WO2021023223A1 - 制冷电器的制冰组件 - Google Patents

制冷电器的制冰组件 Download PDF

Info

Publication number
WO2021023223A1
WO2021023223A1 PCT/CN2020/107115 CN2020107115W WO2021023223A1 WO 2021023223 A1 WO2021023223 A1 WO 2021023223A1 CN 2020107115 W CN2020107115 W CN 2020107115W WO 2021023223 A1 WO2021023223 A1 WO 2021023223A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
assembly
filling cup
discharge
heating element
Prior art date
Application number
PCT/CN2020/107115
Other languages
English (en)
French (fr)
Inventor
约瑟夫 米切尔艾伦
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080054560.9A priority Critical patent/CN114174740B/zh
Priority to EP20849635.6A priority patent/EP4012302A4/en
Priority to AU2020324207A priority patent/AU2020324207B2/en
Publication of WO2021023223A1 publication Critical patent/WO2021023223A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • F25C1/243Moulds made of plastics e.g. silicone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/06Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/08Sticking or clogging of ice

Definitions

  • the present invention generally relates to refrigeration appliances, and in particular to ice-making components for refrigeration appliances.
  • Refrigeration appliances generally include a box defining one or more refrigeration compartments for accommodating food to be stored.
  • one or more doors are rotatably hinged on the box body so as to selectively access the food stored in the refrigerating room.
  • the refrigeration appliance usually includes an ice making assembly installed in an ice box located on one of the doors or in the freezer compartment. Ice is stored in the ice storage box and can be obtained from the freezer compartment or discharged through a distribution groove defined in front of the refrigerator door.
  • a conventional twist tray ice maker includes a separate plastic mold that physically deforms to break the bond formed between the ice and the tray.
  • these ice machines require additional space to fully rotate and twist the tray.
  • ice cubes often break during twisting. When this happens, some ice cubes may remain in the tray, causing it to overflow during the next filling.
  • the traditional crescent ice cube ice maker uses a discharge arm to jump over the ice mold and eject the ice cubes.
  • the water may freeze and jam the discharge arm, causing ejection failure and stalling of the ice making process.
  • Some conventional ice making machines include ice harvesting heaters that help release ice cubes from the mold, but the heaters are usually placed away from drain outlets where ice accumulation may occur. Therefore, these ice harvesting heaters must be turned on for a long time to melt the entire ice cubes and blocked drains, increase energy consumption and significantly increase the time of the ice formation process.
  • an ice making assembly for a refrigeration appliance.
  • the ice making assembly includes an elastic mold defining a mold cavity and a filling cup located above the elastic mold for selectively filling the mold cavity with water.
  • the heat exchanger is thermally connected to the elastic mold to freeze water and form one or more ice cubes, and the heating element is thermally connected to the filling cup to selectively heat the filling cup.
  • a refrigeration appliance that defines a vertical direction, a lateral direction, and a lateral direction.
  • the refrigerating appliance includes a box body defining a refrigerating compartment, a door rotatably installed to the box body to provide selective access to the refrigerating compartment, and an ice box installed on the door and defining an ice making compartment.
  • the ice making assembly is located in the ice making chamber and includes an elastic mold defining a mold cavity and a filling cup located above the elastic mold for selectively filling the mold cavity with water.
  • the heat exchanger is thermally connected to the elastic mold to freeze water and form one or more ice cubes, and the heating element is thermally connected to the filling cup to selectively heat the filling cup.
  • an ice making assembly for a refrigeration appliance includes a mold defining a mold cavity and a filling cup located above the mold for draining water into the mold.
  • the ejection arm is rotatably mounted on the mold and includes a radial protrusion that rotates through the mold cavity, and a heating element is located in the filling cup for selectively heating the filling cup.
  • Fig. 1 is a perspective view of a refrigerating appliance according to an exemplary embodiment of the present invention.
  • Fig. 2 is a perspective view of the exemplary refrigeration appliance in Fig. 1, with the door of the food preservation compartment shown in an open position.
  • FIG. 3 is a perspective view of an ice box and ice making assembly used with the exemplary refrigeration appliance of FIG. 1 according to an exemplary embodiment of the present invention.
  • FIG. 4 is a perspective view of the exemplary ice making assembly of FIG. 3 according to an exemplary embodiment of the present invention.
  • Fig. 5 is a partial side view of the driving mechanism, the lifting assembly, and the discharge assembly of the exemplary ice making assembly of Fig. 3, wherein the lifting assembly is in a lowered position and the discharge assembly is in a retracted position.
  • Fig. 6 is a partial side view of the driving mechanism, the lifting assembly and the discharge assembly in Fig. 5, wherein the lifting mechanism is in a raised position.
  • Fig. 7 is a rear view of the exemplary ice making assembly of Fig. 3 according to an exemplary embodiment, with the bracket removed for clarity.
  • Fig. 8 is a perspective view of an ice box and an ice making assembly used with another exemplary refrigeration appliance of Fig. 1 according to an exemplary embodiment of the present invention.
  • Fig. 9 is a partial side view of the driving mechanism, the lifting assembly, and the ejection assembly of the exemplary ice making assembly of Fig. 8, wherein the lifting assembly is in a lowered position and the ejection assembly is in a retracted position.
  • Fig. 10 is a partial side view of the exemplary ice making assembly of Fig. 8 with an ice jam.
  • FIG. 11 is a perspective cross-sectional view of an ice making assembly used in the exemplary refrigeration appliance of FIG. 1 according to another exemplary embodiment of the present invention.
  • FIG. 12 is a top perspective view of the exemplary ice making assembly of FIG. 11 according to another exemplary embodiment of the present invention.
  • Fig. 1 is a perspective view of a refrigerating appliance 100 according to an exemplary embodiment of the present invention.
  • the refrigeration appliance 100 includes between the top 104 and the bottom 106 along the vertical direction V, between the first side 108 and the second side 110 along the lateral direction L, and between the front side 112 and the rear along the lateral direction T.
  • a box or housing 102 extending between sides 114.
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T is perpendicular to the other directions.
  • the housing 102 defines a refrigeration compartment for containing food to be stored.
  • the housing 102 defines a food preservation compartment 122 located at or adjacent to the top 104 of the housing 102 and a freezing compartment 124 located at or adjacent to the bottom 106 of the housing 102.
  • the refrigerating appliance 100 is generally called a bottom-mounted refrigerator.
  • the benefits of the present invention are applicable to other types and styles of refrigeration appliances (for example, overhead refrigeration appliances, side-by-side refrigeration appliances, or single-door refrigeration appliances). Therefore, the description herein is for illustrative purposes only, and is not intended to limit any specific refrigerator compartment configuration in any respect.
  • the refrigerating door 128 is rotatably hinged to the edge of the housing 102 for selectively entering the food preservation compartment 122.
  • the freezing door 130 is arranged under the refrigerating door 128 for selectively entering the freezing compartment 124.
  • the freezing door 130 is connected to a freezing compartment drawer (not shown) slidably installed in the freezing compartment 124.
  • the refrigerating door 128 and the freezing door 130 are shown in a closed state in FIG. 1.
  • FIG. 2 is a perspective view of the refrigerating appliance 100 with the refrigerating door 128 in an open position.
  • various storage components are installed in the fresh food compartment 122 so as to store food in the fresh food compartment.
  • the storage assembly may include a box 134 and a shelf 136.
  • Each of these storage components is configured to receive food (for example, beverages and/or solid food) and help organize these foods.
  • the box 134 may be installed on the refrigerating door 128 or slid into the receiving space in the food preservation compartment 122.
  • the storage components shown are for explanatory purposes only, and other storage components may be used, and the storage components may have different sizes, shapes, and configurations.
  • the dispensing assembly 140 will be described in accordance with an exemplary embodiment of the present invention.
  • the dispensing assembly 140 is generally configured to dispense liquid water and/or ice. Although an exemplary dispensing assembly 140 is shown and described herein, it should be understood that the dispensing assembly 140 may be changed and modified within the scope of the present invention.
  • the distribution assembly 140 and its various components may be at least partially located in a distribution groove 142 defined on a refrigerating door 128.
  • the distribution groove 142 is defined on the front side 112 of the refrigeration appliance 100, so that the user can operate the distribution assembly 140 without opening the refrigerating door 128.
  • the dispensing groove 142 is located at a predetermined height, which is convenient for the user to take ice, and allows the user to take ice without bending over. In an exemplary embodiment, the dispensing groove 142 is located close to the level of the user's chest.
  • the dispensing assembly 140 includes an ice dispenser 144 that includes a discharge outlet 146 for discharging ice from the dispensing assembly 140.
  • An actuating mechanism 148 shown as a paddle is installed below the discharge outlet 146 for operating the ice or water dispenser 144.
  • any suitable actuation mechanism may be used to operate the ice dispenser 144.
  • the ice dispenser 144 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • the discharge outlet 146 and the actuation mechanism 148 are the outer part of the ice dispenser 144 and are installed in the dispensing groove 142.
  • the refrigerating door 128 may define an ice box 150 (FIGS. 2 and 3), and the ice box 150 accommodates the ice maker and the ice storage box 152 and is configured to supply ice to the distribution groove 142.
  • the ice box 150 may define an ice making chamber 154 for accommodating an ice making assembly, a storage mechanism, and a dispensing mechanism.
  • a control panel 160 is provided for controlling the operation mode.
  • the control panel 160 includes one or more selector inputs 162, such as knobs, buttons, touch screen interfaces, etc., such as a water distribution button and an ice distribution button, for selecting a desired operation mode, such as crushed ice or non-crushed ice.
  • the input 162 can be used to specify the filling volume or the method of operating the dispensing assembly 140.
  • the input 162 may be in communication with a processing device or controller 164.
  • the signal generated in the controller 164 operates the refrigeration appliance 100 and the distribution assembly 140.
  • a display 166 such as an indicator light or a screen, may be provided on the control panel 160. The display 166 can communicate with the controller 164 and display information in response to signals from the controller 164.
  • the "processing device” or “controller” used herein may refer to one or more microprocessors or semiconductor devices, and is not necessarily limited to a single element.
  • the processing device can be programmed to operate the refrigeration appliance 100 and the distribution assembly 140.
