WO2024067616A1 - 用于制冷电器的制冰组件 - Google Patents

用于制冷电器的制冰组件 Download PDF

Info

Publication number
WO2024067616A1
WO2024067616A1 PCT/CN2023/121650 CN2023121650W WO2024067616A1 WO 2024067616 A1 WO2024067616 A1 WO 2024067616A1 CN 2023121650 W CN2023121650 W CN 2023121650W WO 2024067616 A1 WO2024067616 A1 WO 2024067616A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
assembly
infrared
refrigeration appliance
making
Prior art date
Application number
PCT/CN2023/121650
Other languages
English (en)
French (fr)
Inventor
米切尔·艾伦·约瑟夫
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Publication of WO2024067616A1 publication Critical patent/WO2024067616A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/24Distributing ice for storing bins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/02Level of ice

Definitions

  • the present invention generally relates to refrigeration appliances, and more particularly to an ice-making assembly for a refrigeration appliance.
  • Refrigeration appliances typically include a housing defining one or more refrigeration compartments for receiving food for storage. Typically, one or more doors are rotatably hinged to the housing to allow selective access to the food stored in the refrigeration compartments. Further, refrigeration appliances typically include an ice-making assembly mounted in an ice bin on one of the doors or in a freezer compartment. Ice is stored in the ice bin and is accessible from within the freezer compartment or can be discharged through a dispenser recess defined on the front of the refrigeration door.
  • the ice making assembly suspends ice making and/or ice stripping in order to avoid or limit overfilling of the ice bank.
  • the block ice accumulated in the ice bank may not necessarily do so in a regular pattern.
  • the block ice may accumulate irregularly, wherein one location in the ice bank may reach a maximum ice level while other points in the ice bank are below the maximum ice level.
  • the accumulated ice may reach the maximum ice level at some portions of the cross section while the ice at other portions of the cross section is below the maximum ice level.
  • ice fill level at an area or location where the apex of the ice pile is more likely to be found, and/or it may be advantageous to check the ice fill level over an area or portion of the ice storage bin where one or more ice blocks are more likely to be detected at a maximum ice level, such as the first ice block to reach the maximum ice level, such as the apex or uppermost ice block of accumulated ice in the ice storage bin.
  • a refrigeration appliance having features for improving ice storage would be desirable. More particularly, a refrigeration appliance including features for detecting the fill level of ice in an ice storage bin that receives and stores ice nuggets from an ice-making assembly in the refrigeration appliance would be particularly beneficial.
  • a refrigeration appliance includes a housing having a door body rotatably mounted to the housing.
  • the refrigeration appliance also includes an ice making chamber defined in one of the housing and the door body.
  • An ice making assembly and an ice storage box are disposed in the ice making chamber.
  • the refrigeration appliance also includes a refrigerator mounted to the ice making assembly.
  • An infrared emitter on the movable part of the ice making assembly and an infrared detector mounted to the movable part of the ice making assembly.
  • a refrigeration appliance includes a housing having a door body rotatably mounted to the housing.
  • the refrigeration appliance also includes an ice making chamber defined in one of the housing and the door body.
  • An ice making assembly and an ice storage box are disposed in the ice making chamber.
  • the refrigeration appliance also includes an infrared emitter mounted to a movable portion of the ice making assembly and an infrared detector mounted to a movable portion of the ice making assembly.
  • the refrigeration appliance also includes an infrared emitter and an infrared detector mounted to the ice making assembly. When the infrared emitter and the infrared detector are in an original position, the infrared emitter and the infrared detector are disposed above a central portion of the ice storage box.
  • FIG. 1 provides a perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a perspective view of the exemplary refrigeration appliance of FIG. 1 , wherein the door of the fresh food compartment is shown in an open position.
  • FIG. 3 provides a perspective view of an ice tray and ice making assembly for use with the exemplary refrigeration appliance of FIG. 1 according to an exemplary embodiment of the present invention.
  • FIG. 4 provides a perspective view of the exemplary ice making assembly of FIG. 3 according to an exemplary embodiment of the present invention.
  • FIG. 5 provides a partial side view of the drive mechanism, lift assembly, and discharge assembly of the exemplary ice making assembly of FIG. 3 , with the lift assembly in a lowered position and the discharge assembly in a retracted position.
  • FIG. 6 provides a partial side view of the drive mechanism, lift assembly, and ejection assembly of FIG. 5 , with the lift mechanism in a raised position.
  • FIG. 7 provides a rear view of the exemplary ice making assembly of FIG. 3 with the retaining bracket removed for clarity according to an exemplary embodiment.
  • FIG. 8 provides a perspective view of the exemplary ice making assembly of FIG. 3 according to one or more exemplary embodiments of the present invention.
  • FIG. 9 provides a top view of the exemplary ice making assembly of FIG. 8 with its discharge assembly in a home position.
  • FIG. 10 provides a top view of the exemplary ice making assembly of FIG. 8 with its discharge assembly in an extended position.
  • FIG. 11 provides a top view of the example ice making assembly of FIG. 8 schematically illustrating an ice detection zone.
  • FIG. 12 provides another perspective view of the exemplary ice making assembly of FIG. 8 with the discharge assembly thereof in a home position.
  • FIG. 13 provides another perspective view of the exemplary ice making assembly of FIG. 8 with the discharge assembly thereof in an extended position.
  • approximate terms such as “substantially” or “approximately” include values within ten percent greater or less than the stated value. When used in the context of an angle or direction, such terms include values within ten degrees greater or less than the stated angle or direction.
  • substantially vertical includes directions within ten degrees of a vertical line in either direction (e.g., clockwise or counterclockwise).
  • first,” second, and “third” may be used interchangeably to distinguish one component from another, and these terms are not intended to indicate the position or importance of the respective components.
  • the refrigeration appliance 100 includes a box or housing 102 extending between a top 104 and a bottom 106 along a vertical direction V, extending between a first side 108 and a second side 110 along a lateral direction L, and extending between a front side 112 and a rear side 114 along a lateral direction T.
  • a vertical direction V extending between a top 104 and a bottom 106 along a vertical direction V
  • a first side 108 and a second side 110 along a lateral direction L
  • a front side 112 and a rear side 114 along a lateral direction T.
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T is perpendicular to each other.
  • the housing 102 is formed with a refrigeration compartment for receiving food for storage.
  • the housing 102 is formed with a food freshness chamber 122 arranged at or adjacent to the top 104 of the housing 102 and a freezer 124 arranged at or adjacent to the bottom 106 of the housing 102.
  • the refrigeration appliance 100 is generally referred to as a bottom-mounted refrigerator.
  • the benefits of the present invention are applicable to other types and styles of refrigeration appliances, such as top-mounted refrigeration appliances, side-by-side refrigeration appliances or single-door refrigeration appliances. Therefore, the description set forth herein is for illustrative purposes only and is not intended to limit any specific refrigeration chamber configuration in any respect.
  • the refrigerating door body 128 is rotatably hinged to the edge of the housing 102 so as to selectively enter the fresh food compartment 122.
  • a freezing door body 130 is arranged below the refrigerating door body 128 so as to selectively enter the freezing compartment 124.
  • the freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within the freezer compartment 124.
  • the refrigerator door 128 and the freezer door 130 are shown in a closed configuration in Figure 1.
  • Fig. 2 provides the stereogram of the refrigeration appliance 100 shown in the case where the refrigeration door 128 is in the open position.
  • various storage components are installed in the food freshness chamber 122 to promote the storage of food therein.
  • the storage component may include a box 134 and a shelf 136.Each of these storage components is used to receive food (e.g., beverages or/or solid foods, etc.), and can assist in managing such food.
  • the box 134 may be installed on the refrigeration door 128 or may slide into the accommodation space in the food freshness chamber 122.It should be understood that the storage components shown are only for illustrative purposes, and other storage components may be used, and other storage components may have different sizes, shapes and configurations.
  • the dispensing assembly 140 is generally used to dispense liquid water and/or ice. Although an exemplary dispensing assembly 140 is illustrated and described herein, it should be understood that various changes and modifications can be made to the dispensing assembly 140 while remaining within the scope of the present invention.
  • the dispensing assembly 140 and its various components may be at least partially disposed within a dispenser recess 142 formed on one of the refrigeration doors 128.
  • the dispenser recess 142 is disposed on the front side 112 of the refrigeration appliance 100 so that the user can operate the dispensing assembly 140 without opening the refrigeration door 128.
  • the dispenser recess 142 is disposed at a predetermined height, which is convenient for the user to take ice, and enables the user to take ice without bending over.
  • the dispenser recess 142 is disposed at a position close to the chest level of the user.
  • the dispensing assembly 140 includes an ice dispenser 144 including a discharge port 146 for discharging ice from the dispensing assembly 140.
  • An actuation mechanism 148 shown as a paddle, is mounted below the discharge port 146 to operate the ice or water dispenser 144.
  • any suitable actuation mechanism may be used to operate the ice dispenser 144.
  • the ice dispenser 144 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • the discharge port 146 and the actuation mechanism 148 are external parts of the ice dispenser 144 and are mounted in the dispenser recess 142.
  • the refrigeration door 128 may be provided with an ice box 150 (FIGS. 2 and 3) that accommodates an ice maker and an ice storage box 152 that are configured to supply ice to the dispenser recess 142.
  • the ice box 150 may define an ice making chamber 154 for accommodating an ice making assembly, a storage mechanism, and a dispensing mechanism.
  • a control panel 160 is provided to control the operation mode.
  • the control panel 160 includes one or more options.
  • a selector input 162 such as a knob, a button, a touch screen interface, etc., such as a water dispensing button and an ice dispensing button, is used to select a desired operating mode, such as crushed ice or non-crushed ice.
  • the input 162 can be used to specify a fill volume or a method of operating the dispensing assembly 140.
  • the input 162 can communicate with a processing device or controller 164.
  • the signal generated in the controller 164 operates the refrigeration appliance 100 and the dispensing assembly 140 in response to the selector input 162.
  • a display 166 such as an indicator light or a screen, can be provided on the control panel 160.
  • the display 166 can communicate with the controller 164 and can display information in response to a signal from the controller 164.
  • processing device may refer to one or more microprocessors or semiconductor devices, and is not necessarily limited to a single element.
  • the processing device may be programmed to operate the refrigeration appliance 100 and the distribution assembly 140.
  • the processing device may include or be associated with one or more storage elements (e.g., permanent storage media).
  • the storage element includes an electrically erasable programmable read-only memory (EEPROM).
  • EEPROM electrically erasable programmable read-only memory
  • the storage element may store information accessible to the processing device, including instructions that may be executed by the processing device.
  • the instruction may be any set of software or instructions and/or data that, when executed by the processing device, causes the processing device to perform an operation.
  • the ice making assembly 200 can be disposed in any refrigeration compartment (e.g., the food freshness compartment 122 or the freezer compartment 124) of the refrigeration appliance 100.
  • the ice making assembly 200 is mounted in an ice tray 150 within an ice making compartment 154 and is used to receive a flow of water from a water supply nozzle 202 (e.g., see FIG. 3 ). More specifically, as described in more detail below, the water supply nozzle 202 can discharge the flow of water into a filling cup that disperses or directs the water into one or more mold cavities.
  • the ice making assembly 200 of the exemplary example is installed in the ice box 150 and the ice box 150 is defined by or is defined in a refrigeration door body 128, for example, when the corresponding door body 128 is in a closed position, the ice making assembly 200 can be arranged in the food preservation chamber 122. In other embodiments, the ice making assembly 200 and the ice storage box 152 can be arranged in the freezer 124, for example. Therefore, in various embodiments, the ice making chamber 154 can be located in a refrigeration compartment, or can be coextensive with a refrigeration compartment.
  • the ice box 150 can be defined in or defined by the freezer door body 130, whereby the ice making chamber 154 can be arranged in the freezer 124, for example, when the freezer door body 130 is in a closed position, or the ice box 150 can be defined in a fixed position in the freezer 124, whereby the ice making chamber 154 can be arranged in the freezer 124 independently of the position of the freezer door body 130.
  • the ice box 150 may be omitted, and the ice making assembly 200 and the ice storage box 152 may be located in the freezer compartment 124.
  • the ice making compartment 154 and the freezer compartment 124 may be comparable and coextensive.
  • the ice making compartment 154 may be defined in the cabinet 102 and one of the doors 128, 130, such as when the ice box 150 is disposed in one of the doors 128 or 130, the ice making compartment 154 may be defined in the door 128.
  • the ice making chamber 154 may be defined in the cabinet when the ice box 150 is installed in one of the refrigerating compartments 122 and 124 or when the ice box 150 is omitted.
  • the ice-making assembly 200 is generally used to freeze water to form ice cubes 204 (see, for example, FIGS. 5 and 6 , and it should also be noted that the term “ice cube” is broadly used herein to include ice cubes of various shapes, such as but not limited to rectangular prisms, gemstone-shaped ice cubes, round ice cubes, or ice cubes of any other desired shape), which can be stored in the ice storage box 152 and distributed by the dispensing assembly 140 through the discharge port 146.
  • the ice-making assembly 200 described herein is only to explain various aspects of the present invention.
  • the ice-making assembly 200 can be changed and modified while remaining within the scope of the present invention.
  • the ice-making assembly 200 can be alternatively arranged in the freezer 124 of the refrigeration appliance 100, and can have any other suitable configuration.
  • the ice making assembly 200 includes a resilient mold 210 defining a mold cavity 212.
