WO2023131079A1 - 用于制冷电器的制冰组件及制冷电器 - Google Patents
用于制冷电器的制冰组件及制冷电器 Download PDFInfo
- Publication number
- WO2023131079A1 WO2023131079A1 PCT/CN2022/144082 CN2022144082W WO2023131079A1 WO 2023131079 A1 WO2023131079 A1 WO 2023131079A1 CN 2022144082 W CN2022144082 W CN 2022144082W WO 2023131079 A1 WO2023131079 A1 WO 2023131079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ice
- mold
- heat exchanger
- lift
- lifting
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 38
- 230000007246 mechanism Effects 0.000 claims abstract description 105
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000010408 sweeping Methods 0.000 claims description 16
- 238000004140 cleaning Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 229920001971 elastomer Polymers 0.000 claims 1
- 239000000806 elastomer Substances 0.000 claims 1
- 238000007710 freezing Methods 0.000 abstract description 5
- 230000008014 freezing Effects 0.000 abstract description 5
- 238000007789 sealing Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 11
- 235000013305 food Nutrition 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003306 harvesting Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 241001417527 Pempheridae Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 238000009920 food preservation Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000021055 solid food Nutrition 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/02—Apparatus for disintegrating, removing or harvesting ice
- F25C5/04—Apparatus for disintegrating, removing or harvesting ice without the use of saws
- F25C5/06—Apparatus for disintegrating, removing or harvesting ice without the use of saws by deforming bodies with which the ice is in contact, e.g. using inflatable members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/04—Producing ice by using stationary moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/10—Producing ice by using rotating or otherwise moving moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/22—Construction of moulds; Filling devices for moulds
- F25C1/25—Filling devices for moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/20—Distributing ice
- F25C5/22—Distributing ice particularly adapted for household refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/02—Freezing surface state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/10—Refrigerator units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/14—Water supply
Definitions
- the invention relates to a refrigerating appliance, in particular to an ice-making assembly and a refrigerating appliance for the refrigerating appliance.
- Refrigerated appliances typically include a cabinet that includes one or more refrigerated compartments for storing food. Typically, one or more doors are rotatably hinged to the bin to allow selective access to food products stored in the refrigerated compartment. Further, the refrigeration appliance usually includes an ice-making assembly arranged in a freezer compartment of a refrigeration door body. Ice is stored in the ice storage bin and can be retrieved from inside the freezer or through the dispenser on the front of the refrigerator door.
- a conventional twist tray ice maker includes a divided plastic mold that physically deforms to break the bond between the ice and the tray.
- this ice maker requires additional space to rotate and twist the tray.
- the ice cubes are often broken during the twisting of the tray. When this happens, a portion of the ice cubes may remain in the tray, thereby causing an overfill of water during the next fill.
- an embodiment of the present invention provides an ice making assembly for a refrigeration appliance.
- the ice making assembly includes a resilient mold defining a mold cavity and a fill cup disposed above the resilient mold for selectively filling the mold cavity with water.
- a heat exchanger is in thermal communication with the resilient mold to freeze the water and form one or more ice cubes.
- the ice making assembly also includes a lifting mechanism arranged under the elastic mould. The lift mechanism is movable between a lowered position and a raised position to deform the resilient mold and lift one or more ice cubes.
- the elastomeric seal sealingly engages the lift mechanism and the heat exchanger such that an airtight seal is formed between the lift mechanism and the elastomeric seal and between the heat exchanger and the elastomeric seal.
- a refrigeration appliance which defines a vertical direction, a lateral direction and a horizontal direction.
- the refrigerating appliance includes: a cabinet defining a refrigerating compartment; a door rotatably mounted to the cabinet to provide selective access to the refrigerating compartment; and an ice box mounted to the door body and define the ice-making compartment.
- An ice making assembly is disposed within the ice making chamber and includes an elastic mold defining a mold cavity and a filling cup disposed above the elastic mold for selectively filling the mold cavity with water.
- a heat exchanger is in thermal communication with the resilient mold to freeze the water and form one or more ice cubes.
- the ice making assembly also includes a lifting mechanism arranged under the elastic mould.
- the lift mechanism is movable between a lowered position and a raised position to deform the resilient mold and lift one or more ice cubes.
- the elastomeric seal sealingly engages the lift mechanism and the heat exchanger such that an airtight seal is formed between the lift mechanism and the elastomeric seal and between the heat exchanger and the elastomeric seal.
- Fig. 1 is a perspective view of a refrigeration appliance according to an embodiment of the present invention
- Fig. 2 is a perspective view of the refrigeration appliance shown in Fig. 1, wherein the door body of the food preservation compartment is shown in an open position;
- Fig. 3 is a perspective view of an ice box and an ice-making assembly used together with the refrigeration appliance shown in Fig. 1;
- Fig. 4 is a perspective view of the ice making assembly shown in Fig. 3;
- Fig. 5 is a partial side view of the driving mechanism, the lifting assembly and the cleaning assembly of the ice making assembly shown in Fig. 3, wherein the lifting assembly is in a lowered position, and the cleaning assembly is in a retracted position;
- Figure 6 is a partial side view of the drive mechanism, lifting assembly and cleaning assembly shown in Figure 5, wherein the lifting mechanism is in a raised position;
- Figure 7 is a rear view of the icemaker assembly shown in Figure 3 with the retaining bracket removed for clarity;
- Fig. 8 is a sectional view of the ice making assembly shown in Fig. 3;
- FIG. 9 is a bottom perspective view of the ice making assembly shown in FIG. 3 .
- approximate terms such as “substantially” or “approximately” include values that are within ten percent greater or less than the stated value. When used in the context of angles or directions, such terms include within ten degrees greater or lesser than said angle or direction. For example, “substantially vertical” includes directions within ten degrees of vertical in either direction (eg, clockwise or counterclockwise). As used herein, the terms “first,” “second,” and “third” are used interchangeably to distinguish one element from another, and these terms are not intended to denote the position or importance of the various elements .
- FIG. 1 provides a perspective view of a refrigeration appliance 100 according to an exemplary embodiment of the present invention.
- the refrigeration appliance 100 includes a box or housing 102 extending in a vertical direction V between a top 104 and a bottom 106 and in a lateral direction L between a first side 108 and a second side 110. Extends and extends along the transverse direction T between the front side 112 and the rear side 114 .
- Each of the vertical V, the lateral L, and the lateral T are perpendicular to each other.
- Housing 102 defines a refrigerated compartment for receiving food for storage.
- the housing 102 defines a fresh food compartment 122 disposed at or adjacent the top 104 of the housing 102 and a freezer compartment 124 disposed at or adjacent the bottom 106 of the housing 102 .
- the refrigeration appliance 100 is generally called a bottom-mounted refrigerator.
- the benefits of the present invention apply to other types and styles of cooling appliances, such as ceiling mounted cooling appliances, side by side cooling appliances, or single door cooling appliances. Accordingly, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any way to any particular refrigeration chamber configuration.
- Refrigerator door 128 is rotatably hinged to the edge of housing 102 for selective access to fresh food compartment 122 .
- a freezer door 130 is disposed below the refrigerator door 128 to selectively enter the freezer compartment 124 .
- Freezer door 130 is connected to a freezer drawer (not shown) slidably mounted within freezer compartment 124 .
- Refrigerator door 128 and freezer door 130 are shown in a closed configuration in FIG. 1 .
- FIG. 2 provides a perspective view of refrigeration appliance 100 shown with refrigeration door 128 in an open position.
- various storage components are mounted within the food preservation compartment 122 to facilitate storage of food products therein, as will be understood by those skilled in the art.
- storage components may include boxes 134 and shelves 136 . Each of these storage components is used to receive food (eg, beverages and/or solid food, etc.), and can assist in organizing such food.
- the box 134 can be mounted on the refrigerator door 128 or can be slid into a receiving space in the fresh food compartment 122 .
- the storage components shown are for illustrative purposes only and that other storage components may be used and may have different sizes, shapes, and configurations.
- Dispensing assembly 140 is typically used to dispense liquid water and/or ice. While dispensing assembly 140 is illustrated and described herein, it should be understood that various changes and modifications may be made to dispensing assembly 140 while remaining within the scope of the invention.
- the dispensing assembly 140 and its various components may be at least partially disposed within a dispenser recess 142 defined on one of the refrigeration doors 128 .
- a dispenser recess 142 is defined on the front side 112 of the refrigeration appliance 100 such that a user may operate the dispensing assembly 140 without opening the refrigeration door 128 .
- the dispenser recess 142 is provided at a predetermined height, which is convenient for a user to take ice and enables the user to take ice without bending over.
- the dispenser recess 142 is disposed at approximately the level of the user's chest.
- Dispensing assembly 140 includes an ice dispenser 144 that includes a drain 146 for discharging ice from dispensing assembly 140 .
- An actuation mechanism 148 shown as a paddle, is mounted below the drain opening 146 to operate the ice or water dispenser 144 .
- any suitable actuation mechanism may be used to operate ice dispenser 144 .
- ice dispenser 144 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
- Drain 146 and actuation mechanism 148 are external parts of ice dispenser 144 and are mounted in dispenser recess 142 .
- refrigeration door 128 may define an ice bin 150 (FIGS. 2 and 3) that houses an ice maker and ice storage bin 152 configured to Ice is supplied to the dispenser recess 142 .
- ice bin 150 may define an ice making compartment 154 for housing an ice making assembly, a storage mechanism, and a dispensing mechanism.
