JP7119369B2 - 距離計測装置 - Google Patents

距離計測装置 Download PDF

Info

Publication number
JP7119369B2
JP7119369B2 JP2017245531A JP2017245531A JP7119369B2 JP 7119369 B2 JP7119369 B2 JP 7119369B2 JP 2017245531 A JP2017245531 A JP 2017245531A JP 2017245531 A JP2017245531 A JP 2017245531A JP 7119369 B2 JP7119369 B2 JP 7119369B2
Authority
JP
Japan
Prior art keywords
wave
protocol
modulator
piezoelectric element
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017245531A
Other languages
English (en)
Other versions
JP2019113361A (ja
Inventor
一平 菅江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2017245531A priority Critical patent/JP7119369B2/ja
Priority to EP18213834.7A priority patent/EP3502741B1/en
Priority to US16/226,840 priority patent/US11125874B2/en
Priority to CN201811570391.5A priority patent/CN109991609A/zh
Publication of JP2019113361A publication Critical patent/JP2019113361A/ja
Application granted granted Critical
Publication of JP7119369B2 publication Critical patent/JP7119369B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波を発振する発振素子を備えた距離計測装置に関する。
特許文献1には、超音波を送信し、その反射波を受振して反射物体までの距離を測定する、いわゆるタイム・オブ・フライト(Time-Of-Flight、TOF)法による超音波距離測定装置が記載されている。
この特許文献1には、パルス信号の周波数や位相等を変調することで識別信号(変調信号)を加えた超音波のバースト波を送信する超音波距離測定装置の距離測定方法が記載されている。
この距離測定方法によれば、識別信号を情報として含む超音波の反射波等を受振し、送信した変調信号との相関をとることで、受振した反射波(受振信号)の立ち上がり部分を精度よく検出し、距離を求めることが可能である。
特許文献2には、距離計測装置(超音波ソナー)を車両に取り付け、当該超音波ソナーから送信される送信波の反射波を受振して車両周辺に存在する障害物を検知する車両周辺監視装置が記載されている。また、このような車両周辺監視装置において、車両周辺に存在する障害物の検知性能向上のニーズが記載されている。
特開2005-249770号公報 特開2011-112416号公報
特許文献1に記載されるように、超音波に識別信号を加えると、受振した反射波の立ち上がり部分の検出精度が向上する。しかし、特許文献2に例示されるように、例えば車載用途を考慮すると、自己の発振する超音波と他の距離計測装置の超音波と識別性の点では十分ではない。なぜならば、道路上では多数の車両が走行しているため、多数の車両を発振源とする超音波が輻輳しており、自己の超音波が含む識別信号と、他の車両が発振している超音波に含まれる信号とが重複する、干渉が生じ得るためである。
そのため、自己の超音波が含む識別信号と、他の車両が発振している超音波に含まれる信号との干渉を防止する距離計測装置の提供が望まれる。
本発明は、かかる実状に鑑みて為されたものであって、その目的は、干渉の影響を低減し、距離計測の計測性能を向上させた距離計測装置を提供することにある。
上記目的を達成するための本発明に係る距離計測装置の特徴構成は、
搬送波を発振する発振器と、
前記搬送波に所定の方式で識別信号を付与した変調波を出力する変調器と、
前記変調波に対応する超音波を発振する発振素子と、
超音波を受振する受振素子と、
前記受振素子が受振した超音波を復調する復調部と、
復調された超音波の方式を判断する制御部と、を備え、
前記制御部は、前記発振素子がこれから発振する前記超音波のプロトコルの設定として、前記発振器により発振される前記搬送波の周波数及び前記変調器から出力される前記変調波の変調方式が記憶される記憶部を有し、
前記制御部は、前記変調器が前記変調波を出力するに際し、前記記憶部に記憶されている前記プロトコルの設定に基づいて初回の発振であるか否かを判定し、
前記初回の発振である場合には、あらかじめ前記受振素子に超音波を受振させ、さらに当該受振した超音波を前記復調部に復調させて復調信号を取得し、当該受振した超音波のプロトコルとは異なるプロトコルを設定して前記記憶部に記憶して、当該プロトコルの設定に関する情報を前記変調器に出力し、
前記初回の発振でない場合には、前記記憶部から現在のプロトコルの設定を読み出した後、あらかじめ前記受振素子に超音波を受振させ、さらに当該受振した超音波を前記復調部に復調させて復調信号を取得し、当該受振した超音波のプロトコルと前記現在のプロトコルとの比較結果に基づいて当該受振した超音波のプロトコルとは異なるプロトコルを設定して、当該プロトコルの設定に関する情報を前記変調器に出力し、
前記変調器は、前記プロトコルの設定に関する情報に基づいて、前記受振した超音波のプロトコルとは異なるプロトコルで前記搬送波に前記識別信号を付与し、前記変調波を出力する点にある。
上記構成によれば、識別信号を付与した超音波を発振するに際し、予め、受振素子に周囲の超音波を受振させて復調部から復調信号を取得することで、制御部が、予め当該周囲の超音波の変調方式や、当該周囲の超音波に含まれる信号などの、当該周囲の超音波の復調信号の方式、すなわち、当該周囲の超音波の変調の方式を知ることができる。なお、本願において受振とは超音波などの振動を受信することをいう。
そのため制御部は、変調器に対して、復調信号の方式に関する情報、たとえば、当該周囲の超音波の変調方式や、当該周囲の超音波に含まれる信号などの情報を出力し、変調器をして、復調信号の方式とは異なる方式で搬送波に識別信号を付与せしめることができる。
その結果、発振素子は、周囲の超音波とは異なる方式で識別信号を付与して超音波を発振することができる。そうすると制御部は、その後に受振素子を介して受信した超音波を当該異なる方式で復調することで周囲の超音波に含まれる信号と区別して、自己の発振素子が発振した超音波の反射波であるか、その他の超音波であるかを正確に判定することができる。