  • the resilient mold 210 is configured to receive a gravity-assisted flow of water from the water supply nozzle 202 and contain the water until ice cubes 204 are formed.
  • the resilient mold 210 can be constructed of any suitable resilient material that can be deformed to release the formed ice cubes 204.
  • the resilient mold 210 is formed of silicone or another suitable hydrophobic, food-grade, and resilient material.
  • the elastic mold 210 defines two mold cavities 212, each mold cavity is shaped and oriented for forming a separate ice cube 204.
  • the water supply nozzle 202 is used to refill the elastic mold 210 to a level above the dividing wall (not shown) within the elastic mold 210, so that water overflows evenly into each mold cavity 212, for example, evenly overflowing into two mold cavities in the exemplary embodiment illustrated in Figure 4 or all mold cavities (e.g., all five mold cavities) in the exemplary embodiment illustrated in Figures 8 to 13, or other suitable number of mold cavities (such as multiple rows of mold cavities, etc.) as can be provided in various embodiments.
  • the water supply nozzle 202 can have a dedicated discharge nozzle disposed above each mold cavity.
  • the ice making assembly 200 can be scaled to form any suitable number of ice cubes 204, for example, by increasing the number of mold cavities 212 defined by the elastic mold 210.
  • the ice making assembly also includes a fill cup 214 disposed above the flexible mold 210 for selectively filling the mold cavity 212 with water. More specifically, the fill cup 214 can be disposed below the water supply nozzle 202 for receiving a flow of water 216.
  • the fill cup 214 can define a small storage container for collecting and/or directing the water 216 to flow into the mold cavity 212 without excessive splashing or overflowing.
  • the fill cup 214 can define a discharge nozzle 218 that collects the water toward the bottom of the fill cup 214, where the water can be dispensed into the mold cavity 212.
  • the fill cup 214 and the discharge nozzle 218 can have any suitable size, shape, and configuration suitable for distributing the flow of water 216 into the elastic mold 210.
  • the fill cup 214 is disposed above one of the two mold cavities 212 and generally defines an inclined surface for directing the water 216 to the cavity immediately adjacent to the cavity 212. Drain spout 218 above the fill level (not labeled) of the elastomeric mold 210.
  • the fill cup 214 may extend across the entire width of the elastomeric mold 210 and may have multiple drain spouts 218.
  • the fill cup 214 may have other configurations while remaining within the scope of the present invention.
  • the ice making assembly 200 may also include a heat exchanger 220 that is in thermal communication with the elastic mold 210 for freezing the water in the mold cavity 212 to form one or more ice cubes 204.
  • the heat exchanger 220 may be formed of any suitable thermally conductive material and may be disposed in direct contact with the elastic mold 210.
  • the heat exchanger 220 is made of aluminum and disposed directly below the elastic mold 210.
  • the heat exchanger 220 may define a cubic recess 222 that is configured to receive the elastic mold 210 and shape or define the bottom of the ice cube 204.
  • the heat exchanger 220 is in direct contact with the elastic mold 210 over a majority of the surface area of the ice cube 204, for example, to promote an increased heat transfer rate and rapid freezing of the water stored in the mold cavity 212.
  • the heat exchanger 220 may contact the elastic mold 210 over an area greater than approximately half of the surface area of the ice cube 204. It should be understood that as used herein, approximate terms such as “approximately,” “substantially,” or “about” mean within a ten percent error margin.
  • the ice making assembly 200 may include an air inlet 224 disposed adjacent to the heat exchanger 220 and fluidly coupled to a cold air source (e.g., exemplified by a cooling air flow 226).
  • the air inlet 224 provides the cooling air flow 226 from a rear end 228 of the ice making assembly 200 (e.g., from the right along the lateral direction L as shown in FIGS. 5 and 6) through the heat exchanger 220 toward a front end 230 of the ice making assembly 200 (e.g., to the left along the lateral direction L as shown in FIGS. 5 and 6, i.e., a side where the ice cubes 204 are discharged into the ice storage bin 152).
  • the air inlet 224 generally receives a cooling air flow 226 from the sealed system of the refrigeration appliance 100 and directs it over and/or through the heat exchanger 220 to cool the heat exchanger 220.
  • the heat exchanger 220 defines a plurality of heat exchange fins 232 extending substantially parallel to the cooling air flow 226.
  • the heat exchange fins 232 extend downward from the top of the heat exchanger 220 along a plane defined by the vertical direction V in the lateral direction L (e.g., when the ice making assembly 200 is installed in the refrigeration appliance 100).
  • the ice-making assembly 200 also includes a lifting mechanism 240 disposed below the resilient mold 210 and generally used to facilitate the discharge of ice cubes 204 from the mold cavity 212.
  • the lifting mechanism 240 can be moved between a lowered position (e.g., as shown in FIG. 5 ) and a raised position (e.g., as shown in FIG. 6 ).
  • the lifting mechanism 240 includes a lifting arm 242 that extends substantially along a vertical direction V and passes through a lifting channel 244 defined within the heat exchanger 220. In this way, the lifting channel 244 can guide the lifting mechanism 240 as it slides along the vertical direction V.
  • the lifting mechanism 240 includes a lifting protrusion 246 extending from the top of the lifting arm 242 toward the rear end 228 of the ice making assembly 200 and toward the front end 230 of the ice making assembly 200.
  • the lifting protrusion 246 is The heat exchanger 220 and the lifting protrusion 246 define a smooth bottom surface of the ice cube 204. More specifically, according to the illustrated embodiment, the lifting protrusion 246 is generally curved downward and away from the lifting arm 242 to define a smooth divot on the bottom of the ice cube 204.
  • the heat exchanger 220 may also define a hole for receiving a temperature sensor 250 for determining when the ice cube 204 is formed so that the discharge process can be performed.
  • the temperature sensor 250 may be in operative communication with the controller 164, which may monitor the temperature of the heat exchanger 220 and the time the water has been in the mold cavity 212 to predict when the ice cube 204 is completely frozen.
  • temperature sensor may refer to any suitable type of temperature sensor.
  • the temperature sensor may be a thermocouple, a thermistor, or a resistance temperature detector.
  • the ice making assembly 200 may include any other suitable number, type, and location of temperature sensors.
  • the ice making assembly 200 further includes an ejection assembly 260 disposed above the resilient mold 210 and generally used to push the ice cubes 204 out of the mold cavity 212 and into the ice storage bin 152 after they are formed.
  • the ejection assembly 260 can be moved along a horizontal direction (i.e., in a horizontal plane generally perpendicular to the vertical direction V, such as a lateral-lateral plane defined by the lateral direction L and the lateral direction T) between a retracted position (e.g., as shown in FIG. 5 ) and an extended position (e.g., as shown in FIG. 6 ).
  • the ejection assembly 260 and the filling cup 214 can be integrally formed as a single piece, wherein the filling cup 214 is disposed on top of the ejection assembly 260. In this way, during the ice ejection process, the ejection assembly 260 and the filling cup 214 can be moved in unison along a horizontal direction (e.g., the lateral direction L or other directions generally perpendicular to the vertical direction V).
  • a horizontal direction e.g., the lateral direction L or other directions generally perpendicular to the vertical direction V.
  • the ejection assembly 260 remains in the retracted position while water is added to the resilient mold 210, for example, via the fill cup 214.
  • the ejection assembly 260 also remains in the retracted position throughout the freezing process and while the lifting mechanism 240 is moved toward the raised position. After the ice cubes 204 are in the raised position, the ejection assembly 260 moves horizontally from the retracted position to the extended position, for example, toward the front end 230 of the ice making assembly 200.
  • the ejection assembly pushes the ice cubes 204 away from the lifting mechanism 240, out of the resilient mold 210, and over the top of the heat exchanger 220, where the ice cubes can fall into the ice storage bin 152.
  • dispensing ice cubes 204 from the top of the ice making assembly 200 allows for a taller ice storage bin 152, thereby allowing for a larger ice storage capacity relative to an ice maker that dispenses ice from the bottom of the ice maker.
  • the water supply nozzle 202 is disposed above the fill cup 214 (in the retracted position) so that the water flow can be directed into the resilient mold 210.
  • the water supply nozzle 202 is disposed so that the discharge assembly 260 can move between the retracted position and the extended position without contacting the water supply nozzle 202.
  • the water supply nozzle 202 can be coupled to a mechanical Actuator, the mechanical actuator makes the water supply nozzle 202 drop close to the elastic mold 210 while the discharge assembly 260 is in the retracted position. In this way, the overall height or profile of the ice making assembly 200 can be further reduced, thereby maximizing the ice storage capacity and minimizing the wasted space.
  • the discharge assembly 260 generally includes vertically extending side arms 262, which are used to drive an upper convex frame 264 disposed above (e.g., above) the elastic mold 210.
  • the upper convex frame 264 extends around the elastic mold 210, thereby preventing or reducing splashing of water within the elastic mold 210. This can be advantageous, such as when the ice making assembly 200 is installed on the refrigeration door body 128, because the movement of the refrigeration door body 128 may cause the water in the mold cavity 212 to slosh.
  • the ejection assembly 260 may further define an inclined push surface 268 proximate the rear end 228 of the ice making assembly 200.
  • the inclined push surface 268 is used to engage the ice cube 204 while the ice cube 204 is pivoted upward and as the ejection assembly 260 moves toward the extended position to rotate the ice cube 204 above and away from the ice making assembly 200.
  • the inclined push surface may extend at an angle 270 ( FIG. 5 ) relative to the vertical V. According to the illustrated embodiment, the angle 270 is less than about 10 degrees, but according to alternative embodiments, any other suitable angle for pushing the ice cube 204 through a 180 degree rotation may be used.
  • the ice making assembly 200 may include a drive mechanism 276 operably coupled to the lifting mechanism 240 and the discharge assembly 260 to selectively raise the lifting mechanism 240 and slide the discharge assembly 260 during operation to discharge the ice cubes 204.
  • the drive mechanism 276 includes a drive motor 278.
  • "motor” may refer to any suitable drive motor and/or transmission assembly for rotating system components.
  • the motor 278 may be a brushless DC motor, a stepper motor, or any other suitable type or configuration of motor.
  • the motor 278 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor.
  • the motor 278 may include any suitable transmission assembly, clutch mechanism, or other components.
  • the motor 278 can be mechanically coupled to the rotating cam 280.
  • the lifting mechanism 240 or more specifically the lifting arm 242, can abut against the rotating cam 280 so that as the motor 278 rotates the rotating cam 280, the profile of the rotating cam 280 causes the lifting mechanism 240 to move between the lowered position and the raised position.
  • the lifting mechanism 240 can include a roller 282 mounted to the lower end of the lifting arm 242 for providing a low friction interface between the lifting mechanism 240 and the rotating cam 280.
  • the ice making assembly 200 may include a plurality of lifting mechanisms 240, each of which is disposed below one of the mold cavities 212 (and the ice cubes 204 therein) of the elastic mold 210, or is configured to lift a separate portion of the elastic mold 210.
  • the rotating cam 280 is mounted on a camshaft 284 that is mechanically coupled to the motor 278. As the motor 278 rotates the camshaft 284, the rotating cam 280 can simultaneously move along the vertical V to lift the ice cubes 204. In this way, each of the plurality of rotating cams 280 is used to drive a corresponding one of the lifting mechanisms 240.
  • a roller shaft (not shown) may extend between the rollers 282 of adjacent lifting mechanisms 240 to maintain an appropriate distance between adjacent rollers 282 and to keep them engaged on the top of the rotating cam 280.
  • the drive mechanism 276 can also include a yoke wheel 290 mechanically coupled to the motor 278 to drive the discharge assembly 260.
  • the yoke wheel 290 can rotate with the camshaft 284 and can include a drive pin 292 disposed radially outwardly of the yoke wheel 290 and extending generally parallel to the axis of rotation of the motor 278.
  • the side arm 262 of the discharge assembly 260 can be provided with a drive slot 294 configured to receive the drive pin 292 during operation.
  • a single yoke wheel 290 is described and illustrated herein, it should be understood that both side arms 262 can include a yoke wheel 290 and a drive slot 294 mechanism.
  • each drive slot 294 is defined such that when the drive pin 292 reaches the end 296 of the drive slot 294, the drive pin 292 moves the discharge assembly 260 in a horizontal direction. It is noted that, according to an exemplary embodiment, this occurs when the lifting mechanism 240 is in the raised position.
  • the ice making assembly 200 may include a position sensor (not shown) for determining the initial position of the yoke wheel 290.
  • the position sensor includes a magnet (not shown) disposed on the yoke wheel 290 and a Hall effect sensor (not shown) mounted at a fixed position on the ice making assembly 200.
  • the Hall effect sensor can detect the approach of the magnet, and the controller 164 can determine that the yoke wheel 290 is in an initial position (or some other known position).
  • any other suitable sensor or method of detecting the position of the yoke wheel 290 or the drive mechanism 276 can be used.
  • a motion sensor, a camera system, an optical sensor, an acoustic sensor, or a simple mechanical contact switch can be used.
  • the motor 278 can begin to rotate after the ice cubes 204 are completely frozen and ready to be harvested. At this point, the motor 278 rotates the rotating cam 280 (and/or the camshaft 284) approximately 90 degrees to move the lifting mechanism 240 from the lowered position to the raised position. In this way, the lifting protrusion 246 pushes the elastic mold 210 upward, thereby deforming the elastic mold 210 and releasing the ice cubes 204. The ice cubes 204 continue to be pushed upward until they enter the ice storage bin 152.
  • the yoke wheel 290 rotates with the cam shaft 284, causing the drive pin 292 to rotate within the drive slot 294 without moving the ejection assembly 260 until the yoke wheel 290 reaches the ninety degree position.
  • the lifting mechanism 240 remains in the raised position while the ejection assembly 260 moves toward the extended position.
  • the inclined push surface 268 engages the raised ends of the ice cubes 204 to push them out of the resilient mold 210 and rotate the ice cubes 204 approximately one hundred eighty degrees (180°) before they fall into the ice storage bin 152.
  • the discharge assembly 260 When the motor 278 reaches one hundred and eighty degrees (180°) of rotation, the discharge assembly 260 is in a fully extended position and the ice cubes 204 will fall into the ice storage box 152 under the action of gravity. As the motor 278 rotates through one hundred and eighty degrees (180°), the drive pin 292 begins to pull the discharge assembly 260 back toward the retracted position, for example, via engagement with the drive slot 294. At the same time, the profile of the rotating cam 280 is configured to begin lowering the lifting mechanism 240.