- a control panel 160 is provided to control the mode of operation.
- the control panel 160 includes one or more selection inputs 162, such as knobs, buttons, touch screen interface, etc., such as a water dispense button and an ice dispense button, for selecting a desired mode of operation, such as crushed or non-crushed ice.
- input 162 may be used to specify a fill volume or operate dispense assembly 140 .
- the input 162 may be communicatively coupled with a processing device or controller 164 . Signals can be generated in controller 164 responsive to input 162 to operate refrigeration appliance 100 and dispensing assembly 140 .
- a display 166 such as an indicator light or a screen may be provided on the control panel 160 . Display 166 may be communicatively coupled with controller 164 and may respond to signals from controller 164 by displaying information.
- processing device may refer to one or more microprocessors or semiconductor devices, and is not necessarily limited to a single element.
- the processing device may be programmed to operate the refrigeration appliance 100 and the dispensing assembly 140 .
- the processing device may include or be associated with one or more storage elements (eg, persistent storage media).
- the storage element comprises an electrically erasable programmable read-only memory (EEPROM).
- EEPROM electrically erasable programmable read-only memory
- a memory element may store information accessible to a processing device, including instructions executable by the processing device.
- the instructions may be software or any collection of instructions and/or data which, when executed by the processing means, cause the processing means to perform operations.
- the ice making assembly 200 is installed in the ice box 150 in the ice making compartment 154, and is used to receive the water flow from the water supply nozzle 202 (see, for example, FIG. 3 ). More specifically, water spout 202 may discharge a stream of water into a fill cup that disperses or directs the water into one or more mold cavities.
- ice making assembly 200 is generally used to freeze water to form ice cubes 204 (see FIGS. 5 and 6 ) that may be stored in ice storage bin 152 and dispensed through discharge opening 146 of dispensing assembly 140 .
- ice making assembly 200 described herein is only to explain various aspects of the present invention. Variations and modifications may be made to ice making assembly 200 while remaining within the scope of the invention.
- ice making assembly 200 may alternatively be disposed within freezer compartment 124 of refrigeration appliance 100, and may have any other suitable configuration.
- ice making assembly 200 includes a resilient mold 210 defining a mold cavity 212 .
- the resilient mold 210 is configured to receive the flow of water flowing down the water spout 202 by gravity and contain the water until the ice cubes 204 are formed.
- the elastic mold 210 may be constructed of any suitable elastic material that is deformable to release the ice cube 204 after formation.
- the elastic mold 210 is formed from silicone or another suitable hydrophobic, food-grade, and elastic material.
- resilient mold 210 defines two mold cavities 212 , each mold cavity being shaped to form individual ice cubes 204 .
- the water supply nozzle 202 is used to refill the water above the partition wall (not shown) in the elastic mold 210 and allow the water to overflow into the respective mold cavities 212 evenly, eg, In the two mold cavities in the exemplary embodiment illustrated in FIG. 4 or in all four mold cavities in the exemplary embodiment illustrated in FIGS. 8 and 9 or in other suitable numbers as may be provided in various embodiments in the mold cavity.
- the water supply nozzle 202 may have a dedicated discharge nozzle disposed above each cavity 212 .
- ice making assembly 200 may form any suitable number of ice cubes 204 , such as by increasing the number of mold cavities 212 defined by resilient mold 210 .
- the ice making assembly also includes a fill cup 214 disposed above the resilient mold 210 for selectively filling the mold cavity 212 with water. More specifically, a fill cup 214 may be disposed below the water supply spout 202 for receiving a flow of water 216 . Fill cup 214 may be used to collect and/or direct water 216 into mold cavity 212 without excessive splashing or spilling. Additionally, fill cup 214 may be provided in cooperation with a drain spout 218 that funnels water toward the bottom of fill cup 214 where it may be dispensed into mold cavity 212 .
- fill cup 214 and discharge spout 218 may have any suitable size, shape, and configuration suitable for distributing the flow of water 216 into resilient mold 210 .
- a fill cup 214 is disposed above one of the two mold cavities 212 and generally defines an inclined surface for directing the flow of water 216 at the discharge spout 218 above the level of the elastic mold 210 .
- the fill cup 214 may extend across the entire width of the elastomeric mold 210 and may have a plurality of discharge spouts 218 .
- Fill cup 214 may also have other configurations, all remaining within the scope of the present invention.
- Ice making assembly 200 may also include a heat exchanger 220 in thermal communication with resilient mold 210 for freezing water within mold cavity 212 to form one or more ice cubes 204 .
- the heat exchanger 220 may be formed from any suitable thermally conductive material and may be placed in direct contact with the elastic mold 210 .
- the heat exchanger 220 is made of aluminum and is disposed directly under the elastic mold 210 .
- the heat exchanger 220 may define a cuboidal recess 222 configured to receive the resilient mold 210 and shape or define the bottom of the ice cube 204 .
- heat exchanger 220 is in direct contact with resilient mold 210 over a majority of the surface area of ice cube 204 to increase the rate of heat transfer and facilitate rapid freezing of water stored within mold cavity 212 .
- heat exchanger 220 may contact resilient mold 210 over an area greater than approximately half the surface area of ice cube 204 . It should be understood that, as used herein, approximate terms such as “approximately”, “substantially” or “approximately” mean within a ten percent error range.
- ice making assembly 200 may include an air intake 224 disposed adjacent heat exchanger 220 and fluidly coupled with a source of cool air (eg, cooling air flow 226 , for example).
- a source of cool air eg, cooling air flow 226 , for example.
- the air intake 224 is directed from the rear end 228 of the ice making assembly 200 (eg, from the right along the lateral direction L as shown in FIGS. 5 and 6 ) through the heat exchanger 220 toward the ice making assembly 200 .
- the front end 230 of the front end 230 (eg, to the left along the lateral direction L as shown in FIGS. 5 and 6 , ie, the side where the ice cubes 204 are discharged into the ice storage bin 152 ) provides a cooling air flow 226 .
- the air intake 224 generally receives a flow of cooling air 226 from the sealed system of the refrigeration appliance 100 and directs it over and/or through the heat exchanger 220 to cool the heat exchanger 220 .
- heat exchanger 220 defines a plurality of heat exchange fins 232 that extend substantially parallel to cooling air flow 226 .
- the heat exchanging fins 232 extend downward from the top of the heat exchanger 220 along a plane defined by the vertical V in the lateral direction L (for example, when the ice making assembly 200 is installed in the refrigeration appliance 100) .
- ice making assembly 200 also includes a lift mechanism 240 disposed below resilient mold 210 and generally used to facilitate ejection of ice cubes 204 from mold cavity 212 .
- lift mechanism 240 is movable between a lowered position (eg, as shown in FIG. 5 ) and a raised position (eg, as shown in FIG. 6 ).
- the lift mechanism 240 includes a lift arm 242 that extends substantially in the vertical direction V and passes through a lift channel 244 defined within the heat exchanger 220 . In this way, the lifting channel 244 can guide the lifting mechanism 240 to slide along the vertical direction V.
- the lift mechanism 240 includes a lift protrusion 246 extending from the top of the lift arm 242 toward the rear end 228 of the ice making assembly 200 and toward the front end 230 of the ice making assembly 200 .
- lift protrusion 246 generally defines the contour of the bottom of ice cube 204 and is disposed flush within lift recess 248 defined by heat exchanger 220 when lift mechanism 240 is in the lowered position.
- the heat exchanger 220 and the lift tab 246 define a smooth bottom surface for the ice cube 204 .
- lift tab 246 curves generally downward and away from lift arm 242 to define a smooth divot on the bottom of ice cube 204 .
- the heat exchanger 220 may also define an aperture for receiving a temperature sensor 250 for determining when ice cubes 204 have formed so that the ejection process may be performed.
- temperature sensor 250 may be in operative communication with controller 164, which may monitor the temperature of heat exchanger 220 and the time that water has been in mold cavity 212 to predict when ice cubes 204 Freeze completely.
- temperature sensor may refer to any suitable type of temperature sensor.
- the temperature sensor can be a thermocouple, a thermistor, or a resistance temperature detector.
- ice making assembly 200 may include any other suitable number, type, and location of temperature sensors.
- the ice making assembly 200 also includes a cleaning assembly 260 disposed above the resilient mold 210 and generally used to push the ice cubes 204 out of the mold cavity 212 and into the storage bin after they are formed.
- sweeping assembly 260 may be retracted along a horizontal direction (ie, in a horizontal plane generally perpendicular to vertical V, such as a lateral-transverse plane defined by lateral L and lateral T). Move between a retracted position (eg, as shown in FIG. 5 ) and an extended position (eg, as shown in FIG. 6 ).
- sweep assembly 260 and fill cup 214 may be integrally formed as a single piece, with fill cup 214 disposed on top of sweep assembly 260 .
- sweep assembly 260 and fill cup 214 may move in unison along a horizontal direction (eg, lateral L or other direction generally perpendicular to vertical V) during the ice ejection process.
- the sweeping assembly 260 remains in the retracted position while water is added to the resilient mold 210 , eg, via the fill cup 214 . Sweeper assembly 260 also remains in the retracted position throughout the freezing process and as lift mechanism 240 moves toward the raised position. After the ice cubes 204 are in the raised position, the sweeping assembly 260 moves horizontally from the retracted position to the extended position, eg, toward the front end 230 of the ice making assembly 200 . In this way, the sweeping assembly pushes the ice cubes 204 away from the lift mechanism 240, out of the resilient mold 210, and over the top of the heat exchanger 220 where they can fall into the ice storage bin 152.
