刻t3にて、第三ビットに対応する目標周波数は、下限周波数fLである。また、時刻t3にて、第四ビットに対応する目標周波数は、下限周波数fLである。よって、目標周波数は、時刻t3にて、連続的に変化する。しかしながら、第三ビットに対応する目標周波数の変化方向と、第四ビットに対応する目標周波数の変化方向とは、逆方向である。よって、時刻t3にて、目標周波数は、「折れ線」状に変化する。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第三単位周波数信号U3における一定方向すなわち低下方向の周波数変化とは逆方向の周波数上昇方向に、第四単位周波数信号U4における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「アップチャープ」状の周波数特性を有する第四単位周波数信号U4の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 図4に示された例においては、送信波は、符号列「-1,1,0,0」により符号化される。この場合、先頭ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第二ビットに対応する目標周波数は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。第三ビットおよび第四ビットに対応する目標周波数は、共振周波数fCにて一定である。
 これに対応して、基本信号にて、第一単位周波数信号U1は、共振周波数fCから下限周波数fLまで線形的に単調低下する。また、第二単位周波数信号U2は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。また、第三単位周波数信号U3および第四単位周波数信号U4は、共振周波数fCにて一定である。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。
 先頭ビットおよび第二ビットにおける、目標周波数の設定状態は、図3に示された例と同様である。よって、駆動信号生成部34は、第一単位周波数信号U1における低下方向の周波数変化とは逆方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「アップチャープ」状の周波数特性を有する第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 時刻t2にて、第二ビットに対応する目標周波数は、共振周波数fCである。また、時刻t2にて、第三ビットに対応する目標周波数は、共振周波数fCである。よって、目標周波数は、時刻t2にて、連続的に変化する。しかしながら、第二ビットに対応する目標周波数の変化勾配は0ではない正値であるのに対し、第三ビットに対応する目標周波数の変化勾配は0である。よって、時刻t2にて、目標周波数は、「折れ線」状に変化する。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2における上昇方向の周波数変化とは逆方向の周波数低下方向に、第三単位周波数信号U3における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第三単位周波数信号U3における時刻t2-tm間の切替部分の周波数を周波数低下方向に偏移させるような波形補正情報を、駆動信号生成部34に出力する。偏移後の周波数は、時刻t2にて下限周波数fLであり、時刻t2-tm間にて下限周波数fLから「アップチャープ」状に上昇する。時刻t2-tm間の時間間隔は、動作温度等に応じて設定される。
 時刻t3にて、第三ビットに対応する目標周波数は、共振周波数fCである。また、時刻t3にて、第四ビットに対応する目標周波数は、共振周波数fCである。さらに、時刻t3近傍における、第三単位周波数信号U3の周波数勾配と、第四単位周波数信号U4の周波数勾配とは、ともに0で等しい。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、連続切替状態で切替わる。
 このため、駆動信号生成部34は、第四単位周波数信号U4に対しては、周波数を偏移させない。すなわち、送信制御部31は、第四単位周波数信号U4に対する周波数パターンの補正は行わない。
 図5に示された例においては、送信波は、符号列「-1,1,1,-1」により符号化される。この場合、先頭ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第二ビットに対応する目標周波数は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。第三ビットに対応する、目標周波数は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。第四ビットに対応する、目標周波数は、上限周波数fHから共振周波数fCまで線形的に単調低下する。
 これに対応して、基本信号にて、第一単位周波数信号U1は、共振周波数fCから下限周波数fLまで線形的に単調低下する。また、第二単位周波数信号U2は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。また、第三単位周波数信号U3は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。また、第四単位周波数信号U4は、上限周波数fHから共振周波数fCまで線形的に単調低下する。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。
 先頭ビットおよび第二ビットにおける、目標周波数の設定状態は、図3および図4に示された例と同様である。よって、駆動信号生成部34は、第一単位周波数信号U1における低下方向の周波数変化とは逆方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「アップチャープ」状の周波数特性を有する第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 時刻t2にて、第二ビットに対応する目標周波数は、共振周波数fCである。また、時刻t2にて、第三ビットに対応する目標周波数は、共振周波数fCである。よって、目標周波数は、時刻t2にて、連続的に変化する。さらに、時刻t2近傍における、第二単位周波数信号U2の周波数勾配と、第三単位周波数信号U3の周波数勾配とは、ともに0で等しい。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、連続切替状態で切替わる。