  • the discharge assembly 260 can be fully retracted, the lifting mechanism 240 can be fully lowered, and the elastic mold 210 can be ready to supply water.
  • the water supply nozzle 202 can provide a flow of water into the mold cavity 212, and the process can be repeated.
  • the water 216 dispensed from the water supply nozzle 202 may have a tendency to freeze in locations where ice is not desired.
  • the operation and performance of the ice making assembly 200 may be adversely affected.
  • the water fill volume may be affected, resulting in ice cubes that are smaller or larger than desired.
  • ice in the wrong location may cause water to overflow or may jam the discharge mechanism of the ice making assembly 200.
  • some exemplary embodiments of the ice making assembly 200 may include features for eliminating ice accumulation in undesirable locations. These undesirable ice formations may be referred to herein as ice jams and are generally identified in the accompanying drawings by reference numeral 310 (see Figures 4 to 6).
  • the ice making assembly 200 may include one or more heating elements 312 that are thermally connected to the fill cup 214 so as to selectively heat the fill cup 214.
  • the term "heating element” and the like are generally intended to refer to any suitable electrically driven heat generator.
  • the heating element 312 can be an electric heater that is thermally coupled to the fill cup 214 and can include one or more resistive heating elements.
  • a positive thermal coefficient (PTCR) of a resistive heater that increases in resistance when heated such as a metal, ceramic, or polymer PTC element (e.g., such as a resistive heating rod or a Calrod heater)
  • the heating element 312 can be coated with silicone, embedded in the fill cup 214, or arranged in any other suitable manner.
  • the heating element 312 may generally be mounted in any manner suitable for breaking up the ice jam 310 or melting undesirable ice accumulation.
  • the heating element 312 may be disposed adjacent to the discharge nozzle 218 of the fill cup 214.
  • a common location of the jam is at the point where the discharge nozzle 218 directs the water 216 into the mold cavity 212.
  • the ice jam 310 at this location may prevent the ice cube 204 from being properly discharged or discharged from the mold cavity 212.
  • the lifting mechanism 240 pushes the ice cube 204 upward and out of the flexible mold 210, the rear end of the ice cube 204 may contact the ice jam 310, causing it to tilt forward.
  • the discharge assembly 260 moves forward to initiate the discharge process, the ice cube 204 may be stuck between the discharge assembly 260 and the front portion of the flexible mold 210.
  • the heating element 312 can be selectively activated to locally melt and break up the ice jam 310.
  • the heating element 312 is disposed on the rear side 314 of the fill cup 214, directly opposite the discharge nozzle 218.
  • the fill cup 214 is preferably provided with a plurality of heating elements 312 disposed on the rear side 314 of the fill cup 214, directly opposite the discharge nozzle 218.
  • 214 may define a recess 316 that is sized and configured to receive the heating element 312.
  • the recess 316 may be defined such that the thickness of the fill cup 214 adjacent the recess 316 is less than the nominal thickness of the drain assembly 260 and the fill cup 214.
  • the heating element 312 is disposed as close to the ice plug 310 as possible without compromising the structural integrity of the fill cup 214.
  • the ice making assembly 200 may include a retaining bracket 320 that snaps onto the fill cup 214 or the discharge assembly 260 to secure the heating element 312 in place.
  • the retaining bracket 320 may be a flat plastic piece that is securely positioned against the heating element 312 opposite the fill cup 214.
  • the heating element 312 may be securely contacted with the fill cup 214 within the recess 316 to improve thermal conductivity.
  • the retaining bracket 320 may include clips 322 that are received within notches defined on the front end of the discharge assembly 260 to secure the retaining bracket 320 in place. It should be understood that other configurations of the retaining bracket 320 and other means for securing the heating element 312 may be used while remaining within the scope of the present invention.
  • the ice making assembly 200 may further include a secondary harvest heater in thermal communication with the heat exchanger 220.
  • a secondary harvest heater may be used independently of the heating element 312 or in combination therewith to clear ice jams 310 throughout the ice making assembly 200.
  • the ice making assembly 200 may further include an infrared light (IR) emitter 400 and an IR receiver 402, for example, thereby defining an IR beam 406 therebetween.
  • IR infrared light
  • the IR emitter 400 and the IR receiver 402 are omitted from FIGS. 1 to 7 only for the sake of simplicity and clarity, for example, in order to more clearly describe and label other elements of the ice making assembly 200.
  • the exemplary configurations described in FIGS. 1 to 7 are by no means intended to exclude the presence of the IR emitter 400 and the IR receiver 402 therefrom.
  • the IR emitter 400 and the IR receiver 402 may be collectively referred to as an IR assembly.
  • the IR assembly may be mounted on a movable portion of the ice making assembly 200, such as on the discharge assembly 260, for example, on its side arm 262.
  • the infrared emitter 400 may be mounted to the first side arm 262 of the discharge assembly 260
  • the infrared detector 402 may be mounted to the second side arm 262 of the discharge assembly 260.
  • the IR beam 406 (e.g., in Figures 9 to 11) travels from right to left. It should be understood that this arrangement is merely exemplary, and other configurations are possible within the scope of the present invention, such as the positions of the IR emitter 400 and the IR detector 402 may be reversed.
  • the infrared emitter 400 and the infrared detector 402 may be arranged to face each other and may be aligned so that the infrared beam 406 from the infrared emitter 400 passes through the storage volume defined within the ice storage bin 152 and reaches the infrared detector 402.
  • the IR assembly (particularly the IR detector 402 thereof) may be connected to the controller 164. Communicatively coupled, for example, whereby, when the IR beam 406 is not detected, an interruption of the IR beam 406 can be detected, such as by or in response to a signal from the IR detector 402.
  • the IR beam 406 when the transmission path of the IR beam 406 is interrupted or interrupted by an object (such as an ice cube or block ice) between the IR emitter 400 and the IR detector 402, the IR beam 406 may not be detected. Therefore, when the accumulated ice cube pile in the ice bank 154 reaches the level of the IR emitter 400 and the IR detector 402 and the IR beam 406 therebetween, for example along the vertical direction V, the IR beam 406 may be interrupted, and such interruption may be detected by the IR detector 402. Thus, the IR assembly can detect the fill level of ice in the internal storage volume of the ice bank 152.
  • an object such as an ice cube or block ice
  • the ice bank 152 may be full, and the controller 164 may be configured to suspend the operation of the ice making assembly 200 when the ice bank 154 is full.
  • the portion of the ice pile that first reaches the level of the IR assembly may be the apex or highest portion of the ice pile, or may generally be the highest portion of the ice pile, so that a full ice storage bin 152 may be detected earlier in order to reduce or prevent overfilling of the ice storage bin 152, which may occur when the apex of the accumulated ice cubes is not detected by the IR assembly (e.g., because the apex is outside a line or area covered by the IR beam 406).
  • the controller 164 can check whether the IR beam 406 is interrupted before filling the mold body 210 with liquid water, for example, in embodiments where the IR assembly is mounted to the discharge assembly 260, when the discharge assembly 260 is in the home position. In some embodiments, the controller 164 can be configured to check whether the IR beam 406 is interrupted during or after ice harvesting, such as when the discharge assembly 260 is retracted, for example, from an extended position back to the home position, for example, in embodiments where the IR assembly is mounted to the discharge assembly 260.
  • the IR assembly can detect the fill level of ice cubes in the ice bank 152 whenever an ice cube, which may be the highest point or apex of the ice pile in the ice bank 152, reaches the level of the IR assembly at any point along the line of the IR beam 406.
  • the fill level can be detected along a single line defined by the IR beam 406, e.g., the ice bank 152 is full.
  • a full ice bank 152 can be detected whenever an ice cube reaches any point within an ice detection area (such as the ice detection area 410 illustrated in FIG. 11 ).
  • the IR beam 406 may sweep through the ice detection area 410 as the discharge assembly 260 moves between the home position ( FIG. 9 ) and the extended position ( FIG.
  • the rearward limit of the ice detection area 410 is defined by the position of the IR beam 406 when in the home position
  • the forward limit of the ice detection area 410 is defined by the position of the IR beam 406 when in the extended position
  • the IR beam 406 continuously moves through various intermediate positions therebetween as the discharge assembly 260 moves from the home position to the extended position and/or retracts from the extended position to the home position, whereby in such an embodiment, the IR beam 406 covers (e.g., sweeps through) the entire ice detection area 410.
  • the discharge assembly 260 can move between the home position and the extended position in a direction generally perpendicular to the vertical V and/or in a plane generally perpendicular to the vertical V, such that in embodiments where the IR assembly is mounted to the discharge assembly 260, the IR assembly moves with the discharge assembly 260 in a direction generally perpendicular to the vertical V and/or in a plane generally perpendicular to the vertical V.
  • "generally perpendicular to the vertical V" includes angles within plus or minus 15° of perpendicular to the vertical V, such as angles between 75° and 90°. For example, as can be seen in FIGS.
  • the IR beam 406 can extend through a slot 412, such as two slots 412 (one on each side of the ice storage bin 152). Although only one is visible in FIGS. 12 and 13, the other slot 412 can be a mirror image of the illustrated slot 412.
  • the slots 412 may be oriented to follow the path of the IR beam when the IR assembly moves between the home position and the extended position, for example, with the exhaust assembly 260 to which the IR assembly may be mounted.
  • the slots 412 may be generally linear, such as may have a generally constant (e.g., varying by ten percent or less) vertical dimension throughout the length of each slot 412, and may be oriented at the same angle relative to the vertical V as the direction of travel of the exhaust assembly 260.
  • the slots 412 may be triangular or may be tapered, such as the slots 412 may have varying widths to allow the IR beam 406 to travel therein without being blocked at any point along the path of travel between the home position and the extended position.
  • one edge of each slot 412 can be substantially perpendicular to the vertical direction V (in this case, “substantially” is used in the usual sense, such as within plus or minus ten degrees of perpendicular to the vertical direction V), and the other edge of each slot 412 (e.g., the other of the upper edge and the lower edge) can be inclined relative to the vertical direction V, such as at an angle of between approximately fifteen degrees and approximately thirty-five degrees relative to the vertical direction V.
  • the infrared emitter 400 and the infrared detector 402 may be disposed within the top of the ice making assembly 200, such as within twenty-five percent or less of the total vertical dimension of the ice bank 152 from the highest point of the ice bank 152, such as approximately ten percent or less of the total vertical dimension of the ice bank 152 spaced from the highest point of the ice bank 152.
  • the ice making assembly 200 can be used to form one or more ice cubes therein, for example, and can be configured to receive liquid water in one or more mold cavities 212 defined in the mold body 210 and reduce the temperature of the liquid water in the one or more mold cavities 212, thereby forming one or more ice cubes 204.
  • the infrared emitter 400 and the infrared detector 402 can be arranged in front of the point where the one or more ice cubes 204 are discharged from the ice making assembly 200 when the one or more ice cubes 204 are harvested.
  • the IR assembly can thereby detect when the discharge assembly 260 is retracted (e.g., when moving from the extended position to the home position) after the one or more ice cubes 204 are harvested.
  • the ice bank 152 is full.
  • the IR assembly may detect that the ice bank 152 is full after the ice cubes 204 are harvested (e.g., immediately after harvesting).
  • At least one of the one or more ice cubes 204 harvested immediately before the full ice bank 152 is detected may be the highest in the pile in the ice bank 152, for example, at least one of the one or more ice cubes 204 harvested immediately before the full ice bank 152 is detected may be the ice cube 204 that reaches the level of the IR assembly.
  • the controller 164 may suspend operation of the ice making assembly in response to detecting the full ice bank 152 after harvesting, for example, the controller 164 may be configured to suspend the filling operation so that liquid water is not directed into the mold body 210 after the ice cubes 204 are harvested (e.g., immediately after harvesting) when the harvested ice cubes 204 fill the ice bank 152.
  • the central portion 414 of the ice making assembly 200 and/or its ice bank 152 is shown, for example, in FIG. 9 .
  • the infrared emitter 400 and the infrared detector 402 can be disposed above (such as directly above along the vertical direction V) the central portion 414 of the ice bank 152, for example when mounted to a stationary portion of the ice making assembly 200 or in an embodiment where the IR emitter 400 and the IR detector 402 are mounted to a moving portion of the ice making assembly 200 when in situ.
  • the central portion 414 can correspond to the middle third of the ice bank 152, for example, along the transverse direction T.
  • the infrared emitter 400 and the infrared detector 402 can be disposed directly above the exact center of the ice bank 152 along the vertical direction V, or can be disposed substantially above the exact center of the ice bank 152 along the vertical direction V, where “substantially above” includes, for example, being offset along the transverse direction T (such as forward or backward) by ten percent or less of a transverse dimension (e.g., depth) of the ice bank 152.
  • the apex of the accumulated ice cubes 204 within the ice bank 152 may occur at or near the center portion 414 of the ice bank 152.
  • positioning the IR emitter 400 and the IR detector 402 above the center portion 414 as described above may advantageously detect a full ice bank 152 at the highest point reached by the accumulated ice, for example, and may avoid or reduce the possibility of overfilling the ice bank 152 when the apex is not detected (e.g., when the apex occurs at a location not covered by the IR assembly).
  • the elastic mold 210 may define any suitable number of mold cavities 212
  • the drive mechanism 276 may have a different configuration
  • the lifting mechanism 240 and the discharge assembly 260 may have dedicated drive mechanisms.
  • other control methods may be used to form and harvest ice cubes 204.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冷电器包括箱体,该箱体具有可旋转地安装到箱体的门体。制冷电器还包括制冰室,该制冰室限定在箱体和门体中的一个中。制冰组件和储冰盒设置在制冰室内。制冷电器还包括安装到制冰组件的可移动部分的红外发射器和安装到制冰组件的可移动部分的红外检测器。制冷电器还包括安装到制冰组件的红外发射器和红外检测器。