  • the processing device may include or be associated with one or more storage elements (for example, non-transitory storage media).
  • the storage element includes an electrically erasable programmable read-only memory (EEPROM).
  • EEPROM electrically erasable programmable read-only memory
  • the storage element can store processing device access information, including instructions that can be executed by the processing device.
  • the instructions may be software or any set of instructions and/or data, and when executed by the processing device, the instructions may cause the processing device to perform operations.
  • the ice making assembly 200 is installed on the ice box 150 in the ice making chamber 154 and configured to receive the water flow from the water supply nozzle 202 (for example, see FIG. 3).
  • the water supply nozzle 202 can discharge water flow into the filling cup, which disperses or introduces the water into one or more mold cavities.
  • the ice making assembly 200 is generally configured to freeze water to form ice cubes 204 (see FIGS. 5 and 6), which can be stored in the ice storage box 152 and distributed by the distribution assembly 140 through the discharge outlet 146.
  • ice making assembly 200 described in this patent is only intended to explain various aspects of the present invention.
  • the ice making assembly 200 can be changed and modified within the scope of the present invention.
  • the ice making assembly 200 may alternatively be located in the freezer compartment 124 of the refrigerating appliance 100, and may have any other suitable configuration.
  • the ice making assembly 200 includes an elastic mold 210 that defines a mold cavity 212.
  • the elastic mold 210 is used to receive the gravity-assisted water flow from the water supply nozzle 202 and hold the water until the ice cube 204 is formed.
  • the elastic mold 210 may be made of any suitable elastic material, and the elastic material may be deformed to release the ice cubes after the ice cubes 204 are formed.
  • the elastic mold 210 is formed of silicone or another suitable hydrophobic, food grade, and elastic material.
  • the elastic mold 210 defines two mold cavities 212, each of which is shaped and used to form a separate ice cube 204.
  • the water supply nozzle 202 is configured to refill the elastic mold 210 to a horizontal position above the inner partition wall (not shown) so that the water overflows into the two mold cavities 212 uniformly.
  • the water supply nozzle 202 may have a dedicated discharge nozzle located above each mold cavity 212.
  • the ice making assembly 200 may be scaled down to form any suitable number of ice cubes 204, for example, by increasing the number of cavities 212 defined by the elastic mold 210.
  • the ice making assembly further includes a filling cup 214 located above the elastic mold 210 for selectively filling the mold cavity 212 with water.
  • the filling cup 214 may be located under the water supply nozzle 202 for receiving the water flow 216.
  • the filling cup 214 may define a small container for collecting and/or guiding the water flow 216 into the mold cavity 212 without excessive splashing or overflow.
  • the filling cup 214 may define a discharge spout 218 that guides water to the bottom of the filling cup 214 and can distribute the water into the mold cavity 212 at the bottom.
  • the filling cup 214 and the discharge spout 218 may have any suitable size, shape, and configuration suitable for distributing the water stream 216 into the elastic mold 210.
  • the filling cup 214 is located above one of the two mold cavities 212 and generally defines an inclined surface to direct the water flow 216 to the discharge immediately above the filling level (not labeled) of the elastic mold 210 Spout 218.
  • the filling cup 214 may extend through the entire width of the elastic mold 210 and may have a plurality of discharge nozzles 218.
  • the filling cup 214 may also have other configurations.
  • the ice making assembly 200 may further include a heat exchanger 220 thermally connected to the elastic mold 210 for freezing the water in the mold cavity 212 to form one or more ice cubes 204.
  • the heat exchanger 220 may be formed of any suitable thermally conductive material, and may be arranged in direct contact with the elastic mold 210.
  • the heat exchanger 220 is formed of aluminum and is located directly below the elastic mold 210.
  • the heat exchanger 220 may define an ice cube groove 222 configured to receive the elastic mold 210 and shape or define the bottom of the ice cube 204.
  • the heat exchanger 220 is in direct contact with the elastic mold 210 over most of the surface area of the ice cube 204, for example, so that the water stored in the mold cavity 212 quickly freezes.
  • the heat exchanger 220 may contact the elastic mold 210 over about half of the surface area of the ice cube 204. It should be understood that the approximate terms used herein, such as “approximately”, “substantially” or “approximately”, mean within a ten percent error range.
  • the ice making assembly 200 may include an air inlet duct 224 located near the heat exchanger 220 and fluidly connected to a cold air supply source (for example, shown as a cooling air flow 226).
  • a cold air supply source for example, shown as a cooling air flow 2266.
  • the rear end 228 of the air inlet duct 224 self-made ice assembly 200 passes through the heat exchanger 220 to the ice making assembly 200
  • the front end 230 of the BS provides a cold air flow 226 (for example, as shown in FIGS. 5 and 6, to the left along the lateral direction L, that is, the side where the ice cubes 204 are discharged into the ice bank 152).
  • the air inlet duct 224 generally receives the cold air flow 226 from the sealing system of the refrigeration appliance 100 and guides it through the heat exchanger 220 to cool the heat exchanger 220.
  • the heat exchanger 220 defines a plurality of heat exchange fins 232 extending in a direction substantially parallel to the cold air flow 226.
  • the heat exchange fins 232 extend downwardly in the lateral direction L from the top of the heat exchanger 220 along a plane defined by the vertical direction V (for example, when the ice making assembly 200 is installed in the refrigeration appliance 100 ).
  • the ice making assembly 200 also includes a lifting mechanism 240 located below the elastic mold 210 and generally configured to facilitate the ejection of ice cubes 204 from the mold cavity 212.
  • the lifting mechanism 240 can move between a lowered position (for example, as shown in FIG. 5) and a raised position (for example, as shown in FIG. 6).
  • the lifting mechanism 240 includes a lifting arm 242 extending substantially along the vertical direction V and passing through the lifting channel 244 in the heat exchanger 220. In this way, when the lifting mechanism 240 slides along the vertical direction V, the lifting channel 244 can guide the lifting mechanism.
  • the lifting mechanism 240 includes a lifting protrusion 246 extending from the top of the lifting arm 242 to the rear end 228 of the ice making assembly 200 and the front end 230 of the ice making assembly 200.
  • the lifting protrusions 246 generally define the contour of the bottom of the ice cube 204, and when the lifting mechanism 240 is in the lowered position, the lifting protrusions are flush with the lifting grooves 248 defined by the heat exchanger 220. In this way, the heat exchanger 220 and the lifting protrusion 246 define the smooth bottom surface of the ice cube 204. More specifically, according to the illustrated embodiment, the lifting protrusion 246 is generally bent downward and away from the lifting arm 242 so as to define a smooth notch at the bottom of the ice cube 204.
  • the heat exchanger 220 may further define a hole for receiving a temperature sensor 250 that is used to determine when the ice cube 204 is formed to perform the ejection process.
  • the temperature sensor 250 can effectively communicate with the controller 164, which can monitor the temperature of the heat exchanger 220 and the time the water is in the cavity 212 to predict when the ice cubes 204 are completely frozen.
  • temperature sensor can refer to any suitable type of temperature sensor.
  • the temperature sensor may be a thermocouple, thermistor, or resistance temperature detector.
  • the ice making assembly 200 may include any other suitable number, type, and location of temperature sensors.
  • the ice making assembly 200 further includes an ejection assembly 260, which is located above the elastic mold 210 and is generally configured to push the ice cubes out of the mold cavity 212 and enter the ice storage after the ice cubes 204 are formed. Box 152.
  • the ejection assembly 260 can move in a horizontal direction (ie, from the side) between the retracted position (for example, as shown in FIG. 5) and the extended position (for example, as shown in FIG. 6). Move in the direction L and the transverse direction T).
  • the discharge assembly 260 and the filling cup 214 may be integrally formed as a single element, and the filling cup 214 is located on the top of the discharge assembly 260. In this way, during the ice discharge process, the discharge assembly 260 and the filling cup 214 may move in the lateral direction L uniformly.
  • the discharge assembly 260 when water is added to the elastic mold 210 (ie, by filling the cup 214), the discharge assembly 260 remains in the retracted position.
  • the lifting mechanism 240 moves to the raised position.
  • the discharge assembly 260 moves horizontally from the retracted position to the extended position, that is, moves toward the front end 230 of the ice making assembly 200.
  • the ejection assembly pushes the ice cubes 204 away from the lifting mechanism 240, pushes out the elastic mold 210, and passes over the top of the heat exchanger 220 that may allow the ice cubes to fall into the ice storage box 152.
  • the water supply nozzle 202 is located above the filling cup 214 (in the retracted position) so that water flow can be introduced into the elastic mold 210.
  • the water supply nozzle 202 is positioned so that the discharge assembly 260 can move between the retracted position and the extended position without contacting the water supply nozzle 202.
  • the water supply nozzle 202 may be connected to a mechanical actuator, which lowers the water supply nozzle 202 close to the elastic mold 210 when the discharge assembly 260 is in the retracted position. In this way, the total height or profile of the ice making assembly 200 can be further reduced, thereby maximizing the ice storage capacity and minimizing space waste.
  • the discharge assembly 260 generally includes a vertically extending side arm 262 for driving the upper protrusion 264 located above the top of the elastic mold 210.
  • the upper protruding frame 264 extends around the elastic mold 210 to prevent water splashing in the elastic mold 210. This is especially important when the ice making assembly 200 is installed on the refrigerating door 128, because the movement of the refrigerating door 128 may cause the water in the cavity 212 to shake.
  • the discharge assembly 260 may also define an angled pushing surface 268 near the rear end 228 of the ice making assembly 200.
  • the angled push surface 268 is configured to engage the ice cube 204 when the ice cube 204 pivots upward, and when the ejection assembly 260 moves toward the extended position, the ice cube 204 is rotated over the ice making assembly 200 and rotated out of the ice making assembly. Ice component 200.
  • the angled pushing surface may extend in a direction at an angle 270 to the vertical direction V. According to the illustrated embodiment, the angle 270 is less than about 10°, but according to alternative embodiments, any other suitable angle may be used to push the ice cube to rotate 180°.
  • the ice making assembly 200 may include a driving mechanism 276 operatively connected to the lifting mechanism 240 and the ejection assembly 260 to selectively raise the lifting mechanism 240 and the sliding ejection assembly 260 to operate During this period, the ice cubes 204 are discharged.
  • the drive mechanism 276 includes a drive motor 278.
  • "motor” can refer to any suitable drive motor and/or transmission component for rotating system components.