- dispensing ice cubes 204 from the top of icemaker assembly 200 allows for a taller ice storage bin 152 relative to an ice maker that dispenses ice from the bottom of the ice maker, thereby enabling ice storage bin 152 to have Has a large ice storage capacity.
- the water supply spout 202 is arranged above the filling cup 214 (in the retracted position) so that a flow of water can be directed into the elastic mold 210 .
- the water spout 202 is configured such that the cleaning assembly 260 can move between the retracted position and the extended position without contacting the water spout 202 .
- the water supply nozzle 202 may be coupled to a mechanical actuator that lowers the water supply nozzle 202 close to the resilient mold 210 while the sweeping assembly 260 is in the retracted position. In this way, the overall height or profile of the ice making assembly 200 may be further reduced, thereby maximizing the ice storage capacity and minimizing wasted space.
- the sweeping assembly 260 generally includes vertically extending side arms 262 for driving an upper boss 264 disposed above (eg, above) the resilient mold 210 .
- the upper convex frame 264 extends around the elastic mold 210 so as to prevent or reduce splashing of water in the elastic mold 210 . This is especially important when the ice making assembly 200 is mounted on the refrigerator door 128 because movement of the refrigerator door 128 may cause water in the mold cavity 212 to slosh.
- sweep assembly 260 may also define an angled push surface 268 proximate rear end 228 of ice making assembly 200 .
- the angled push surface 268 is used to contact the ice cubes 204 as they pivot upwardly and as the sweeping assembly 260 moves toward the extended position to rotate and clear the ice cubes 204 over the ice making assembly 200 .
- the angled push surface may extend at an angle 270 ( FIG. 5 ) relative to the vertical V. As shown in FIG. According to the illustrated embodiment, the angle 270 is less than about 10 degrees, but according to alternative embodiments, any other suitable angle for urging the ice cube to rotate 180 degrees may be used.
- ice making assembly 200 may include a drive mechanism 276 operably coupled to lift mechanism 240 and sweep assembly 260 to selectively raise lift mechanism 240 and slide the sweep assembly during operation. 260 in order to discharge the ice cubes 204.
- the drive mechanism 276 includes a drive motor 278 .
- "electric machine” may refer to any suitable drive motor and/or transmission assembly for rotating system components.
- motor 178 may be a brushless DC motor, a stepper motor, or any other suitable type or configuration of motor.
- motor 178 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor.
- the motor 178 may include any suitable transmission assembly, clutch mechanism, or other components.
- motor 178 may be mechanically coupled to rotating cam 280 .
- Lift mechanism 240 or more specifically lift arm 242 , may ride against rotating cam 280 such that as motor 278 rotates rotating cam 280 , the profile of rotating cam 280 causes lift mechanism 240 to move between a lowered position and a raised position.
- the lift mechanism 240 may include a roller 282 mounted to a lower end of the lift arm 242 for providing a low friction interface between the lift mechanism 240 and the rotating cam 280 .
- Ice making assembly 200 may include a plurality of lift mechanisms 240 , each lift mechanism 240 disposed below one cavity 212 (and ice cubes 204 therein) of elastic mold 210 , or configured to lift a separate portion of elastic mold 210 .
- a rotating cam 280 is mounted on a camshaft 284 that is mechanically coupled to the motor 278 . As motor 278 rotates camshaft 284 , rotating cam 280 may simultaneously move lift arm 242 along vertical V. In this way, each of the plurality of rotating cams 280 can be used to drive a corresponding one of the lift mechanisms 240 .
- roller shafts (not shown) may extend between rollers 282 of adjacent lift mechanisms 240 to maintain the proper distance between adjacent rollers 282 and keep them engaged on top of rotating cam 280 .
- drive mechanism 276 may also include a yoke 290 mechanically coupled to motor 278 for driving sweeping assembly 260 .
- yoke 290 may rotate with camshaft 284 and may include a drive pin 292 disposed radially outward of yoke 290 and extending generally parallel to the axis of rotation of motor 278 .
- side arm 262 of sweeping assembly 260 may define a drive slot 294 configured to receive drive pin 292 during operation.
- each drive slot 294 is defined such that when drive pin 292 reaches end 296 of drive slot 294 , drive pin 292 moves sweeping assembly 260 in a horizontal direction. Notably, according to an exemplary embodiment, this occurs when lift mechanism 240 is in the raised position.
- ice making assembly 200 may include a position sensor (not shown) for determining the zero position of yoke 290 .
- the position sensor includes a magnet (not shown) disposed on the yoke 290 and a Hall effect sensor (not shown) mounted at a fixed position on the ice making assembly 200 .
- the Hall effect sensor can detect the proximity of a magnet, and the controller 164 can determine that the yoke 290 is in the zero position (or some other known position).
- any other suitable sensor or method of detecting the position of yoke 290 or drive mechanism 276 may be used.
- motion sensors, camera systems, optical sensors, acoustic sensors or simple mechanical contact switches may be used according to alternative embodiments.
- the motor 278 may begin to rotate after the ice cubes 204 are completely frozen and ready to be harvested.
- motor 278 rotates rotating cam 280 (and/or camshaft 284 ) approximately 90 degrees to move lift mechanism 240 from the lowered position to the raised position.
- the lifting protrusion 246 pushes the elastic mold 210 upward, thereby deforming the elastic mold 210 and releasing the ice cube 204 .
- the ice cubes 204 continue to be pushed upward until they enter the ice storage bin 152 .
- yoke 290 rotates with camshaft 284 so that drive pin 292 rotates within drive slot 294 without moving sweeper assembly 260 until yoke 290 reaches the ninety degree position.
- lift mechanism 240 remains in the raised position while cleaning assembly 260 moves toward the extended position.
- the angled push surface 268 engages the raised ends of the ice cubes 204 to push them out of the resilient mold 210 and rotate the ice cubes 204 approximately one hundred and eighty degrees (180°) before dropping them into the ice storage bin 152. ).
- the cleaning assembly 260 When the motor 278 rotates at one hundred and eighty degrees (180°), the cleaning assembly 260 is in a fully extended position, and the ice cubes 204 will fall into the ice storage bin 152 under the force of gravity. As motor 278 rotates through one hundred eighty degrees (180°), drive pin 292 begins to pull sweep assembly 260 back towards the retracted position, eg, via engagement with drive slot 294 . Simultaneously, the profile of the rotating cam 280 is configured to begin lowering the lift mechanism 240 .
- the sweeping assembly 260 can be fully retracted, the lift mechanism 240 can be fully lowered, and the resilient mold 210 can be ready to be supplied with fresh water.
- the water supply spout 202 may provide a flow of fresh water into the mold cavity 212, and the process may be repeated.
- the water 216 dispensed from the water spout 202 may have a tendency to freeze where ice formation is not desired.
- the operation and performance of ice making assembly 200 may be adversely affected.
- the water fill volume may be affected, causing ice cubes to be smaller or larger than desired.
- ice in the wrong location may cause water to overflow or may jam the discharge mechanism of ice making assembly 200 .
- some exemplary embodiments of ice making assembly 200 may include features for eliminating the accumulation of ice in undesired locations. These undesirable ice formations may be referred to herein as ice jams, and are generally identified in the drawings by reference numeral 310 (see FIGS. 4-6 ).
- ice making assembly 200 may include one or more heating elements 312 in thermal communication with fill cup 214 for selectively heating fill cup 214 .
- heating element may be an electric heater in thermally conductive engagement with fill cup 214 and may include one or more resistive heating elements.
- the positive thermal coefficient (PTCR) of a resistive heater that increases in resistance upon heating such as a metal, ceramic, or polymer PTC element (eg, such as a resistive heating rod or Calrod heater), may be used.
- the heating element 312 may be coated with silicone, embedded within the fill cup 214, or provided in any other suitable manner.
- the heating element 312 may generally be mounted in any manner suitable for breaking up the ice block 310 or melting unwanted ice buildup.
- a heating element 312 may be disposed adjacent to the discharge spout 218 of the fill cup 214 .
- a common clogging location is at the point where the discharge nozzle 218 directs the flow of water 216 into the mold cavity 212 .
- the ice block 310 at this location may prevent the ice cubes 204 from draining or expelling properly from the mold cavity 212 .
- the lift mechanism 240 pushes the ice cube 204 up and out of the elastic mold 210, the rear end of the ice cube 204 may contact the ice block 310, causing it to tilt forward. As the sweep arm 260 moves forward to initiate the ejection process, ice cubes 204 may become lodged between the sweep arm 260 and the front of the resilient mold 210.
- the heating element 312 may be selectively energized to locally melt and break up the ice block 310 .
- the heating element 312 is disposed on the rear side 314 of the filling cup 214 directly opposite the discharge spout 218 .
- fill cup 214 may define a recess 316 sized to receive heating element 312 .
- Groove 316 may be defined such that the thickness of fill cup 214 adjacent to groove 316 is less than the nominal thickness of sweep arm 260 and fill cup 214 .
- the heating element 312 is positioned as close as possible to the ice plug 310 without compromising the structural integrity of the fill cup 214 .
- ice maker assembly 200 may include retaining bracket 320 that snaps onto fill cup 214 or sweep arm 260 to hold heating element 312 in place.