 このため、駆動信号生成部34は、第三単位周波数信号U3に対しては、周波数を偏移させない。すなわち、送信制御部31は、第三単位周波数信号U3に対する周波数パターンの補正は行わない。
 時刻t3にて、第三ビットに対応する目標周波数は、上限周波数fHである。また、時刻t3にて、第四ビットに対応する目標周波数は、上限周波数fHである。よって、目標周波数は、時刻t3にて、連続的に変化する。しかしながら、第三ビットに対応する目標周波数の変化方向と、第四ビットに対応する目標周波数の変化方向とは、逆方向である。よって、時刻t3にて、目標周波数は、「折れ線」状に変化する。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第三単位周波数信号U3における上昇方向の周波数変化とは逆方向の周波数低下方向に、第四単位周波数信号U4における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、「ダウンチャープ」状の周波数特性を有する第四単位周波数信号U4の全体を低周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 (具体例2)
 図6~図8は、図3~図5に示された例における駆動周波数波形を、図2Aおよび図2Bに示された例と同様の波形に変更したものである。なお、図6は図3に対応し、図7は図4に対応し、図8は図5に対応する。また、図6~図8にて下側に示された駆動周波数fDのタイムチャート上にて、送信周波数fTの目標値に対応する波形が破線で示されている。
 図6に示された例においては、送信波は、符号列「-1,1,-1,1」により符号化される。この場合の、目標周波数は、図3に示された例と同様である。図6~図8に示された例においては、駆動信号生成部34は、CW波状の駆動周波数をステップ状に変化させることで、送信周波数が「アップチャープ」状に変化するような送信波を生成させる。同様に、駆動信号生成部34は、CW波状の駆動周波数をステップ状に変化させることで、送信周波数が「ダウンチャープ」状に変化するような送信波を生成させる。
 具体的には、図6に示されたように、基本信号にて、第一単位周波数信号U1および第三単位周波数信号U3は、下限周波数fLにて一定である。一方、第二単位周波数信号U2および第四単位周波数信号U4は、共振周波数fCにて一定である。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。
 すなわち、先頭ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第二ビットに対応する目標周波数は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。これに対応して、基本信号にて、第一単位周波数信号U1は、下限周波数fLにて一定に設定される。また、第二単位周波数信号U2は、共振周波数fCにて一定に設定される。
 図3に示された例と同様に、時刻t1にて、目標周波数は、「折れ線」状に変化する。すなわち、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化と同一方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 第二ビットに対応する目標周波数は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。第三ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。これに対応して、基本信号にて、第二単位周波数信号U2は、共振周波数fCにて一定に設定される。また、第三単位周波数信号U3は、下限周波数fLにて一定に設定される。
 図3に示された例と同様に、時刻t2にて、目標周波数は、「折れ線」状に変化する。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2から第三単位周波数信号U3への周波数変化と同一方向の周波数低下方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第三単位周波数信号U3の全体を低周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 第三ビットに対応する目標周波数は、共振周波数fCから下限周波数fLまで線形的に単調低下する。第四ビットに対応する目標周波数は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。これに対応して、基本信号にて、第三単位周波数信号U3は、下限周波数fLにて一定に設定される。また、第四単位周波数信号U4は、共振周波数fCにて一定に設定される。
 図3に示された例と同様に、時刻t3にて、目標周波数は、「折れ線」状に変化する。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第三単位周波数信号U3から第四単位周波数信号U4への周波数変化と同一方向の周波数上昇方向に、第四単位周波数信号U4における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第四単位周波数信号U4の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 図7に示された例においては、送信波は、符号列「-1,1,0,0」により符号化される。この場合の、目標周波数は、図4に示された例と同様である。
 図7に示されたように、基本信号にて、第一単位周波数信号U1は、下限周波数fLにて一定である。一方、第二単位周波数信号U2は、共振周波数fCにて一定である。また、第三単位周波数信号U3および第四単位周波数信号U4は、共振周波数fCにて一定である。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。