したがって上記構成によれば、周囲の超音波、特に、信号を含む超音波との干渉の影響を低減し、誤検知を予防し、距離計測の計測性能を向上させた距離計測装置を提供することができる。
本発明に係る距離計測装置の更なる特徴構成は、
前記変調器は、前記復調信号とは異なるビット配列の前記識別信号を付与した前記変調波を出力する点にある。
上記構成によれば、制御部は、自己の発振素子が発振した超音波の反射波であるか、その他の超音波であるかを、受振素子を介して受信した超音波のビット配列の一致もしくは不一致により、さらに正確に判定することができる。その結果、自身の識別信号を正しく受信することができる。
本発明に係る距離計測装置の更なる特徴構成は、
前記ビット配列は、前記復調信号とは異なるビット長である点にある。
上記構成によれば、制御部は、自己の発振素子が発振した超音波の反射波であるか、その他の超音波であるかを、受振素子を介して受信した超音波のビット長の一致もしくは不一致により、さらに正確に判定することができる。その結果、自身の識別信号を正しく受信することができる。その結果、自身の識別信号を正しく受信することができる。
本発明に係る距離計測装置の更なる特徴構成は、
前記変調器は、前記復調部が復調した変調方式とは異なる方式で変調した変調波を出力する点にある。
上記構成によれば、制御部は、自己の発振素子が発振した超音波の反射波であるか、その他の超音波であるかを、受振素子を介して受信した超音波の変調方式の一致もしくは不一致により、正確に判定することができる。
本発明に係る距離計測装置の更なる特徴構成は、
前記発振素子として圧電素子ユニットを備え、
前記受振素子は、前記圧電素子ユニットとは別のユニットである点にある。
上記構成によれば、発振素子として用いる圧電素子ユニットは超音波を発振できれば良く、例えば超音波の受振に必要な回路や制御を要することなく、簡易な構成の圧電素子を有するユニットとすることができる。一方、受振素子は超音波を受振できれば良く、例えば超音波の発振に必要な回路や制御を要することなく、受振に最適化した簡易な構成のユニットとすることができる。なお、受振素子を構成するユニットは、圧電素子以外も採用しうるので、距離計測装置の構成の自由度が高まり、簡易な構成を採用しうる。このように、上記構成によれば距離計測装置を簡易な装置構成とすることができる。
距離計測装置の構成の説明図 振動波形の一例を示す図 位相変調方式で変調した波形の説明図 振幅変調方式で変調した波形の説明図 周波数変調方式で変調した波形の説明図 検波器の構成の説明図 TOF法による距離計測の説明図 誤検知の回避を説明する図 複数の変調方式で変調した振動波形の説明図 変調のプロトコルを決定する手順を説明する流れ図 距離計測装置の別の構成の説明図
図1から図11に基づいて、本発明の実施形態に係る距離計測装置100について説明する。
〔概略の説明〕
図1は、距離計測装置100の概略構成を説明する模式図である。
距離計測装置100は、対象物9との距離を、変調された超音波の反射波を受振して計測する距離の計測装置である。
この距離計測装置100は、たとえば車載用の障害物検出装置(図示せず)として用いられ、障害物としての対象物9の存在を認識し、また、対象物9との距離を把握して、それらの情報を運転者に通知するようになっている場合を例示して説明していく。
距離計測装置100は、装置全体の動作を制御し、距離の演算を行う制御部1と、超音波を発振する圧電素子3(受振素子、および発振素子の一例)を有するプローブと、圧電素子3が発振する超音波の基本波を発振する発振器4と、を備える。
さらに距離計測装置100は、発振器4が発振した基本波(搬送波)を変調する変調器2と、圧電素子3が受振した反射波を復調して復調信号を取得する検波器5などと、を主要な機能部として備える。
〔詳細の説明〕
〔距離計測装置の構成〕
以下の説明では主として図1を参照して説明し、必要に応じて他の図を参照する。
圧電素子3は、超音波を発振し、また、受振するデバイスである。
圧電素子3は、印加された電圧に応じて変位し、また、振動エネルギーなどの機械的な力を加えられると、その変位に応じて起電力を生じる振動子(図示せず)を備えた、いわゆる超音波振動子のユニットから成るプローブである。
圧電素子3の振動子は、所定の周波数(波長)で共振するため、通常は、発振する超音波の中心となる周波数(もしくは波長)と、受振可能な超音波の中心となる周波数(もしくは波長)は同じになる。
本実施形態の圧電素子3の共振周波数は40kHzである。
本実施形態では、圧電素子3は、変調器2から印加される電圧の変化に応じて超音波を発振するようになっている。また、圧電素子3は、外部の振動、例えば、圧電素子3が自ら発振した超音波を受振することができる。
本実施形態で用いている圧電素子3は、変調器2から所定の(一定の)条件で変化する一定のエネルギー(本実施形態においては圧電素子3の固有振動数に対応する周波数で変化する、振幅が一定の電圧)が連続して印加された場合、図2に示すように、複数回数振動した後、すなわち、所定の遅延時間Td後に、一定の振幅Aに達する定常状態になる。
そのため、圧電素子3で大きな振幅を得たい場合には、大きな遅延時間Tdが必要である。一方、圧電素子3で相対的に小さい振幅を得たい場合には、遅延時間Tdは小さくなる。
圧電素子3は、本実施形態では所定時間の連続的な振動(電圧を印加された振動)と停止を繰り返している。圧電素子3は振動を停止している場合に、外部の振動(超音波)を受振することができる。言い換えると、外部の振動を受振する際には、電圧の印加を停止する。
圧電素子3が受振した振動は、圧電素子3により電圧の信号に変換されて検波器5に送信される。
つまり本実施形態では、圧電素子3としてひとつの超音波振動子のユニットを用い、変調波に対応する超音波を発振する際に、圧電素子3が発振素子として用いられ、周囲の超音波を受振する際に、同じ圧電素子3が受振素子として用いられている。
発振器4は、圧電素子3を振動させるための基本波を発振する、周波数ジェネレーターである。発振器4が発振した基本波が、本実施形態では搬送波として用いられる。
本実施形態では、発振器4は、所定の振動数で振動する水晶振動子(図示せず)の基本振動を基にして、所定の周波数を生成し、搬送波として変調器2へ供給している。
制御部1は、距離計測装置100全体を制御する機能部であり、中央演算装置であるCPU10を中核機構として有する。制御部1はさらに、パルス発生器15と、比較器17と、を主要な機能部として備え、さらに、制御部1の動作プログラムが格納された記憶部19を有する。
パルス発生器15は、所定の符号を含む信号を生成する信号発生器である。パルス発生器15は、識別信号として、距離計測装置100に固有の所定の符号(固有の符号列、もしくは識別IDとなる符号列)を含む信号を生成するようになっている。
パルス発生器15は、本実施形態では、生成した信号を、変調器2へ供給(伝送)している。
パルス発生器15は、CPU10から送信される動作指令に従って、所定の符号を含む信号を生成する動作する。
パルス発生器15は、所定のビット長で、所定のビット配列の、二進数の符号を含む信号を生成する。
所定のビット長としては例えば、8ビットのビット長を選択できる。