- the retaining bracket 320 may be a flat piece of plastic positioned firmly against the heating element 312 opposite the fill cup 214 . In this way, the heating element 312 can be in firm contact with the fill cup 214 within the groove 316 for improved thermal conductivity.
- retention bracket 320 may include clips 322 that are received within slots defined on the forward end of sweeping arm 260 to secure retention bracket 320 in place. It should be understood that other configurations of retaining bracket 320 and other means for securing heating element 312 may be used while remaining within the scope of the present invention.
- ice making assembly 200 may also include a secondary harvest heater in thermal communication with heat exchanger 220 .
- This secondary harvest heater can be used independently of or in conjunction with heating element 312 to clear ice blockage 310 throughout ice making assembly 200 .
- ice making assembly 200 may also include one or more seals, such as one or more elastomeric seals 400 .
- the resilient seal 400 may be formed from any suitable resilient material, eg, as described above with respect to the resilient mold 210 . It will be appreciated that the elastic components are omitted from FIGS. Seal 400 . It will thus be appreciated that the exemplary configurations depicted in FIGS. 1-7 are by no means intended to preclude the presence of the elastomeric seal 400 .
- Elastomeric seal 400 may sealingly engage lift mechanism 240 and heat exchanger 220 .
- elastomeric seal 400 may include a cylindrical portion 406 extending generally along vertical V from top end 402 of seal 400 to shoulder 404 of seal 400 .
- Shoulder 404 of seal 400 may define a joint and transition between cylindrical portion 406 and bottom 410 of seal 400 .
- Lip 412 may be defined where elastomeric seal 400 meets lift mechanism 240 , particularly lift arm 242 thereof.
- the elastomeric seal 400 may sealingly engage the lift arm 242 of the lift mechanism 240 , eg, at the lip 412 of the elastomeric seal 400 .
- Lip 412 may be the bottom end of elastomeric seal 400 .
- Cylindrical portion 406 of elastomeric seal 400 may be received, such as partially received, within recess 221 in heat exchanger 220 .
- the elastomeric seal 400 may also include a flange 408 extending around the cylindrical portion 406 of the elastomeric seal 400 .
- Flange 408 may abut against heat exchanger 220 , such as the bottom end of recess 221 in heat exchanger 220 .
- the elastic seal 400 and in particular its flange 408 can sealingly engage the heat exchanger 220 at the recess 221 .
- elastomeric seal 400 may provide an airtight hermetic seal.
- elastomeric seal 400 may sealingly engage lift mechanism 240 and heat exchanger 220 such that an airtight seal is formed between lift mechanism 240 and elastomeric seal 400 and between heat exchanger 220 and elastomeric seal 400 .
- an airtight seal may be formed by and between the lifting mechanism 240 and the elastic seal 400
- an airtight seal may be formed by and between the heat exchanger 220 and the elastic seal 400 .
- the resilient seal 400 may sealingly engage the lift arm 242 of the lift mechanism 240 below the heat exchanger 220 , such as below the lift channel 244 of the heat exchanger 220 .
- Elastomeric seal 400 may sealingly engage lift arm 242 of lift mechanism 240 over roller 282 of lift mechanism 240 .
- elastomeric seal 400 flexes and deforms, eg compresses, as lip 412 travels upwardly with lift arm 242 .
- the airtight seal between the elastic seal 400 and the lift mechanism 240 is maintained, for example, between the lowered position and the raised position (both inclusive). position), lip 412 remains in contact with and sealingly engages lift arm 242 throughout the range of motion.
- the elastomeric seal 400 may surround the lift channel 244 of the heat exchanger 220 .
- the air within the heat exchanger 220 eg, the air above the elastomeric seal 400 and below the elastomeric mold 210
- the elastic mold 210 can be sealingly engaged with the heat exchanger 220 such that an airtight seal is formed between the elastic mold 210 and the heat exchanger 220 .
- a hermetically sealed cavity may thus be defined by and formed between the elastic mold 210, the heat exchanger 220, the lifting mechanism 240 (and in particular its lifting arm 242) and the elastic seal 400.
- a single, fixed, discrete amount of air may be contained within the cavity, such as above the elastomeric seal 400 and below the elastomeric mold 210, such that air from the rest of the ice making compartment 154 does not enter the cavity, thereby preventing or reducing moisture. Penetration into the cavity and the resulting frosting of the underside of the elastic mold 210 .
- a lumen can define a generally fixed volume.
- elastomeric mold 210 and elastomeric seal 400 may each flex and deform by about the same amount, such as elastomeric seal 400 may compress or deform upwardly toward heat exchanger 220 from a lowered position to a raised position and away from the heat exchange with elastomeric mold 210 .