 図4に示された例と同様に、時刻t1にて、目標周波数は、「折れ線」状に変化する。すなわち、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化と同一方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 図4に示された例と同様に、時刻t2にて、目標周波数は、「折れ線」状に変化する。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第二単位周波数信号U2から第三単位周波数信号U3への周波数変化と同一方向の周波数低下方向に、第三単位周波数信号U3における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第三単位周波数信号U3の全体を低周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 図4に示された例と同様に、時刻t3にて、目標周波数は、同一勾配にて連続的に変化する。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、連続切替状態で切替わる。このため、駆動信号生成部34は、第四単位周波数信号U4に対しては、周波数を偏移させない。すなわち、送信制御部31は、第四単位周波数信号U4に対する周波数パターンの補正は行わない。
 図8に示された例においては、送信波は、符号列「-1,1,1,-1」により符号化される。この場合の、目標周波数は、図5に示された例と同様である。
 図8に示されたように、基本信号にて、第一単位周波数信号U1は、下限周波数fLにて一定である。また、第二単位周波数信号U2は、共振周波数fCにて一定である。また、第三単位周波数信号U3は、上限周波数fHにて一定である。また、第四単位周波数信号U4は、共振周波数fCにて一定である。基本信号は、第一単位周波数信号U1と第二単位周波数信号U2と第三単位周波数信号U3と第四単位周波数信号U4とを、この順に時系列に配列することで形成される。
 図5に示された例と同様に、時刻t1にて、目標周波数は、「折れ線」状に変化する。したがって、第一単位周波数信号U1と後行する第二単位周波数信号U2とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第一単位周波数信号U1から第二単位周波数信号U2への周波数変化と同一方向の周波数上昇方向に、第二単位周波数信号U2における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第二単位周波数信号U2の全体を高周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 図5に示された例と同様に、時刻t2にて、目標周波数は、同一勾配にて連続的に変化する。したがって、第二単位周波数信号U2と後行する第三単位周波数信号U3とは、連続切替状態で切替わる。このため、駆動信号生成部34は、第三単位周波数信号U3に対しては、周波数を偏移させない。すなわち、送信制御部31は、第三単位周波数信号U3に対する周波数パターンの補正は行わない。
 図5に示された例と同様に、時刻t3にて、目標周波数は、「折れ線」状に変化する。したがって、第三単位周波数信号U3と後行する第四単位周波数信号U4とは、非連続切替状態で切替わる。
 そこで、駆動信号生成部34は、第三単位周波数信号U3から第四単位周波数信号U4への周波数変化と同一方向の周波数低下方向に、第四単位周波数信号U4における少なくとも切替部分の周波数を偏移させる。具体的には、送信制御部31は、第四単位周波数信号U4の全体を低周波数側にオフセットさせるような波形補正情報を、駆動信号生成部34に出力する。
 上記のように、図6~図8に示された例においては、駆動周波数波形が、ステップ状に変化する矩形波状に設定される。これにより、共振型の送受信器2における所望の送信周波数変化を可及的に短時間で実現することができ、以て1ビットあたりの信号長を可及的に短くすることが可能となる。
 (具体例3)
 図9は、図3に示された例における周波数偏移態様を変更したものである。図9に示された例は、単位周波数信号のうち、切替部分以外の部分の周波数を偏移させない一方で、切替部分の周波数を偏移させる。
 すなわち、駆動信号生成部34は、第二単位周波数信号U2における切替部分以外の部分の周波数を偏移させない一方で、切替部分の周波数を偏移させる。切替部分は、時刻t1-tm1間の部分である。一方、切替部分以外の部分は、時刻tm1-t2間の部分である。
 同様に、駆動信号生成部34は、第三単位周波数信号U3における時刻t2-tm2間の切替部分の周波数を偏移させる一方で、切替部分以外の部分の周波数を偏移させない。また、駆動信号生成部34は、第四単位周波数信号U4における時刻t3-tm3間の切替部分の周波数を偏移させる一方で、切替部分以外の部分の周波数を偏移させない。
 かかる構成および方法においても、時系列的に隣接する2つの符号の切替えが、迅速且つ良好に行われ得る。このため、受信信号の特徴を大きくすることができる。また、1ビットあたりの信号長を可及的に短くすることで、単位時間あたりのビット数を大きくすることができ、以て、設定可能な符号パターンのバリエーションを増やすことが可能となる。したがって、識別精度を従来よりも向上することが可能となる。
 (具体例4)
 図10は、図4に示された例における周波数偏移態様を変更したものである。図4に示された例では、偏移後の周波数パターンが、時間経過とともに線形的に単調上昇する「アップチャープ」状となるように設定されている。これに対し、図10に示された例では、偏移後の周波数パターンが、時間的な周波数変化の無い固定周波数信号に設定される。
 すなわち、駆動信号生成部34は、第二単位周波数信号U2における時刻t1-tm1間の部分の、偏移後の周波数を、時間的な周波数変化の無い固定周波数に設定する。同様に、駆動信号生成部34は、第三単位周波数信号U3における時刻t2-tm2間の部分の、偏移後の周波数を、時間的な周波数変化の無い固定周波数に設定する。これにより、共振型の送受信器2における所望の送信周波数変化を可及的に短時間で実現することができ、以て1ビットあたりの信号長を可及的に短くすることが可能となる。
 (具体例5)