所定のビット配列としては任意の配列を選択してよい。
パルス発生器15は、所定のビット長における各ビットを、パルス信号(パルスのオンオフ)で出力している。パルス発生器15が所定のタイミングでパルスを発した場合(パルスオン)、当該所定のタイミングにおけるパルスは二進数の1を意味し、所定のタイミングでパルスを発しない場合(パルスオフ)、当該所定のタイミングはゼロを意味する。
パルス発生器15は、ビット長が8ビットの場合は、8回のパルスのオンないしオフの組み合わせの信号を出力するようになっている。
以下では、パルス発生器15が所定のタイミングでパルスを発した状態を符号1とする。また、パルス発生器15が所定のタイミングでパルスを発しない状態を符号ゼロとする。
また、単に、パルス、と称する場合は、符号1もしくは符号ゼロのいずれかを意味する。
また、パルス信号、と称する場合は、複数のパルスの組み合わせを意味する。
なお、パルス発生器15がパルスを発する所定のタイミングとしては、たとえば発振器4が発振する基本波のタイミング(たとえば、周期)に同期させることができる。
本実施形態では、発振器4が発振する基本波の周期に同期させており、具体的には、原則、八波発振されるタイミング(八周期)ごとに、一回のパルスを発するようになっている。
比較器17は、検波器5から取得した信号(復調信号)に含まれる符号とパルス発生器15の符号とを比較して一致もしくは不一致を判定するための演算ユニットである。
比較器17は、当該判定した結果(以下、判定結果と称する)をCPU10に送信する。
CPU10は、制御部1における、パルス発生器15および比較器17以外の機能を実行する機能部であり、記憶部19に格納されたプログラムに従って動作する演算ユニットである。
CPU10は、比較器17から取得した判定結果と、当該判定結果を取得したタイミングをもとにして対象物9との距離を算出するようになっている。
また、CPU10は、さらに、所定の条件下、制御部1として、変調器2に対して変調のプロトコルを指示している。
本実施形態において変調のプロトコルとは、超音波の周波数や、変調方式、パルス発生器15が生成する各パルスに対応するバースト波のバースト長の設定、パルス発生器15が生成する符号の情報などの方式を意味する。CPU10は、制御部1として、変調器2に対して、変調方式や、バースト長の設定、符号の情報などの、変調のプロトコルを指示することができるようになっている。
変調器2は、発振器4が発振する基本波を変調(以下、単に変調、と称する場合がある)し、圧電素子3に変調波を送信する変調回路(図示せず)であって、圧電素子3を駆動するための電圧を生じさせる回路(図示せず)を有するものである。
変調器2は、本実施形態では、発振器4が発振する基本波を搬送波とし、パルス発生器15が発振する信号に応じて当該基本波を変調し、信号情報を含む変調波を生成している。そして変調器2は、圧電素子3に対し、当該変調波を電圧の波として、すなわち、位相や振幅の強弱を変化させた電圧を印加し、圧電素子3を駆動している。圧電素子3は、変調器2から印加された電圧に応じて振動し、変調された超音波、すなわち、信号情報を含む超音波を発振する。
変調器2は、所定の方式で固有の所定の符号である識別信号を付与した変調波を出力することができる。
ここで、所定の方式とは、変調のプロトコルのことを言う。
変調器2は、本実施形態では、制御部1の指示により、複数の変調のプロトコルを切替えて、もしくは、組み合わせて変調することができる。
変調器2は、複数の変調のプロトコルの切替として、複数の変調方式を切替えて、変調することができる。
変調器2は、複数の変調方式として、少なくとも位相変調方式、振幅変調方式、および周波数変調方式を切替えて使用することができる。
また、変調器2は、複数の変調方式を同時に用いて(組み合わせて、もしくは重畳して)、変調することができる。
本実施形態では、変調器2は、位相変調方式、振幅変調方式、および周波数変調方式のうち、少なくとも二つの変調方式を同時に用いて変調することができるようになっており、それぞれの方式に対応する変調回路(図示せず)を変調器2の内部に包含している。
なお、本実施形態に言う位相変調方式とは、デジタル信号を、搬送波の位相を変化させて表して変調する、すなわち位相変調して伝送する方式の事をいい、PSK(phase-shift keying)とも呼ばれる。
図3に、位相変調方式で変調した場合の波形の一例を示す。
本実施形態では、図3に示すように、搬送波と同じ位相が二進数の1を表し、搬送波とπだけずれた位相が二進数のゼロを表している。
また、本実施形態に言う振幅変調方式とは、デジタル信号を搬送波の振幅の違いで表して変調する、すなわち振幅変調するする方式をいい、ASK(amplitude shift keying)とも呼ばれる。
本実施形態では、連続する波のうち、相対的に大きな振幅が二進数の1を表し、相対的に小さな振幅が二進数のゼロを表している。
図4に、振幅変調方式で変調した場合の波形の一例を示す。
図4では、二進数の1を表す相対的に大きな振幅に対して、当該振幅を100パーセントとした場合に、50パーセントの振幅を二進数のゼロを表す場合の目標振幅として変調制御し、100パーセントと50パーセントの平均値である75パーセント以下の振幅である場合に、二進数のゼロを表しているものとする場合を図示している。
また、本実施形態に言う周波数変調方式とは、デジタル信号を搬送波の周波数の違いで表して変調する、すなわち周波数変調するする方式をいい、FSK(frequency shift keying)とも呼ばれる。
図5に、周波数変調方式で変調した場合の波形の一例を示す。
本実施形態では、搬送波と同じ周波数が二進数の1を表し、搬送波よりも所定の大きさだけ周波数変化した場合に二進数のゼロを表すことができる。たとえば、図5の場合には、搬送波と同じ周波数が二進数の1を表し、搬送波よりも周波数が所定の大きさだけ小さい場合が二進数のゼロを表している。
変調器2は、複数の変調のプロトコルの切替として、パルス発生器15が生成する各パルスに対応し、バースト波のバースト長を切替て変調することができる。
すなわち、本実施形態において振幅変調方式でゼロを表す場合は、バースト長を短くすることで、相対的に小さな振幅を得るようになっている。
図1および図6に示す検波器5は、圧電素子3が受振した振動を復調して復調信号を取得するための復調機能を有する機能部である。なお、本実施形態において、圧電素子3が受振した振動とは、超音波であり、特に圧電素子3が発振した超音波の反射波である。
検波器5は、本実施形態では、図6に示すように、少なくとも位相変調方式、振幅変調方式、および周波数変調方式に対応する復調部として機能する復調回路として、それぞれ、ASK復調部51、FSK復調部52、PSK復調部53を有している。
また、検波器5は、圧電素子3が受振した超音波の周波数を解析するための、いわゆるFFT回路50を有している。FFT回路50が解析した周波数の情報は、それぞれASK復調部51、FSK復調部52、PSK復調部53へ送信されている。なお、FFTとは、高速フーリエ変換(Fast Fourier Transform)のことを言う。