  • the motor 178 may be a brushless DC motor, a stepper motor, or any other suitable type or configuration of motor.
  • the motor 178 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor.
  • the motor 178 may include any suitable transmission components, clutch mechanisms, or other components.
  • the motor 178 may be mechanically connected to the rotating cam 280.
  • the lifting mechanism 240 or more specifically the lifting arm 242, may abut on the rotating cam 280, so that when the motor 278 rotates the rotating cam 280, the contour of the rotating cam 280 makes the lifting mechanism 240 between the lowered position and the raised position Move between.
  • the lifting mechanism 240 may include a roller 282 mounted to the lower end of the lifting arm 242 for providing a low friction interface between the lifting mechanism 240 and the rotating cam 280.
  • the ice making assembly 200 may include a plurality of lifting mechanisms 240, and each lifting mechanism 240 is located below the ice cube 204 in the elastic mold 210, or is configured to raise a separate part of the elastic mold 210.
  • the rotating cam 280 is mounted on a camshaft 284 that is mechanically connected to the motor 278. When the motor 278 rotates the cam shaft 284, the rotating cam 280 can simultaneously move the lifting arm 242 in the vertical direction V. In this way, each of the plurality of rotating cams 280 may be configured to drive a corresponding one of the lifting mechanism 240.
  • a roller shaft (not shown) may extend between the rollers 282 of the adjacent lifting mechanism 240 to maintain an appropriate distance between the adjacent rollers 282 and keep them engaged on the top of the rotating cam 280.
  • the drive mechanism 276 may further include a yoke 290 mechanically connected to the motor 278 for driving the discharge assembly 260.
  • the yoke wheel 290 may rotate together with the camshaft 284 and may include a drive pin 292 located radially outside the yoke wheel 290 and extending in a direction substantially parallel to the rotation axis of the motor 278.
  • the side arm 262 of the ejection assembly 260 may define a drive slot 294 configured to receive a drive pin 292 during operation.
  • a single yoke 290 is described and shown herein, it should be understood that the two side arms 262 may include a yoke 290 and a drive slot 294 mechanism.
  • each driving groove 294 is defined as when the driving pin 292 reaches the end 296 of the driving groove 294, the driving pin 292 moves the discharge assembly 260 in the horizontal direction. It is worth noting that, according to the exemplary embodiment, this situation occurs when the lifting mechanism 240 is in the raised position.
  • the ice making assembly 200 may include a position sensor (not shown) for determining the zero position of the yoke 290.
  • the position sensor includes a magnet (not shown) located on the yoke wheel 290 and a Hall effect sensor (not shown) installed in a fixed position on the ice making assembly 200.
  • the Hall effect sensor can detect the proximity of the magnet, and the controller 164 can determine that the yoke 290 is at a zero position (or some other known position).
  • any other suitable sensor or method of detecting the position of the yoke wheel 290 or the driving mechanism 276 is used.
  • motion sensors, camera systems, optical sensors, acoustic sensors, or simple mechanical touch switches may be used.
  • the motor 278 may start to rotate.
  • the motor 278 rotates the rotating cam 280 (and/or the camshaft 284) by approximately 90° to move the lifting mechanism 240 from the lowered position to the raised position.
  • the lifting protrusion 246 pushes the elastic mold 210 upward, thereby deforming the elastic mold 210 and releasing the ice cube 204.
  • the yoke wheel 290 rotates with the camshaft 284 so that the drive pin 292 rotates in the drive slot 294 without moving the ejection assembly 260 until the yoke wheel 290 reaches the 90° position. Therefore, when the motor 278 rotates more than 90°, the lifting mechanism 240 is maintained in the raised position, while the discharge assembly 260 moves to the extended position. In this manner, the angled pushing surface 268 engages the convex end of the ice cube 204, thereby pushing the ice cube out of the elastic mold 210, and rotating the ice cube 204 about 180° before the ice cube 204 enters the ice bank 152.
  • the discharge assembly 260 When the motor 278 rotates by 180°, the discharge assembly 260 is in a fully extended position, and the ice cubes 204 will fall into the ice bank 152 under the action of gravity. As the motor 278 rotates more than 180°, the drive pin 292 begins to pull the ejection assembly 260 back to the retracted position, for example by engaging the drive slot 294. At the same time, the profile of the rotating cam 280 is configured to start lowering the lifting mechanism 240. When the motor 278 rotates back to the zero position, for example, as shown by the position sensor 298, the discharge assembly 260 can be completely retracted, the lifting mechanism 240 can be completely lowered, and the elastic mold 210 can be ready to supply new water. At this time, the water supply nozzle 202 can provide a new water flow into the mold cavity 212, and the process can be repeated.
  • the filling cup 214 is close to the temperature required for cold air and ice formation 204, the water 216 dispensed from the water supply nozzle 202 may have a tendency to freeze at a location where it does not need to freeze.
  • the operation and performance of the ice making assembly 200 may be negatively affected.
  • the water fill level may be affected, causing ice cubes to be smaller or larger than expected.
  • icing at the wrong position may cause water to overflow or block the discharge mechanism of the ice making assembly 200. Therefore, aspects of the present invention are generally directed to features for eliminating ice accumulation in undesired locations. These undesirable icings are referred to as ice plugs in the present invention, and are generally identified by reference numeral 310 in the drawings (see Figures 4-6, 8 and 10).
  • the ice making assembly 200 may include one or more heating elements 312, which are thermally connected to the filling cup 214 for selectively heating the filling cup 214.
  • the terms "heating element” and the like used herein generally refer to any suitable electrically driven heat generator.
  • the heating element 312 may be an electric heater in thermal contact with the filling cup 214, and may include one or more resistive heating elements.
  • the positive thermal coefficient (PTCR) of a resistance heater whose resistance increases during heating such as a metal, ceramic or polymer positive temperature coefficient element (such as a resistance heating rod or an electric heater) can be used.
  • the heating element 312 may be coated with silicone, embedded in the filling cup 214, or placed in any other suitable manner.
  • the heating element 312 is installed in any manner suitable to break the ice plug 310 or melt undesired ice accumulation.
  • a heating element 312 may be provided adjacent to the discharge spout 218 of the filling cup 214.
  • a common blockage location is where the discharge nozzle 218 directs the water flow 216 into the mold cavity 12. It is worth noting that the ice plug 310 at the position may prevent the ice cube 204 from being properly discharged or ejected from the cavity 212.
  • the lifting mechanism 240 pushes the ice cube 204 upward and pushes it out of the elastic mold 210, the rear end of the ice cube 204 may contact the ice plug 310, causing it to tilt forward.
  • the ejection arm 260 moves forward to start the ejection process, the ice cubes 204 may be stuck between the ejection arm 260 and the front of the elastic mold 210.
  • the heating element 312 can be electrified to partially melt and break the ice block 310.
  • the heating element 312 is located on the back side 314 of the filling cup 214 directly opposite the discharge spout 218.
  • the filling cup 214 may define a groove 316 sized to accommodate the heating element 312.
  • the groove 316 may be arranged such that the thickness of the filling cup 214 adjacent to the groove 316 is smaller than the nominal thickness of the discharge arm 260 and the filling cup 214. Therefore, the heating element 312 is arranged as close as possible to the ice plug 310 without including the structural integrity of the filling cup 214.
  • the ice making assembly 200 may include a bracket 320 that is snapped on the filling cup 214 or the discharge arm 260 to fix the heating element 312 in place.
  • the bracket 320 may be a flat plastic sheet firmly arranged on the heating element 312 opposite to the filling cup 214. In this way, the heating element 312 can firmly contact the filling cup 214 in the groove 316, thereby improving the thermal conductivity.
  • the bracket 320 may include a clip provided in a notch defined in the front end of the discharge arm 260 to fix the bracket 320 in place. It should be understood that other configurations of the bracket 320 and other devices for fixing the heating element 312 may be used within the scope of the present invention.
  • the ice making assembly 200 may further include a secondary harvest heater 330 thermally connected to the heat exchanger 220.
  • the secondary harvesting heater 330 best shown in FIGS. 8 to 10 is wound around the heat exchanger 220 and disposed in the groove 332 defined in the heat exchanger 220. Therefore, the thermal contact between the secondary harvest heater 330 and the heat exchanger 220 can be improved.
  • the secondary harvest heater 330 can be used independently of the heating element 312 or used in combination with the heating element 312 to remove the ice plug 310 in the entire ice making assembly 200. For example, when the water is not completely discharged through the discharge nozzle 218, an ice plug 310 usually appears in the filling cup 214. In the event of a large ice plug, the heating element 312 may not fully melt or break the ice plug 310. However, in addition to the heating element 312, a secondary harvest heater 330 can be used to increase the total heat generation and make the deicing process faster and more effective.
  • the elastic mold 210 may define any suitable number of cavities 212
  • the driving mechanism 276 may have different configurations
  • the lifting mechanism 240 and the ejection assembly 260 may have dedicated driving mechanisms.
  • other control methods may be used to form and obtain ice cubes 204.
  • the ice making assembly 400 is a crescent-shaped ice cube ice maker, which has an integral heating feature that can reduce the possibility of clogging and/or prevent ice accumulation. Due to the similarity to the ice making assembly 200, similar reference numbers may be used to refer to the same or similar features on the ice making assembly 400.
  • the ice making assembly 400 may include a heat exchanger 402 that defines a plurality of mold cavities 404 for receiving water from the filling nozzle 406.
  • the discharge arm 410 may be rotated to discharge ice cubes. More specifically, the discharge arm 410 may include an elongated shaft 412 that is rotatable about the central axis 414.
  • the plurality of radial protrusions 416 may extend along the radial direction R from the elongated shaft 412. As shown in the figure, the size of the radial protrusion 416 may be designed to extend to the distal end 418 that is almost in contact with the heat exchanger 410.
  • the ice making assembly 400 may include a heating element 420 that extends through the discharge arm 410 and selects to be energized when a blockage is detected.
  • the elongated shaft 412 and the radial protrusion 416 can contact and locally melt ice cubes and other ice accumulations, thereby releasing these ice cubes from the mold cavity 404.
  • the heating element 420 may be installed on the filling nozzle 406 to prevent freezing when water is discharged into the mold cavity 404.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种制冰组件(200)及包含该制冰组件(200)的制冷电器(100),该制冷电器(100)包括限定冷藏室(122)的箱体(102)、门(128)、安装在门(128)上并限定制冰室(154)的冰盒(150)及位于制冰室(154)内的制冰组件(200);该制冰组件(200)包括限定模腔(212)的弹性模具(210)、位于弹性模具(210)上方的用于可选择地用水填充模腔(212)的填充杯(214)、与弹性模具(210)热连接从而使水冰冻并形成冰块(204)的热交换器(220)以及加热元件(312),加热元件(312)与填充杯(214)热连接,用于可选择地加热填充杯(214),以防止结冰或冰堵塞。