Description

用于制冷电器的制冰组件 技术领域
本发明总体涉及制冷电器,更具体地涉及用于制冷电器的制冰组件。
背景技术
制冷电器通常包括箱体,该箱体限定用于接收食品以便储存的一个或多个制冷间室。通常,一个或多个门体可旋转地铰接到箱体,以允许选择性地接近在制冷间室中储存的食品。进一步地,制冷电器通常包括安装在一个门体上的冰盒内或冷冻室中的制冰组件。冰储存在储冰盒中,并且可从冷冻室内部接近,或者可以通过限定在冷藏门体的前部上的分配器凹部排出。
当储冰盒充满时,期望制冰组件暂停制冰和/或脱冰,以便避免或限制过度填充储冰盒。累积在储冰盒内的块冰不一定按照规则的模式来这样做。例如,块冰可能不规则的堆积,其中,储冰盒内的一个位置可能达到最大冰位,而储冰盒中的其它点处低于最大冰位。由此,例如,在储冰盒的在最大冰位处在大体垂直于竖向的平面中截取的横截面中,累积的冰可能在横截面的一些部分处达到最大冰位,而在横截面的其它部分处的冰低于最大冰位。
由此,在更可能发现冰堆的顶点的区域或位置处检查冰填充冰位可能是有利的,和/或检查储冰盒的区域或部分上的冰填充冰位可能是有利的,诸如更可能在最大冰位处检测到一个或多个块冰,诸如达到最大冰位的第一块冰,诸如储冰盒中累积的冰的顶点或最上面的块冰。
因此,具有用于改善储冰的特征的制冷电器将是期望的。更特别地,包括用于检测储冰盒中的填充冰位的特征的制冷电器将是特别有益的,该储冰盒接收并储存来自制冷电器中的制冰组件的块冰。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
根据示例性实施方式,提供了一种制冷电器。该制冷电器包括箱体,该箱体具有可旋转地安装到箱体的门体。制冷电器还包括制冰室,该制冰室限定在箱体和门体中的一个中。制冰组件和储冰盒设置在制冰室内。制冷电器还包括安装到制冰组 件的可移动部分的红外发射器和安装到制冰组件的可移动部分的红外检测器。
根据另一示例性实施方式,提供了一种制冷电器。该制冷电器包括箱体,该箱体具有可旋转地安装到箱体的门体。制冷电器还包括制冰室,该制冰室限定在箱体和门体中的一个中。制冰组件和储冰盒设置在制冰室内。制冷电器还包括安装到制冰组件的可移动部分的红外发射器和安装到制冰组件的可移动部分的红外检测器。制冷电器还包括安装到制冰组件的红外发射器和红外检测器。当红外发射器和红外检测器处于原位置时,红外发射器和红外检测器设置在储冰盒的中心部分的上方。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的立体图。
图2提供了图1的示例性制冷电器的立体图,其中食物保鲜室的门体被示出为处于打开位置。
图3提供了根据本发明的示例性实施方式的用于与图1的示例性制冷电器一起使用的冰盒和制冰组件的立体图。
图4提供了根据本发明的示例性实施方式的图3的示例性制冰组件的立体图。
图5提供了图3的示例性制冰组件的驱动机构、升降组件以及排出组件的部分侧视图,其中升降组件处于降低位置,并且排出组件处于缩回位置。
图6提供了图5的驱动机构、升降组件以及排出组件的部分侧视图,其中升降机构处于升高位置。
图7提供了根据示例性实施方式的图3的示例性制冰组件的后视图,其中为了清楚起见,去除了保持支架。
图8提供了根据本发明的一个或多个示例性实施方式的图3的示例性制冰组件的立体图。
图9提供了图8的示例性制冰组件的俯视图,其中其排出组件处于原位置。
图10提供了图8的示例性制冰组件的俯视图,其中其排出组件处于伸出位置。
图11提供了示意性地示例冰检测区域的图8的示例性制冰组件的俯视图。
图12提供了图8的示例性制冰组件的另一立体图,其中其排出组件处于原位置。
图13提供了图8的示例性制冰组件的另一立体图,其中其排出组件处于伸出位置。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,近似的术语,如“大体”或“大约”包括在比所述值大或小百分之十内的值。当在角度或方向的上下文中使用时,这种术语包括在比所述角度或方向大或小十度内。例如,“大体竖直”包括在垂直线在任意方向上(例如,顺时针或逆时针)的十度内的方向。如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。
图1提供了根据本发明的示例性实施方式的制冷电器100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102形成用于接收食品以便储存的制冷间室。特别地,壳体102形成有设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此可见,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶置式制冷电器、对开门式制冷电器或单门制冷电器。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限制任何特定的制冷室构造。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。另外,在冷藏门体128的下方布置冷冻门体130,以便选择性地进入冷冻室124。 冷冻门体130联接至可滑动地安装在冷冻室124内的冷冻抽屉(未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭构造。本领域技术人员将理解,其它腔室和门体构造是可行的,并且在本发明的范围内。
图2提供了在冷藏门体128处于打开位置的情况下示出的制冷电器100的立体图。如图2所示,如本领域技术人员将理解的,各种储存部件被安装在食物保鲜室122内,以促进食品在其中的储存。特别地,储存部件可以包括盒134和层架136。这些储存部件中的每一个用于接收食品(例如,饮料或/或固体食品等),并且可以辅助管理这种食品。如图所示,盒134可以安装在冷藏门体128上或者可以滑入食物保鲜室122中的容纳空间中。应当理解,所示的储存部件仅用于说明的目的,并且可以使用其它储存部件,并且其它储存部件可以具有不同的尺寸、形状以及构造。
现在一般参见图1,将描述根据本发明的示例性实施方式的分配组件140。分配组件140通常用于分配液态水和/或冰。虽然在本文中示例并描述了示例性分配组件140,但应当理解,可以在保持在本发明的范围内的同时对分配组件140进行各种变更和修改。
分配组件140及其各种部件可以至少部分地设置在形成于冷藏门体128中的一个上的分配器凹部142内。在这点上,分配器凹部142设置在制冷电器100的前侧112,使得用户可以在不打开冷藏门体128的情况下操作分配组件140。另外,分配器凹部142设置在预定高度处,该预定高度方便用户取冰,并且使得用户能够在不需要弯腰的情况下取冰。在示例性实施方式中,分配器凹部142设置在接近用户的胸部水平的位置处。
分配组件140包括冰分配器144,该分配器包括用于从分配组件140排出冰的排放口146。被示出为拨片的致动机构148安装在排放口146下方,以便操作冰或水分配器144。在可选示例性实施方式中,可以使用任意合适的致动机构来操作冰分配器144。例如,冰分配器144可以包括传感器(诸如超声传感器)或按钮,而不是拨片。排放口146和致动机构148是冰分配器144的外部零件,并且安装在分配器凹部142中。
与之相比,在制冷电器100内部,冷藏门体128可以设有容纳制冰机和储冰盒152的冰盒150(图2和图3),该制冰机和储冰盒被构造为将冰供应至分配器凹部142。在这点上,例如,冰盒150可以限定用于容纳制冰组件、储存机构以及分配机构的制冰室154。
设置控制面板160,以便控制操作模式。例如,控制面板160包括一个或多个选 择输入162,诸如旋钮、按钮、触摸屏界面等,诸如水分配按钮和冰分配按钮,用于选择期望的操作模式,诸如碎冰或非碎冰。另外,输入162可以用于指定填充容积或操作分配组件140的方法。在这点上,输入162可以与处理装置或控制器164通信。在控制器164中生成的信号响应于选择器输入162操作制冷电器100和分配组件140。另外,可以在控制面板160上设置显示器166,诸如指示灯或屏幕。显示器166可以与控制器164通信,并且可以响应于来自控制器164的信号而显示信息。
如本文所用的,“处理装置”或“控制器”可以指一个或多个微处理器或半导体装置,并且不必限于单个元件。处理装置可以被编程为操作制冷电器100和分配组件140。处理装置可以包括一个或多个存储元件(例如,永久存储介质)或与其关联。在一些这种实施方式中,存储元件包括电可擦可编程只读存储器(EEPROM)。通常,存储元件可以存储处理装置可访问的信息,包括可以由处理装置执行的指令。可选地,指令可以是软件或指令和/或数据的任意集合,该软件或指令和/或数据的任意集合在由处理装置执行时,使得处理装置执行操作。
现在一般参见图3至图13,将描述根据本发明的示例性实施方式的可以与制冷电器100一起使用的制冰组件200。制冰组件200可以设置在制冷电器100的任何制冷间室(例如,食物保鲜室122或冷冻室124)中。如图示例,制冰组件200安装在制冰室154内的冰盒150中,并且用于接收来自供水嘴202(例如参见图3)的水流。更具体地,如以下更详细地描述的,供水嘴202可将水流排放到填充杯中,该填充杯将水分散或引导到一个或多个模腔中。
在示例性示例的制冰组件200安装在冰盒150内并且冰盒150由一个冷藏门体128限定或限定于其中的情况下,例如当相应的门体128处于关闭位置时,制冰组件200可由此设置在食物保鲜室122内。在另外的实施方式中,制冰组件200和储冰盒152可例如设置在冷冻室124中。因此,在各种实施方式中,制冰室154可以位于一个制冷间室内,或者可以与一个制冷间室共同延伸。例如,在一些实施方式中,冰盒150可限定在冷冻门体130中或由其限定,由此,制冰室154可例如在冷冻门体130处于关闭位置时设置在冷冻室124内,或者冰盒150可限定在冷冻室124内的固定位置,由此,制冰室154可独立于冷冻门体130的位置设置在冷冻室124内。作为另一示例,在另外的实施方式中,可省略冰盒150,并且制冰组件200和储冰盒152可位于冷冻室124内,例如,在这些实施方式中,制冰室154和冷冻室124可相当且共同延伸。由此,制冰室154可限定在箱体102和门体128、130中的一个中,诸如当冰盒150设置在门体128或130中的一个中时,制冰室154可限定在门体128 或130中的一个中,或者当冰盒150安装在制冷间室122和124中的一个中时或当省略冰盒150时,制冰室154可限定在箱体中。
这样,制冰组件200通常用于使水冻结以形成冰块204(参见例如图5和图6,还应注意,术语“冰块”在本文中广义地用于包括各种形状的块冰,诸如但不限于矩形棱柱、宝石形块冰、圆冰块或任何其它期望形状的冰块),这些冰块可储存在储冰盒152中并由分配组件140通过排放口146分配。然而,应当理解,本文描述的制冰组件200仅以解释本发明的各个方面。可以在保持在本发明的范围内的同时对制冰组件200进行变更和修改。例如,制冰组件200可以替代地设置在制冷电器100的冷冻室124内,并且可以具有任何其它合适的构造。
根据所示实施方式,制冰组件200包括限定模腔212的弹性模具210。通常,如以下更详细地描述的,弹性模具210设置为用于接收来自供水嘴202的重力辅助水流并容纳该水,直到形成冰块204。弹性模具210可以由任何合适的弹性材料构成,该弹性材料可以变形以释放形成后的冰块204。例如,根据所示实施方式,弹性模具210由硅树脂或另一合适的疏水、食品级且弹性的材料形成。
在一些示例性实施方式中,弹性模具210限定两个模腔212,各个模腔被成形并定向为用于形成单独的冰块204。在这点上,例如,供水嘴202用于将弹性模具210重新填充到弹性模具210内的分隔壁(未示出)上方的水平,使得水均匀地溢出到各个模腔212中,例如,均匀地溢出到图4示例的示例性实施方式中的两个模腔中或图8至图13示例的示例性实施方式中的所有模腔(例如所有五个模腔)中、或如可在各种实施方式中设置的其它合适数量的模腔(诸如多行模腔等)中。根据另一些实施方式,供水嘴202可以具有设置在各个模腔上方的专用排放喷嘴。此外,应当理解,根据可选实施方式,制冰组件200可以例如通过增加由弹性模具210限定的模腔212的数量而缩放来形成任何合适数量的冰块204。