ASK復調部51、PSK復調部53はそれぞれ、独立した周波数発振器51a、周波数発振器53aを有しており、FFT回路50から受信した周波数の情報に対応して、復調に要する任意の周波数を発振している。
ASK復調部51、FSK復調部52、およびPSK復調部53は、復調した復調信号を検波器5として、比較器17へ送信する。復調信号を受信した制御部1は、復調信号の方式を判断し、また、当該復調信号に含まれる信号を認識する。
〔動作の説明〕
〔障害物の検知動作の基本的な説明〕
以下では、距離計測装置100による、障害物91の検知と距離の計測動作について説明する。
本実施形態では、距離計測装置100は、いわゆるタイム・オブ・フライト(Time-Of-Flight、TOF)法により、距離を計測する。
図7には、TOF法による距離計測の基本的な概念を説明するグラフを図示している。
図7のグラフの横軸は時間の経過を意味している。
図7のグラフの縦軸は振幅の大きさを意味している。
ラインEは、圧電素子3の振動の振幅の包絡線(エンベロープ)である。
本実施形態において、圧電素子3は、上述のように、変調された超音波を発振している。この変調された超音波の発振の具体例については後述する。
圧電素子3は、所定の間隔毎に変調器2に発振時間T1だけ駆動される。
図7には、圧電素子3が、発振時間T1だけ変調器2に駆動されて振動(強制振動)した後、慣性による振動を残響時間T2だけ継続(いわゆる残響)し、その後、外部からの振動を受振している場合を図示している。
図7の図示の場合、圧電素子3は、圧電素子3の駆動が開始されてから時間Tp後に、所定の閾値Thを超える大きさの振動ピークP1を受振している。この振動ピークP1が、通常、障害物91(図1参照)からの反射波のピークである。
なお、閾値Thは、道路90からの小さな反射波(例えば道路の凹凸に伴う反射波)と、障害物91からの反射波を識別するための値である。
本実施形態では、閾値Thを超えるピークを有する反射波が、障害物91からの反射波であると定義している。一方、閾値Thを超えないピークを有する反射波は、一般に道路90の凹凸により生じる反射波であると定義している。
TOF法で障害物91との距離を計測する場合、振動ピークP1の開始点を、反射波の受振の開始点と認識すればよい。
振動ピークP1の開始点は、図7では、時間Tpから、時間ΔTだけさかのぼったポイントで図示している。通常、時間ΔTの長さは、発振時間T1に等しい。言い換えると、圧電素子3が発振した超音波の反射波の受振に要した時間Tfは、時間Tpから発振時間T1を差分して求めることができる。
たとえば図7の場合には、圧電素子3の駆動が開始された時点(ゼロ)から、振動ピークP1を示す時間Tpに達した時点より時間ΔTだけさかのぼった時点までの時間が時間Tfに対応する。もしくは、発振時間T1に達した時点から、振動ピークP1を示す時間Tpに達した時点までの時間も時間Tfと同じ時間長さである。
圧電素子3が受振した反射波は、検波器5で復調され、取り出された復調信号は、制御部1の比較器17に送信される。
ここで、圧電素子3が発振する超音波の反射波は、所定の符号を含む情報を有している。したがって、検波器5で復調され、取り出された信号は、パルス発生器15が生成した所定の符号を含んでいる。そこで、制御部1は、比較器17の判定結果が一致であれば、当該反射波が、圧電素子3が発振した超音波の反射波であると認識し、障害物91の存在を検知することができる。そして、制御部1は、時間Tfを求め、時間Tfと、音速とから、障害物91との距離を認識することができる。
〔誤検知の回避について〕
比較器17の判定結果が不一致である場合について補足する。
図8は、図7に示したラインEに加えて、振動ピークP2を有する超音波の入射が、ラインEfとして、重畳して図示されている。このラインEfは、例えば他の車両200(図1参照)などに搭載された、別の距離計測機が発した超音波もしくはその反射波を、圧電素子3が受振したものである。
図8に示す場合、振動ピークP2を有する超音波には、所定の符号を含む信号が含まれていない。したがって、振動ピークP2が閾値Thを超える場合にも、比較器17が不一致の判定をするため、制御部1は、圧電素子3が受振した振動ピークP2を有する超音波は、圧電素子3が発振した超音波の反射波ではないと認識することができる。
このように、所定の符号を含む超音波を発振し、また受振するようにすることで、制御部1は、誤検知を回避することができ、距離計測装置100の計測性能を向上させることができる。
〔超音波の変調について〕
変調器2は、制御部1の指示に応じて、所定の変調のプロトコルで変調する。
本実施形態では、変調器2は制御部1の指示に応じて、任意に変調方式を切替え、また、組み合わせて変調波を発振するようになっている。
また、変調器2は、上述のごとく制御部1としてのパルス発生器15から供給される信号の情報をもとにして変調するようになっているが、本実施形態移おいて制御部1は、必要に応じて符号の情報を変更するようになっている。そのため、変調器2は、制御部1からの指示としてのパルス発生器15の信号の情報の変更に対応して、所定のビット長、所定のビット配列で変調するようになっている。
また、本実施形態では、変調器2が出力する変調波に応じて、圧電素子3は、位相変調方式、振幅変調方式、周波数変調方式のいずれかもしくはこれらの組み合わせで変調された超音波を発振することができる。
以下では、変調器2が、位相変調方式と振幅変調方式との二つの変調方式を同時に用いて変調する方式で変調して変調波を出力し、圧電素子3が当該変調波に対応する超音波を発振している場合を例示して説明していく。
図8には、圧電素子3が、位相変調方式と振幅変調方式とを同時に用いて変調した超音波を発振する場合の、当該超音波の波形の一例を図示している。
また以下では、パルス発生器15が8ビットの符号を含む信号を発振しており、圧電素子3が、8ビットの符号の情報を含む変調された超音波を発振している場合を例示して説明する。
図9には、パルス発生器15が、最上位ビットから順に、[11111000]の8ビットの符号を含むパルス信号を発信しており、変調器2が、上位ビットから下位ビットの順に、ビットごとに交互に振幅変調方式と位相変調方式とに振り分けて変調して表し、圧電素子3(図1参照)が、当該変調された変調波に対応する超音波を発振している場合の振動の波形Wを例示している。
さらに、図9には、変調器2が、振幅変調方式でゼロを表す場合に、当該部分のバースト長を、振幅変調方式で1を表す部分の半分のバースト長で変調している場合を例示している。
図9からわかるように、本実施形態では、変調器2が複数の変調方式として、少なくとも位相変調方式および振幅変調方式を同時に用いて搬送波を変調しているため、短時間でより大きな送信ビット数(長い符号列)の送信が可能になる。
このように短時間でより大きな送信ビット数の送信が可能であるため、識別信号、もしくは識別IDを多数設定することが可能となり、例えば、他の距離測定器との混信のリスクを低減することができる。
また、本実施形態では、短時間でより大きな送信ビット数の送信が可能であるため、同一の送信ビット数(同じ符号列)であれば、発振時間T1をより短縮することができる。そのため、発振時間T1を短くして、距離計測装置100の計測の領域を拡大することもできる。