Description

制冷电器的制冰组件 技术领域
本发明一般涉及制冷电器,具体涉及用于制冷电器的制冰组件。
背景技术
制冷电器一般包括限定一个或多个制冷间室的箱体,用于容纳要储存的食物。通常,箱体上可旋转地铰接一个或多个门,以便可选择地取用储存在制冷间室内的食物。此外,制冷电器通常包括制冰组件,所述制冰组件安装在位于其中一个门上或冷冻室中的冰盒内。冰储存在储冰盒中,并可从冷冻室中获取,或通过界定在冷藏门前面的分配凹槽排出。
但是,传统制冰组件体积大、效率低,并存在各种性能方面的问题。例如,传统的扭转托盘制冰机包括一个分隔的塑料模具,该模具会发生物理变形从而打破冰和托盘之间形成的粘结。但是,这些制冰机需要额外空间来充分旋转和扭转托盘。此外,冰块在扭转过程中经常破裂。出现这种情况时,一部分冰块可能会留在托盘中,从而导致在下一次填充时溢出。
传统新月形冰块制冰机使用一个排出臂越过冰模并弹出冰块。但是,水可能会冻结,卡住排出臂,从而导致弹出失败和制冰过程停顿。某些传统制冰机包括有助于从模具中释放冰块的收冰加热器,但是所述加热器通常放置在远离可能出现积冰的排水口的地方。因此,这些收冰加热器必须长时间打开,以融化整个冰块和堵塞的排水口,增大能量消耗并显著增加冰块形成过程的时间。
因此,需要一种配冰方式改进的制冷电器。更特别地,紧凑、高效、可靠且抗堵塞或防卡的用于制冷电器制冰组件将尤为有利。
发明内容
将在下面的描述中部分地阐述本发明的各个方面和优点,或者在该描述中可能会变得显而易见,或者可能通过本发明的示例而获知。
根据示例性实施例,提供了一种用于制冷电器的制冰组件。制冰组件包括限定模腔的弹性模具和位于弹性模具上方用于可选择地用水填充模腔的填充杯。热交换器与弹性模具热连接以冷冻水并形成一个或多个冰块,并且加热元件与填充杯热连 接以可选择地加热填充杯。
根据另一示例性实施例,提供了一种限定竖直方向、侧向方向和横向方向的制冷电器。制冷电器包括限定制冷间室的箱体、可旋转地安装到箱体以提供可选择进入制冷间室的门、以及安装在门上并限定制冰室的冰盒。制冰组件位于制冰室内,并包括限定模腔的弹性模具和位于弹性模具上方用于可选择地用水填充模腔的填充杯。热交换器与弹性模具热连接以冷冻水并形成一个或多个冰块,并且加热元件与填充杯热连接以可选择地加热填充杯。
在另一示例性实施例中,提供一种用于制冷电器的制冰组件。制冰组件包括限定模腔的模具和位于模具上方用于将水排入模具的填充杯。排出臂以可旋转方式安装到模具上,并包括旋转穿过模腔的径向突起,加热元件位于填充杯内,用于可选择地加热填充杯。
参考以下描述和所附权利要求,更好理解本发明的这些内容和其他特征、方面和优点。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1是根据本发明示例性实施例的制冷电器的立体图。
图2是图1中示例性制冷电器的立体图,食品保鲜室的门显示为处于打开位置。
图3是根据本发明示例性实施例的与图1示例性制冷电器一起使用的冰盒和制冰组件的立体图。
图4是根据本发明示例性实施例的图3示例性制冰组件的立体图。
图5是图3示例性制冰组件的驱动机构、升降组件和排出组件的局部侧视图,其中升降组件处于降下位置,排出组件处于缩回位置。
图6是图5中驱动机构、升降组件和排出组件的局部侧视图,其中升降机构处于升起位置。
图7是根据示例性实施例的图3示例性制冰组件的后视图,为清楚起见已移除 支架。
图8是根据本发明示例性实施例的与图1另一示例性制冷电器一起使用的冰盒和制冰组件的立体图。
图9是图8示例性制冰组件的驱动机构、升降组件和排出组件的局部侧视图,其中升降组件处于降下位置,排出组件处于缩回位置。
图10是具有冰堵塞的图8中示例性制冰组件的局部侧视图。
图11是根据本发明另一示例性实施例的用于图1示例性制冷电器的制冰组件的立体截面图。
图12是根据本发明另一示例性实施例的图11示例性制冰组件的顶部立体图。
在本说明书和附图中重复使用参考标号旨在表示本发明的相同或类似特征或要素。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
图1是根据本发明示例性实施例的制冷电器100的立体图。制冷电器100包括沿着竖直方向V在顶部104和底部106之间、沿着侧向方向L在第一侧108和第二侧110之间、以及沿着横向方向T在前侧112和后侧114之间延伸的箱体或壳体102。竖直方向V、侧向方向L以及横向方向T中每个方向与其它方向互相垂直。
壳体102限定了制冷间室,用于容纳待储存的食物。特别地,壳体102限定了位于或邻近壳体102顶部104的食品保鲜室122和布置在或邻近壳体102底部106的冷冻室124。这样,制冷电器100通常称为底置型冰箱。但是,应当认识到,本发明的益处适用于其他类型和风格的制冷电器(例如,顶置型制冷电器、对开门型制冷电器或单门制冷电器)。因此,本文中的描述仅用于说明性目的,无意在任何方面限制任何特定冰箱间室配置。
冷藏门128可旋转地铰接到壳体102的边缘,用于可选择地进入食品保鲜室122。此外,冷冻门130布置在冷藏门128下方,用于可选择地进入冷冻室124。 冷冻门130连接到可滑动地安装在冷冻室124内的冷冻室抽屉(未示出)。冷藏门128和冷冻门130在图1中显示为处于关闭状态。本领域技术人员将会理解,在本发明的范围内,也可能存在其他冰箱间室和门的配置。
图2是冷藏门128处于打开位置的制冷电器100的立体图。如图2所示,根据本领域技术人员的理解,各种储存组件安装在食品保鲜室122内,以便于在所述食品保鲜室中储存食物。特别地,储存组件可包括盒134和搁物架136。这些储存组件中的每一个都配置为用于接收食物(例如,饮料和/或固体食物),并有助于整理这些食物。如图所示,盒134可以安装在冷藏门128上,或滑入食品保鲜室122中的接收空间。应当理解,所示的储存组件仅用于解释目的,并且可以使用其他储存组件,储存组件可以具有不同的尺寸、形状和配置。
现在总体参考图1,将根据本发明的示例性实施例描述分配组件140。
分配组件140通常配置为用于分配液态水和/或冰。尽管在此示出并描述了示例性的分配组件140,但是应当理解,在本发明范围内,可以对分配组件140进行变化和修改。
分配组件140及其各种组件可以至少部分位于限定在一扇冷藏门128上的分配凹槽142内。在这方面,将分配凹槽142限定在制冷电器100的前侧112上,使得用户可以在不打开冷藏门128的情况下操作分配组件140。此外,分配凹槽142位于预定高度,便于使用者取冰,并使使用者无需弯腰就能取冰。在示例性实施例中,分配凹槽142位于接近使用者胸部水平的位置。
分配组件140包括冰分配器144,所述冰分配器包括用于从分配组件140排放冰的排放出口146。显示为拨片的致动机构148安装在排放出口146下方,用于操作配冰或水分配器144。在可选示例性实施例中,任何合适的致动机构都可以用于操作冰分配器144。例如,冰分配器144可包括传感器(例如超声波传感器)或按钮,而不是拨片。排放出口146和致动机构148是冰分配器144的外部部分,并安装在分配凹槽142中。
相比之下,在制冷电器100内部,冷藏门128可以限定冰盒150(图2和3),冰盒150容纳制冰机和储冰盒152并配置为向分配凹槽142供冰的。在这方面,例如,冰盒150可以限定用于容纳制冰组件、储存机构和分配机构的制冰室154。
提供控制面板160用于控制操作模式。例如,控制面板160包括一个或多个选择器输入162,例如旋钮、按钮、触摸屏界面等,例如配水按钮和配冰按钮,用于选择所需操作模式,例如碎冰或非碎冰。此外,输入162可用于指定填充体积或操 作分配组件140的方法。在这方面,输入162可以与处理设备或控制器164通信。作为对选择器输入162的响应,在控制器164中产生的信号运行制冷电器100和分配组件140。此外,可以在控制面板160上提供显示器166,例如指示灯或屏幕。显示器166可以与控制器164通信,并响应于来自控制器164的信号显示信息。
本文中所使用的“处理装置”或“控制器”可以指一个或多个微处理器或半导体设备,并不必限于单个元件。处理装置可编程操作制冷电器100和分配组件140。处理装置可以包括一个或多个存储元件(例如,非临时性存储介质),或者与一个或多个储存元件相关联。在一些此类实施例中,存储元件包括电可擦除可编程只读存储器(EEPROM)。通常,存储元件可以存储处理装置访问信息,包括可以由处理装置执行的指令。可选地,指令可以是软件或任何一组指令和/或数据,并且当由处理装置执行时,该指令可以使处理装置执行操作。
现在总体参考图3至7,将根据本发明的示例性实施例描述可与制冷电器100一起使用的制冰组件200。如图所示,在制冰室154内的冰盒150上安装制冰组件200,并将其配置成接收来自供水喷嘴202的水流(例如,参见图3)。具体来讲,根据下文更详细的描述,供水喷嘴202可以将水流排放到填充杯中,填充杯将水分散或引至一个或多个模腔中。
以这种方式,制冰组件200通常配置成用于冷冻水以形成冰块204(见图5和6),冰块可储存在储冰盒152中并由分配组件140通过排放出口146分配。但是,应当理解,本专利描述制冰组件200仅仅旨在解释本发明的各个方面。在本发明的范围内,可以对制冰组件200进行变更和修改。例如,制冰组件200可以替代地位于制冷电器100的冷冻室124内,并且可以具有任何其他合适的配置。
根据所示的实施例,制冰组件200包括限定模腔212的弹性模具210。通常,根据下文更详细的描述,弹性模具210用于接收来自供水喷嘴202的重力辅助水流,并容纳水,直到冰块204形成。弹性模具210可以由任何合适的弹性材料构成,弹性材料可以变形从而在形成冰块204后释放冰块。例如,根据所示的实施例,弹性模具210由硅树脂或另一种合适的疏水、食品级和弹性材料形成。
根据所示的实施例,弹性模具210限定两个模腔212,每个模腔成形并用于形成单独的冰块204。在这方面,例如,供水喷嘴202配置成用于再填充弹性模具210到其内分隔壁(未示出)上方的水平位置,使得水均匀地溢出到两个模腔212中。根据其他实施例,供水喷嘴202可以具有位于每个模腔212上方的专用排放喷口。此外,应当理解,根据替代实施例,可以按比例缩小制冰组件200,从而形成 任何合适数量的冰块204,例如,通过增加由弹性模具210限定的模腔212的数量。
如图所示,制冰组件还包括位于弹性模具210上方的填充杯214,用于选择性地用水填充模腔212。具体来讲,填充杯214可以位于供水喷嘴202下方,用于接收水流216。填充杯214可以限定一个小容器,用于收集和/或引导水流216进入模腔212,而不会产生过多的飞溅或溢出。此外,填充杯214可以限定排放喷口218,排放喷口将水引向填充杯214的底部,并且在底部可以将水分配到模腔212中。
一般来说,填充杯214和排放喷口218可以具有适于将水流216分配到弹性模具210中的任何合适的尺寸、形状和配置。例如,根据所示的实施例,填充杯214位于两个模腔212中的一个之上,并通常限定倾斜表面,从而将水流216引导至紧邻弹性模具210的填充水平面(未标记)上方的排放喷口218。根据替代实施例,填充杯214可以延伸穿过整个弹性模具210的宽度,并可具有多个排放喷口218。在本发明的范围内,填充杯214还可以具有其他配置。
制冰组件200还可以包括热交换器220,热交换器与弹性模具210热连接,用于冷冻模具腔212内的水以形成一个或多个冰块204。通常,热交换器220可以由任何合适的导热材料形成,并可设置成与弹性模具210直接接触。具体来讲,根据所示的实施例,热交换器220由铝形成,并直接位于弹性模具210的下方。此外,热交换器220可以限定冰块凹槽222,凹槽设置成接收弹性模具210并成形或限定冰块204的底部。以这种方式,热交换器220在冰块204的大部分表面区域上与弹性模具210直接接触,例如,以便于储存在模具腔212内的水快速冻结。例如,热交换器220可以在冰块204的表面积的大约一半以上接触弹性模具210。应当理解,本文中所使用的近似类术语,例如“近似”、“基本上”或“大约”,是指在百分之十的误差范围内。
此外,制冰组件200可包括位于热交换器220附近并与冷空气供应源(例如示出为冷却空气流226)流体连接的进风管道224。根据所示的实施例,进风管道224自制冰组件200的后端228(例如,如图5和图6所示,从右侧沿着横向方向L)通过热交换器220向制冰组件200的前端230提供冷气流226(例如,如图5和图6所示,沿着侧向方向L向左,即冰块204排放到储冰盒152中的一侧)。
如图所示,进风管道224通常接收来自制冷电器100的密封系统的冷气流226,并将其引导通过热交换器220以冷却热交换器220。更具体地讲,根据所示 的实施例,热交换器220限定了沿着基本平行于冷气流226的方向延伸的多个热交换翅片232。在这方面,换热翅片232从热交换器220的顶部沿着由竖直方向V限定的平面在侧向方向L上向下延伸(例如,当制冰组件200安装在制冷电器100中时)。
如图5和6中最佳示出的一样,制冰组件200还包括位于弹性模具210下方并且通常配置成便于将冰块204从模腔212中排出的升降机构240。在这方面,升降机构240可在降下位置(例如,如图5所示)和升起位置(例如,如图6所示)之间移动。具体来讲,升降机构240包括基本上沿着竖直方向V延伸并穿过位于热交换器220内的升降通道244的升降臂242。这样一来,当升降机构240沿着竖直方向V滑动时,升降通道244可以引导所述升降机构。
此外,升降机构240包括从升降臂242的顶部向制冰组件200的后端228和制冰组件200的前端230延伸的升降突起246。如图所示,升降突起246通常限定冰块204底部的轮廓,并且当升降机构240处于降低位置时,升降突起齐平置于由热交换器220限定的升降凹槽248内。这样一来,热交换器220和升降突起246限定冰块204的光滑底面。更具体地讲,根据所示的实施例,升降突起246通常向下弯曲并远离升降臂242,从而在冰块204的底部限定一个平滑的凹口。
现在具体参考图7,热交换器220可以进一步限定用于接收温度传感器250的孔,温度传感器用于确定冰块204何时形成,从而执行排出过程。在这一方面,例如,温度传感器250可以与控制器164有效通信,控制器可以监控热交换器220的温度和水在模腔212中的时间,以预测冰块204何时完全冻结。本文中所使用的“温度传感器”可以指任何合适类型的温度传感器。例如,温度传感器可以是热电偶、热敏电阻或电阻温度检测器。此外,尽管这里示出单个温度传感器250的示例性布置,但是应当理解,根据替代实施例,制冰组件200可以包括任何其他合适数量、类型和位置的温度传感器。
现在具体参考图4至图7,制冰组件200还包括排出组件260,排出组件位于弹性模具210上方,并通常配置成用于在冰块204形成后将冰块推出模腔212并进入储冰盒152中。具体来讲,根据所示的实施例,排出组件260可在缩回位置(例如,如图5所示)和伸出位置(例如,如图6所示)之间沿水平方向(即,由侧向方向L和横向方向T限定)移动。根据所示的实施例,排出组件260和填充杯214可以整体形成为单个元件,填充杯214位于排出组件260的顶部。以这种方式,在排冰过程中,排出组件260和填充杯214可以沿着侧向方向L一致地移动。
根据下文的详细描述,当将水添加到弹性模具210时(即通过填充杯214),排出组件260保持在缩回位置。
在整个冷冻过程中,当升降机构240向升起位置移动时。在冰块204处于升起位置之后,排出组件260从缩回位置水平移动到伸出位置,即,朝向制冰组件200的前端230移动。这样一来,排出组件将冰块204推离升降机构240,推出弹性模具210,并越过可能会让冰块落入储冰盒152的热交换器220的顶部。
值得注意的是,从制冰组件200的顶部分配冰块204允许使用更高的储冰盒152,从而相对于从制冰机底部分配冰的制冰机具有更大的储冰容量。根据所示的实施例,供水喷嘴202位于填充杯214上方(在缩回位置),使得水流可以引至弹性模具210中。此外,供水喷嘴202定位成使得排出组件260可以在缩回位置和伸出位置之间移动,而不接触供水喷嘴202。根据替代实施例,供水喷嘴202可以连接到机械致动器,当排出组件260处于缩回位置时,机械致动器降低靠近弹性模具210的供水喷嘴202。这样一来,制冰组件200的总高度或轮廓可以进一步减小,从而尽量增加储冰容量并尽量减少空间浪费。
根据所示的实施例,排出组件260通常包括竖直延伸的侧臂262,其用于驱动位于弹性模具210顶部上方的上凸架264。具体来讲,上凸架264围绕弹性模具210延伸,防止在弹性模具210内的水飞溅。当制冰组件200安装在冷藏门128上时,这一点尤其重要,因为冷藏门128的移动会导致模腔212内的水晃动。
此外,如图5和6所示,排出组件260还可以在制冰组件200的后端228附近限定成角度的推动表面268。通常,成角度的推动表面268配置成用于在冰块204向上枢转时接合冰块204,并且当排出组件260朝向伸出位置移动时,转动冰块204越过制冰组件200并旋转出制冰组件200。具体来讲,成角度的推动表面可以在与竖直方向V呈角度270的方向上延伸。根据所示的实施例,角度270小于大约10°,但是根据替代实施例,可以使用任何其他合适的角度来推动冰块旋转180°。
再次总体参考图4至7,制冰组件200可包括驱动机构276,驱动机构可操作连接到升降机构240和排出组件260,以可选择地升高升降机构240和滑动排出组件260,从而在运行期间排出冰块204。具体来讲,根据所示的实施例,驱动机构276包括驱动电机278。本文中所使用的“电机”可以指用于旋转系统组件的任何合适的驱动电机和/或传动组件。例如,电机178可以是无刷直流电机、步进电机或任何其他合适类型或配置的电机。或者,例如,电机178可以是交流电机、感应电机、永磁同步电机或任何其他合适类型的交流电机。此外,电机178可包括任何合适的 传动组件、离合器机构或其他组件。
根据示例性实施例,电机178可以机械连接到旋转凸轮280。升降机构240,或者更具体地讲是升降臂242,可以抵接在旋转凸轮280上,使得当电机278旋转旋转凸轮280时,旋转凸轮280的轮廓使得升降机构240在降下位置和升起位置之间移动。此外,根据示例性实施例,升降机构240可包括安装到升降臂242下端的滚轮282,用于在升降机构240和旋转凸轮280之间提供低摩擦界面。
制冰组件200可包括多个升降机构240,每个升降机构240位于弹性模具210内的冰块204的下方,或者设置成升高弹性模具210的单独部分。在此类实施例中,旋转凸轮280安装在与电机278机械连接的凸轮轴284上。当电机278旋转凸轮轴284时,旋转凸轮280可以同时沿着竖直方向V移动升降臂242。以这种方式,多个旋转凸轮280中的每一个可以配置为驱动相应的一个升降机构240。此外,滚轮轴(未示出)可在相邻升降机构240的滚轮282之间延伸,以保持相邻滚轮282之间的适当距离,并保持它们接合在旋转凸轮280的顶部。
仍然总体上参照图4至7,驱动机构276可进一步包括机械连接到马达278、用于驱动排出组件260的轭轮290。具体来讲,轭轮290可以与凸轮轴284一起旋转,并可包括位于轭轮290的径向外部并在基本平行于电机278的旋转轴线的方向上延伸的驱动销292。此外,排出组件260的侧臂262可以限定配置成在操作期间接收驱动销292的驱动槽294。尽管在此描述和示出了单个轭轮290,但是应当理解,两个侧臂262可以包括轭轮290和驱动槽294机构。
值得注意的是,每个驱动槽294的几何形状限定为当驱动销292到达驱动槽294的端部296时,驱动销292沿着水平方向移动排出组件260。值得注意的是,根据示例性实施例,这一情况发生在升降机构240处于升起位置时。为了向控制器164提供轭轮290(以及更笼统的驱动机构276)的位置信息,制冰组件200可以包括用于确定轭轮290的零位置的位置传感器(未示出)。
根据示例性实施例,位置传感器包括位于轭轮290上的磁体(未示出)和安装在制冰组件200上固定位置的霍尔效应传感器(未示出)。当轭轮290朝向预定位置旋转时,霍尔效应传感器可以检测磁体的接近度,并且控制器164可以确定轭轮290处于零位置(或一些其他已知位置)。或者,使用任何其他合适的传感器或检测轭轮290或驱动机构276的位置的方法。例如,根据替代实施例,可以使用运动传感器、照相机系统、光学传感器、声学传感器或简单的机械接触开关。
根据本发明的示例性实施例,在冰块204完全冷冻并可使用后,电机278可以 开始旋转。在这方面,电机278将旋转凸轮280(和/或凸轮轴284)旋转大约90°,以将升降机构240从降下位置移动到升起位置。这样一来,升降突起246向上推动弹性模具210,从而使弹性模具210变形并释放冰块204。继续向上推动冰块204,直到冰块进入储冰盒152。
值得注意的是,轭轮290随着凸轮轴284旋转,使得驱动销292在驱动槽294内旋转,而不移动排出组件260,直到轭轮290到达90°位置。因此,当电机278旋转超过90°时,升降机构240保持在升起位置,同时排出组件260向伸出位置移动。以这种方式,成角度的推动表面268接合冰块204的凸起端,从而将冰块推出弹性模具210,并在将冰块204进入储冰盒152之前将冰块204旋转大约180°。
当马达278达到180°旋转时,排出组件260处于完全伸出位置,冰块204将在重力的作用下落入储冰盒152中。随着电机278旋转超过180°,驱动销292开始将排出组件260拉回到缩回位置,例如通过与驱动槽294接合。同时,旋转凸轮280的轮廓配置成开始降低升降机构240。当电机278旋转回到零位时,例如如位置传感器298所示,排出组件260可以完全缩回,升降机构240可以完全降低,并且弹性模具210可以准备好供应新的水。此时,供水喷嘴202可以将新的水流提供到模腔212中,并可重复所述过程。
值得注意的是,由于填充杯214接近冷空气和形成冰块204所需的温度,从供水喷嘴202分配的水216可能在不需要结冰的位置出现结冰的趋势。当发生这种不需要的结冰时,制冰组件200的操作和性能可能受到负面影响。例如,水填充量可能会受到影响,导致冰块比期望的更小或更大。此外,错误位置的结冰可能导致水溢出或堵塞制冰组件200的排放机构。因此,本发明的各方面通常针对用于在不希望的位置消除积冰的特征。这些不希望的结冰在本发明中称为冰塞,并在附图中通常由参考号310标识(参见图4-6、8和10)。
具体来讲,制冰组件200可包括一个或多个加热元件312,这些加热元件与填充杯214热连接,用于可选择地加热填充杯214。本文中所使用的术语“加热元件”等通常是指任何合适的电驱动热发生器。例如,加热元件312可以是与填充杯214导热接触的电加热器,并可包括一个或多个电阻加热元件。例如,可以使用在加热时电阻增加的电阻加热器的正热系数(PTCR),例如金属、陶瓷或聚合的正温度系数元件(例如电阻加热棒或电热加热器)。此外,加热元件312可以涂有硅树脂,嵌入填充杯214内,或者以任何其他合适的方式放置。
通常,以任何适合打破冰塞310或融化不希望积冰的方式安装加热元件312。 在这方面,根据示例性实施例,可以在邻近填充杯214的排放喷口218处设置加热元件312。在这方面,常见堵塞位置是在排放喷口218将水流216导入模腔12的位置。值得注意的是,所述位置处的冰塞310可能会阻止冰块204从模腔212中适当地排出或弹出。在这方面,当升降机构240向上推动冰块204并将其推出弹性模具210时,冰块204的后端可接触冰塞310,导致其向前倾斜。当排出臂260向前移动以启动弹出过程时,冰块204会卡在排出臂260和弹性模具210的前部之间。
为了防止这种问题,当检测到这种冰堵塞310时,可以选择对加热元件312通电,以局部融化并打破冰塞310。具体来讲,根据所示的实施例,加热元件312位于填充杯214的背侧314上,与排放喷口218直接相对。在这方面,填充杯214可以限定凹槽316,其尺寸适于容纳加热元件312。凹槽316可以设置为使得填充杯214邻近凹槽316的厚度小于排出臂260和填充杯214的标称厚度。因此,加热元件312布置成尽可能靠近冰塞310,而不包括填充杯214的结构完整性。
此外,制冰组件200可包括卡扣在填充杯214或排出臂260上、以将加热元件312固定在适当位置的支架320。在这方面,支架320可以是牢固布置在与填充杯214相对的加热元件312上的平整塑料片。这样一来,加热元件312可以与凹槽316内的填充杯214牢固接触,从而提高导热性。如图所示,支架320可以包括设置在限定在排出臂260前端凹口内、以将支架320固定在适当位置的夹子。应当理解,在本发明的范围内,可以使用支架320的其他配置和用于固定加热元件312的其他装置。
值得注意的是,排放喷口218处的局部加热可以防止排放喷口218处的冰塞310,但是对于融化位于制冰组件200内其他地方的冰塞310可能无效。因此,根据替代实施例,制冰组件200可进一步包括与热交换器220热连接的次级收获加热器330。具体来讲,图8至10中最佳示出的次级收获加热器330缠绕在热交换器220周围,并设置在热交换器220中限定的凹槽332内。因此,可以实现次级收获加热器330和热交换器220之间的热接触改善。
值得注意的是,次级收获加热器330可以独立于加热元件312使用,或者与加热元件312结合使用,以清除整个制冰组件200中的冰塞310。例如,当水没有完全通过排放喷口218排放时,填充杯214内通常会出现冰塞310。在出现大冰塞的情况下,加热元件312可能没有充分熔化或打碎冰塞310。但是,除了加热元件312之外,可以使用次级收获加热器330来增加总热量的产生,并使得除冰过程更快、更有效。
注意,尽管这些示例性实施例明确示出,但是本领域的普通技术人员将理解,可以提供附加或替代实施例或配置来包括这些示例的一个或多个特征。例如,在本发明的范围内,加热元件312和次级收获加热器330的类型、位置和配置可以变化。此外,可以对排出臂260、填充杯214和制冰组件200的其他特征进行变更和修改。
尽管上文描述了制冰组件200的具体配置和操作,但是应当理解,这仅仅旨在解释本发明。可以应用修改和变化,可以使用其他配置,并且所产生的配置可以保持在本发明的范围内。例如,弹性模具210可以限定任何合适数量的模腔212,驱动机构276可以具有不同的配置,或者升降机构240和排出组件260可以具有专用驱动机构。此外,可以使用其他控制方法来形成和获得冰块204。本领域技术人员将理解,这样的修改和变化可以包含在本发明的范围内。
现在具体参考图11和12,将根据本发明的替代实施例描述制冰组件400。如图所示,制冰组件400是新月形冰块制冰机,其具有整体加热特征,可减少堵塞的可能性和/或防止积冰。由于与制冰组件200的相似性,相似的参考号可用于指代制冰组件400上的相同或相似特征。
如图所示,制冰组件400可以包括热交换器402,热交换器限定用于接收来自填充喷嘴406的水的多个模腔404。在模腔404已经充满水并结冰之后,排出臂410可以旋转以排出冰块。更具体地讲,排出臂410可包括可绕中心轴线414旋转的细长轴412。多个径向突起416可以从细长轴412沿着径向方向R延伸。如图所示,径向突起416的尺寸的设计可能使其延伸到几乎与热交换器410接触的远端418。值得注意的是,类似的制冰组件200,热交换器410内或周围的积冰会导致堵塞并阻止排出臂410正确地排出冰块。因此,根据所示的实施例,制冰组件400可以包括加热元件420,加热元件420延伸穿过排出臂410,并且当检测到堵塞时会选择通电。这样一来,细长轴412和径向突起416可以接触并局部融化冰块和其他积冰,从而从模腔404释放这些冰块。此外,仍然参照图12,加热元件420可以安装在填充喷嘴406上,以防止水排入模腔404时结冰。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有 实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种用于制冷电器的制冰组件,所述制冰组件包括:
    限定模腔的弹性模具;
    填充杯,位于弹性模具上方,用于可选择地用水填充模腔;
    热交换器,与弹性模具热连接从而使水冰冻并形成一个或多个冰块;及
    加热元件,与填充杯热连接,用于可选择地加热填充杯。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述填充杯包括排放喷口,并且加热元件设置在邻近排放喷口的位置。
  3. 根据权利要求1所述的制冰组件,其特征在于,所述加热元件位于填充杯的背侧,与填充杯的排放喷口相对。
  4. 根据权利要求1所述的制冰组件,其特征在于,所述加热元件位于填充杯中限定的凹槽中。
  5. 根据权利要求1所述的制冰组件,其特征在于,所述加热元件通过支架固定卡在填充杯上。
  6. 根据权利要求1所述的制冰组件,其特征在于,所述加热元件是电阻加热元件。
  7. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    与热交换器热连接的次级收获加热器。
  8. 根据权利要求1所述的制冰组件,其特征在于,所述热交换器位于弹性模具下方,并邻近用于接收冷气流的进风管道。
  9. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    升降机构,位于弹性模具下方,并可在降下位置和升起位置之间移动,以使弹性模具变形并升高冰块;及
    排出组件,位于弹性模具上方,可在缩回位置和伸出位置之间移动,以将冰块推出弹性模具。
  10. 根据权利要求9所述的制冰组件,其特征在于,还包括:
    驱动机构,可操作地连接到升降机构和排出组件,以可选择地升高升降机构并滑动排出组件来排出冰块。
  11. 根据权利要求10所述的制冰组件,其特征在于,所述填充杯与排出组件一体成型,并与排出组件一起移动。
  12. 一种限定竖直方向、侧向方向和横向方向的制冷电器,包括:
    限定冷藏室的箱体;
    门,可旋转地安装在箱体上,以可选择地进入冷藏室;
    冰盒,安装在门上并限定制冰室;
    制冰组件,位于制冰室内,包括:
    限定模腔的弹性模具;
    填充杯,位于弹性模具上方,用于可选择地用水填充模腔;
    热交换器,与弹性模具热连接从而使水冰冻并形成一个或多个冰块;及
    加热元件,与填充杯热连接,用于可选择地加热填充杯。
  13. 根据权利要求12所述的制冷电器,其特征在于,所述填充杯包括排放喷口,并且加热元件设置在邻近排放喷口的位置。
  14. 根据权利要求12所述的制冷电器,其特征在于,所述加热元件位于填充杯的背侧,与填充杯的排放喷口相对。
  15. 根据权利要求12所述的制冷电器,其特征在于,所述加热元件位于填充杯中限定的凹槽中。
  16. 根据权利要求12所述的制冷电器,其特征在于,所述加热元件通过支架固定卡在填充杯上。
  17. 根据权利要求12所述的制冷电器,其特征在于,还包括:
    与热交换器热连接的次级收获加热器。
  18. 根据权利要求12所述的制冷电器,其特征在于,还包括:
    升降机构,位于弹性模具下方,并可在降下位置和升起位置之间移动,以使弹性模具变形并升高冰块;
    排出组件,位于弹性模具上方,可在缩回位置和伸出位置之间移动,以将冰块推出弹性模具;及
    驱动机构,可操作地连接到升降机构和排出组件,以可选择地升高升降机构并滑动排出组件来排出冰块。
  19. 根据权利要求18所述的制冷电器,其中填充杯与排出组件一体成型,并与排出组件一起移动。
  20. 一种用于制冷电器的制冰组件,其特征在于,所述制冰组件包括:
    限定模腔的模具;
    填充杯,位于模具上方,用于将水排放到模具中;
    排出臂,以可旋转方式安装在模具上并包括扫过模腔的径向突起;及
    加热元件,位于填充杯内,用于可选择地加热填充杯。
PCT/CN2020/107115 2019-08-06 2020-08-05 制冷电器的制冰组件 WO2021023223A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080054560.9A CN114174740B (zh) 2019-08-06 2020-08-05 制冷电器的制冰组件
EP20849635.6A EP4012302A4 (en) 2019-08-06 2020-08-05 ICE MAKING ASSEMBLY FOR REFRIGERATION APPLIANCE
AU2020324207A AU2020324207B2 (en) 2019-08-06 2020-08-05 Ice making assembly of refrigerating appliance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/532,608 US11231217B2 (en) 2019-08-06 2019-08-06 Ice making assembly for a refrigerator appliance
US16/532,608 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021023223A1 true WO2021023223A1 (zh) 2021-02-11

Family

ID=74499259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107115 WO2021023223A1 (zh) 2019-08-06 2020-08-05 制冷电器的制冰组件

Country Status (5)

Country Link
US (1) US11231217B2 (zh)
EP (1) EP4012302A4 (zh)
CN (1) CN114174740B (zh)
AU (1) AU2020324207B2 (zh)
WO (1) WO2021023223A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240110739A1 (en) * 2022-09-30 2024-04-04 Haier Us Appliance Solutions, Inc. Ice making assembly for a refrigerator appliance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308161A (zh) * 2009-02-09 2012-01-04 多梅蒂克瑞典公司 制冰机和制造冰块的方法
CN102767932A (zh) * 2011-05-03 2012-11-07 三星电子株式会社 具有制冰设备的冰箱
CN206528024U (zh) * 2017-03-06 2017-09-29 扬州恒生精密模具有限公司 模具内置推板脱模结构
US20180017306A1 (en) * 2016-07-13 2018-01-18 Haier Us Appliance Solutions, Inc. Ice making appliance and apparatus
US20180142933A1 (en) * 2016-11-18 2018-05-24 Haier Us Appliance Solutions, Inc. Air flow and drainage system for ice maker
CN109140854A (zh) * 2018-09-20 2019-01-04 青岛海尔股份有限公司 一种制冰装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163018A (en) * 1961-08-02 1964-12-29 Borg Warner Cube type ice maker having electric heater and cam ejector
JPS5045556Y2 (zh) * 1972-09-19 1975-12-23
JPS599272U (ja) * 1982-03-05 1984-01-20 株式会社日立製作所 自動製氷機
US5056321A (en) 1990-11-20 1991-10-15 Mid-South Industries, Inc. Half crescent shaped ice piece maker
JP2000088414A (ja) * 1998-09-11 2000-03-31 Calsonic Corp 自動製氷機
JP2003185311A (ja) * 2001-12-21 2003-07-03 Asahi Beer Eng:Kk 冷凍容器
JP4657626B2 (ja) * 2004-05-12 2011-03-23 日本電産サーボ株式会社 自動製氷装置
KR100611496B1 (ko) 2004-11-30 2006-08-09 엘지전자 주식회사 히팅타입 제빙기용 발열 이젝터
KR20060107666A (ko) 2005-04-11 2006-10-16 엘지전자 주식회사 아이스메이커
US8037697B2 (en) 2008-01-09 2011-10-18 Whirlpool Corporation Refrigerator with an automatic compact fluid operated icemaker
KR20090131215A (ko) * 2008-06-17 2009-12-28 엘지전자 주식회사 냉장고 제빙기의 급수홀 결빙 방지 장치
KR102382460B1 (ko) * 2017-09-13 2022-04-05 엘지전자 주식회사 냉장고 및 냉장고의 제빙장치
US11181309B2 (en) * 2017-12-22 2021-11-23 Electrolux Home Products, Inc. Direct cooling ice maker
US10539354B2 (en) * 2017-12-22 2020-01-21 Electrolux Home Products, Inc. Direct cooling ice maker

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308161A (zh) * 2009-02-09 2012-01-04 多梅蒂克瑞典公司 制冰机和制造冰块的方法
CN102767932A (zh) * 2011-05-03 2012-11-07 三星电子株式会社 具有制冰设备的冰箱
US20180017306A1 (en) * 2016-07-13 2018-01-18 Haier Us Appliance Solutions, Inc. Ice making appliance and apparatus
US20180142933A1 (en) * 2016-11-18 2018-05-24 Haier Us Appliance Solutions, Inc. Air flow and drainage system for ice maker
CN206528024U (zh) * 2017-03-06 2017-09-29 扬州恒生精密模具有限公司 模具内置推板脱模结构
CN109140854A (zh) * 2018-09-20 2019-01-04 青岛海尔股份有限公司 一种制冰装置

Also Published As

Publication number Publication date
CN114174740B (zh) 2023-08-25
EP4012302A4 (en) 2023-01-18
CN114174740A (zh) 2022-03-11
US11231217B2 (en) 2022-01-25
US20210041154A1 (en) 2021-02-11
AU2020324207B2 (en) 2023-07-13
EP4012302A1 (en) 2022-06-15
AU2020324207A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
CN105042984B (zh) 制冰机控制系统及方法
US7131280B2 (en) Method for making ice in a compact ice maker
US11639821B2 (en) Control logic for compact ice making system
WO2020015707A1 (en) Ice making assembly for a refrigerator appliance
US20080092574A1 (en) Cooler with multi-parameter cube ice maker control
KR20190032898A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190091034A (ko) 아이스메이커 및 이를 포함하는 냉장고
WO2021023223A1 (zh) 制冷电器的制冰组件
KR20190091032A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR100631557B1 (ko) 냉장고의 제빙장치
WO2024067616A1 (zh) 用于制冷电器的制冰组件
EP4137762A1 (en) Ice making assembly for receiving interchangeable mold assembly
WO2023131079A1 (zh) 用于制冷电器的制冰组件及制冷电器
KR20080006235U (ko) 제빙장치 및 이를 구비한 냉장고
WO2021155755A1 (zh) 带踢板的制冷电器储冰盒
WO2020224464A1 (zh) 具有可拆卸储冰盒的制冷电器
KR20190032900A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190032899A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190091033A (ko) 아이스메이커 및 이를 포함하는 냉장고
JP2006078107A (ja) 冷凍冷蔵庫
KR20110101750A (ko) 제빙장치 및 이를 구비한 냉장고 및 이 냉장고의 얼음 공급 방법
KR20110096873A (ko) 제빙장치 및 이를 구비한 냉장고 및 이 냉장고의 얼음 공급 방법
JP2007285641A (ja) 冷凍冷蔵庫
KR100700540B1 (ko) 냉장고의 급속 제빙장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020324207

Country of ref document: AU

Date of ref document: 20200805

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020849635

Country of ref document: EP

Effective date: 20220307