如图所示,制冰组件还包括填充杯214,该填充杯设置在弹性模具210上方,用于选择性地用水填充模腔212。更具体地,填充杯214可以设置在供水嘴202下方,用于接收水216流。填充杯214可限定用于收集和/或引导水216流入模腔212而不会过度飞溅或溢出的小储存容器。另外,填充杯214可限定排放嘴218,该排放嘴使水朝向填充杯214的底部汇集,在该底部处,水可被分配到模腔212中。
通常,填充杯214和排放嘴218可以具有适于将水216流分配到弹性模具210中的任何合适的尺寸、形状和构造。例如,根据所示实施方式,填充杯214设置在两个模腔212中的一个上方,并且通常限定倾斜表面,用于将水216引导至紧接在 弹性模具210的填充水位(未标记)上方的排放嘴218。根据可选实施方式,填充杯214可以延伸跨过整个弹性模具210的宽度,并且可以具有多个排放嘴218。填充杯214可具有其它构造,同时保持在本发明的范围内。
制冰组件200还可以包括热交换器220,该热交换器与弹性模具210热连通,用于使模腔212内的水冻结,以形成一个或多个冰块204。通常,热交换器220可以由任何合适的导热材料形成,并且可以设置为与弹性模具210直接接触。具体地,根据所示实施方式,热交换器220由铝制成并且设置在弹性模具210正下方。此外,热交换器220可以限定立方体凹部222,该凹部被构造为接收弹性模具210并成形或限定冰块204的底部。这样,热交换器220在冰块204的大部分表面积上与弹性模具210直接接触,例如,以促进增加的热传递速率和储存在模腔212内的水的快速冻结。例如,热交换器220可以在大于冰块204的表面积的近似一半的面积上接触弹性模具210。应当理解,如本文使用的,近似的用语,诸如“近似”、“基本上”或“大约”是指在百分之十的误差裕度内。
另外,制冰组件200可以包括进气道224,该进气道设置为与热交换器220相邻并与冷空气源(例如,示例为冷却空气流226)流体联接。根据所示实施方式,进气道224从制冰组件200的后端228(例如,沿着如图5和图6所示的侧向L从右侧)通过热交换器220朝向制冰组件200的前端230(例如,沿如图5和图6所示的侧向L向左,即,冰块204被排放到储冰盒152中的一侧)提供冷却空气流226。
如图所示,进气道224通常从制冷电器100的密封系统接收冷却空气流226,并引导其越过和/或通过热交换器220以冷却热交换器220。更具体地,根据所示实施方式,热交换器220限定了基本上平行于冷却空气流226延伸的多个热交换翅片232。在这点上,热交换翅片232从热交换器220的顶部沿着由竖向V在侧向L上限定的平面向下延伸(例如,当制冰组件200安装在制冷电器100中时)。
如例如在图5和图6中可以看到的,制冰组件200还包括升降机构240,该升降机构设置在弹性模具210下方,并且通常用于促进冰块204从模腔212中排出。在这点上,升降机构240可在降低位置(例如,如图5所示)与升高位置(例如,如图6所示)之间移动。具体地,升降机构240包括升降臂242,该升降臂基本上沿着竖向V延伸并且穿过限定在热交换器220内的升降通道244。这样,升降通道244可以随着升降机构240沿着竖向V滑动而引导它。
另外,升降机构240包括从升降臂242的顶部朝向制冰组件200的后端228并朝向制冰组件200的前端230延伸的升降突出部246。如图所示,升降突出部246通 常限定冰块204的底部的轮廓,并且当升降机构240处于降低位置时齐平地设置在由热交换器220限定的升降凹部248内。这样,热交换器220和升降突出部246限定冰块204的平滑底面。更具体地,根据所示实施方式,升降突出部246通常向下弯曲并远离升降臂242,以在冰块204的底部上限定平滑的凹陷(divot)。
现在具体参见图7,热交换器220还可以限定用于接收温度传感器250的孔,该温度传感器用于确定何时形成冰块204,使得可以执行排出过程。在这点上,例如,温度传感器250可以与控制器164可操作地通信,该控制器可以监测热交换器220的温度和水已经在模腔212中的时间,以预测冰块204何时完全冻结。如本文所用,“温度传感器”可以指任何合适类型的温度传感器。例如,温度传感器可以是热电偶、热敏电阻或电阻式温度检测器。另外,尽管本文示例了单个温度传感器250的示例性设置,但是应当理解,根据可选实施方式,制冰组件200可以包括任何其它合适数量、类型和位置的温度传感器。
现在具体参见图4至图7,制冰组件200还包括排出组件260,该排出组件设置在弹性模具210上方,并且通常用于在冰块204形成后将其推出模腔212并推入储冰盒152中。具体地,根据所示实施方式,排出组件260可沿着水平方向(即,在大体垂直于竖向V的水平面内,诸如由侧向L和横向T限定的侧向-横向平面内)在缩回位置(例如,如图5所示)与伸出位置(例如,如图6所示)之间移动。根据所示实施方式,排出组件260和填充杯214可一体地形成为单件,其中填充杯214设置在排出组件260的顶部上。这样,在排冰过程期间,排出组件260和填充杯214可沿着水平方向(例如,侧向L或大体垂直于竖向V的其它方向)一致地移动。
如以下更详细地描述的,排出组件260保持在缩回位置,同时例如通过填充杯214将水添加到弹性模具210。排出组件260在整个冻结过程中以及在升降机构240朝向升高位置移动时也保持在缩回位置。在冰块204处于升高位置之后,排出组件260从缩回位置水平移动到伸出位置,例如,朝向制冰组件200的前端230移动。这样,排出组件将冰块204推离升降机构240,推出弹性模具210,并推到热交换器220的顶部上方,在该处冰块可以落入储冰盒152中。
值得注意的是,从制冰组件200的顶部分配冰块204允许较高的储冰盒152,由此允许相对于从制冰机的底部分配冰的制冰机的较大的储冰容量。根据所示实施方式,供水嘴202设置在填充杯214上方(在缩回位置中),使得可以将水流引导到弹性模具210中。另外,供水嘴202设置为使得排出组件260可以在缩回位置与伸出位置之间移动而不接触供水嘴202。根据可选实施方式,供水嘴202可以联接到机械 致动器,该机械致动器在排出组件260处于缩回位置的同时使供水嘴202下降接近弹性模具210。这样,可以进一步减小制冰组件200的总高度或轮廓,从而使储冰容量最大化并使浪费的空间最小化。
根据所示实施方式,排出组件260通常包括竖直延伸的侧臂262,这些侧臂用于驱动设置在弹性模具210上方(例如之上)的上凸框264。具体地,上凸框264围绕弹性模具210延伸,从而防止或减少弹性模具210内的水的飞溅。这诸如在制冰组件200安装在冷藏门体128上时可以是有利的,因为冷藏门体128的移动可能导致模腔212内的水的晃动。
另外,如图5和图6最佳所示,排出组件260还可以限定接近制冰组件200的后端228的倾斜的推动面268。通常,倾斜的推动面268用于在冰块204向上枢转的同时并且随着排出组件260朝向伸出位置移动以使冰块204在制冰组件200上方旋转和离开时接合冰块。具体地,倾斜的推动面可以相对于竖向V以角度270(图5)延伸。根据所示实施方式,角度270小于大约10度,但是根据可选实施方式,可以使用用于推动冰块旋转180度的任何其它合适的角度。
再次一般参见图3至图13,制冰组件200可以包括驱动机构276,该驱动机构可操作地联接到升降机构240和排出组件260,以在操作期间选择性地升高升降机构240并滑动排出组件260,以便排出冰块204。具体地,根据所示实施方式,驱动机构276包括驱动电机278。如本文所用,“电机”可以指代用于旋转系统部件的任意合适的驱动电机和/或传动组件。例如,电机278可以是无刷DC电动机、步进电机或任意其他合适类型或构造的电机。可选地,例如,电机278可以是AC电机、感应电机、永磁同步电机或任意其他合适类型的AC电机。另外,电机278可以包括任意合适的传动组件、离合机构或其他部件。
根据示例性实施方式,电机278可以机械地联接到旋转凸轮280。升降机构240,或更具体地升降臂242,可以抵靠旋转凸轮280,使得随着电机278使旋转凸轮280旋转,旋转凸轮280的轮廓引起升降机构240在降低位置与升高位置之间移动。另外,根据示例性实施方式,升降机构240可以包括滚轮282,该滚轮282安装到升降臂242的下端,用于在升降机构240与旋转凸轮280之间提供低摩擦界面。
制冰组件200可以包括多个升降机构240,各个升降机构240设置在弹性模具210的一个模腔212(以及其中的冰块204)下方,或者被构造为升高弹性模具210的单独部分。在这种实施方式中,旋转凸轮280安装在与电机278机械联接的凸轮轴284上。随着电机278旋转凸轮轴284,旋转凸轮280可以同时沿着竖向V移动升 降臂242。这样,多个旋转凸轮280中的每一个用于驱动相应的一个升降机构240。另外,滚轮轴(未示出)可以在相邻升降机构240的滚轮282之间延伸,以保持相邻滚轮282之间的适当距离并保持它们接合在旋转凸轮280的顶部上。
仍然一般参见图3至图13,驱动机构276还可以包括机械地联接到电机278以便驱动排出组件260的轭轮290。具体地,轭轮290可以与凸轮轴284一起旋转,并且可以包括驱动销292,该驱动销设置在轭轮290的径向外部并且大致平行于电机278的旋转轴线延伸。另外,排出组件260的侧臂262可以设置有驱动狭槽294,该驱动狭槽被构造为在操作期间接收驱动销292。尽管本文描述和示例了单个轭轮290,但是应当理解,两个侧臂262都可以包括轭轮290和驱动狭槽294机构。
值得注意的是,各个驱动狭槽294的几何形状被限定为使得当驱动销292到达驱动狭槽294的端部296时,驱动销292使排出组件260沿着水平方向移动。值得注意的是,根据示例性实施方式,这在升降机构240处于升高位置时发生。为了向控制器164提供对轭轮290(更一般地,和驱动机构276)的位置的了解,制冰组件200可以包括用于确定轭轮290的初始位置的位置传感器(未示出)。
根据示例性实施方式,位置传感器包括设置在轭轮290上的磁体(未示出)和安装在制冰组件200上的固定位置处的霍尔效应传感器(未示出)。随着轭轮290朝向预定位置旋转,霍尔效应传感器可以检测磁体的接近,并且控制器164可以确定轭轮290处于初始位置(或某一其它已知位置)。可选地,可以使用检测轭轮290或驱动机构276的位置的任意其它合适的传感器或方法。例如,根据可选实施方式,可以使用运动传感器、相机系统、光学传感器、声学传感器或简单的机械接触开关。
根据本发明的示例性实施方式,电机278可以在冰块204完全冻结并准备收获之后开始旋转。在这点上,电机278使旋转凸轮280(和/或凸轮轴284)旋转近似90度,以使升降机构240从降低位置移动到升高位置。这样,升降突出部246向上推动弹性模具210,从而使弹性模具210变形并释放冰块204。冰块204继续被向上推动,直到它们进入储冰盒152为止。
值得注意的是,轭轮290与凸轮轴284一起旋转,使得驱动销292在驱动狭槽294内旋转,而不移动排出组件260,直到轭轮290到达九十度位置为止。由此,随着电机278旋转经过九十度(90°),升降机构240保持在升高位置,而排出组件260朝向伸出位置移动。这样,倾斜的推动面268接合冰块204的凸起端,以将它们推出弹性模具210,并在将它们落入储冰盒152之前将冰块204旋转近似一百八十度(180°)。
当电机278达到一百八十度(180°)旋转时,排出组件260处于完全伸出位置,冰块204将在重力作用下落入储冰盒152中。随着电机278旋转经过一百八十度(180°),驱动销292开始将排出组件260例如经由与驱动狭槽294接合而朝向缩回位置拉回。同时,旋转凸轮280的轮廓被构造为开始降低升降机构240。当电机278转回到初始位置时,如例如由位置传感器指示的,排出组件260可以完全缩回,升降机构240可以完全降低,并且弹性模具210可以准备好供应水。此时,供水嘴202可以将水流提供到模腔212中,并且可以重复该过程。
值得注意的是,由于填充杯214接近形成冰块204所必需的冷空气和温度,从供水嘴202分配的水216可能具有在不期望冰的位置冻结的趋势。当发生这种不期望的冻结时,制冰组件200的操作和性能可能受到不利影响。例如,可能影响水填充体积,导致冰块比期望的小或大。另外,在错误位置的冰可能导致水溢出或者可能卡住制冰组件200的排放机构。由此,制冰组件200的一些示例性实施方式可包括用于消除冰在不期望的位置中积聚的特征。这些不期望的冰形成物在本文中可以被称为冰堵,并且在附图中通常由附图标记310(参见图4至图6)标识。