〔変調のプロトコルの決定について〕
図1には、他の車両200が、例えば障害物検知などの目的で、超音波を発振している場合を図示している。この車両200が発振している超音波を、以下ではノイズと称する。
もし、このノイズが、距離計測装置100が用いている変調のプロトコルと同一のプロトコルで変調されている場合、距離計測装置100が発振する超音波と、当該ノイズが干渉するおそれが生じ得る。
そこで、本実施形態において距離計測装置100は、識別信号を付与した超音波を圧電素子3から発振する(変調器2が変調波を出力する)に際し、予め、圧電素子3で周囲の超音波(たとえば、上記のノイズ)を受振し、検波器5で復調することで、制御部1が、予め当該周囲の超音波の変調方式や、当該周囲の超音波に含まれる信号などの、当該周囲の超音波の復調信号の方式、すなわち、当該周囲の超音波(図1の図示の場合はノイズ)の変調のプロトコルを知ることができるようになっている。
なお、識別信号を付与した超音波を圧電素子3から発振する際、ないし、変調器2が変調波を出力する際とは、例えば、距離計測装置100のスイッチが入りにされた後(通電開始後)、最初に圧電素子3から発振する場合、圧電素子3から間欠的に発振する場合におけるそれぞれの発振を行う際、さらには、所定期間ないし所定回数だけ圧電素子3から発振し、その次の所定期間ないし所定回数の発振を開始する際などが含まれる。
また、識別信号を付与した超音波を圧電素子3から発振するに際し、予め、とは、圧電素子3が発振したり、圧電素子3(自己)が発振した識別信号を付与した超音波の反射波を受振していない期間に、周囲の超音波(ノイズ)の受振を行っておき、当該周囲の超音波(ノイズ)の変調のプロトコルを知るということを意味する。
そして、制御部1は、復調信号からプロトコルを判断し、当該復調信号のプロトコルに関する情報を変調器2に出力する。本実施形態では、復調信号の方式として、制御部1は、変調器2に、ノイズとは異なるプロトコル、すなわち、ノイズとは異なる超音波の変調方式で変調したり、ノイズとは異なる識別信号(信号)を付与したりして変調する旨の指令の情報を出力する。
変調器2は、制御部1の指令の情報に基づいて、ノイズのプロトコルとは異なるプロトコルで搬送波を変調する。
以下、制御部1(CPU10)が復調信号のプロトコルを判断し、変調のプロトコルを決定する手順について、図10に従って説明していく。
距離計測装置100が計測を開始(ステップ#0)すると、まず、初回の超音波の発振であるかどうかを確認する(ステップ#01)。ここで、初回とは、これから発振する超音波のプロトコルの設定が記憶部19に記憶されていない場合の事をいう。たとえば、距離計測装置100のスイッチが切りにされて、記憶部19における、これから発振する超音波のプロトコルの設定の記録が消去(初期化、ないしリセット)されるなどした後に、ふたたび距離計測装置100のスイッチが入りにされた後、最初に超音波を発振する場合の事を言う。
超音波の発振が初回でなければ(ステップ#01:No)、ステップ#11へ移行する。ステップ#11以降については後述する。
超音波の発振が初回であれば(ステップ#01:YES)、ステップ#02へ移行して圧電素子3で周囲の超音波を受振し(ステップ#02)、比較器17が制御部1として検波器5から復調信号を取得して、周囲の超音波のプロトコルを判定し(ステップ#03)、これから発振する超音波のプロトコルとして、当該周囲の超音波のプロトコルと異なるものを設定し、当該設定を記憶部19に記録する。
制御部1は、その後、当該設定を変調器2に送信する。変調器2は当該設定に従って変調した変調波を圧電素子3に送信する。当該変調波を受振した圧電素子3は、距離計測装置100として、距離計測のための超音波を発振する。
ステップ#11以降について説明する。
ステップ#11では、CPU10は制御部1として、現在設定されているプロトコル(以下、現プロトコルと称する)についての設定を記憶部19から読み出して取得する。
次に、制御部1は、圧電素子3で周囲の超音波を受振する(ステップ#13)。
次に、比較器17が制御部1として検波器5から復調信号を取得して、これを現プロトコルと比較する(ステップ#13から#15)。
ステップ#13では、まず、復調信号の変調方式と、現在のプロトコルで選択している変調方式との一致もしくは不一致を判断する。
不一致の場合は(ステップ#13:No)、ステップ#29へ移行し、現在のプロトコルを維持する。
一致の場合は(ステップ#13:YES)、ステップ#14へ移行する。
ステップ#14では、現在のプロトコルで設定しているビット長の一致もしくは不一致を判断する。
不一致の場合は(ステップ#14:No)、ステップ#29へ移行し、現在のプロトコルを維持する。
一致の場合は(ステップ#14:YES)、ステップ#15へ移行する。
ステップ#15では、現在のプロトコルで設定しているビット配列(符号)の一致もしくは不一致を判断する。
不一致の場合は(ステップ#15:No)、ステップ#29へ移行し、現在のプロトコルを維持する。
一致の場合は(ステップ#15:YES)、ステップ#19へ移行し、プロトコルを変更する。
本実施形態では、プロトコルを変更する場合、たとえば、変調方式、ビット長、およびビット配列のいずれもが相違するように変更することができる。
圧電素子3が受振した周囲の超音波が、周波数変調方式を使用しており、当該周囲の超音波に含まれる信号のビット長が4ビットであり、ビット配列が[0101]である場合は、例えば、次のようにプロトコルを変更することができる。
すなわち、位相変調方式と振幅変調方式との二つの変調方式を同時に用いて変調する振幅位相変調方式を、周波数変調方式とは異なる変調の方法として選択することができる。さらに、識別信号のビット長を8ビットというふうに、4ビットとは異なるビット長に設定することができる。さらに、ビット配列を[11111000]というふうに、[0101]とは異なるビット配列に設定することができる。なお、この例では、当該周囲の超音波に含まれる信号の[0101]というビット配列を、識別信号の[11111000]というビット配列中に含まないように設定している。
以上のようにして、距離計測の計測性能を向上させた距離計測装置を提供することができる。
〔別実施形態〕
(1)上記実施形態では、圧電素子3の共振周波数を40kHzとしたが、圧電素子3の共振周波数はこれに限られず、人の可聴域を超える音域(周波数帯)で任意に設定可能である。なお、人の可聴域を超える音域とは、たとえば20kHz以上の周波数帯の超音波の音域を言う。
(2)上記実施形態では、変調器2が、位相変調方式と振幅変調方式との二つの変調方式を同時に用いて変調する場合を説明した。
しかしながら、変調器2が、位相変調方式と振幅変調方式との二つの変調方式に加えて、さらに、周波数変調方式を同時に用いて変調してもよい。
もしくは、変調器2が、位相変調方式、振幅変調方式もしくは周波数変調方式のうち、何れかひとつを用いて変調してもよい。
(3)上記実施形態では、変調器2が、振幅変調方式でゼロを表す場合に、当該部分のバースト長を、振幅変調方式で1を表す部分の半分のバースト長で変調している場合を説明した。