 図11は、図9に示された例における周波数偏移態様を変更したものである。図11に示された例においては、周波数が偏移される切替部分の継続時間が、偏移後の周波数と共振周波数fCとの差が大きくなる程長く設定される。すなわち、駆動信号生成部34は、第二単位周波数信号U2における時刻t1-tm1間の部分にて、偏移後の周波数と共振周波数fCとの差が大きくなる程継続時間「tm1-t1」が長くなるように、切替部分の継続時間「tm1-t1」を設定する。共振周波数fCは、基本信号の周波数帯域fC~fHにおける中心周波数に相当する。
 具体的には、図11を参照すると、第二単位周波数信号U2における時刻t1-tm1間の部分の、偏移後の周波数よりも、第三単位周波数信号U3における時刻t2-tm2間の部分の、偏移後の周波数の方が、共振周波数fCとの差が大きくなる。よって、第三単位周波数信号U3における切替部分の継続時間「tm2-t2」の方が、第二単位周波数信号U2における切替部分の継続時間「tm1-t1」よりも長く設定される。これにより、共振型の送受信器2における所望の送信周波数変化を可及的に短時間で実現することができ、以て1ビットあたりの信号長を可及的に短くすることが可能となる。
 (具体例6)
 図6~図11に示されているように、駆動信号生成部34は、偏移後の周波数を、共振周波数fCとは異なる周波数に設定することが好適である。これにより、共振型の送受信器2における所望の送信周波数変化を可及的に短時間で実現することができ、以て1ビットあたりの信号長を可及的に短くすることが可能となる。
 具体的には、例えば、図11に示された例において、目標周波数は、時刻t0-t1間にて共振周波数fCから下限周波数fLまで線形的に低下し、時刻t1-t2間にて下限周波数fLから共振周波数fCまで線形的に上昇する。時刻t1の前後において、目標周波数は、共振周波数fCから離れた下限周波数fLにて、低下から上昇に転じる。
 上記の通り、共振型の送受信器2においては、駆動周波数の切替えに対する追従性が悪い。よって、共振周波数fCから離れた周波数から共振周波数fCに向かって送信周波数を変化させようとする場合、目標値を単に共振周波数fCに向かわせるだけでは、充分な追従性が得られ難い。そこで、この場合、実際の駆動周波数を、基本信号における既定値よりも、周波数を変化させたい方向に過剰に偏移させる必要がある。
 そこで、駆動信号生成部34は、時刻t1-tm1間にて、駆動周波数を、偏移前の基本信号における共振周波数fCよりも低周波数側の既定値から、共振周波数fCよりも高周波数側に偏移させる。すなわち、送信制御部31は、偏移後の周波数が偏移前の周波数に対して共振周波数fCを挟んだ「反対側」となるような、波形補正情報を出力する。
 (変形例)
 本開示は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態との相違点を主として説明する。また、上記実施形態と変形例とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
 物体検知装置1が搭載される車両Vは、自動車に限定されない。また、物体検知装置1は、車両Vに搭載される車載構成に限定されない。よって、具体的には、例えば、物体検知装置1は、船舶あるいは飛行体にも搭載され得る。
 物体検知装置1は、図1に示されたような、送受信器2および駆動装置3をそれぞれ一個ずつ備えた構成に限定されない。すなわち、物体検知装置1は、送受信器2を複数個備えていてもよい。この場合、駆動装置3は、複数の送受信器2の駆動制御を行うように構成されていてもよい。あるいは、送受信器2と駆動装置3とは、一対一の関係で設けられてもよい。
 物体検知装置1は、送受信一体型の構成に限定されない。すなわち、物体検知装置1は、単一のトランスデューサ21によって超音波を送受信可能な構成に限定されない。よって、例えば、送信回路22に電気接続された送信用のトランスデューサ21と、受信回路23に電気接続された受信用のトランスデューサ21とが、並列に設けられていてもよい。換言すれば、送信部20Aと受信部20Bとは、それぞれ、トランスデューサ21を1個ずつ備えていてもよい。この場合、送信部20Aと受信部20Bとは、それぞれ、別々のセンサ筐体により支持されていてもよい。
 複数個のトランスデューサ21を用いた三角測量により、物体Bの自車両に対する二次元位置を検知する場合があり得る。この場合、例えば、自車両に搭載された複数個のトランスデューサ21の各々から、同一の周波数特性すなわち符号配列を有する送信波が発信され得る。このとき、「正規波」は、自車両から送信した送信波の反射波を自車両にて受信した場合の受信波となる。これに対し、「非正規波」は、他車両から送信した送信波の反射波を自車両にて受信した場合の受信波となる。これにより、複数車両間の混信による影響が、良好に抑制され得る。
 本開示によれば、1ビットあたりの時間を短くすることができ、従来よりも多くの符号パターンを送信することが可能となる。このため、例えば、自車両に搭載された複数個のトランスデューサ21に対して、各々に異なる符号パターンを割り当てることができる。すると、自車両に搭載された複数個のトランスデューサ21の各々から、異なる周波数特性すなわち符号配列を有する送信波が発信され得る。これにより、直接波と間接波との峻別が容易化され、以て多重反射等の影響による誤認識が良好に抑制され得る。
 送信回路22、受信回路23、等の各部の構成も、上記実施形態にて示された具体例に限定されない。すなわち、例えば、デジタル/アナログ変換回路は、送信回路22に代えて、駆動信号生成部34に設けられていてもよい。すなわち、駆動信号は、トランスデューサ21に対する素子入力信号そのものであってもよい。
 駆動装置3のうちの全部または一部は、超音波センサにおける送受信器2を支持する不図示のセンサ筐体の外部に設けられ得る。すなわち、例えば、駆動装置3のうちの全部または一部は、超音波センサと電気接続された、いわゆるソナーECUに設けられ得る。ECUはElectronic Control Unitの略である。
 符号列は、変更可能であってもよいし、変更不能であってもよい。すなわち、例えば、送信制御部31は、物体検知部42が混信を検知した場合に、送信波に付与する符号列を変更するように構成されていてもよい。具体的には、例えば、送信制御部31は、物体検知部42が混信を検知した場合に、現在送信符号列として選択中の符号列とは異なる符号列を新たな送信符号列として選択するようになっていてもよい。あるいは、送信制御部31は、乱数等を用いて、物体検知装置1の起動毎に符号生成部32に符号列を生成させてもよい。