具体地,制冰组件200可包括一个或多个加热元件312,该加热元件与填充杯214热连通以便选择性地加热填充杯214。如本文所用的,术语“加热元件”等通常旨在指任何合适的电驱动热发生器。例如,加热元件312可以是与填充杯214导热接合的电加热器,并且可以包括一个或多个电阻加热元件。例如,可以使用在加热时电阻增加的电阻加热器的正热系数(PTCR),诸如金属、陶瓷或聚合物PTC元件(例如,诸如电阻加热棒或Calrod加热器)。另外,加热元件312可以用硅树脂涂布、嵌入填充杯214内或以任何其它合适的方式设置。
加热元件312通常可以以任何适于打碎冰堵310或融化不期望的冰积聚的方式安装。在这点上,根据示例性实施方式,加热元件312可设置为与填充杯214的排放嘴218相邻。在这点上,常见的堵塞位置是在排放嘴218将水216引导到模腔212中的点处。值得注意的是,该位置处的冰堵310可能阻止冰块204从模腔212适当地排放或排出。在这点上,当升降机构240向上推动冰块204并将其推出弹性模具210时,冰块204的后端可能接触冰堵310,使其向前倾斜。当排出组件260向前移动以发起排出过程时,冰块204可能卡在排出组件260和弹性模具210的前部之间。
为了防止这样的问题,当这样的冰堵310被检测到时,加热元件312可以被选择性地激励以局部地融化和打碎冰堵310。具体地,根据所示实施方式,加热元件312设置在填充杯214的后侧314上,与排放嘴218直接相对。在这点上,填充杯 214可限定凹槽316,其尺寸被构造为用于接收加热元件312。凹槽316可被限定为使得与凹槽316相邻的填充杯214的厚度小于排出组件260和填充杯214的标称厚度。由此,加热元件312设置为尽可能靠近冰堵310,而不损害填充杯214的结构完整性。
另外,制冰组件200可包括保持支架320,该保持支架卡扣到填充杯214或排出组件260上,以将加热元件312固定就位。这样,保持支架320可以是平坦的塑料件,该塑料件与填充杯214相对地牢固地抵靠加热元件312设置。这样,加热元件312可与凹槽316内的填充杯214牢固接触,以便提高导热性。如图所示,保持支架320可以包括夹子322,这些夹子被接收在限定在排出组件260的前端上的槽口内,以将保持支架320固定就位。应当理解,可使用保持支架320的其它构造和用于固定加热元件312的其它装置,同时保持在本发明的范围内。
值得注意的是,在排放嘴218处的局部加热可防止在排放嘴218处的冰堵310,但在融化位于制冰组件200内的其它位置处的冰堵310时可能是无效的。由此,根据可选实施方式,制冰组件200还可包括与热交换器220热连通的二次收获加热器。这种二次收获加热器可独立于加热元件312或与其结合使用,以清除整个制冰组件200中的冰堵310。
例如如在图8至图13中可以看到的,制冰组件200还可包括红外光(IR)发射器400和IR接收器402,例如,由此在它们之间限定IR束406。可以理解的是,仅为了简单和清楚起见,例如为了更清楚地描述和标记制冰组件200的其它元件,从图1至图7中省略了IR发射器400和IR接收器402。由此,可以理解的是,图1至图7中描述的示例性构造决不意图从其排除IR发射器400和IR接收器402的存在。
IR发射器400和IR接收器402可以被统称为IR组件。在一些实施方式中,IR组件可安装在制冰组件200的可动部分上,诸如安装在排出组件260上,例如安装在其侧臂262上。例如,红外发射器400可以安装到排出组件260的第一侧臂262,并且红外检测器402可以安装到排出组件260的第二侧臂262。在示例性示例的实施方式中,IR束406(例如在图9至图11中)从右向左行进。应当理解,这种布置仅是示例性的,并且在本发明的范围内其他配置也是可能的,诸如IR发射器400和IR检测器402的位置可以颠倒。
在一些实施方式中,红外发射器400和红外检测器402可设置成彼此面对,并且可对齐,由此,来自红外发射器400的红外束406穿过限定在储冰盒152内的储存容积并到达红外检测器402。IR组件(特别是其IR检测器402)可以与控制器164 通信地联接,例如,由此,当IR束406未被检测到时,IR束406的中断可以诸如通过或响应于来自IR检测器402的信号而被检测。例如,当IR束406的传递路径被IR发射器400与IR检测器402之间的对象(诸如冰块或块冰)打断或中断时,IR束406可能不被检测到。因此,当储冰盒154内的累积冰块堆例如沿着竖向V到达IR发射器400和IR检测器402以及它们之间的IR束406的水平时,IR束406可能被中断,并且这种中断可由IR检测器402检测到。由此,IR组件可检测储冰盒152的内部储存容积中的冰的填充水平。例如,当冰堆或其中的任何一个或多个冰块到达IR组件时,储冰盒152可为满的,并且控制器164可被配置为当储冰盒154已经满时暂停制冰组件200的操作。首先到达IR组件的水平的冰堆的部分(例如其中的一个或多个冰块)可以是冰堆的顶点或最高部分,或者通常可以是冰堆的最高部分,使得可以较早地检测到满的储冰盒152,以便减少或防止储冰盒152的过度填充,这种过度填充可能在累积的冰块的顶点未被IR组件检测到(例如因为顶点在由IR束406覆盖的线或区域之外)时发生。
在一些实施方式中,控制器164可以在用液态水填充模具体210之前检查IR束406是否中断,例如,在IR组件安装到排出组件260的实施方式中,当排出组件260处于原位置时。在一些实施方式中,控制器164可以被配置为检查IR束406在冰收获期间或之后是否被中断,诸如在排出组件260缩回时,例如从伸出位置返回到原位置,例如在IR组件安装到排出组件260的实施方式中。
每当可能是储冰盒152内的冰堆的最高点或顶点的冰块在沿着IR束406的线的任何点处到达IR组件的水平时,IR组件都可检测到储冰盒152中的冰块的填充水平。当IR束406静止时,可沿着由IR束406限定的单线检测填充水平,例如储冰盒152是满的。在IR束406安装到制冰组件的可移动部分的实施方式中,每当冰块到达冰检测区域(诸如图11所示例的冰检测区域410)内的任何点时,可检测到满的储冰盒152。例如,在IR发射器400和IR检测器402安装到清扫臂262的实施方式中,例如,如图11示例,IR束406(参见例如图9和图10)可随着排出组件260在原位置(图9)与伸出位置(图10)之间行进而扫略通过冰检测区域410,例如,其中,冰检测区域410的向后极限由IR束406在原位置时的位置限定,并且冰检测区域410的向前极限由IR束406在伸出位置时的位置限定,并且IR束406随着排出组件260从原位置移动到伸出位置和/或从伸出位置缩回到原位置而连续地移动通过其间的各个中间位置,由此在这样的实施方式中,IR束406覆盖(例如扫略通过)整个冰检测区域410。
在一些实施方式中,排出组件260可沿着大体垂直于竖向V的方向和/或在大体垂直于竖向V的平面内在原位置与伸出位置之间移动,使得在IR组件安装到排出组件260的实施方式中,IR组件与排出组件260一起沿着大体垂直于竖向V的方向和/或在大体垂直于竖向V的平面内移动。在排出组件260移动的特定背景下,“大体垂直于竖向V”包括在垂直于竖向V的正负15°内的角度,诸如在75°与90°之间的角度。例如,如在图12和图13中可以看到的,IR束406可以延伸穿过狭槽412,诸如两个狭槽412(在储冰盒152的每侧上一个)。尽管在图12和图13中仅一个可见,但另一个狭槽412可以是所示例狭槽412的镜像。狭槽412可以被定向为当IR组件例如与可以安装有IR组件的排出组件260一起在原位置与伸出位置之间移动时遵循IR束的路径。例如,狭槽412可以是大体线性的,例如可以在各个狭槽412的整个长度上具有大体恒定的(例如变化百分之十或更小)竖直尺寸,并且可以相对于竖向V以与排出组件260的行进方向相同的角度定向。在另外的实施方式中,狭槽412可以是三角形的或者可以是锥形的,诸如狭槽412可以具有变化的宽度以允许IR束406在其中行进而在沿着原位置与伸出位置之间的行进路径的任何点处不被阻挡。例如,在这样的实施方式中,各个狭槽412的一个边缘(例如上边缘或下边缘)可以大体垂直于竖向V(在这种情况下,在通常的意义上使用“大体”,例如在垂直于竖向V的正负十度内),并且各个狭槽412的另一个边缘(例如上边缘和下边缘中的另一个边缘)可以相对于竖向V倾斜,诸如相对于竖向V成大约十五度至大约三十五度之间的角度。
同样如例如在图12和图13中可以看到的(应当理解,图12和图13所示例的狭槽412与IR发射器400和IR检测器402竖直地重合),在一些实施方式中,红外发射器400和红外检测器402可被设置在制冰组件200的顶部内,诸如在从储冰盒152的最高点开始在储冰盒152的总竖直尺寸的百分之二十五或更少内,诸如与储冰盒152的最高点隔开储冰盒152的总竖直尺寸的大约百分之十或更少。
如上所述,制冰组件200可用于在其中形成一个或多个冰块,例如可被配置为在限定于模具体210中的一个或多个模腔212中接收液态水并降低一个或多个模腔212中的液态水的温度,从而形成一个或多个冰块204。在一些实施方式中,例如,如在图10中可以最佳看到的,红外发射器400和红外检测器402可设置在当收获一个或多个冰块204时从制冰组件200排出一个或多个冰块204的点的前方。在IR发射器400和IR检测器402如此设置的实施方式中,IR组件从而可以在收获一个或多个冰块204之后当排出组件260缩回时(例如从伸出位置移动到原位置时)检测到 储冰盒152是满的。由此,例如,在这样的实施方式中,IR组件可以在收获冰块204之后(例如在收获之后立即)检测到储冰盒152是满的。在检测到满的储冰盒152之前立即收获的一个或多个冰块204中的至少一个冰块在储冰盒152中的堆中可能是最高的,例如,在检测到满的储冰盒152之前立即收获的一个或多个冰块204中的至少一个冰块可以是达到IR组件的水平的冰块204。在这样的实施方式中,控制器164可响应于在收获之后检测到满的储冰盒152而暂停制冰组件的操作,例如,控制器164可被配置为暂停填充操作,使得在收获冰块204之后(例如在收获之后立即)当收获的冰块204使储冰盒152变满时不将液态水引导到模具体210中。
制冰组件200和/或其储冰盒152的中心部分414例如在图9中示出。在一些实施方式中,红外发射器400和红外检测器402可例如在安装到制冰组件200的静止部分时或者在IR发射器400和IR检测器402安装到制冰组件200的移动部分的实施方式中在原位置时设置在储冰盒152的中心部分414的上方(诸如沿着竖向V在正上方)。例如,中心部分414可例如沿着横向T对应于储冰盒152的中间三分之一。在一些实施方式中,红外发射器400和红外检测器402可沿着竖向V设置在储冰盒152的精确中心的正上方,或者可沿着竖向V大体设置在储冰盒152的精确中心的上方,其中,“大体上方”包括例如沿着横向T(诸如向前或向后)偏移储冰盒152的横向尺寸(例如,深度)的百分之十或更少。例如,在大多数情况下,储冰盒152内的累积的冰块204的顶点可出现在储冰盒152的中心部分414处或附近。由此,如上所述将IR发射器400和IR检测器402设置在中心部分414上方可有利地在累积的冰所达到的最高点检测满的储冰盒152,例如,可避免或降低当未检测到顶点时(例如当顶点出现在未被IR组件覆盖的位置时)过度填充储冰盒152的可能性。
注意,虽然明确地例示了这些示例性实施方式,但本领域普通技术人员将理解,可以提供另外或另选的实施方式或构造来包括这些示例的一个或多个特征。例如,加热元件312和二次收获加热器330的类型、位置和构造可以变化,同时保持在本发明的范围内。另外,可对清扫臂260、填充杯214和制冰组件200的其它特征进行变更和修改。
尽管上面描述了制冰组件200的具体构造和操作,但是应当理解,这仅是为了解释本发明的各个方面而提供的。可以应用修改和变更,可以使用其他配置,并且所得到的配置可以保持在本发明的范围内。例如,弹性模具210可以限定任何合适数量的模腔212,驱动机构276可以具有不同的构造,或者升降机构240和排出组件260可以具有专用的驱动机构。此外,可以使用其他控制方法来形成和收获冰块204。 本领域技术人员将理解,这种修改和变更可以保持在本发明的范围内。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (18)