しかしながら、振幅変調方式でゼロを表す場合にも、当該部分のバースト長を、振幅変調方式で1を表す部分と同じバースト長としてもよい。
(4)上記実施形態では、所定のビット長として、8ビットのビット長である場合を例示して説明した。
しかしながら、ビット長の設定は任意であり、混信防止に必要なビット長を選択することができる。例えばビット長を16ビットとしてもよい。
(5)上記実施形態では、パルス発生器15が8ビットで発信した信号を、変調器2が、上位ビットから下位ビットの順に、ビットごとに交互に振幅変調方式と位相変調方式とに振り分けて変調する場合を例示した。
しかしながら、変調器2が、上位4ビットを位相変調方式で変調して表し、下位4ビットを振幅変調方式で変調して表すようにしてもよい。
(6)上記実施形態では、超音波の発振が初回でなければ、ステップ#11へ移行し、現プロトコルと比較する(ステップ#13から#15)場合を例示した。そして、復調信号の変調方式、ビット長、ビット配列の順に一致不一致を制御部1が判断し、先に不一致の判断がなされた場合は、現プロトコルを維持する場合を説明した。
しかしながら、制御部1は、復調信号の変調方式、ビット長、ビット配列の全てが不一致である場合に、現プロトコルを維持すようにすることもできる。このようにすれば、より確実に誤検知を予防することができる。たとえば、ビット配列が[0101]の信号と、[01010101]の信号とは、ビット長がことなるが、同一のビット配列となる部分を含んでいる場合にも、確実に誤検知を予防することができる。
(7)上記実施形態では、圧電素子3としてひとつの超音波振動子のユニットを用い、変調波に対応する超音波を発振する際に、圧電素子3が発振素子として用いられ、周囲の超音波を受振する際に、同じ圧電素子3が受振素子として用いられる場合を例示した。
しかしながら、図11に示すように、受振素子として第一プローブ31を、発振素子として第二プローブ32(圧電素子ユニットの一例)を割り当てるようにしてもよい。このようにすれば、第一プローブ31で超音波を発振しながら、第二プローブ32で反射波およびその他の音波を受振することができるため、より確実に混信防止が可能になり、距離計測の精度を向上させることができる。
この場合、第一プローブ31は少なくとも超音波を受振できれば良く、例えば超音波の発振に必要な回路や制御を要することなく、受振に最適化した簡易な構成のユニットとすることができる。なお、第一プローブ31を構成するユニットは、圧電素子以外も採用しうる。
同様に、第二プローブ32は超音波を発振できれば良く、例えば超音波の受振に必要な回路や制御を要することなく、簡易な構成の圧電素子を有するユニットとすることができる。
(8)上記実施形態では、ノイズとは異なるプロトコルを変更する場合、変調方式、ビット長、およびビット配列が相違するように変更する場合を例示した。
しかし、変調方式、ビット長、およびビット配列以外に、もしくは、変調方式、ビット長、およびビット配列に加えて、他の方式を変更してもよい。たとえば、バースト長を、ノイズとは異なるバースト長に変更することもできる。
(9)上記実施形態では、符号を表す場合に、たとえば位相変調方式の場合に搬送波と同じ位相が二進数の1を表し、搬送波とπだけずれた位相が二進数のゼロを表し、符号の最小単位が2値である場合を例示した。
しかしながら、符号の表し方は上記例示に限られない。符号は二進数以外にも他の位取り記数法、たとえば十進数を用いることができる。また、各変調方式において二値を超える変調を行うこともできる。
具体的にはたとえば、位相変調方式の場合、搬送波と同じ位相で十進数のゼロ(0)を表し、以後、搬送波とπ/4だけずれた位相が十進数の1を、π/2だけずれた位相が十進数の2を、3π/4だけずれた位相が十進数の3を表すようにして、四値で表してもよい。この場合、十進数ではなく、上記実施形態と同様に、二進数で表してもよい。例えば、搬送波と同じ位相で二進数の00を表し、以後、搬送波とπ/4だけずれた位相が二進数の01を、π/2だけずれた位相が二進数の10を、3π/4だけずれた位相が二進数の11を表すようにすることができる。
同様に、振幅変調方式や周波数変調方式の場合も、二進数以外の他の位取り記数法を採用し、また、二値を超える変調を行うこともできる。例えば振幅変調方式の場合には、振幅の階調として四段階設定し、二進数の00、01、10、11の四値、ないし、十進数の0、1、2、3の四値を表すこともできる。また、さらに多段階を設定し、4値を超えて表すこともできる。同様に周波数変調方式の場合にも、搬送波に対して多段階の大きさの周波数変化を設定し、多値を表すこともできる。
(10)上記実施形態では、パルス発生器15は、所定のビット長で、所定のビット配列の、二進数の符号を含む信号を生成し、当該ビット長としては例えば、8ビットのビット長を選択しており、所定のビット配列としては任意の配列を選択してよいことを説明した。この場合、任意の配列として、誤り検出用のパリティビットを含むことができる。
たとえば、8ビットのビット長の場合は、最上位ビットを1とし、最下位ビットは誤り検出用のパリティビットとして用いてもよい。誤り検出としては、例えば奇数パリティ方式を使用することができる。
また、上記実施形態ではより大きな送信ビット数の送信を可能としているため、パリティビットを採用する以外にも、誤り訂正ビットを採用したりするなどして、識別性を向上させることもできる。
(11)上記実施形態では、振幅変調方式で変調した場合に、二進数の1を表す相対的に大きな振幅に対して、当該振幅を100パーセントとした場合に、50パーセントの振幅を二進数のゼロを表す場合の目標振幅として変調制御し、100パーセントと50パーセントの平均値である75パーセント以下の振幅である場合に、二進数のゼロを表しているものとする場合を例示した。
しかしながら、振幅変調方式のみで変調する場合においては、二進数のゼロを表す場合に、ゼロパーセントの振幅を二進数のゼロを表す場合の目標振幅として変調制御してもよい。この場合、例えば100パーセントとゼロパーセントの平均値である50パーセント以下の振幅である場合に、二進数のゼロを表しているものとすることができる。
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
本発明は、距離計測装置に適用できる。
1 :制御部
2 :変調器
3 :圧電素子(受振素子、発振素子)
4 :発振器
5 :検波器(復調部)
9 :対象物
10 :CPU
15 :パルス発生器
17 :比較器
19 :記憶部
31 :第一プローブ(受振素子)
32 :第二プローブ(発振素子、圧電素子ユニット)
50 :FFT回路
51 :ASK復調部(復調部)
51a :周波数発振器
52 :FSK復調部(復調部)
53 :PSK復調部(復調部)
53a :周波数発振器
90 :道路(対象物)
91 :障害物(対象物)
100 :距離計測装置
200 :車両
A :振幅
E :ライン
Ef :ライン
P1 :振動ピーク
P2 :振動ピーク
T1 :発振時間
T2 :残響時間
Td :遅延時間
Th :閾値
W :波形