- the container 220 expands or deforms upwardly from the lowered position to the raised position by approximately the same amount so that the volume contained within the chamber remains approximately constant throughout.
- pressure fluctuations within the cavity may be avoided or minimized, thereby prolonging the life of the elastomeric seal 400 , eg, the lifetime of the hermetically sealed engagement of the elastomeric seal 400 with each of the heat exchanger 220 and the lifting mechanism 240 .
- ice making assembly 200 Although the specific construction and operation of ice making assembly 200 is described above, it should be understood that this is provided only to explain various aspects of the present invention. Modifications and changes may be applied, other configurations may be used, and the resulting configurations may remain within the scope of the present invention.
- elastic mold 210 may define any suitable number of mold cavities 212
- drive mechanism 276 may have a different configuration
- lift mechanism 240 and sweep assembly 260 may have dedicated drive mechanisms.
- other control methods may be used to form and harvest ice cubes 204 . Those skilled in the art will appreciate that such modifications and alterations may remain within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
一种用于制冷电器(100)的制冰组件(200)及制冷电器(100),包括限定模腔(212)的弹性模具(210)、冻结模腔(212)中的水的热交换器(220)、设置于弹性模具(210)下方并使模具(210)升高变形的升降机构(240)、与升降机构(240)和热交换器(220)形成气密密封的弹性密封件(400)。
Description
本发明涉及制冷电器,尤其是用于制冷电器的制冰组件及制冷电器。
制冷电器通常包括箱体,该箱体包括用于存储食品的一个或多个制冷间室。通常,一个或多个门体可旋转地铰接到箱体,以允许选择性地接近在制冷间室中储存的食品。进一步地,制冷电器通常包括设置于一个冷藏门体的冷冻室中的制冰组件。冰储存在储冰盒中,并且可从冷冻室内部取冰,或者可以通过冷藏门体前部的分配器取冰。
然而,传统的制冰组件大、效率低,并且存在各种性能相关的问题。例如,传统的扭转托盘制冰机包括被分隔的塑料模具,该塑料模具通过物理变形破坏冰与托盘之间的结合。然而,这种制冰机需要额外的空间来旋转和扭转托盘。另外,在托盘扭转过程中经常会导致冰块破裂。当这种情况发生时,一部分冰块可能留在托盘中,由此导致下一注水过程中水过度填充。
传统月牙形冰块制冰机使用清扫臂来穿过冰模具并排出冰块。然而,水可能在引起清扫臂卡住的位置冻结,导致冰排出失败和制冰过程的停顿。某些传统的制冰机包括加热器,其有助于从模具中释放冰块,但是这种加热器通常远离可能发生冰积聚的排水嘴。因此,这些加热器必须打开很长一段时间,以便融化堵住水嘴的冰块,由此增加了能耗,并且显著增加了制冰过程的时间。
发明内容
本发明的目的是期望提供一种具有用于改善冰分配的制冷电器,更特别地,提供一种用于制冷电器的紧凑、高效、可靠且防堵塞或卡住的有益的制冰组件。
为实现上述发明目的,本发明一实施方式提供了一种用于制冷电器的制冰组件。该制冰组件包括限定模腔的弹性模具和设置在弹性模具上方的用于选择性地用水填充模腔的填充杯。热交换器与弹性模具热连通以使水冻结并形成一个或多个冰块。制冰组件还包括设置在弹性模具下方的升降机构。升降机构可在降低位置与升高位置之间移动,以使弹性模具变形并升高一个或多个冰块。弹性密封件与升降机构和热交换器密封地接合,使得在升降机构与弹性密封件之间以及在热交换器与弹性密封件之间形成气密密封。
为实现上述发明目的,本发明另一实施方式提供了一种制冷电器,该制冷电器限定竖向、侧向和横向。该制冷电器包括:箱体,该箱体限定制冷间室;门体,该门体可旋转地安装到箱体以提供选择性到达制冷间室的途径;以及冰盒,该冰盒安装到门体并限定制冰室。制冰组件设置在制冰室内并且包括限定模腔的弹性模具和设置在弹性模具上方的用于选择性地用水填充模腔的填充杯。热交换器与弹性模具热连通以使水冻结并形成一个或多个冰块。制冰组件还包括设置在弹性模具下方的升降机构。升降机构可在降低位置与升高位置之间移动,以使弹性模具变形并升高一个或多个冰块。弹性密封件与升降机构和热交换器密封地接合,使得在升降机构与弹性密封件之间以及在热交换器与弹性密封件之间形成气密密封。
下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:
图1是本发明一实施方式的制冷电器的立体图;
图2是图1所示的制冷电器的立体图,其中食物保鲜室的门体被示出为处于打开位置;
图3是与图1所示的制冷电器一起使用的冰盒和制冰组件的立体图;
图4是图3所示的制冰组件的立体图;
图5是图3所示的制冰组件的驱动机构、升降组件以及清扫组件的部分侧视图,其中升降组件处于降低位置,且清扫组件处于缩回位置;
图6是图5所示的驱动机构、升降组件以及清扫组件的部分侧视图,其中升降机构处于升高位置;
图7是图3所示的制冰组件的后视图,为了清楚起见,去除了其中的保持支架;
图8是图3所示的制冰组件的剖视图;
图9是图3所示的制冰组件的底部立体图。
现在将详细地介绍本发明的具体实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,近似的术语,如“大体”或“大约”包括在比所述值大或小百分之十内的值。当在角度或方向的上下文中使用时,这种术语包括在比所述角度或方向大或小十度内。例如,“大体竖直”包括在垂直线在任意方向上(例如,顺时针或逆时针)的十度内的方向。如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。
图1提供了根据本发明的示例性实施方式的制冷电器100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体102沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102限定用于接收食品以便储存的制冷间室。特别地,壳体102限定设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此可见,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶置式制冷电器、对开门式制冷电器或单门制冷电器。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限制任何特定的制冷室构造。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。另外,在冷藏门体128的下方布置冷冻门体130,以便选择性地进入冷冻室124。冷冻门体130连接至可滑动地安装在冷冻室124内的冷冻抽屉(未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭构造。本领域技术人员将理解,其它腔室和门体构造是可行的,并且在本发明的范围内。
图2提供了在冷藏门体128处于打开位置的情况下示出的制冷电器100的立体图。如图2所示,如本领域技术人员将理解的,各种储存部件被安装在食物保鲜室122内,以促进食品在其中的储存。特别地,储存部件可以包括盒134和层架136。这些储存部件中的每一个用于接收食品(例如,饮料和/或固体食品等),并且可以辅助组织这种食品。如图所示,盒134可以安装在冷藏门体128上或者可以滑入食物保鲜室122中的容纳空间中。应当理解,所示的储存部件仅用于说明的目的,并且可以使用其它储存部件,并且其它储存部件可以具有不同的尺寸、形状以及构造。
参见图1,将描述根据本发明的示例性实施方式的分配组件140。分配组件140通常用于分配液态水和/或冰。虽然在本文中示例并描述了分配组件140,但应当理解,可以在保持在本发明的范围内的同时对分配组件140进行各种变更和修改。
分配组件140及其各种部件可以至少部分地设置在限定于冷藏门体128中的一个上的分配器凹部142内。在这点上,分配器凹部142限定在制冷电器100的前侧112上,使得用户可以在不 打开冷藏门体128的情况下操作分配组件140。另外,分配器凹部142设置在预定高度处,该预定高度方便用户取冰,并且使得用户能够在不需要弯腰的情况下取冰。在示例性实施方式中,分配器凹部142设置在接近用户的胸部水平的位置处。
分配组件140包括冰分配器144,该分配器包括用于从分配组件140排出冰的排放口146。被示出为拨片的致动机构148安装在排放口146下方,以便操作冰或水分配器144。在可选示例性实施方式中,可以使用任意合适的致动机构来操作冰分配器144。例如,冰分配器144可以包括传感器(诸如超声传感器)或按钮,而不是拨片。排放口146和致动机构148是冰分配器144的外部零件,并且安装在分配器凹部142中。
与之相比,在制冷电器100内部,冷藏门体128可以限定容纳制冰机和储冰盒152的冰盒150(图2和图3),该制冰机和储冰盒被构造为将冰供应至分配器凹部142。在这点上,例如,冰盒150可以限定用于容纳制冰组件、储存机构以及分配机构的制冰室154。
设置控制面板160,以便控制操作模式。例如,控制面板160包括一个或多个选择输入162,诸如旋钮、按钮、触摸屏界面等,诸如水分配按钮和冰分配按钮,用于选择期望的操作模式,诸如碎冰或非碎冰。另外,输入162可以用于指定填充容积或操作分配组件140。在这点上,输入162可以与处理装置或控制器164通信连接。控制器164中能够生成响应输入162的信号来操作制冷电器100和分配组件140。另外,可以在控制面板160上设置显示器166,诸如指示灯或屏幕。显示器166可以与控制器164通信连接,并且可以通过显示信息响应来自控制器164的信号。