  1. 一种限定竖向、侧向以及横向的制冷电器,其特征在于,包括:
    箱体;
    门体,该门体可旋转地安装到所述箱体;
    制冰室,该制冰室限定在所述箱体和所述门体中的一个中;
    制冰组件,该制冰组件设置在所述制冰室内;
    储冰盒,该储冰盒设置在所述制冰室内;
    红外发射器,该红外发射器安装到所述制冰组件的可移动部分;和红外检测器,该红外检测器安装到所述制冰组件的可移动部分。
  2. 根据权利要求1所述的制冷电器,其特征在于,所述红外发射器和所述红外检测器对齐,来自所述红外发射器的红外束可穿过限定在所述储冰盒内的储存容积并到达所述红外检测器。
  3. 根据权利要求1所述的制冷电器,其特征在于,所述红外发射器安装至所述制冰组件的排出组件,所述红外检测器安装至所述制冰组件的所述排出组件。
  4. 根据权利要求3所述的制冷电器,其特征在于,所述红外发射器安装至所述排出组件的第一侧臂,并且其中,所述红外检测器安装至所述排出组件的第二侧臂。
  5. 根据权利要求3所述的制冷电器,其特征在于,所述排出组件可在原位置与伸出位置之间移动,所述红外发射器与所述红外检测器对齐,来自所述红外发射器的红外束可到达所述红外检测器,并且由此,当所述排出组件在所述原位置与所述伸出位置之间移动时,所述红外束扫过一区域。
  6. 根据权利要求5所述的制冷电器,其特征在于,所述排出组件可沿着大体垂直于所述竖向的方向在所述原位置与所述伸出位置之间移动。
  7. 根据权利要求1所述的制冷电器,其特征在于,所述红外发射器和所述红外检测器设置在所述制冰组件的顶部内。
  8. 根据权利要求1所述的制冷电器,其特征在于,所述制冰组件包括限定模腔的模具,所述模具被构造为在其中接收液态水并从而形成冰块,其中,所述红外发射器和所述红外检测器设置在当收获所述冰块时从所述制冰组件排出所述冰块的点的前方。
  9. 根据权利要求1所述的制冷电器,其特征在于,所述红外发射器和所述红外检测器设置在所述储冰盒的中心部分的上方。
  10. 一种限定竖向、侧向以及横向的制冷电器,其特征在于,包括:
    箱体;
    门体,该门体可旋转地安装到所述箱体;
    制冰室,该制冰室限定在所述箱体和所述门体中的一个中;
    制冰组件,该制冰组件设置在所述制冰室内;
    储冰盒,该储冰盒设置在所述制冰室内;
    红外发射器,该红外发射器安装到所述制冰组件;以及
    红外检测器,该红外检测器安装到所述制冰组件,其中,当所述红外发射器和所述红外检测器处于原位置时,所述红外发射器和所述红外检测器设置在所述储冰盒的中心部分的上方。
  11. 根据权利要求10所述的制冷电器,其特征在于,所述红外发射器和所述红外检测器在处于所述原位置时设置在所述制冰组件的顶部内。
  12. 根据权利要求10所述的制冷电器,其特征在于,所述红外发射器和所述红外检测器对齐,来自所述红外发射器的红外束穿过限定在所述储冰盒内的储存容积并到达所述红外检测器。
  13. 根据权利要求10所述的制冷电器,其特征在于,所述红外发射器安装至所述制冰组件的可移动部分,并且所述红外检测器安装至所述制冰组件的可移动部分。
  14. 根据权利要求10所述的制冷电器,其特征在于,所述红外发射器安装至所述制冰组件的排出组件,所述红外检测器安装至所述制冰组件的所述排出组件。
  15. 根据权利要求14所述的制冷电器,其特征在于,所述红外发射器安装至所述排出组件的第一侧臂,所述红外检测器安装至所述排出组件的第二侧臂。
  16. 根据权利要求14所述的制冷电器,其特征在于,所述排出组件可在所述原位置与伸出位置之间移动,其中,所述红外发射器与所述红外检测器对齐,由此,来自所述红外发射器的红外束延伸至所述红外检测器,当所述排出组件在所述原位置与所述伸出位置之间移动时,所述红外束扫过一区域。
  17. 根据权利要求16所述的制冷电器,其特征在于,所述排出组件可沿着垂直于所述竖向的方向在所述原位置与所述伸出位置之间移动。
  18. 根据权利要求10所述的制冷电器,其特征在于,所述制冰组件包括限定模腔的模具,所述模具被构造为在其中接收液体并从而形成冰块,所述红外发射器和所述红外检测器设置在当收获所述冰块时从所述制冰组件排出所述冰块的点的前方。
PCT/CN2023/121650 2022-09-30 2023-09-26 用于制冷电器的制冰组件 WO2024067616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/957,663 2022-09-30
US17/957,663 US20240110739A1 (en) 2022-09-30 2022-09-30 Ice making assembly for a refrigerator appliance

Publications (1)

Publication Number Publication Date
WO2024067616A1 true WO2024067616A1 (zh) 2024-04-04

Family

ID=90471738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121650 WO2024067616A1 (zh) 2022-09-30 2023-09-26 用于制冷电器的制冰组件

Country Status (2)

Country Link
US (1) US20240110739A1 (zh)
WO (1) WO2024067616A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554975U (ja) * 1991-12-19 1993-07-23 株式会社富士通ゼネラル 冷蔵庫の製氷装置
CN106257186A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 冰箱以及制造用于冰箱的制冰机的方法
CN106257162A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 能够调整满冰位的制冰机、用于调整满冰位的装置和方法
CN114174740A (zh) * 2019-08-06 2022-03-11 青岛海尔电冰箱有限公司 制冷电器的制冰组件
CN114616431A (zh) * 2019-10-28 2022-06-10 海尔智家股份有限公司 制冰装置中用于检测冰位的传感器组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351958B1 (en) * 2000-01-12 2002-03-05 Whirlpool Corporation Optic level sensing system for use in a refrigerator
KR101451659B1 (ko) * 2008-04-15 2014-10-16 엘지전자 주식회사 냉장고 제빙기의 만빙 감지 장치
US9243833B2 (en) * 2013-11-05 2016-01-26 General Electric Company Ice making system for a refrigerator appliance and a method for determining an ice level within an ice bucket
US11953253B2 (en) * 2019-09-02 2024-04-09 Bsh Hausgeraete Gmbh Household ice maker and method of operating a household ice maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554975U (ja) * 1991-12-19 1993-07-23 株式会社富士通ゼネラル 冷蔵庫の製氷装置
CN106257186A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 冰箱以及制造用于冰箱的制冰机的方法
CN106257162A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 能够调整满冰位的制冰机、用于调整满冰位的装置和方法
CN114174740A (zh) * 2019-08-06 2022-03-11 青岛海尔电冰箱有限公司 制冷电器的制冰组件
CN114616431A (zh) * 2019-10-28 2022-06-10 海尔智家股份有限公司 制冰装置中用于检测冰位的传感器组件

Also Published As

Publication number Publication date
US20240110739A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US7131280B2 (en) Method for making ice in a compact ice maker
US7185508B2 (en) Refrigerator with compact icemaker
WO2020015707A1 (en) Ice making assembly for a refrigerator appliance
US11639821B2 (en) Control logic for compact ice making system
BR112014013851B1 (pt) refrigerador e método de distribuição de um líquido de um refrigerador
KR20190032898A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190091034A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190091032A (ko) 아이스메이커 및 이를 포함하는 냉장고
AU2020324207B2 (en) Ice making assembly of refrigerating appliance
WO2024067616A1 (zh) 用于制冷电器的制冰组件
US11994330B2 (en) Refrigerator
EP4137762A1 (en) Ice making assembly for receiving interchangeable mold assembly
WO2023131079A1 (zh) 用于制冷电器的制冰组件及制冷电器
KR20190032900A (ko) 아이스메이커 및 이를 포함하는 냉장고
US20240263861A1 (en) Refrigerator appliances and removable ice making assemblies
US20240263862A1 (en) Refrigerator appliances and ice making assemblies having one or more ice ejection cams
US20240255203A1 (en) Systems for ice mold assemblies in ice maker appliances
JP2006078107A (ja) 冷凍冷蔵庫
KR20190032899A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20190091033A (ko) 아이스메이커 및 이를 포함하는 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870844

Country of ref document: EP

Kind code of ref document: A1