 あるいは、駆動信号生成部34は、一個の送受信器2に対して一種類の駆動信号SDのみを出力するように構成されていてもよい。この場合、具体的には、例えば、自車両に搭載された物体検知装置1における駆動信号生成部34は、「110」という3ビット符号に対応する駆動信号SDのみを出力する。また、ある一台の他車両に搭載された物体検知装置1における駆動信号生成部34は、「100」という3ビット符号に対応する駆動信号SDのみを出力する。さらに、他の一台の他車両に搭載された物体検知装置1における駆動信号生成部34は、「111」という3ビット符号に対応する駆動信号SDのみを出力する。この場合、符号生成部32は省略され得る。
 送受信器2が複数個設けられる場合、複数個の送受信器2の各々に対して、異なる符号配列の駆動信号SDを入力するように、駆動信号生成部34が構成され得る。具体的には、例えば、送受信器2が二個設けられている場合、一方には「110」という3ビット符号に対応する駆動信号SDが入力され、他方には「100」という3ビット符号に対応する駆動信号SDが入力され得る。
 fCは、上限周波数fHと下限周波数fLとの間の送受信周波数帯域における中心周波数であってもよい。この場合の中心周波数は、送受信器2の共振周波数とは異なる周波数であってもよい。
 符号列およびこれに対応する周波数特性は、上記の各具体例に限定されない。図12~図17は、4ビットの符号を有する符号列の別例を示す。
 図12は、図3に示された符号列「-1,1,-1,1」を反転した、符号列「1,-1,1,-1」を示す。図13は、図5に示された符号列「-1,1,1,-1」を反転した、符号列「1,-1,-1,1」を示す。図14は、符号列「1,-1,0,1」を示す。
 CW信号に対応する符号「0」の場合の所定周波数は、共振周波数fCに限定されない。すなわち、例えば、図15に示された符号列「1,0,-1,0」における先頭ビット「1」に対応する第一単位周波数信号U1は、共振周波数fCから上限周波数fHまで線形的に単調上昇する。そこで、第二ビットの符号「0」に対応する第二単位周波数信号U2は、その前の第一単位周波数信号U1における終了時点の周波数と連続するように、上限周波数fHにて一定に設定される。
 一方、第三ビット「-1」に対応する第三単位周波数信号U3は、上限周波数fHから共振周波数fCまで線形的に単調低下する。そこで、第四ビットの符号「0」に対応する第四単位周波数信号U4は、その前の第三単位周波数信号U3における終了時点の周波数と連続するように、共振周波数fCにて一定に設定される。
 同様に、図16に示された符号列「-1,0,1,0」における先頭ビット「1」に対応する第一単位周波数信号U1は、共振周波数fCから下限周波数fLまで線形的に単調低下する。そこで、第二ビットの符号「0」に対応する第二単位周波数信号U2は、その前の第一単位周波数信号U1における終了時点の周波数と連続するように、下限周波数fLにて一定に設定される。
 一方、第三ビット「1」に対応する第三単位周波数信号U3は、下限周波数fLから共振周波数fCまで線形的に単調上昇する。そこで、第四ビットの符号「0」に対応する第四単位周波数信号U4は、その前の第三単位周波数信号U3における終了時点の周波数と連続するように、共振周波数fCにて一定に設定される。
 先頭ビットの開始周波数は、共振周波数fCに限定されない。すなわち、例えば、図17に示されているように、先頭ビットの開始周波数は、下限周波数fLであってもよい。あるいは、先頭ビットの開始周波数は、上限周波数fHであってもよい。あるいは、先頭ビットの開始周波数は、上限周波数fHとも共振周波数fCとも下限周波数fLとも異なる周波数であってもよい。
 図3~図17に示されたように、好適な例においては、先頭ビットは、「0」すなわちCW波ではない、何らかの周波数変調を有している。これにより、識別性が向上する。しかしながら、本開示は、かかる態様に限定されない。すなわち、例えば、先頭ビットは、「0」すなわちCW波であってもよい。
 上記実施形態においては、「-1」,「0」,および「1」という3種類の符号による符号化の例を示した。しかしながら、本開示は、かかる符号化態様に限定されない。すなわち、例えば、「-1」,「0」,および「1」に代えて、「10」,「11」,および「01」が用いられ得る。符号「-1」は符号「10」に対応する。符号「0」は符号「11」に対応する。符号「1」は符号「01」に対応する。
 上記の各具体例において、駆動装置3は、目標周波数を、直線的に変化させていた。しかしながら、本開示は、かかる態様に限定されない。すなわち、例えば、駆動装置3は、目標周波数を、曲線的に変化させてもよい。あるいは、駆動装置3は、目標周波数を、ステップ状に変化させてもよい。
 図18は、ソナーにおける理想的なFSK信号の一例を示す。FSKはFrequency Shift Keyingの略である。図19は、図18に対応する実際のFSK信号の一例を示す。図18および図19において、tdはビット判定時刻を示し、Tbはビット判定周期を示す。C1、C2、C3、およびC4は、それぞれ、先頭ビット、第二ビット、第三ビット、および第四ビットを示す。
 上記の通り、ソナーは共振型であるため、周波数は急には切り替わらない。このため、図18および図19に示されたように、ソナーにおけるFSK信号は、周波数の切替え時に、周波数の傾きすなわちスルーレートが発生する。このスルーレートの絶対値の最大値は、トランスデューサ21および送受信回路の特性に因る。また、ビット判定周波数である上限周波数fHおよび下限周波数fLにおける先頭部分にてオーバーシュートが発生する。このため、ソナー特性のスルーレートとオーバーシュートを加味したビット長を設定する必要がある。
 FSKにおいて、スルーレートを上げることと、ビット判定点にて、fHおよびfL周波数範囲内周波数を変化させないことを両立させることが重要である。すなわち、スルーレートを大きくしつつ、ビット判定周波数である上限周波数fHおよび下限周波数fLにおける一定周波数状態を迅速に形成することで、信号長を短くすることが可能となる。したがって、本開示は、FSKに対しても良好に適用され得る。この場合の「目標周波数」は、図18に示された、理想的なFSK信号における波形を示す周波数信号である。なお、ビット判定周波数は、上限周波数fHおよび下限周波数fLに限定されない。すなわち、ビット判定周波数は、上記の送受信周波数帯域内にあればよい。