如本文所用的,“处理装置”或“控制器”可以指一个或多个微处理器或半导体装置,并且不必限于单个元件。处理装置可以被编程为能够操作制冷电器100和分配组件140。处理装置可以包括一个或多个存储元件(例如,永久存储介质)或与其关联。在一些这种实施方式中,存储元件包括电可擦可编程只读存储器(EEPROM)。通常,存储元件可以存储处理装置可访问的信息,包括可以由处理装置执行的指令。可选地,指令可以是软件或指令和/或数据的任意集合,该软件或指令和/或数据的任意集合在由处理装置执行时,使得处理装置执行操作。
参见图3至图9,将描述根据本发明的示例性实施方式的可以与制冷电器100一起使用的制冰组件200。如图示例,制冰组件200安装在制冰室154内的冰盒150中,并且用于接收来自供水嘴202(例如参见图3)的水流。更具体地,供水嘴202可将水流排放到填充杯中,该填充杯将水分散或引导到一个或多个模腔中。
这样,制冰组件200通常用于使水冻结以形成冰块204(参见图5和图6),这些冰块可以被储存在储冰盒152中并通过分配组件140的排放口146分配。然而,应当理解,本文描述的制冰组件200仅以解释本发明的各个方面。可以在保持在本发明的范围内的同时对制冰组件200进行变更和修改。例如,制冰组件200可以替代地设置在制冷电器100的冷冻室124内,并且可以具 有任何其它合适的构造。
根据所示实施方式,制冰组件200包括限定模腔212的弹性模具210。通常,如以下更详细地描述的,弹性模具210设置为用于接收通过重力自供水嘴202下流的水流并容纳该水,直到形成冰块204。弹性模具210可以由任何合适的弹性材料构成,该弹性材料可以变形以释放形成后的冰块204。例如,根据所示实施方式,弹性模具210由硅树脂或另一合适的疏水、食品级且具有弹性的材料形成。
在一些示例性实施方式中,弹性模具210限定两个模腔212,各个模腔被成型为用于形成单独的冰块204。在这点上,例如,供水嘴202用于将水重新填充到弹性模具210内的分隔壁(未示出)上方,并使得水均匀地溢出到各个模腔212中,例如,均匀地溢出到图4示例的示例性实施方式中的两个模腔中或图8和图9示例的示例性实施方式中的所有四个模腔中或如可在各种实施方式中设置的其它合适数量的模腔中。根据又一些实施方式,供水嘴202可以具有设置在各个模腔212上方的专用排放喷嘴。此外,应当理解,根据可选实施方式,制冰组件200可以例如通过增加由弹性模具210限定的模腔212的数量来形成任何合适数量的冰块204。
如图所示,制冰组件还包括填充杯214,该填充杯214设置在弹性模具210上方,用于选择性地用水填充模腔212。更具体地,填充杯214可以设置在供水嘴202下方,用于接收水216流。填充杯214可用于收集和/或引导水216流入模腔212而不会过度飞溅或溢出。另外,填充杯214可和排放嘴218配合设置,该排放嘴218使水朝向填充杯214的底部汇集,在该底部处,水可被分配到模腔212中。
通常,填充杯214和排放嘴218可以具有适于将水216流分配到弹性模具210中的任何合适的尺寸、形状和构造。例如,根据所示实施方式,填充杯214设置在两个模腔212中的一个上方,并且通常限定倾斜表面,用于将排放嘴218处的水216流引导至弹性模具210的水平上方。根据可选实施方式,填充杯214可以延伸跨过整个弹性模具210的宽度,并且可以具有多个排放嘴218。填充杯214还可具有其它构造,均保持在本发明的范围内。
制冰组件200还可以包括热交换器220,该热交换器与弹性模具210热连通,用于使模腔212内的水冻结,以形成一个或多个冰块204。通常,热交换器220可以由任何合适的导热材料形成,并且可以设置为与弹性模具210直接接触。具体地,根据所示实施方式,热交换器220由铝制成并且设置在弹性模具210正下方。此外,热交换器220可以限定立方体凹部222,该凹部222被构造为接收弹性模具210并成形或限定冰块204的底部。这样,热交换器220在冰块204的大部分表面积上与弹性模具210直接接触,以增加的热传递速率和促进储存在模腔212内的水的快速冻结。例如,热交换器220可以在大于冰块204的表面积近似一半的面积上接触弹性模具210。应当理解,如本文使用的,近似的用语,诸如“近似”、“基本上”或“大约”是指在百分之十的 误差范围内。
另外,制冰组件200可以包括进气道224,该进气道设置为与热交换器220相邻并与冷空气源(例如,示例为冷却空气流226)流体联接。根据所示实施方式,进气道224从制冰组件200的后端228(例如,沿着如图5和图6所示的侧向L从右侧)通过热交换器220朝向制冰组件200的前端230(例如,沿如图5和图6所示的侧向L向左,即,冰块204被排放到储冰盒152中的一侧)提供冷却空气流226。
如图所示,进气道224通常从制冷电器100的密封系统接收冷却空气流226,并引导其越过和/或通过热交换器220以冷却热交换器220。更具体地,根据所示实施方式,热交换器220限定了基本上平行于冷却空气流226延伸的多个热交换翅片232。在这点上,热交换翅片232从热交换器220的顶部沿着由竖向V在侧向L上限定的平面向下延伸(例如,当制冰组件200安装在制冷电器100中时)。
例如在图5和图6中可以看到的,制冰组件200还包括升降机构240,该升降机构240设置在弹性模具210下方,并且通常用于促进冰块204从模腔212中排出。在这点上,升降机构240可在降低位置(例如,如图5所示)与升高位置(例如,如图6所示)之间移动。具体地,升降机构240包括升降臂242,该升降臂基本上沿着竖向V延伸并且穿过限定在热交换器220内的升降通道244。这样,升降通道244可以引导升降机构240沿着竖向V滑动。
另外,升降机构240包括从升降臂242的顶部朝向制冰组件200的后端228并朝向制冰组件200的前端230延伸的升降突出部246。如图所示,升降突出部246通常限定冰块204的底部的轮廓,并且当升降机构240处于降低位置时齐平地设置在由热交换器220限定的升降凹部248内。这样,热交换器220和升降突出部246限定冰块204的平滑底面。更具体地,根据所示实施方式,升降突出部246通常向下弯曲并远离升降臂242,以在冰块204的底部上限定平滑的凹陷(divot)。
现在具体参见图7,热交换器220还可以限定用于接收温度传感器250的孔,该温度传感器用于确定何时形成冰块204,使得可以执行排出过程。在这点上,例如,温度传感器250可以与控制器164可操作地通信连接,该控制器可以监测热交换器220的温度和水已经在模腔212中的时间,以预测冰块204何时完全冻结。如本文所用,“温度传感器”可以指任何合适类型的温度传感器。例如,温度传感器可以是热电偶、热敏电阻或电阻式温度检测器。另外,尽管本文示例了单个温度传感器250的示例性设置,但是应当理解,根据可选实施方式,制冰组件200可以包括任何其它合适数量、类型和位置的温度传感器。
现在具体参见图4至图7,制冰组件200还包括清扫组件260,该清扫组件260设置在弹性模具210上方,并且通常用于在冰块204形成后将其推出模腔212并推入储冰盒152中。具体地, 根据所示实施方式,清扫组件260可沿着水平方向(即,在大体垂直于竖向V的水平面内,诸如由侧向L和横向T限定的侧向-横向平面内)在缩回位置(例如,如图5所示)与伸出位置(例如,如图6所示)之间移动。根据所示实施方式,清扫组件260和填充杯214可一体地形成为单件,其中填充杯214设置在清扫组件260的顶部上。这样,在排冰过程期间,清扫组件260和填充杯214可沿着水平方向(例如,侧向L或大体垂直于竖向V的其它方向)一致地移动。
如以下更详细地描述,清扫组件260保持在缩回位置,同时例如通过填充杯214将水添加到弹性模具210。清扫组件260在整个冻结过程中以及在升降机构240朝向升高位置移动时也保持在缩回位置。在冰块204处于升高位置之后,清扫组件260从缩回位置水平移动到伸出位置,例如,朝向制冰组件200的前端230移动。这样,清扫组件将冰块204推离升降机构240,推出弹性模具210,并推到热交换器220的顶部上方,在该处冰块可以落入储冰盒152中。
值得注意的是,相对于从制冰机的底部分配冰的制冰机,从制冰组件200的顶部分配冰块204能够允许较高的储冰盒152,由此能够使储冰盒152拥有拥有较大的储冰容量。根据所示实施方式,供水嘴202设置在填充杯214上方(在缩回位置中),使得可以将水流引导到弹性模具210中。另外,供水嘴202设置为使得清扫组件260可以在缩回位置与伸出位置之间移动而不接触供水嘴202。根据可选实施方式,供水嘴202可以联接到机械致动器,该机械致动器在清扫组件260处于缩回位置的同时使供水嘴202下降接近弹性模具210。这样,可以进一步减小制冰组件200的总高度或轮廓,从而使储冰容量最大化并使浪费的空间最小化。
根据所示实施方式,清扫组件260通常包括竖直延伸的侧臂262,这些侧臂用于驱动设置在弹性模具210上方(例如之上)的上凸框264。具体地,上凸框264围绕弹性模具210延伸,从而防止或减少弹性模具210内的水的飞溅。这在制冰组件200安装在冷藏门体128上时特别重要,因为冷藏门体128的移动可能导致模腔212内的水的晃动。
另外,如图5和图6最佳所示,清扫组件260还可以限定接近制冰组件200的后端228的有角度推动面268。通常,有角度的推动面268用于在冰块204向上枢转并且随着清扫组件260朝向伸出位置移动时接触冰块,以使冰块204在制冰组件200上方旋转和离开。具体地,有角度的推动面可以相对于竖向V以角度270(图5)延伸。根据所示实施方式,角度270小于大约10度,但是根据可选实施方式,可以使用用于推动冰块旋转180度的任何其它合适的角度。
参见图4至图9,制冰组件200可以包括驱动机构276,该驱动机构276可操作地联接到升降机构240和清扫组件260,以在操作期间选择性地升高升降机构240并滑动清扫组件260,以便排出冰块204。具体地,根据所示实施方式,驱动机构276包括驱动电机278。如本文所用,“电机”可以指代用于旋转系统部件的任意合适的驱动电机和/或传动组件。例如,电机178可以是无刷DC电动机、步进电机或任意其他合适类型或构造的电机。可选地,例如,电机178可 以是AC电机、感应电机、永磁同步电机或任意其他合适类型的AC电机。另外,电机178可以包括任意合适的传动组件、离合机构或其他部件。
根据示例性实施方式,电机178可以机械地联接到旋转凸轮280。升降机构240,或更具体地升降臂242,可以骑靠旋转凸轮280,使得随着电机278使旋转凸轮280旋转,旋转凸轮280的轮廓引起升降机构240在降低位置与升高位置之间移动。另外,根据示例性实施方式,升降机构240可以包括滚轮282,该滚轮282安装到升降臂242的下端,用于在升降机构240与旋转凸轮280之间提供低摩擦界面。
制冰组件200可以包括多个升降机构240,各个升降机构240设置在弹性模具210的一个模腔212(以及其中的冰块204)下方,或者被构造为升高弹性模具210的单独部分。在这种实施方式中,旋转凸轮280安装在与电机278机械联接的凸轮轴284上。随着电机278旋转凸轮轴284,旋转凸轮280可以同时沿着竖向V移动升降臂242。这样,多个旋转凸轮280中的每一个可以用于驱动相应的一个升降机构240。另外,滚轮轴(未示出)可以在相邻升降机构240的滚轮282之间延伸,以保持相邻滚轮282之间的适当距离并保持它们接合在旋转凸轮280的顶部上。
参见图4至图9,驱动机构276还可以包括机械地联接到电机278以便驱动清扫组件260的轭轮290。具体地,轭轮290可以与凸轮轴284一起旋转,并且可以包括驱动销292,该驱动销设置在轭轮290的径向外部并且大致平行于电机278的旋转轴线延伸。另外,清扫组件260的侧臂262可以限定驱动狭槽294,该驱动狭槽294被构造为在操作期间接收驱动销292。尽管本文描述和示例了单个轭轮290,但是应当理解,两个侧臂262都可以包括轭轮290和驱动狭槽294机构。