Claims (5)

  1. 搬送波を発振する発振器と、
    前記搬送波に所定の方式で識別信号を付与した変調波を出力する変調器と、
    前記変調波に対応する超音波を発振する発振素子と、
    超音波を受振する受振素子と、
    前記受振素子が受振した超音波を復調する復調部と、
    復調された超音波の方式を判断する制御部と、を備え、
    前記制御部は、前記発振素子がこれから発振する前記超音波のプロトコルの設定として、前記発振器により発振される前記搬送波の周波数及び前記変調器から出力される前記変調波の変調方式が記憶される記憶部を有し、
    前記制御部は、前記変調器が前記変調波を出力するに際し、前記記憶部に記憶されている前記プロトコルの設定に基づいて初回の発振であるか否かを判定し、
    前記初回の発振である場合には、あらかじめ前記受振素子に超音波を受振させ、さらに当該受振した超音波を前記復調部に復調させて復調信号を取得し、当該受振した超音波のプロトコルとは異なるプロトコルを設定して前記記憶部に記憶して、当該プロトコルの設定に関する情報を前記変調器に出力し、
    前記初回の発振でない場合には、前記記憶部から現在のプロトコルの設定を読み出した後、あらかじめ前記受振素子に超音波を受振させ、さらに当該受振した超音波を前記復調部に復調させて復調信号を取得し、当該受振した超音波のプロトコルと前記現在のプロトコルとの比較結果に基づいて当該受振した超音波のプロトコルとは異なるプロトコルを設定して、当該プロトコルの設定に関する情報を前記変調器に出力し、
    前記変調器は、前記プロトコルの設定に関する情報に基づいて、前記受振した超音波のプロトコルとは異なるプロトコルで前記搬送波に前記識別信号を付与し、前記変調波を出力する距離計測装置。
  2. 前記変調器は、前記復調信号とは異なるビット配列の前記識別信号を付与した前記変調波を出力する請求項1に記載の距離計測装置。
  3. 前記ビット配列は、前記復調信号とは異なるビット長である請求項2に記載の距離計測装置。
  4. 前記変調器は、前記復調部が復調した変調方式とは異なる方式で変調した変調波を出力する請求項1から3のいずれか一項に記載の距離計測装置。
  5. 前記発振素子として圧電素子ユニットを備え、
    前記受振素子は、前記圧電素子ユニットとは別のユニットである請求項1から4のいずれか一項に記載の距離計測装置。
JP2017245531A 2017-12-21 2017-12-21 距離計測装置 Active JP7119369B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017245531A JP7119369B2 (ja) 2017-12-21 2017-12-21 距離計測装置
EP18213834.7A EP3502741B1 (en) 2017-12-21 2018-12-19 Obstacle detection sensor
US16/226,840 US11125874B2 (en) 2017-12-21 2018-12-20 Obstacle detection sensor
CN201811570391.5A CN109991609A (zh) 2017-12-21 2018-12-21 障碍物检测传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245531A JP7119369B2 (ja) 2017-12-21 2017-12-21 距離計測装置

Publications (2)

Publication Number Publication Date
JP2019113361A JP2019113361A (ja) 2019-07-11
JP7119369B2 true JP7119369B2 (ja) 2022-08-17

Family

ID=67222547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245531A Active JP7119369B2 (ja) 2017-12-21 2017-12-21 距離計測装置

Country Status (1)

Country Link
JP (1) JP7119369B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615140B1 (ko) * 2021-07-30 2023-12-19 부산대학교 산학협력단 혼선을 줄이기 위한 초음파 거리 측정 장치 및 방법, 혼선을 줄이기 위한 초음파 수신기

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534199A (ja) 2003-09-08 2007-11-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動機を利用した変調管理
WO2008010306A1 (fr) 2006-07-18 2008-01-24 Panasonic Corporation dispositif de mesure ultrasonore et procédé de mesure ultrasonore
JP2009145300A (ja) 2007-12-18 2009-07-02 Omron Corp 距離測定方法、距離測定装置、非接触ic媒体、距離測定システム、および距離測定プログラム
JP2010181273A (ja) 2009-02-05 2010-08-19 Toshiba Corp レーダ装置及び信号処理方法
WO2013073135A1 (ja) 2011-11-17 2013-05-23 パナソニック株式会社 レーダ装置
JP2014500492A (ja) 2010-11-16 2014-01-09 クゥアルコム・インコーポレイテッド 超音波反射信号に基づく物体位置推定のためのシステム及び方法
JP2014142305A (ja) 2013-01-25 2014-08-07 Japan Radio Co Ltd 干渉制御装置
JP2016017786A (ja) 2014-07-07 2016-02-01 株式会社東芝 レーダシステム、およびレーダ装置
US20160356149A1 (en) 2012-11-29 2016-12-08 The Charles Machine Works, Inc. Borepath Analyzer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120865B2 (ja) * 1991-05-13 2000-12-25 松下電子工業株式会社 半導体装置
US5541604A (en) * 1993-09-03 1996-07-30 Texas Instruments Deutschland Gmbh Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534199A (ja) 2003-09-08 2007-11-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動機を利用した変調管理
WO2008010306A1 (fr) 2006-07-18 2008-01-24 Panasonic Corporation dispositif de mesure ultrasonore et procédé de mesure ultrasonore
JP2009145300A (ja) 2007-12-18 2009-07-02 Omron Corp 距離測定方法、距離測定装置、非接触ic媒体、距離測定システム、および距離測定プログラム
JP2010181273A (ja) 2009-02-05 2010-08-19 Toshiba Corp レーダ装置及び信号処理方法
JP2014500492A (ja) 2010-11-16 2014-01-09 クゥアルコム・インコーポレイテッド 超音波反射信号に基づく物体位置推定のためのシステム及び方法
WO2013073135A1 (ja) 2011-11-17 2013-05-23 パナソニック株式会社 レーダ装置
US20160356149A1 (en) 2012-11-29 2016-12-08 The Charles Machine Works, Inc. Borepath Analyzer
JP2014142305A (ja) 2013-01-25 2014-08-07 Japan Radio Co Ltd 干渉制御装置
JP2016017786A (ja) 2014-07-07 2016-02-01 株式会社東芝 レーダシステム、およびレーダ装置

Also Published As

Publication number Publication date
JP2019113361A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
US11125874B2 (en) Obstacle detection sensor
US11500081B2 (en) Object detection device and object detection system
JP2013535680A (ja) 車両周囲環境検出のためのテスト信号を発生させる方法および装置、並びに車両周囲環境検出装置
US8750076B2 (en) Position detection system, transmission device, reception device, position detection method and position detection program
JP2018179676A (ja) 物体検知装置
JP2023058625A (ja) 物体検知装置および駐車支援装置
JP7119369B2 (ja) 距離計測装置
JP7168083B2 (ja) 物体検知装置および制御装置
JP7197030B2 (ja) 距離計測装置
US11150343B2 (en) Object detection system and object detection apparatus
JP7379819B2 (ja) 物体検知装置および駐車支援装置
JP7464140B2 (ja) 超音波発生装置、振動子、および、物体検出装置
WO2018221393A1 (ja) 超音波センサ及び物体検知システム
WO2021024696A1 (ja) 駆動装置および駆動方法
JP2019113360A (ja) 距離計測装置
US20210263149A1 (en) Object detection device
US20210055397A1 (en) Object detection device
JP7020102B2 (ja) 障害物検知センサ
WO2020071105A1 (ja) 物体検知装置
WO2024034391A1 (ja) 超音波発生装置、振動子、および、物体検出装置
JP7147543B2 (ja) 物体検知装置および物体検知方法
US20230204765A1 (en) Object detection device
JP2008020233A (ja) 距離測定装置
JP2022124823A (ja) 物体検知装置
RU2022105768A (ru) Чувствительная компоновка для закрытого контейнера и способ передачи данных через стенку контейнера

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220614

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7119369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150