 周波数への変換はFFTに限定されるものではなく、もちろんDFTでもよいし、その実装方法として周波数毎のBPFを複数用意して周波数を検出してもよい。DFTはDiscrete Fourier Transformの略である。BPFはBand-pass Filterの略である。また、交流の受信信号と閾値とのゼロクロス時間の間隔から周波数を測定してもよい。
 1つの符号列に対応する送信処理中にて、周波数偏移処理を実行すべき周波数切替箇所が複数存在する場合、そのすべてで周波数偏移処理が実行されなくてよい。すなわち、1つの符号列に対応する送信処理中にて、周波数偏移処理が少なくとも1回実行されれば、その態様が本開示に含まれることは、いうまでもない。
 上記の各機能構成および方法は、コンピュータプログラムにより具体化された一つあるいは複数の機能を実行するようにプログラムされたプロセッサおよびメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、上記の各機能構成および方法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、上記の各機能構成および方法は、一つあるいは複数の機能を実行するようにプログラムされたプロセッサおよびメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。
 具体的には、駆動装置3は、CPU等を有する周知のマイクロコンピュータを備えた構成に限定されない。すなわち、駆動装置3の全部または一部は、上記のような機能を実現可能に構成されたデジタル回路、例えばゲートアレイ等のASICあるいはFPGAを備えた構成であってもよい。ASICはApplication Specific Integrated Circuitの略である。FPGAはField Programmable Gate Arrayの略である。
 また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移的実体的記憶媒体に記憶されていてもよい。すなわち、本開示に係る装置あるいは方法は、上記の各機能あるいは方法を実現するための手順を含むコンピュータプログラム、あるいは、当該プログラムを記憶した非遷移的実体的記憶媒体としても表現可能である。
 上記実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に本開示が限定されることはない。同様に、構成要素等の形状、方向、位置関係等が言及されている場合、特に必須であると明示した場合および原理的に特定の形状、方向、位置関係等に限定される場合等を除き、その形状、方向、位置関係等に本開示が限定されることはない。
 変形例も、上記の例示に限定されない。また、複数の変形例が、互いに組み合わされ得る。更に、上記実施形態の全部または一部と、変形例の全部または一部とが、互いに組み合わされ得る。

Claims (12)

  1.  送信周波数が超音波である超音波送信器(2)を駆動する駆動装置(3)であって、
     複数の符号により形成された符号列における前記符号の各々に対応した周波数信号である単位周波数信号を時系列に配列した基本信号に基づいて、前記超音波送信器を駆動する駆動信号を生成するように構成された、駆動信号生成部(34)と、
     前記駆動信号生成部から前記超音波送信器への前記駆動信号の出力を制御するように構成された、送信制御部(31)と、
     を備え、
     前記基本信号にて時系列的に隣接する2つの前記単位周波数信号のうちの先行するものを第一単位周波数信号とし且つ後行するものを第二単位周波数信号とし、さらに、前記送信周波数の目標値を目標周波数とした場合に、前記駆動信号生成部は、前記第一単位周波数信号と前記第二単位周波数信号とが、前記第一単位周波数信号に対応する前記目標周波数から前記第二単位周波数信号に対応する前記目標周波数に略同一の変化率で連続的に変化する連続切替状態とは異なる非連続切替状態で切替わる場合、前記第二単位周波数信号における、少なくとも、開始直後を含む切替部分の周波数を、前記第一単位周波数信号から前記第二単位周波数信号への周波数変化方向と同一方向に偏移させる、
     駆動装置。
  2.  前記駆動信号生成部は、時間経過に伴い一定方向に周波数変化する前記第一単位周波数信号における周波数変化とは逆方向に、前記第二単位周波数信号の周波数を偏移させる、
     請求項1に記載の駆動装置。
  3.  前記駆動信号生成部は、前記第二単位周波数信号における前記切替部分以外の部分の周波数を偏移させない一方で、前記切替部分の周波数を偏移させる、
     請求項1または2に記載の駆動装置。
  4.  前記駆動信号生成部は、偏移後の周波数と前記基本信号の周波数帯域における中心周波数との差が大きくなる程前記切替部分の継続時間が長くなるように、前記継続時間を設定する、
     請求項3に記載の駆動装置。
  5.  前記駆動信号生成部は、偏移後の周波数を、時間的な周波数変化の無い固定周波数に設定する、
     請求項1~4のいずれか1つに記載の駆動装置。
  6.  前記駆動信号生成部は、前記超音波送信器の動作温度に応じて、周波数偏移態様を設定する、
     請求項1~5のいずれか1つに記載の駆動装置。
  7.  送信周波数が超音波である超音波送信器(2)を駆動する駆動方法であって、
     複数の符号により形成された符号列における前記符号の各々に対応した周波数信号である単位周波数信号を時系列に配列した基本信号に基づいて、前記超音波送信器を駆動する駆動信号を生成し、
     前記基本信号にて時系列的に隣接する2つの前記単位周波数信号のうちの先行するものを第一単位周波数信号とし且つ後行するものを第二単位周波数信号とし、さらに、前記送信周波数の目標値を目標周波数とした場合に、前記駆動信号の生成にて、前記第一単位周波数信号と前記第二単位周波数信号とが、前記第一単位周波数信号に対応する前記目標周波数から前記第二単位周波数信号に対応する前記目標周波数に略同一の変化率で連続的に変化する連続切替状態とは異なる非連続切替状態で切替わる場合、前記第二単位周波数信号における、少なくとも、開始直後を含む切替部分の周波数を、前記第一単位周波数信号から前記第二単位周波数信号への周波数変化方向と同一方向に偏移させる、
     駆動方法。
  8.  前記駆動信号の生成にて、時間経過に伴い一定方向に周波数変化する前記第一単位周波数信号における周波数変化とは逆方向に、前記第二単位周波数信号の周波数を偏移させる、
     請求項7に記載の駆動方法。
  9.  前記駆動信号の生成にて、前記第二単位周波数信号における前記切替部分以外の部分の周波数を偏移させない一方で、前記切替部分の周波数を偏移させる、
     請求項7または8に記載の駆動方法。
  10.  前記駆動信号の生成にて、偏移後の周波数と前記基本信号の周波数帯域における中心周波数との差が大きくなる程前記切替部分の継続時間が長くなるように、前記継続時間を設定する、
     請求項9に記載の駆動方法。
  11.  前記駆動信号の生成にて、偏移後の周波数を、時間的な周波数変化の無い固定周波数に設定する、
     請求項7~10のいずれか1つに記載の駆動方法。
  12.  前記駆動信号の生成にて、前記超音波送信器の動作温度に応じて、周波数偏移態様を設定する、
     請求項7~11のいずれか1つに記載の駆動方法。
PCT/JP2020/027069 2019-08-07 2020-07-10 駆動装置および駆動方法 WO2021024696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080055517.4A CN114207470A (zh) 2019-08-07 2020-07-10 驱动装置以及驱动方法
DE112020003703.7T DE112020003703T5 (de) 2019-08-07 2020-07-10 Ansteuerungsvorrichtung und ansteuerungsverfahren
US17/649,870 US20220155428A1 (en) 2019-08-07 2022-02-03 Vehicle collision determination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-145565 2019-08-07
JP2019145565A JP7188319B2 (ja) 2019-08-07 2019-08-07 駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/649,870 Continuation US20220155428A1 (en) 2019-08-07 2022-02-03 Vehicle collision determination apparatus

Publications (1)

Publication Number Publication Date
WO2021024696A1 true WO2021024696A1 (ja) 2021-02-11

Family

ID=74503437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027069 WO2021024696A1 (ja) 2019-08-07 2020-07-10 駆動装置および駆動方法

Country Status (5)

Country Link
US (1) US20220155428A1 (ja)
JP (1) JP7188319B2 (ja)
CN (1) CN114207470A (ja)
DE (1) DE112020003703T5 (ja)
WO (1) WO2021024696A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796671B2 (en) * 2021-03-08 2023-10-24 GM Global Technology Operations LLC Transmission scheme for implementing code division multiple access in a radar system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319349A (en) * 1978-09-29 1982-03-09 Pittway Corporation Ultrasonic intrusion detection system
JPH04110687A (ja) * 1990-08-30 1992-04-13 Fuji Electric Co Ltd 超音波センサにおける検出感度の温度補償方法
JP2004361177A (ja) * 2003-06-03 2004-12-24 Furuno Electric Co Ltd 超音波送信装置、超音波送受信装置、および探知装置
JP2013175966A (ja) * 2012-02-27 2013-09-05 Nec Casio Mobile Communications Ltd 超音波発振装置及び電子機器
JP2015203566A (ja) * 2014-04-10 2015-11-16 古野電気株式会社 超音波送波器、及び水中探知装置
JP2017026604A (ja) * 2015-07-22 2017-02-02 エヌエックスピー ビー ヴィNxp B.V. レーダシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106142A1 (de) 2001-02-10 2002-08-14 Valeo Schalter & Sensoren Gmbh Verfahren zum Betrieb eines Ultraschall-Multisensor-Arrays
KR102204839B1 (ko) * 2014-02-11 2021-01-19 한국전자통신연구원 레이더를 이용한 표적 검출 장치 및 표적을 검출하는 방법
DE102014212284A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh MIMO-Radarmessverfahren
KR101674254B1 (ko) * 2014-08-12 2016-11-08 재단법인대구경북과학기술원 레이더 신호 처리 방법 및 장치
US9846228B2 (en) * 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
DE102018123383A1 (de) * 2017-10-13 2019-04-18 Infineon Technologies Ag Radarerfassung mit Störungsunterdrückung
DE102018102816B3 (de) * 2018-02-08 2019-07-04 Infineon Technologies Ag Radar mit phasenkorrektur
JP6951666B2 (ja) 2018-02-16 2021-10-20 トヨタ自動車株式会社 リチウムイオンキャパシタの劣化推定装置
DE102018106858A1 (de) * 2018-03-22 2019-09-26 Infineon Technologies Ag Fmcw-radar mit zusätzlicher am zur störungsdetektion
DE102018108648B4 (de) * 2018-04-11 2021-11-11 Infineon Technologies Ag Fmcw radar mit störsignalunterdrückung
US10782407B2 (en) * 2018-05-11 2020-09-22 Aisin Seiki Kabushiki Kaisha Object detection device and parking assistance apparatus
JP7167495B2 (ja) * 2018-06-12 2022-11-09 株式会社アイシン 物体検知装置および物体検知システム
DE102018126034A1 (de) * 2018-10-19 2020-04-23 Infineon Technologies Ag Fmcw radar mit störsignalunterdrückung
DE102018132745B4 (de) * 2018-12-18 2022-05-05 Infineon Technologies Ag Fmcw radar mit störsignalunterdrückung im zeitbereich

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319349A (en) * 1978-09-29 1982-03-09 Pittway Corporation Ultrasonic intrusion detection system
JPH04110687A (ja) * 1990-08-30 1992-04-13 Fuji Electric Co Ltd 超音波センサにおける検出感度の温度補償方法
JP2004361177A (ja) * 2003-06-03 2004-12-24 Furuno Electric Co Ltd 超音波送信装置、超音波送受信装置、および探知装置
JP2013175966A (ja) * 2012-02-27 2013-09-05 Nec Casio Mobile Communications Ltd 超音波発振装置及び電子機器
JP2015203566A (ja) * 2014-04-10 2015-11-16 古野電気株式会社 超音波送波器、及び水中探知装置
JP2017026604A (ja) * 2015-07-22 2017-02-02 エヌエックスピー ビー ヴィNxp B.V. レーダシステム

Also Published As

Publication number Publication date
JP7188319B2 (ja) 2022-12-13
DE112020003703T5 (de) 2022-04-21
JP2021025942A (ja) 2021-02-22
CN114207470A (zh) 2022-03-18
US20220155428A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
US11500081B2 (en) Object detection device and object detection system
JP7226137B2 (ja) 物体検知装置
US20210055397A1 (en) Object detection device
KR102546876B1 (ko) 자동차용 초음파 센서 장치를 주파수 변조 여진 신호의 진폭의 시간적 프로파일을 적응시키면서 작동시키는 방법
WO2021024696A1 (ja) 駆動装置および駆動方法
US20220113391A1 (en) Object detection device, object detection method, and control device
CN110073242B (zh) 用于运行超声传感器的方法
US20210263149A1 (en) Object detection device
WO2022071522A1 (ja) 超音波発生装置、振動子、および、物体検出装置
US11150343B2 (en) Object detection system and object detection apparatus
WO2020071105A1 (ja) 物体検知装置
JP7119369B2 (ja) 距離計測装置
US20210311185A1 (en) Method and apparatus for detecting object
US20210311189A1 (en) Object detecting apparatus
JP2020153876A (ja) 物体検出装置
CN110073241A (zh) 用于运行超声传感器的方法
US20230133877A1 (en) Ultrasonic sensor control device, ultrasonic sensor, and ultrasonic sensor control method
US20230009572A1 (en) Object detection system and object detection device
US20210302573A1 (en) Object detection system
JP6149645B2 (ja) 物体検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850536

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20850536

Country of ref document: EP

Kind code of ref document: A1