值得注意的是,各个驱动狭槽294的几何形状被限定为使得当驱动销292到达驱动狭槽294的端部296时,驱动销292使清扫组件260沿着水平方向移动。值得注意的是,根据示例性实施方式,这在升降机构240处于升高位置时发生。为了向控制器164提供对轭轮290(更一般地,和驱动机构276)的位置的了解,制冰组件200可以包括用于确定轭轮290的零位置的位置传感器(未示出)。
根据示例性实施方式,位置传感器包括设置在轭轮290上的磁体(未示出)和安装在制冰组件200上的固定位置处的霍尔效应传感器(未示出)。随着轭轮290朝向预定位置旋转,霍尔效应传感器可以检测磁体的接近,并且控制器164可以确定轭轮290处于零位置(或某一其它已知位置)。可选地,可以使用检测轭轮290或驱动机构276的位置的任意其它合适的传感器或方法。例如,根据可选实施方式,可以使用运动传感器、相机系统、光学传感器、声学传感器或简单的机械接触开关。
根据本发明的示例性实施方式,电机278可以在冰块204完全冻结并准备收获之后开始旋转。 在这点上,电机278使旋转凸轮280(和/或凸轮轴284)旋转近似90度,以使升降机构240从降低位置移动到升高位置。这样,升降突出部246向上推动弹性模具210,从而使弹性模具210变形并释放冰块204。冰块204继续被向上推动,直到它们进入储冰盒152为止。
值得注意的是,轭轮290与凸轮轴284一起旋转,使得驱动销292在驱动狭槽294内旋转,而不移动清扫组件260,直到轭轮290到达九十度位置为止。由此,随着电机278旋转经过九十度(90°),升降机构240保持在升高位置,而清扫组件260朝向伸出位置移动。这样,有角度的推动面268接合冰块204的凸起端,以将它们推出弹性模具210,并在将它们落入储冰盒152之前将冰块204旋转近似一百八十度(180°)。
当电机278达到一百八十度(180°)旋转时,清扫组件260处于完全伸出位置,冰块204将在重力作用下落入储冰盒152中。随着电机278旋转经过一百八十度(180°),驱动销292开始将清扫组件260例如经由与驱动狭槽294接合而朝向缩回位置拉回。同时,旋转凸轮280的轮廓被构造为开始降低升降机构240。当电机278转回到零位置时,如例如由位置传感器指示的,清扫组件260可以完全缩回,升降机构240可以完全降低,并且可以准备好向弹性模具210供应新鲜水。此时,供水嘴202可以将新鲜水流提供到模腔212中,并且可以重复该过程。
值得注意的是,由于填充杯214接近形成冰块204所必需的冷空气和温度,从供水嘴202分配的水216可能具有在不期望形成冰的位置冻结的趋势。当发生这种不期望的冻结时,制冰组件200的操作和性能可能受到不利影响。例如,可能影响水填充体积,导致冰块比期望的小或大。另外,在错误位置的冰可能导致水溢出或者可能卡住制冰组件200的排放机构。由此,制冰组件200的一些示例性实施方式可包括用于消除冰在不期望的位置中积聚的特征。这些不期望的冰形成物在本文中可以被称为冰堵,并且在附图中通常由附图标记310(参见图4至图6)标识。
具体地,制冰组件200可包括一个或多个加热元件312,该加热元件与填充杯214热连通以便选择性地加热填充杯214。如本文所用的,术语“加热元件”等通常旨在指任何合适的电驱动热发生器。例如,加热元件312可以是与填充杯214导热接合的电加热器,并且可以包括一个或多个电阻加热元件。例如,可以使用在加热时电阻增加的电阻加热器的正热系数(PTCR),诸如金属、陶瓷或聚合物PTC元件(例如,诸如电阻加热棒或Calrod加热器)。另外,加热元件312可以用硅树脂涂布、嵌入填充杯214内或以任何其它合适的方式设置。
加热元件312通常可以以任何适于打碎冰堵310或融化不期望的冰积聚的方式安装。在这点上,根据示例性实施方式,加热元件312可设置为与填充杯214的排放嘴218相邻。在这点上,常见的堵塞位置是在排放嘴218将水216流引导到模腔212中的点处。值得注意的是,该位置处的冰堵310可能阻止冰块204从模腔212适当地排放或排出。在这点上,当升降机构240向上推动冰块204并将其推出弹性模具210时,冰块204的后端可能接触冰堵310,使其向前倾斜。当 清扫臂260向前移动以发起排出过程时,冰块204可能卡在清扫臂260和弹性模具210的前部之间。
为了防止这样的问题,当这样的冰堵310被检测到时,加热元件312可以被选择性地激励以局部地融化和打碎冰堵310。具体地,根据所示实施方式,加热元件312设置在填充杯214的后侧314上,与排放嘴218直接相对。在这点上,填充杯214可限定凹槽316,其尺寸被构造为用于接收加热元件312。凹槽316可被限定为使得与凹槽316相邻的填充杯214的厚度小于清扫臂260和填充杯214的标称厚度。由此,加热元件312设置为尽可能靠近冰堵310,而不损害填充杯214的结构完整性。
另外,制冰组件200可包括保持支架320,该保持支架320卡扣到填充杯214或清扫臂260上,以将加热元件312固定就位。这样,保持支架320可以是平坦的塑料件,该塑料件与填充杯214相对地牢固地抵靠加热元件312设置。这样,加热元件312可与凹槽316内的填充杯214牢固接触,以便提高导热性。如图所示,保持支架320可以包括夹子322,这些夹子被接收在限定在清扫臂260的前端上的槽口内,以将保持支架320固定就位。应当理解,可使用其它构造的保持支架320和用于固定加热元件312的其它装置,同时保持在本发明的范围内。
值得注意的是,在排放嘴218处的局部加热可防止在排放嘴218处的冰堵310,但在融化位于制冰组件200内的其它位置处的冰堵310时可能是无效的。由此,根据可选实施方式,制冰组件200还可包括与热交换器220热连通的二次收获加热器。这种二次收获加热器可独立于加热元件312或与其结合使用,以清除整个制冰组件200中的冰堵310。
现在具体参见图8和图9,制冰组件200还可包括一个或多个密封件,诸如一个或多个弹性密封件400。弹性密封件400可由任何合适的弹性材料形成,例如,如上文关于弹性模具210所述。可以理解的是,仅为了简单和清楚起见,例如为了更清楚地描述和标记制冰组件200的其它元件,诸如图5和图6中的升降机构240,从图1至图7中省略了弹性密封件400。由此,可以理解的是,图1至图7中描述的示例性构造决不意图排除弹性密封件400的存在。
弹性密封件400可以与升降机构240和热交换器220密封地接合。例如,如在图8中可以最佳看到的,弹性密封件400可包括大体沿着竖向V从密封件400的顶端402延伸到密封件400的肩部404的圆柱形部分406。密封件400的肩部404可限定密封件400的圆柱形部分406与底部410之间的接头和过渡。唇缘412可限定在弹性密封件400与升降机构240、特别是其升降臂242相遇的位置。由此,弹性密封件400可以例如在弹性密封件400的唇缘412处与升降机构240的升降臂242密封地接合。唇缘412可以是弹性密封件400的底端。弹性密封件400的圆柱形部分406可以被接收(诸如部分地接收)在热交换器220中的凹部221内。弹性密封件400还可包括围绕弹性密封件400的圆柱形部分406延伸的凸缘408。凸缘408可以抵靠热交换器220,诸 如热交换器220中的凹部221的底端。由此,弹性密封件400并且特别是其凸缘408可以在凹部221处与热交换器220密封地接合。特别地,弹性密封件400可提供气密的密闭式密封。例如,弹性密封件400可以与升降机构240和热交换器220密封地接合,使得在升降机构240与弹性密封件400之间以及在热交换器220与弹性密封件400之间形成气密密封。例如,气密密封可以由升降机构240和弹性密封件400形成并且形成在它们之间,并且气密密封可以由热交换器220和弹性密封件400形成并且形成在它们之间。
在一些实施方式中,弹性密封件400可在热交换器220下方(诸如在热交换器220的升降通道244下方)与升降机构240的升降臂242密封地接合。弹性密封件400可在升降机构240的滚轮282上方与升降机构240的升降臂242密封地接合。由此,当升降臂242向上移动时,例如如图6示例,随着唇缘412与升降臂242一起向上行进,弹性密封件400挠曲并变形,例如压缩。而且,当升降机构240在降低位置与升高位置之间移动时,弹性密封件400与升降机构240之间的气密密封被保持,例如,在降低位置与升高位置之间(包括这两个位置)的整个运动范围内,唇缘412保持与升降臂242接触并密封地接合。
在一些实施方式中,弹性密封件400可围绕热交换器220的升降通道244。在这样的实施方式中,热交换器220内的空气(例如在弹性密封件400上方和在弹性模具210下方的空气)从而被完全地容纳在其中,并且不与制冰室154的其余部分交换,诸如通过升降通道244。在一些实施方式中,弹性模具210可以与热交换器220密封地接合,使得在弹性模具210与热交换器220之间形成气密密封。在这样的实施方式中,气密密封的腔由此可以由弹性模具210、热交换器220、升降机构240(并且特别是其升降臂242)和弹性密封件400限定并且形成在它们之间。因此,单个固定的离散量的空气可以容纳在腔内,例如在弹性密封件400上方和弹性模具210下方,使得来自制冰室154的其余部分中的空气不进入腔,从而防止或减少湿气侵入腔中以及由此导致的弹性模具210的下侧的结霜。
在一些实施方式中,腔可以限定大体固定的容积。例如,弹性模具210和弹性密封件400可以各自挠曲和变形大约相同的量,诸如弹性密封件400可以朝向热交换器220从降低位置到升高位置向上压缩或变形与弹性模具210远离热交换器220从降低位置向上膨胀或变形到升高位置的量大约相同的量,使得包含在腔内的容积始终保持大致恒定。因此,可以避免或最小化腔内的压力波动,从而延长弹性密封件400的寿命,例如延长弹性密封件400与热交换器220和升降机构240中的每一个的气密密封接合的寿命。
注意,虽然明确地例示了这些示例性实施方式,但本领域普通技术人员将理解,可以提供另外或另选的实施方式或构造来包括这些示例的一个或多个特征。例如,加热元件312和二次收获加热器330的类型、位置和构造可以变化,同时保持在本发明的范围内。另外,可对清扫臂260、 填充杯214和制冰组件200的其它特征进行变更和修改。
尽管上面描述了制冰组件200的具体构造和操作,但是应当理解,这仅是为了解释本发明的各个方面而提供的。可以应用修改和变更,可以使用其他配置,并且所得到的配置可以保持在本发明的范围内。例如,弹性模具210可以限定任何合适数量的模腔212,驱动机构276可以具有不同的构造,或者升降机构240和清扫组件260可以具有专用的驱动机构。此外,可以使用其他控制方法来形成和收获冰块204。本领域技术人员将理解,这种修改和变更可以保持在本发明的范围内。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。
Claims (15)
- 一种用于制冷电器的制冰组件,其特征在于,所述制冰组件包括:弹性模具,该弹性模具限定模腔;填充杯,该填充杯设置在所述弹性模具上方,用于选择性地用水填充所述模腔;热交换器,该热交换器与所述弹性模具热连通以使水冻结并形成一个或多个冰块;升降机构,该升降机构设置在所述弹性模具下方,并且可在降低位置与升高位置之间移动,以使所述弹性模具变形并升高所述一个或多个冰块;以及弹性密封件,该弹性密封件与所述升降机构和所述热交换器密封地接合,由此,在所述升降机构与所述弹性密封件之间以及在所述热交换器与所述弹性密封件之间形成气密密封。
- 根据权利要求1所述的用于制冷电器的制冰组件,其特征在于,所述热交换器限定升降通道和升降凹部,所述升降机构包括:升降臂,该升降臂穿过所述升降通道;以及升降突出部,该升降突出部从所述升降臂的顶部延伸并且当所述升降机构处于所述降低位置时被设置为齐平置于所述升降凹部内。
- 根据权利要求2所述的用于制冷电器的制冰组件,其特征在于,所述弹性密封件与所述升降机构的所述升降臂密封地接合。
- 根据权利要求3所述的用于制冷电器的制冰组件,其特征在于,所述弹性密封件在所述热交换器的所述升降通道下方与所述升降机构的所述升降臂密封地接合。
- 根据权利要求2所述的用于制冷电器的制冰组件,其特征在于,所述弹性密封件围绕所述热交换器的所述升降通道。
- 根据权利要求1所述的用于制冷电器的制冰组件,其特征在于,还包括:清扫组件,该清扫组件设置在所述弹性模具上方并且可在缩回位置与伸出位置之间移动以将所述冰块推出所述弹性模具;和驱动机构,该驱动机构可操作地联接到所述升降机构和所述清扫组件以选择性地升高所述升降机构并使所述清扫组件滑动以排出所述冰块。
- 根据权利要求6所述的用于制冷电器的制冰组件,其特征在于,所述驱动机构包括机械地联接到旋转凸轮的电机,并且其中,所述升降机构包括滚轮,该滚轮骑靠在所述旋转凸轮上以使所述升降机构在所述降低位置与所述升高位置之间移动。
- 根据权利要求7所述的用于制冷电器的制冰组件,其特征在于,所述弹性密封件在所述升降机构的所述滚轮上方与所述升降机构的升降臂密封地接合。
- 根据权利要求1所述的用于制冷电器的制冰组件,其特征在于,所述弹性密封件与所述 升降机构一起移动,并且当所述升降机构在所述降低位置与所述升高位置之间移动时,所述弹性密封件挠曲并变形,由此,当所述升降机构在所述降低位置与所述升高位置之间移动时,保持所述弹性密封件与所述升降机构之间的所述气密密封。
- 根据权利要求1所述的用于制冷电器的制冰组件,其特征在于,所述弹性模具与所述热交换器密封地接合,由此,在所述弹性模具与所述热交换器之间形成气密密封,其中,气密密封腔由所述弹性模具、所述热交换器、所述升降机构和所述弹性密封件限定并形成在它们之间。
- 一种制冷电器,其特征在于,所述制冷电器限定竖向、侧向以及横向,所述制冷电器包括:箱体,该箱体限定制冷间室;门体,该门体可旋转地安装到所述箱体,以提供选择性地到达所述制冷间室的途径;冰盒,该冰盒安装到所述门体并限定制冰室;制冰组件,该制冰组件设置在所述制冰室内,所述制冰组件包括:弹性模具,该弹性模具限定模腔;填充杯,该填充杯设置在所述弹性模具上方,用于选择性地用水填充所述模腔;热交换器,该热交换器与所述弹性模具热连通以使水冻结并形成一个或多个冰块;升降机构,该升降机构设置在所述弹性模具下方,并且可在降低位置与升高位置之间移动,以使所述弹性模具变形并升高所述一个或多个冰块;以及弹性密封件,该弹性密封件与所述升降机构密封地接合,由此,在所述升降机构与所述弹性密封件之间以及在所述热交换器与所述弹性密封件之间形成气密密封。
- 根据权利要求11所述的制冷电器,其特征在于,所述热交换器限定升降通道和升降凹部,所述升降机构包括:升降臂,该升降臂穿过所述升降通道;以及升降突出部,该升降突出部从所述升降臂的顶部延伸并且当所述升降机构处于所述降低位置时被设置为齐平在所述升降凹部内。
- 根据权利要求12所述的制冷电器,其特征在于,所述弹性密封件与所述升降机构的所述升降臂密封地接合,所述弹性密封件在所述热交换器的所述升降通道下方,所述弹性密封件围绕所述热交换器的所述升降通道。
- 根据权利要求11所述的制冷电器,其特征在于,还包括:清扫组件,该清扫组件设置在所述弹性模具上方并且可在缩回位置与伸出位置之间移动以将所述冰块推出所述弹性模具;和驱动机构,该驱动机构可操作地联接到所述升降机构和所述清扫组件以选择性地升高所述升降机构并使所述清扫组件滑动以排出所述冰块,所述驱动机构包括机械地联接到旋转凸轮的电机,并且其中,所述升降机构包括滚轮,该滚轮骑靠在所述旋转凸轮上以使所述升降机构在所述降低位 置与所述升高位置之间移动,所述弹性密封件在所述升降机构的所述滚轮上方与所述升降机构的升降臂密封地接合。
- 根据权利要求11所述的制冷电器,其特征在于,所述弹性密封件与所述升降机构一起移动,并且当所述升降机构在所述降低位置与所述升高位置之间移动时,所述弹性密封件挠曲并变形,由此,当所述升降机构在所述降低位置与所述升高位置之间移动时,保持所述弹性密封件与所述升降机构之间的所述气密密封,所述弹性模具与所述热交换器密封地接合,由此,在所述弹性模具与所述热交换器之间形成气密密封,其中,气密密封腔由所述弹性模具、所述热交换器、所述升降机构和所述弹性密封件限定并形成在它们之间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202217569590A | 2022-01-06 | 2022-01-06 | |
US17/569,590 | 2022-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023131079A1 true WO2023131079A1 (zh) | 2023-07-13 |
Family
ID=86992581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/144082 WO2023131079A1 (zh) | 2022-01-06 | 2022-12-30 | 用于制冷电器的制冰组件及制冷电器 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230213257A1 (zh) |
WO (1) | WO2023131079A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599272U (ja) * | 1982-03-05 | 1984-01-20 | 株式会社日立製作所 | 自動製氷機 |
CN102405383A (zh) * | 2009-02-28 | 2012-04-04 | 伊莱克斯家用产品公司 | 制冰机控制系统及方法 |
CN204444074U (zh) * | 2015-01-06 | 2015-07-08 | 广州市福立达电器有限公司 | 冰棍机 |
US20200025430A1 (en) * | 2018-07-19 | 2020-01-23 | Haier Us Appliance Solutions, Inc. | Ice making assembly for a refrigerator appliance |
CN111854255A (zh) * | 2019-04-26 | 2020-10-30 | 青岛海尔电冰箱有限公司 | 出冰装置及具有该出冰装置的冰箱 |
-
2022
- 2022-01-21 US US17/581,542 patent/US20230213257A1/en active Pending
- 2022-12-30 WO PCT/CN2022/144082 patent/WO2023131079A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599272U (ja) * | 1982-03-05 | 1984-01-20 | 株式会社日立製作所 | 自動製氷機 |
CN102405383A (zh) * | 2009-02-28 | 2012-04-04 | 伊莱克斯家用产品公司 | 制冰机控制系统及方法 |
CN204444074U (zh) * | 2015-01-06 | 2015-07-08 | 广州市福立达电器有限公司 | 冰棍机 |
US20200025430A1 (en) * | 2018-07-19 | 2020-01-23 | Haier Us Appliance Solutions, Inc. | Ice making assembly for a refrigerator appliance |
CN111854255A (zh) * | 2019-04-26 | 2020-10-30 | 青岛海尔电冰箱有限公司 | 出冰装置及具有该出冰装置的冰箱 |
Also Published As
Publication number | Publication date |
---|---|
US20230213257A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7131280B2 (en) | Method for making ice in a compact ice maker | |
US7185508B2 (en) | Refrigerator with compact icemaker | |
BR112014013851B1 (pt) | refrigerador e método de distribuição de um líquido de um refrigerador | |
WO2020015707A1 (en) | Ice making assembly for a refrigerator appliance | |
CN214537003U (zh) | 冰箱 | |
CN114174740B (zh) | 制冷电器的制冰组件 | |
EP4137762A1 (en) | Ice making assembly for receiving interchangeable mold assembly | |
WO2022206851A1 (zh) | 电器制冰组件 | |
WO2023131079A1 (zh) | 用于制冷电器的制冰组件及制冷电器 | |
US20240263861A1 (en) | Refrigerator appliances and removable ice making assemblies | |
US20240255203A1 (en) | Systems for ice mold assemblies in ice maker appliances | |
WO2024067616A1 (zh) | 用于制冷电器的制冰组件 | |
US11994330B2 (en) | Refrigerator | |
WO2020224464A1 (zh) | 具有可拆卸储冰盒的制冷电器 | |
KR20220015679A (ko) | 제빙기 및 이를 포함하는 냉장고, 및 이의 제어방법 | |
KR20210005798A (ko) | 냉장고 | |
US20240263862A1 (en) | Refrigerator appliances and ice making assemblies having one or more ice ejection cams | |
WO2023131201A1 (zh) | 多腔制冰组件 | |
KR20110096873A (ko) | 제빙장치 및 이를 구비한 냉장고 및 이 냉장고의 얼음 공급 방법 | |
WO2021155755A1 (zh) | 带踢板的制冷电器储冰盒 | |
KR102669631B1 (ko) | 제빙기 및 이를 포함하는 냉장고 | |
KR20230031260A (ko) | 냉장고 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22918520 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |