WO2021023041A1 - 非球形水凝胶微粒栓塞剂的制备方法 - Google Patents

非球形水凝胶微粒栓塞剂的制备方法 Download PDF

Info

Publication number
WO2021023041A1
WO2021023041A1 PCT/CN2020/104781 CN2020104781W WO2021023041A1 WO 2021023041 A1 WO2021023041 A1 WO 2021023041A1 CN 2020104781 W CN2020104781 W CN 2020104781W WO 2021023041 A1 WO2021023041 A1 WO 2021023041A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase solution
channel
pipe
embolic agent
preparation
Prior art date
Application number
PCT/CN2020/104781
Other languages
English (en)
French (fr)
Inventor
郭琼玉
罗煜成
蒋兴宇
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2021023041A1 publication Critical patent/WO2021023041A1/zh
Priority to US17/588,344 priority Critical patent/US20220160930A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/06Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0031Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/36Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices

Definitions

  • the invention relates to the field of biomedicine, in particular to a preparation method of a non-spherical hydrogel microparticle embolic agent.
  • Transhepatic arterial chemoembolization is the preferred strategy for the treatment of advanced liver cancer.
  • the embolic agent used for transhepatic artery chemoembolization can be made of many materials, such as polylactic acid, polyvinyl alcohol, gelatin, chitosan, etc.
  • Polyvinyl alcohol (PVA) is widely used in biomedical fields, such as bone tissue repair materials, drug delivery, vascular embolization agents, etc., due to its good biocompatibility, non-toxicity, and superior gel forming properties.
  • the commonly used process for preparing polyvinyl alcohol embolic agents is the emulsification method, that is, an emulsion of polyvinyl alcohol solution in the oil phase is formed first to produce spherical polyvinyl alcohol droplets, and then the droplets are solidified.
  • the polyvinyl alcohol solution is the dispersed phase
  • other organic substances that are incompatible with the polyvinyl alcohol aqueous solution are the continuous phase.
  • the polyvinyl alcohol aqueous solution is dropped into the oil phase solution, and the polyvinyl alcohol solution is dispersed into the oil phase by magnetic stirring.
  • the polyvinyl alcohol solution forms spherical droplets under the action of interfacial tension, and then passes through various cross
  • the combined method is solidified into microspheres and separated from the oil phase, but this method is limited to the preparation of spherical embolic agents, but the embolic properties of spherical embolic agents are poor.
  • non-spherical embolic agents are obtained by using a method of stretching the body to be stretched, but the steps of the method are complicated.
  • a preparation method of non-spherical hydrogel microparticle embolic agent includes the following steps:
  • the oil phase solution and the water phase solution are alternately injected into the long and narrow pipe, wherein the water phase solution contains the water-soluble polymer to be crosslinked, and the water phase solution undergoes a crosslinking reaction in the long and narrow pipe to obtain Reactant;
  • the reactant is led out from the long and narrow pipe to obtain a non-spherical hydrogel microparticle embolic agent.
  • the step of alternately injecting the oil phase solution and the water phase solution into the long and narrow pipeline includes:
  • the material of the microfluidic chip is a hydrophobic material and the microfluidic chip has the long and narrow pipe;
  • the oil phase solution and the water phase solution are respectively injected into the long and narrow pipe of the microfluidic chip.
  • the crosslinking reaction adopts a thermal crosslinking method.
  • the long and narrow pipe has a liquid inlet end and a liquid outlet end.
  • the oil phase solution and the water The phase solutions are respectively injected into the long and narrow pipe from the liquid inlet end, and the step of deriving the reactant from the long and narrow pipe includes: immersing the liquid outlet end in the collecting liquid and heating the stirring station
  • the collecting liquid includes an oil-soluble solvent.
  • the collection solution further includes a cross-linking agent, so that the cross-linking agent reacts with the reactant.
  • the temperature of the heating and stirring is 40°C to 85°C.
  • the elongated pipe includes a first channel, a second channel, and a third channel, the third channel is in communication with the first channel, and the third channel is in communication with the second channel,
  • the oil phase solution and the water phase solution are respectively injected into the long and narrow pipe through the first channel and the second channel, and contact in the third channel to cause the water phase solution to cross. Joint reaction.
  • the third passage includes an arched pipe and a straight pipe communicating with the arched pipe, and an end of the arched pipe away from the straight pipe is communicated with the first passage, And the end of the arched pipe away from the straight pipe is in communication with the second channel, and in the step of deriving the reactant from the elongated pipe, the reactant is removed from the straight pipe. Export in the pipeline.
  • the width and height of the elongated pipe are both less than 1 mm.
  • the ratio of the injection rate of the oil phase solution to the injection rate of the aqueous phase solution is 20:1 to 2:1.
  • the aqueous phase solution further contains a catalyst, in the aqueous phase solution, the mass fraction of the water-soluble polymer is 2.5% to 7.5%, and the concentration of the catalyst is 0.25 mol/L ⁇ 0.75mol/L.
  • the oil phase solution further contains an oil-soluble solvent and a lipophilic emulsifier, and the mass ratio of the oil-soluble solvent, the lipophilic emulsifier, and the crosslinking agent is 1:(0.01 ⁇ 0.04): (0.075 ⁇ 0.3).
  • the water phase solution and the oil phase solution are respectively injected into a long and narrow pipe, and a cross-linking reaction occurs in the long and narrow pipe, and then the reactant after the reaction is exported, so that
  • the obtained embolic agent has a regular non-spherical structure and the process is simple.
  • the method of obtaining the elongated embolic agent by the stretching method requires first preparing the body to be stretched, then obtaining the stretched film from the body to be stretched, and finally performing stretching, which is complicated in steps. Therefore, the preparation method of the non-spherical hydrogel microparticle embolic agent is simple in process, and the non-spherical hydrogel microparticle embolic agent can be obtained.
  • Figure 1 is a process flow diagram of a method for preparing a non-spherical hydrogel microparticle embolic agent according to an embodiment
  • Figure 2 is a schematic diagram of a structure of a microfluidic chip
  • Fig. 3-a, Fig. 3-b and Fig. 3-c are the non-spherical hydrogel microparticle embolic agent in Example 1 observed under a microscope;
  • Figure 4-a, Figure 4-b, Figure 4-c, and Figure 4-d show the embolic effect of the non-spherical hydrogel microparticle embolic agent obtained in Example 2 on rabbit decellularized liver, where Figure 4- a, Figure 4-b shows different arrangements of non-spherical hydrogel microparticle embolic agents, and Figure 4-c and Figure 4-d are the fluorescence images corresponding to Figure 4-a and Figure 4-b, respectively;
  • Figure 5 shows the embolic effect of the spherical polylactic acid microparticle embolization agent in Comparative Example 1 used in rat decellularized liver.
  • non-spherical hydrogel particles refer to hydrogel particles with different sizes in at least two directions in the three directions.
  • a long and narrow pipe means that the length-to-width ratio of the pipe is greater than 10 and less than 10,000.
  • the preparation method of the non-spherical hydrogel microparticle embolic agent includes the following steps:
  • Step S110 Provide a water phase solution, an oil phase solution and a long and narrow pipe, and the water phase solution contains the water-soluble polymer to be crosslinked.
  • the aqueous phase solution also contains a catalyst.
  • the mass fraction of the water-soluble polymer is 2.5%-7.5%, and the concentration of the catalyst is 0.25mol/L-0.75mol/L.
  • the water-soluble polymer may be polyvinyl alcohol, polyethylene glycol, polyvinyl alcohol-based copolymers, polyethylene glycol-based copolymers, and the like.
  • the water-soluble polymer is polyvinyl alcohol
  • the catalyst is hydrochloric acid or sulfuric acid
  • the cross-linking agent is glutaraldehyde.
  • the polyvinyl alcohol molecule contains a large number of hydroxyl groups and is a water-soluble material. It is often cross-linked physically (such as freeze-thaw method), ultraviolet cross-linking method (need to modify the polyvinyl alcohol molecule to have photosensitive groups) or Chemical cross-linking (glutaraldehyde cross-linking, boric acid cross-linking, etc.) to prepare microsphere embolic agents.
  • cross-linking polyvinyl alcohol with glutaraldehyde is an efficient, simple, and easy-to-operate cross-linking method.
  • the reaction of cross-linking polyvinyl alcohol with glutaraldehyde can occur under heating and acidic conditions. After glutaraldehyde and polyvinyl alcohol molecules are cross-linked, the water-soluble polyvinyl alcohol molecules can form a gel or solid state.
  • the water-soluble polymer, crosslinking agent, etc. may also be other substances.
  • the crosslinking agent can also be organic acids such as formaldehyde, citric acid, malonic acid, oxalic acid, trimellitic acid, polyacrylic acid, fumaric acid, amic acid, or maleic anhydride.
  • a preparation method of the aqueous phase solution includes: mixing a water-soluble polymer solution with a mass fraction of 10% with a catalyst to obtain an aqueous phase solution. Further, the concentration of the catalyst is 1 mol/L. The volume ratio of the water-soluble polymer solution to the catalyst is 1:3 to 3:1.
  • the oil phase solution contains oil-soluble solvents, lipophilic emulsifiers and cross-linking agents.
  • the mass ratio of oil-soluble solvent, lipophilic emulsifier and crosslinking agent is 1:(0.01 ⁇ 0.04):(0.075 ⁇ 0.3).
  • oil-soluble solvents can dissolve the crosslinking agent.
  • the preparation step of the oil phase solution includes: mixing and stirring the oil-soluble solvent, the lipophilic emulsifier and the crosslinking agent solution in a mass ratio of 1:(0.01 ⁇ 0.04):(0.075 ⁇ 0.3) to obtain the oil phase solution.
  • the oil-soluble solvent is soybean oil.
  • the oil-soluble solvent can also be liquid paraffin, simethicone, and the like. It can be understood that any oil-soluble solvent that can dissolve the crosslinking agent can be used as the oil-soluble solvent in this embodiment.
  • the lipophilic emulsifier may be a sorbitan fatty acid ester such as span-80. It can be understood that other lipophilic emulsifiers can also be used as the lipophilic emulsifier in this embodiment.
  • the step of preparing the oil phase solution further includes a step of heating.
  • the oil-soluble solvent, lipophilic emulsifier and crosslinking agent are fully dissolved by heating. Specifically, the heating temperature is 60°C to 85°C.
  • the preparation step of the oil phase solution also includes the steps of centrifugal separation and taking the supernatant.
  • the depth and width of the elongated pipe are both less than 1 mm.
  • the depth and width of the elongated tube have an effect on the width of the embolic agent prepared.
  • the size of embolic agents commonly used in clinical practice is within 1mm. Therefore, the width and depth of the narrow and long pipeline are set to be less than 1mm.
  • the long and narrow pipe is provided with a liquid inlet and a liquid outlet.
  • the water phase solution and the oil phase solution can be injected into the long and narrow pipe from the liquid inlet end, and after the crosslinking reaction of the water phase solution occurs in the long and narrow pipe, it flows out of the long narrow pipe from the liquid end.
  • the long and narrow pipe is provided in the microfluidic chip.
  • the microfluidic chip is provided with a liquid inlet and a liquid outlet.
  • the material of the microfluidic chip is a hydrophobic material.
  • the material of the microfluidic chip is quartz glass.
  • the material of the microfluidic chip can also be hydrophobic materials such as capillary and glass. Setting the material of the microfluidic chip as a hydrophobic material can prevent the water-soluble polymer solution from adhering to the pipe wall, thereby facilitating the generation of water-in-oil droplets.
  • the microfluidic chip is provided with a first liquid inlet, a second liquid inlet and a liquid outlet, the first liquid inlet and the second liquid inlet are arranged at the liquid inlet, and the liquid outlet is arranged At the liquid end.
  • the long and narrow pipeline includes a first channel, a second channel, and a third channel.
  • the first channel is in communication with the first liquid inlet
  • the second channel is in communication with the second liquid inlet
  • the third channel is in communication with the liquid outlet
  • the first channel is An end away from the first liquid inlet, an end of the second channel away from the second liquid inlet, and an end of the third channel away from the liquid outlet intersect and communicate with each other.
  • the oil phase solution and the water phase solution can be respectively injected into the first channel and the second channel from the first liquid inlet and the second liquid inlet, and a cross-linking reaction occurs in the third channel.
  • the microfluidic chip 200 is provided with a long and narrow pipe.
  • the long and narrow pipe includes a first channel 220 and a second channel 240 in a "Y"-shaped structure.
  • the first channel 220, the second channel 240 and the third channel 260 intersect and communicate with each other.
  • the third passage 260 includes an arched pipe 262 and a straight pipe 264 communicating with the arched pipe 262.
  • the end of the arched pipe 262 away from the straight pipe 264 and the end of the first passage 220 away from the first liquid inlet 202, the second One end of the channel 240 away from the second liquid inlet 204 intersects and communicates, and the straight pipe 264 communicates with the liquid outlet 206.
  • the arched pipe 262 includes ten undulating bends.
  • the purpose of setting the arched bend 262 in the long and narrow pipe is to extend the distance so that after the water phase solution and the oil phase solution are mixed, they are fully cross-linked in the arched bend 262, thereby reducing the length of the straight pipe 264 and reducing the micro The length of the flow control chip 100.
  • the number of wavy curves is not limited to ten, but may also be eight, nine or eleven.
  • the arched pipe 262 may also be omitted.
  • the intersection of the first channel 220 and the second channel 240 directly communicates with the straight pipe 264, and after the water phase solution and the oil phase solution are mixed, they are fully cross-linked in the straight pipe 264.
  • the preparation process of the microfluidic chip includes: forming a first channel, a second channel, and a third channel on a hydrophobic plate, and then forming the first channel, the second channel and the third channel in the polydimethylsiloxane by the method of inverting mold
  • the surface of the PDMS glue is bonded to the hydrophobic plate through plasma technology to obtain a microfluidic chip.
  • Microfluidic technology is a technology that controls droplet generation, droplet mixing, and particle preparation.
  • microfluidic chips have been used to generate spherical droplets.
  • the microfluidic chip can easily realize various oil-in-water (O/W), water-in-oil (W/O), water-in-oil-in-water (W/O/W), and oil-in-water-in-oil (O/W). W/O) and other emulsion systems.
  • the microfluidic chip can accurately control the size of the droplets and can continuously produce the same droplets in large numbers, which has great advantages in the application of droplet synthesis or particle preparation.
  • the use of a microfluidic chip can make the obtained embolic agent regular, and the size of the embolic agent can be adjusted by adjusting the width and depth of the channel in the microfluidic chip.
  • Step S120 The oil phase solution and the water phase solution are alternately injected into the long and narrow pipe, and the water phase solution undergoes a crosslinking reaction in the long and narrow pipe to obtain a reactant.
  • the cross-linking reaction adopts a thermal cross-linking method. It can be understood that, in other embodiments, the cross-linking reaction may also adopt other methods, such as photo-cross-linking.
  • step S120 is: the oil phase solution and the water phase solution are alternately injected into the first channel and the second channel from the first liquid inlet and the second liquid inlet, respectively , The water phase solution undergoes a cross-linking reaction in the third channel.
  • the step of injecting the oil phase solution and the water phase solution into the first channel and the second channel from the first liquid inlet and the second liquid inlet respectively includes:
  • the aqueous solution is sucked into an injection syringe.
  • One end of each injection syringe is installed on the microinjector.
  • the end of each injection syringe away from the microinjector is connected to a silicone hose, and each silicone hose is far away
  • One end of the injection syringe is connected with a steel tube, and the two steel tubes are respectively connected with the first liquid inlet and the second liquid inlet of the microfluidic chip.
  • the way of injecting the oil phase solution and the water phase solution into the first channel and the second channel of the microfluidic chip may also be other ways.
  • a part of the silicone hose injected with the oil phase solution is immersed in 65°C hot water to heat the oil phase solution, and the length of the silicone hose immersed in the hot water ensures that the oil phase solution is heated to above 40°C.
  • the length of the silicone hose into which the oil phase solution is injected is 125 cm, and the length of the silicone hose soaked in hot water is 90 cm to 110 cm, so that the oil phase solution is heated to above 40°C.
  • the third channel for example, the crosslinking agent diffused in the oil phase reacts with the water-soluble polymer droplets
  • the ratio of the injection rate of the oil phase solution to the injection rate of the water phase solution is 20:1 to 2:1.
  • the length of the non-spherical water-soluble polymer droplets can be controlled.
  • the flow rate of the oil phase solution is set to 20 ⁇ L/min
  • the flow rate of the water phase solution is set to 1 ⁇ L/min to 10 ⁇ L/min.
  • step S120 the time for the crosslinking reaction of the oil phase solution and the water phase solution in the narrow and long pipeline is 1.2 min to 1.8 min, so that the oil phase solution and the water phase solution are fully crosslinked and solidified.
  • step S120 the flow rates of the oil phase solution and the water phase solution can be adjusted according to the reaction time and the total length of the third channel, so that the oil phase solution and the water phase solution fully react in the third channel.
  • Step S130 Lead the reactant from the long and narrow pipe to obtain the non-spherical hydrogel microparticle embolic agent.
  • the step of leading the reactant from the long and narrow pipe includes: immersing the liquid outlet end in the collecting liquid, and heating and stirring the collecting liquid.
  • the collection liquid includes oil-soluble solvents.
  • the collection liquid may also include a cross-linking agent to make the cross-linking agent react with the reactant.
  • the mass ratio of the oil-soluble solvent, lipophilic emulsifier and cross-linking agent in the collection liquid is 1:(0.02-0.08):(0.075-0.3).
  • the preparation steps of the collection liquid include: mixing the oil-soluble solvent, lipophilic emulsifier and crosslinking agent at a mass ratio of 1:(0.02 ⁇ 0.08):(0.075 ⁇ 0.3), mixing and stirring, and centrifugal separation, and taking the supernatant oil to obtain Collect the liquid, in which the oil-soluble solvent can dissolve the cross-linking agent.
  • the collection liquid is used to fully crosslink the water-soluble polymer and the crosslinking agent.
  • the amount of lipophilic emulsifier in the collection solution is larger than that of the lipophilic emulsifier in the oil phase solution in order to prevent the generated embolic agent from adhesion and aggregation, so that the embolic agent is dispersed in the collection solution.
  • the step of immersing the liquid outlet end in the collecting liquid and heating and stirring the collecting liquid is carried out under heating conditions to complete the crosslinking of the water-soluble polymer.
  • the heating temperature is 40°C to 85°C.
  • the stirring time is 1h to 2h.
  • the steps of centrifugal separation and washing are further included.
  • the rotation speed is 2000 rpm
  • the centrifugation time is 2 min.
  • the washing process includes: first washing with acetone four times, then washing with water three times.
  • the washing process is also accompanied by a shaking process, so that the impurities attached to the embolic agent are washed away.
  • the above-mentioned preparation method of the non-spherical hydrogel microparticle embolic agent can obtain the non-spherical hydrogel microparticle embolic agent, and the flow rate ratio of the oil phase solution and the water phase solution can be changed to achieve the non-spherical hydrogel microparticle embolic agent Length control.
  • the embolic agent obtained by the above preparation method of the non-spherical hydrogel microparticle embolic agent can form an arrangement in the blood vessel, is easier to aggregate, and achieves a stable embolic effect.
  • the non-spherical embolic agent can increase the contact area with the blood vessel wall, which is more conducive to the slow release of the drug, and the coverage area of the drug release is wider.
  • the polyvinyl alcohol solution in the process of forming an emulsion, due to the relatively high viscosity of the oil phase solution, the polyvinyl alcohol solution cannot be uniformly dispersed in the oil phase even by magnetic stirring, which makes the prepared polyvinyl alcohol The microspheres have low uniformity.
  • the polyvinyl alcohol solution may deposit on the bottom of the oil phase solution, causing the generated polyvinyl alcohol microspheres to adhere into pieces.
  • the embolic agent obtained by the preparation method of the non-spherical hydrogel microparticle embolic agent has uniform specifications, is not easy to aggregate in the oil phase solution, and is easy to separate.
  • the traditional emulsification method for preparing polyvinyl alcohol microspheres takes a long time and the amount of preparation is small each time.
  • the preparation method of the non-spherical hydrogel microparticle embolic agent is simple in process and can be prepared in large quantities.
  • the traditional method of stretching the body to be stretched is used to make the aspect ratio of the body to be stretched to a specific value to obtain an embolic agent.
  • the body to be stretched needs to be prepared first, and then the body to be stretched is obtained.
  • the film to be stretched is finally stretched.
  • the steps are cumbersome and it is difficult to ensure the regularity of the embolic agent.
  • the oil phase solution and the water phase solution are cross-linked in the long and narrow pipeline during the preparation process. Then, the reactant is exported, that is, a regular non-spherical embolic agent can be obtained, and the operation is simpler.
  • the weight average molecular weight M w of the polyvinyl alcohol used in Examples 1 to 4 is 31,000 to 50,000, and the degree of polymerization is 87% to 89%.
  • the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 2 is similar to the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 1, except that:
  • step (5) the flow rate of the aqueous solution is set to 6 ⁇ L/min.
  • Example 2 Observing the non-spherical hydrogel microparticle embolic agent obtained in Example 2 under a microscope, it can be found that the length of the non-spherical hydrogel microparticle embolic agent is 620 ⁇ m and the width is 310 ⁇ m.
  • the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 3 is similar to the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 1, except that:
  • step (1) the 10 wt% PVA solution and the 1 mol/L hydrochloric acid solution are mixed in a volume ratio of 1:3.
  • step (2) weigh soybean oil, span-80 and 25% glutaraldehyde aqueous solution in a beaker with a mass ratio of 1:0.01:0.075.
  • step (3) weigh soybean oil, span-80, and 25% glutaraldehyde aqueous solution in a beaker with a mass ratio of 1:0.02:0.075.
  • step (5) the flow rate of the aqueous solution is 2 ⁇ L/min.
  • Example 3 Observing the non-spherical hydrogel microparticle embolic agent obtained in Example 3 under a microscope, it can be found that the length of the non-spherical hydrogel microparticle embolic agent is 590 m and the width is 450 m.
  • the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 4 is similar to the preparation process of the non-spherical hydrogel microparticle embolic agent in Example 1, except that:
  • step (1) the 10 wt% PVA solution and the 1 mol/L hydrochloric acid solution are mixed in a volume ratio of 3:1.
  • step (2) the soybean oil, span-80 and 25% glutaraldehyde aqueous solution were weighed into a beaker according to a mass ratio of 1:0.04:0.3.
  • step (3) the soybean oil, span-80 and 25% glutaraldehyde aqueous solution were weighed into a beaker according to a mass ratio of 1:0.08:0.3.
  • step (5) the flow rate of the aqueous solution is 10 ⁇ L/min.
  • Example 4 Observing the non-spherical hydrogel microparticle embolic agent obtained in Example 4 under a microscope, it can be found that the length of the non-spherical hydrogel microparticle embolic agent is 740 ⁇ m and the width is 308 ⁇ m.
  • polylactic acid microspheres were prepared by membrane emulsification machine at room temperature. The average particle size of the microspheres was 110 ⁇ m. The microspheres were injected into In the blood vessels of the decellularized liver of rats, the experimental results are shown in Figure 5.
  • the elongated hydrogel microparticle embolic agent (length: 620 ⁇ m, width: 310 ⁇ m) prepared in Example 2 was injected into the rabbit’s decellularized liver through a 200 ⁇ L pipette tip, and its embolic effect was observed, as shown in Figure 4-a ⁇ As shown in Figure 4-d.
  • the scales in the figure are all 500 ⁇ m.
  • the elongated hydrogel microparticle embolic agent in Example 2 can be arranged in a straight shape at the end of the blood vessel to achieve deeper embolization.
  • the elongated embolic agent in Example 2 can be arranged horizontally or by polymerizing two elongated particles to achieve vascular embolization.
  • the spherical embolic agent in Comparative Example 1 is loosely and irregularly arranged in the blood vessel, and has a smaller contact area with the blood vessel, making it easier to detach from the embolization site.
  • water-soluble polymers used in the above embolic agents are all polyvinyl alcohol, but other water-soluble polymers, such as polyvinyl alcohol-based copolymers, polyethylene glycol, and polyethylene glycol-based copolymers It can also be used as a water-soluble polymer to prepare embolic agents, and the effect of the embolic agent obtained is equivalent to that of the embolic agent obtained from polyvinyl alcohol, and will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种非球形水凝胶微粒栓塞剂的制备方法,包括:将油相溶液和水相溶液交替注入到狭长管道中,其中,水相溶液中含有待交联的水溶性高分子,水相溶液在狭长管道中发生交联反应,得到反应物;将反应物从狭长管道中导出,得到非球形水凝胶微粒栓塞剂。上述非球形水凝胶微粒栓塞剂的制备方法工艺简单,且能够得到栓塞性能好的非球形水凝胶微粒栓塞剂。

Description

非球形水凝胶微粒栓塞剂的制备方法 技术领域
本发明涉及生物医学领域,特别是涉及一种非球形水凝胶微粒栓塞剂的制备方法。
背景技术
肝癌是世界上常见的癌症,经肝动脉化疗栓塞术(TACE)是治疗肝癌中晚期的首选策略。用于经肝动脉化疗栓塞术的栓塞剂可以由很多种材料制得,如聚乳酸、聚乙烯醇、明胶、壳聚糖等。聚乙烯醇(PVA)以其良好的生物相容性、无毒性、优越的成胶性能广泛应用于生物医学领域,如骨组织修复材料、药物输送、血管栓塞剂等。
目前,制备聚乙烯醇栓塞剂的常用工艺是乳化法,即先形成聚乙烯醇溶液在油相中的乳化液,产生聚乙烯醇球形液滴,再将液滴固化。在这些乳化液体系中,聚乙烯醇溶液为分散相,其他与聚乙烯醇水溶液不相溶的有机物为连续相。乳化过程中,往油相溶液中滴入聚乙烯醇水溶液,通过磁力搅拌将聚乙烯醇溶液分散到油相中,聚乙烯醇溶液在界面张力的作用下形成球状液滴,然后通过各种交联方法被固化成微球并从油相中分离出来,但该方法只限于球形栓塞剂的制备,但球形栓塞剂的栓塞性能较差。而目前得到非球形的栓塞剂,采用拉伸待拉伸体的方法,但该方法步骤繁琐。
发明内容
基于此,有必要提供一种工艺简单的非球形水凝胶微粒栓塞剂的制备方法。
一种非球形水凝胶微粒栓塞剂的制备方法,包括如下步骤:
将油相溶液和水相溶液交替注入到狭长管道中,其中,所述水相溶液中含有待交联的水溶性高分子,所述水相溶液在所述狭长管道中发生交联反应,得到反应物;及
将所述反应物从所述狭长管道中导出,得到非球形水凝胶微粒栓塞剂。
在其中一个实施例中,所述将油相溶液和水相溶液交替注入到狭长管道中的步骤包括:
提供微流控芯片,所述微流控芯片的材料为疏水性材料且所述微流控芯片具有所述狭长管道;
将所述油相溶液和所述水相溶液分别注入到所述微流控芯片的所述狭长管道中。
在其中一个实施例中,所述油相溶液和所述水相溶液在所述狭长管道中发生交联反应的步骤中,所述交联反应采用热交联的方式。
在其中一个实施例中,所述狭长管道具有进液端和出液端,所述将油相溶液和水相溶液分别注入到狭长管道中的步骤中,将所述油相溶液和所述水相溶液分别从所述进液端注入所述狭长管道中,所述将所述反应物从所述狭长管道中导出的步骤包括:将所述出液端浸泡在收集液中,并加热搅拌所述收集液,所述收集液包括油溶性溶剂。
在其中一个实施例中,所述收集液中还包括交联剂,以使所述交联剂与所述反应物反应。
在其中一个实施例中,所述加热搅拌所述收集液的步骤中,加热搅拌的温度为40℃~85℃。
在其中一个实施例中,所述狭长管道包括第一通道、第二通道和第三通道, 所述第三通道与所述第一通道连通,所述第三通道与所述第二通道连通,所述油相溶液和所述水相溶液分别经所述第一通道和所述第二通道注入到所述狭长管道中,并在所述第三通道内接触,使所述水相溶液发生交联反应。
在其中一个实施例中,所述第三通道包括拱形管道和与所述拱形管道连通的直形管道,所述拱形管道远离所述直形管道的一端与所述第一通道连通,且所述拱形管道远离所述直形管道的一端与所述第二通道连通,所述将所述反应物从所述狭长管道中导出的步骤中,将所述反应物从所述直形管道中导出。
在其中一个实施例中,所述狭长管道的宽度和高度均小于1mm。
在其中一个实施例中,所述油相溶液的注入速率和所述水相溶液的注入速率的比值为20:1~2:1。
在其中一个实施例中,所述水相溶液中还含有催化剂,所述水相溶液中,所述水溶性高分子的质量分数为2.5%~7.5%,所述催化剂的浓度为0.25mol/L~0.75mol/L。
在其中一个实施例中,所述油相溶液中还含有油溶性溶剂与亲油性乳化剂,所述油溶性溶剂、所述亲油性乳化剂与所述交联剂的质量比为1:(0.01~0.04):(0.075~0.3)。
上述非球形水凝胶微粒栓塞剂的制备方法中通过将水相溶液和油相溶液分别注入到狭长管道中,并在狭长管道中发生交联反应,然后将反应后的反应物导出,从而使得到的栓塞剂呈规整的非球形结构,工艺简单。而采用拉伸法得到长条形栓塞剂的方法需要先制备待拉伸体,再使待拉伸体得到待拉伸膜,最后进行拉伸,步骤繁琐。因此,上述非球形水凝胶微粒栓塞剂的制备方法工艺简单,且能够得到非球形水凝胶微粒栓塞剂。
附图说明
图1为一实施方式的非球形水凝胶微粒栓塞剂的制备方法的工艺流程图;
图2为微流控芯片的一种结构示意图;
图3-a、图3-b及图3-c为显微镜下观察到的实施例1中的非球形水凝胶微粒栓塞剂;
图4-a、图4-b、图4-c及图4-d展示了实施例2中得到的非球形水凝胶微粒栓塞剂用于兔子去细胞肝脏的栓塞效果,其中,图4-a、图4-b表示非球形水凝胶微粒栓塞剂的不同排列方式,图4-c、图4-d分别为图4-a、图4-b对应的荧光图像;
图5展示了对比例1中的球形聚乳酸微粒栓塞剂用于大鼠去细胞肝脏的栓塞效果。
具体实施方式
为了便于理解本发明,下面将结合具体实施方式对本发明进行更全面的描述。具体实施方式中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。
需要说明的是,在本文中,非球形水凝胶微粒指水凝胶微粒的三个方向上的尺寸中,至少有两个方向上的尺寸不同。
在本文中,狭长管道指管道的长宽比大于10且小于10000。
请参阅图1,一实施方式的非球形水凝胶微粒栓塞剂的制备方法,包括如下步骤:
步骤S110:提供水相溶液、油相溶液和狭长管道,水相溶液中含有待交联的水溶性高分子。
其中,水相溶液中还含有催化剂。具体地,水相溶液中,水溶性高分子的质量分数为2.5%~7.5%,催化剂的浓度为0.25mol/L~0.75mol/L。具体地,水溶性高分子可以为聚乙烯醇、聚乙二醇、基于聚乙烯醇的共聚物、基于聚乙二醇的共聚物等物质。在其中一个实施例中,水溶性高分子为聚乙烯醇,催化剂为盐酸或硫酸,交联剂为戊二醛。
聚乙烯醇分子上含有大量的羟基,是一种水溶性材料,常通过物理交联(如冻融法)、紫外交联法(需先修饰聚乙烯醇分子使其带上感光基团)或化学交联(戊二醛交联、硼酸交联等)来制备成微球栓塞剂。其中,用戊二醛交联聚乙烯醇是一种高效简单、易于操作的交联办法。用戊二醛交联聚乙烯醇的反应在加热和酸性条件下即可发生,戊二醛和聚乙烯醇分子交联后能使水溶性的聚乙烯醇分子形成凝胶状或固体状。
可以理解,在其他实施例中,水溶性高分子、交联剂等还可以为其他物质。交联剂还可以为甲醛、柠檬酸、丙二酸、草酸、苯三甲酸、聚丙烯酸、反丁烯二酸、酰胺酸等有机酸,或者马来酸酐等。
水相溶液的一种制备方法包括:将质量分数为10%的水溶性高分子溶液与催化剂混合,得到水相溶液。进一步地,催化剂的浓度为1mol/L。水溶性高分子溶液与催化剂的体积比为1:3~3:1。
油相溶液中含有油溶性溶剂、亲油性乳化剂和交联剂。油溶性溶剂、亲油性乳化剂与交联剂的质量比为1:(0.01~0.04):(0.075~0.3)。其中油溶性溶剂能 够溶解交联剂。具体地,油相溶液的制备步骤包括:将油溶性溶剂、亲油性乳化剂与交联剂溶液按质量比为1:(0.01~0.04):(0.075~0.3)混合搅拌,得到油相溶液。
在一些实施例中,油溶性溶剂为大豆油。在其他实施例中,油溶性溶剂还可以为液体石蜡、二甲基硅油等。可以理解,任何能够溶解交联剂的油溶性溶剂均可以作为本实施方式中的油溶性溶剂。
亲油性乳化剂可以为span-80等失水山梨醇脂肪酸酯。可以理解,其他亲油性乳化剂也可以作为本实施方式中的亲油性乳化剂。
进一步地,油相溶液的制备步骤中,还包括加热的步骤。通过加热使油溶性溶剂、亲油性乳化剂及交联剂充分溶解。具体地,加热的温度为60℃~85℃。
油相溶液的制备步骤中,还包括离心分离,并取上清液的步骤。
具体地,狭长管道的深度和宽度均小于1mm。狭长管道的深度和宽度对制备得到的栓塞剂的宽度有影响,狭长管道的深度和宽度越大,栓塞剂的宽度也越大。临床常用的栓塞剂的尺寸在1mm以内,因此,将狭长管道的宽度和深度设置为小于1mm。
具体地,狭长管道设有进液端和出液端。水相溶液和油相溶液能够由进液端注入狭长管道,并使水相溶液在狭长管道中发生交联反应后,由出液端流出狭长管道。
具体地,狭长管道设置在微流控芯片中。微流控芯片设有进液端和出液端。微流控芯片的材料为疏水性材料。在本实施方式中,微流控芯片的材料为石英玻璃。微流控芯片的材料还可以为毛细管、玻璃等疏水材料。将微流控芯片的材质设置为疏水材料,能够防止水溶性高分子溶液粘附在管壁上,从而有利于油包水液滴的生成。
在其中一个实施例中,微流控芯片设有第一进液口、第二进液口和出液口,第一进液口和第二进液口设置在进液端,出液口设置在出液端。狭长管道包括第一通道、第二通道及第三通道,第一通道与第一进液口连通,第二通道与第二进液口连通,第三通道与出液口连通,且第一通道远离第一进液口的一端与第二通道远离第二进液口的一端、第三通道远离出液口的一端相交且连通。油相溶液和水相溶液能够分别由第一进液口和第二进液口注入第一通道和第二通道,并在第三通道内发生交联反应。
具体地,请参阅图2,微流控芯片200设有狭长管道。狭长管道包括呈“Y”型结构的第一通道220和第二通道240,第一通道220、第二通道240与第三通道260相交且连通。第三通道260包括拱形管道262和与拱形管道262连通的直形管道264,拱形管道262远离直形管道264的一端与第一通道220远离第一进液口202的一端、第二通道240远离第二进液口204的一端相交且连通,直形管道264与出液口206连通。
在图示中,拱形管道262包括十个波浪弯道。狭长管道中设置拱形弯道262的目的是:延长距离,使水相溶液和油相溶液混合后,在拱形弯道262内充分交联,从而减少直形管道264的长度,进而减少微流控芯片100的长度。可以理解,波浪弯道的个数不限于十个,还可以为八个、九个或十一个。可以理解,在其他实施方式中,拱形管道262也可以省略。此时,第一通道220与第二通道240的交点与直形管道264直接连通,水相溶液和油相溶液混合后,在直形管道264内充分交联。
微流控芯片的制备过程包括:在疏水性板材上形成第一通道、第二通道及第三通道,然后通过倒模的方法将第一通道、第二通道及第三通道形成于聚二甲基硅氧烷(PDMS)胶的一面,该面与疏水板材通过等离子技术键合,得到微 流控芯片。
微流控技术是一种控制液滴生成、液滴混合、微粒制备的技术,传统方法中已利用微流控芯片实现球形液滴的生成。同时微流控芯片能非常容易实现各种水包油(O/W)、油包水(W/O)、水包油包水(W/O/W)、油包水包油(O/W/O)等乳化液体系。此外,微流控芯片能够精准控制液滴的大小且能够连续大量地产生同样的液滴,在液滴合成或微粒制备的应用中具有巨大的优势。在本实施方式中,采用微流控芯片能够使得到的栓塞剂规整,且能够通过调整微流控芯片内通道的宽度和深度,调整栓塞剂的大小。
步骤S120:将油相溶液和水相溶液交替注入到狭长管道中,水相溶液在狭长管道中发生交联反应,得到反应物。
在其中一些实施例中,水相溶液在狭长管道中发生交联反应的步骤中,交联反应采用热交联的方式。可以理解,在其他实施例中,交联反应还可以采用其他方式,如光交联等。
当微流控芯片为图2所示的结构时,步骤S120为:将油相溶液和水相溶液分别由第一进液口和第二进液口交替注入到第一通道和第二通道中,水相溶液在第三通道内发生交联反应。
具体地,在其中一个实施例中,将油相溶液和水相溶液分别由第一进液口和第二进液口注入到第一通道和第二通道中的步骤包括:将油相溶液与水相溶液分别吸入到一个注射针筒内,每个注射针筒的一端安装在微量注射仪上,每个注射针筒远离微量注射仪的一端与一个硅胶软管连通,每个硅胶软管远离注射针筒的一端与一个钢管连通,两个钢管分别与微流控芯片的第一进液口和第二进液口连通。开启微量注射仪,使油相溶液和水相溶液以流速比为20:1~2:1由注射针筒,经硅胶软管、钢管和第一进液口或第二进液口,注入第一通道和 第二通道。
可以理解,在其他实施例中,将油相溶液与水相溶液注入到微流控芯片的第一通道和第二通道的方式还可以为其他方式。
进一步地,注入油相溶液的硅胶软管的一部分浸泡在65℃热水中,以对油相溶液进行加热,浸入热水的硅胶软管长度确保油相溶液被加热到40℃以上。在其中一个实施例中,注入油相溶液的硅胶软管的长度为125cm,浸泡在热水中的硅胶软管的长度为90cm~110cm,以使油相溶液加热到40℃以上。
进入微流控芯片的水相溶液与油相溶液在第一通道和第二通道的交点处相遇,由于油相溶液中含有利于水相溶液分散的亲油性乳化剂,且油相粘度、设置的流速较大,水相溶液被切割成有一定长度的液滴。长液滴在生成后,在第三通道内实现固化(如油相中扩散出的交联剂与水溶性高分子液滴发生交联反应)并由出液口被排出。
在其中一些实施例中,油相溶液的注入速率和水相溶液的注入速率的比值为20:1~2:1。通过控制油相和水相流速,从而实现对非球形水溶性高分子液滴长度的调控。具体地,在本实施方式中,油相溶液的流速设置为20μL/min,水相溶液流速设置为1μL/min~10μL/min。实验证明,油相溶液和水相溶液的流速为上述值,狭长管道的宽度和高度为0.5mm时,得到的非球形水凝胶微粒栓塞剂的长度为385μm~840μm,宽度为290μm~330μm。
步骤S120中,油相溶液和水相溶液在狭长管道内发生交联反应的时间为1.2min~1.8min,以使油相溶液和水相溶液充分交联固化。步骤S120中可以根据反应时间、第三通道的总长度,调节油相溶液和水相溶液的流速,以使油相溶液和水相溶液在第三通道内充分反应。
步骤S130:将反应物从狭长管道中导出,得到非球形水凝胶微粒栓塞剂。
具体地,将反应物从狭长管道中导出的步骤包括:将出液端浸泡在收集液中,并加热搅拌收集液。其中,收集液包括油溶性溶剂。进一步地,收集液还可以包括交联剂,以使交联剂与反应物反应。进一步地,收集液中油溶性溶剂、亲油性乳化剂和交联剂的质量比为1:(0.02~0.08):(0.075~0.3)。
收集液的制备步骤包括:将油溶性溶剂、亲油性乳化剂与交联剂按质量比为1:(0.02~0.08):(0.075~0.3)混合搅拌,并离心分离,取上清油液,得到收集液,其中油溶性溶剂能够溶解交联剂。收集液用于使水溶性高分子与交联剂充分交联。收集液中亲油性乳化剂的用量较油相溶液中亲油性乳化剂的用量加大是为了防止生成的栓塞剂粘连聚集,使栓塞剂分散在收集液中。
将出液端浸泡在收集液中,并加热搅拌收集液的步骤中在加热的条件下进行,以使水溶性高分子交联完全。具体地,加热的温度为40℃~85℃。搅拌的时间为1h~2h。
具体地,将出液端浸泡在收集液中,并加热搅拌收集液的步骤之后,还包括离心分离,并洗涤的步骤。具体地,离心分离的步骤中,转速为2000rpm,离心时间为2min。洗涤的过程包括:先用丙酮洗涤四次,再用水洗涤三次。洗涤的过程中还伴随震荡的过程,以使栓塞剂上附着的杂质被洗涤掉。
上述非球形水凝胶微粒栓塞剂的制备方法至少具有以下优点:
(1)上述非球形水凝胶微粒栓塞剂的制备方法能够得到非球形水凝胶微粒栓塞剂,且可以通过改变油相溶液和水相溶液的流速比实现非球形水凝胶微粒栓塞剂的长度调控。
(2)上述非球形水凝胶微粒栓塞剂的制备方法得到的栓塞剂较之于球形栓塞微球,能在血管内形成排列状,更容易聚集,达到稳定的栓塞效果。同时,非球形栓塞剂可以增加与血管壁的接触面积,更有利于药物缓释,使药物释放 的覆盖区域更广。
(3)传统的乳液法,在形成乳液过程中,由于油相溶液具有较大粘度,即使通过磁力搅拌,聚乙烯醇溶液也不能很均匀分散在油相之中,这使得制备的聚乙烯醇微球规格齐整度较低。同时在乳化过程中,磁力搅拌不充分时聚乙烯醇溶液可能会沉积在油相溶液底部,使得生成的聚乙烯醇微球黏连成片。而采用上述非球形水凝胶微粒栓塞剂的制备方法得到的栓塞剂规格齐整,且在油相溶液中不易聚集,易于分离。
(4)传统乳化法制备聚乙烯醇微球耗时长且每次制备的量较少,而采用上述非球形水凝胶微粒栓塞剂的制备方法,工艺简单,可以大批量制备栓塞剂。
(5)传统采用拉伸待拉伸体的方法,使待拉伸体的长径比为特定值,得到栓塞剂,但该方法中需要先制备待拉伸体,再使待拉伸体得到待拉伸膜,最后进行拉伸,步骤繁琐,且较难保证栓塞剂的规整性,而采用上述制备方法,在制备过程中使油相溶液和水相溶液在狭长管道中发生交联反应,然后将反应物导出,即能够得到规整的非球形栓塞剂,操作更简单。
以下为具体实施例部分,需要说明的是,实施例1~实施例4中所用到的聚乙烯醇的重均分子量M w为31000~50000,聚合度为87%~89%。
实施例1:
本实施例的非球形水凝胶微粒栓塞剂的制备过程如下:
(1)称量10g PVA固体于烧杯,加入90g纯水,在280rpm的转速下加热搅拌3h,使PVA溶解,得到10wt%PVA溶液。将10wt%PVA溶液与1mol/L的盐酸溶液按体积比为1:1混合,得到酸化的聚乙烯醇溶液,再蘸取少量罗丹明B染料着色,得到水相溶液。
(2)按质量比为1:0.02:0.15分别称取大豆油、span-80和25wt%的戊二醛水溶液于烧杯中,在52℃、280rpm转速下加热搅拌半小时,再以2000rpm的转速离心分离3min后取上层油液,得到油相溶液。
(3)按质量比为1:0.04:0.15分别称取大豆油、span-80和25wt%的戊二醛水溶液于烧杯中,在52℃、280rpm转速下加热搅拌半小时,再以2000rpm的转速离心分离3min后取上层油液,得到收集液。
(4)将油相溶液与水相溶液分别吸入到两个5mL注射器,注射器的针头连接硅胶软管(内径0.5mm,外径2mm),其中油相溶液连接硅胶软管为125cm,水相溶液连接65cm的硅胶软管。两条硅胶软管末端均套上外径1mm的毛细钢管,再将毛细钢管插入到微流控芯片的第一进液口和第二进液口。
(5)将注入油相溶液的硅胶软管的一部分(90cm)浸没在盛有65℃热水的烧杯中,硅胶软管末端离开热水的长度不超过5cm。将盛放热水的烧杯置于加热搅拌器上,设置加热搅拌器的温度为65℃。将两个注射器分别安装到两个微量注射仪上,设置油相溶液流速20μL/min,水相溶液4μL/min。
(6)当看到排出的非球形水凝胶微粒栓塞剂呈长条形且稳定后,将微流控芯片的出液端浸泡在收集液中(收集液刚好没过微流控芯片的出液口),将盛放收集液的烧杯置于加热搅拌器上,并在220rpm的转速和65℃下进行加热搅拌。
(7)按照上述实验设置,注入两相溶液1个小时。撤离微流控芯片,将收集液继续在65℃和220rpm的转速下搅拌一个小时。将收集液转移至离心管,在2000rpm的转速下离心分离2min,去除上层油液,得到粗产物。
(8)向粗产物中加入丙酮溶液,经振荡洗涤后,在2000rpm的转速下离心分离2min,得到沉淀,继续加入丙酮溶液,重复洗涤、离心共四次。最后加入纯水,经振荡洗涤后,在2000rpm的转速下离心分离2min,继续加入水,重复 洗涤、离心共四次,得到纯化后的非球形水凝胶微粒栓塞剂(即PVA栓塞剂)。纯化后的非球形水凝胶微粒栓塞剂可存放于纯水。
将实施例1中得到的非球形水凝胶微粒栓塞剂在显微镜下观察,可发现非球形水凝胶微粒栓塞剂的长度为580μm,宽度为310μm,如图4-a、图4-b、图4-c所示。图中标尺均为500μm。
实施例2
实施例2的非球形水凝胶微粒栓塞剂的制备过程与实施例1中的非球形水凝胶微粒栓塞剂的制备过程相似,不同之处在于:
步骤(5)中,水相溶液流速设置为6μL/min。
将实施例2中得到的非球形水凝胶微粒栓塞剂在显微镜下观察,可发现非球形水凝胶微粒栓塞剂的长度为620μm,宽度为310μm。
实施例3
实施例3的非球形水凝胶微粒栓塞剂的制备过程与实施例1中的非球形水凝胶微粒栓塞剂的制备过程相似,区别在于:
步骤(1)中,10wt%PVA溶液与1mol/L的盐酸溶液按体积比为1:3混合。
步骤(2)中,按质量比为1:0.01:0.075分别称取大豆油、span-80和25%的戊二醛水溶液于烧杯中。
步骤(3)中,按质量比为1:0.02:0.075分别称取大豆油、span-80和25%的戊二醛水溶液于烧杯中。
步骤(5)中,水相溶液流速为2μL/min。
将实施例3中得到的非球形水凝胶微粒栓塞剂在显微镜下观察,可发现非 球形水凝胶微粒栓塞剂的长度为590μm,宽度为450μm。
实施例4
实施例4的非球形水凝胶微粒栓塞剂的制备过程与实施例1中的非球形水凝胶微粒栓塞剂的制备过程相似,区别在于:
步骤(1)中,10wt%PVA溶液与1mol/L的盐酸溶液按体积比为3:1混合。
步骤(2)中,按质量比为1:0.04:0.3分别称取大豆油、span-80和25%戊二醛水溶液于烧杯中。
步骤(3)中,按质量比为1:0.08:0.3分别称取大豆油、span-80和25%戊二醛水溶液于烧杯中。
步骤(5)中,水相溶液流速为10μL/min。
将实施例4中得到的非球形水凝胶微粒栓塞剂在显微镜下观察,可发现非球形水凝胶微粒栓塞剂的长度为740μm,宽度为308μm。
对比例1
对比例1中的球形聚乳酸栓塞剂的制备过程具体如下:
将5%聚乳酸的二氯甲烷溶液作为分散相,2%PVA水溶液作为分散相,在室温条件下通过膜乳化机器制得聚乳酸微球,微球平均粒径为110μm,将微球注射到大鼠去细胞肝脏的血管中,实验结果如附图5。
将实施例2中制备得到的长条形水凝胶微粒栓塞剂(长度为620μm,宽度为310μm)通过200μL枪头注射到兔子的去细胞肝脏中,观察其栓塞效果,如图4-a~图4-d所示。图中标尺均为500μm。
从实施例2和对比例1中的栓塞剂的栓塞效果的比较中可以看出,实施例2 中的长条形水凝胶微粒栓塞剂可以在血管末端排列成直线形状以达到更深的栓塞。同时在较大的血管处,实施例2中的长条形栓塞剂能够横排或通过聚合两个长条形微粒的方式,来实现血管栓塞。而对比例1中的球形栓塞剂在血管中排列松散、不规则,且与血管接触面积较小,更容易从栓塞位点脱离。
需要说明的是,上述栓塞剂所采用的水溶性高分子均为聚乙烯醇,但其他水溶性高分子,如基于聚乙烯醇的共聚物、聚乙二醇、基于聚乙二醇的共聚物等也可以作为水溶性高分子,用于制备栓塞剂,且得到的栓塞剂的效果与由聚乙烯醇得到的栓塞剂的效果相当,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种非球形水凝胶微粒栓塞剂的制备方法,其特征在于,包括如下步骤:
    将油相溶液和水相溶液交替注入到狭长管道中,其中,所述水相溶液中含有待交联的水溶性高分子,所述水相溶液在所述狭长管道中发生交联反应,得到反应物;及
    将所述反应物从所述狭长管道中导出,得到非球形水凝胶微粒栓塞剂。
  2. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述将油相溶液和水相溶液交替注入到狭长管道中的步骤包括:
    提供微流控芯片,所述微流控芯片的材料为疏水性材料且所述微流控芯片具有所述狭长管道;
    将所述油相溶液和所述水相溶液交替注入到所述微流控芯片的所述狭长管道中。
  3. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述油相溶液和所述水相溶液在所述狭长管道中发生交联反应的步骤中,所述交联反应采用热交联的方式。
  4. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述狭长管道具有进液端和出液端,所述将油相溶液和水相溶液交替注入到狭长管道中的步骤中,将所述油相溶液和所述水相溶液交替从所述进液端注入所述狭长管道中,所述将所述反应物从所述狭长管道中导出的步骤包括:将所述出液端浸泡在收集液中,并加热搅拌所述收集液,所述收集液包括油溶性溶剂。
  5. 根据权利要求4所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述收集液中还包括交联剂,以使所述交联剂与所述反应物反应。
  6. 根据权利要求4所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在 于,所述加热搅拌所述收集液的步骤中,加热搅拌的温度为40℃~85℃。
  7. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述狭长管道包括第一通道、第二通道和第三通道,所述第三通道与所述第一通道连通,所述第三通道与所述第二通道连通,所述油相溶液和所述水相溶液分别经所述第一通道和所述第二通道注入到所述狭长管道中,并在所述第三通道内接触,使所述水相溶液发生交联反应。
  8. 根据权利要求7所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述第三通道包括拱形管道和与所述拱形管道连通的直形管道,所述拱形管道远离所述直形管道的一端与所述第一通道连通,且所述拱形管道远离所述直形管道的一端与所述第二通道连通,所述将所述反应物从所述狭长管道中导出的步骤中,将所述反应物从所述直形管道中导出。
  9. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述狭长管道的宽度和高度均小于1mm。
  10. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述油相溶液的注入速率和所述水相溶液的注入速率的比值为20:1~2:1。
  11. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述水相溶液中还含有催化剂,所述水相溶液中,所述水溶性高分子的质量分数为2.5%~7.5%,所述催化剂的浓度为0.25mol/L~0.75mol/L。
  12. 根据权利要求1所述的非球形水凝胶微粒栓塞剂的制备方法,其特征在于,所述油相溶液中含有油溶性溶剂、亲油性乳化剂和交联剂,所述油溶性溶剂、所述亲油性乳化剂与所述交联剂的质量比为1:(0.01~0.04):(0.075~0.3)。
PCT/CN2020/104781 2019-08-02 2020-07-27 非球形水凝胶微粒栓塞剂的制备方法 WO2021023041A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/588,344 US20220160930A1 (en) 2019-08-02 2022-01-31 Preparation method for non-spherical hydrogel microparticle embolic agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910716282.8A CN110585476B (zh) 2019-08-02 2019-08-02 非球形水凝胶微粒栓塞剂的制备方法
CN201910716282.8 2019-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/588,344 Continuation US20220160930A1 (en) 2019-08-02 2022-01-31 Preparation method for non-spherical hydrogel microparticle embolic agent

Publications (1)

Publication Number Publication Date
WO2021023041A1 true WO2021023041A1 (zh) 2021-02-11

Family

ID=68853529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104781 WO2021023041A1 (zh) 2019-08-02 2020-07-27 非球形水凝胶微粒栓塞剂的制备方法

Country Status (3)

Country Link
US (1) US20220160930A1 (zh)
CN (1) CN110585476B (zh)
WO (1) WO2021023041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114748673A (zh) * 2022-04-18 2022-07-15 上海方润介入器械有限公司 一种栓塞微球的加工方法及栓塞微球

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585476B (zh) * 2019-08-02 2022-05-17 南方科技大学 非球形水凝胶微粒栓塞剂的制备方法
CN113425887B (zh) * 2021-07-06 2023-04-18 南方科技大学 一种功能化的形状各向异性水凝胶颗粒栓塞剂及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295180A2 (en) * 2000-06-15 2003-03-26 3M Innovative Properties Company Process for producing microfluidic articles
CN102068409A (zh) * 2011-01-13 2011-05-25 清华大学 一种基于微流控技术制备单分散性微乳、脂质体和微球的方法
EP2556883A1 (en) * 2004-10-12 2013-02-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
CN104173294A (zh) * 2014-08-25 2014-12-03 重庆大学 基于微流控液滴生成技术的pva微球制备方法
CN104588139A (zh) * 2015-01-20 2015-05-06 重庆科技学院 一种制备微球的微流控芯片及使用方法
CN109482111A (zh) * 2018-11-07 2019-03-19 四川大学 子弹状非球形微颗粒和微囊及其制备方法
CN110585476A (zh) * 2019-08-02 2019-12-20 南方科技大学 非球形水凝胶微粒栓塞剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104829850B (zh) * 2015-04-14 2017-07-18 华中科技大学 一种球形海藻酸钙凝胶微粒的制备方法
CN104857576B (zh) * 2015-04-24 2017-04-19 山东省科学院能源研究所 一种同步固化制备聚乙烯醇栓塞微球的方法
GB201609764D0 (en) * 2016-06-03 2016-07-20 Isis Innovation 3D printing of gel networks
CN106947019A (zh) * 2017-03-27 2017-07-14 上海小海龟科技有限公司 一种水凝胶微球的制备方法及装置
CN109821056A (zh) * 2019-02-21 2019-05-31 南方科技大学 栓塞剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295180A2 (en) * 2000-06-15 2003-03-26 3M Innovative Properties Company Process for producing microfluidic articles
EP2556883A1 (en) * 2004-10-12 2013-02-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
CN102068409A (zh) * 2011-01-13 2011-05-25 清华大学 一种基于微流控技术制备单分散性微乳、脂质体和微球的方法
CN104173294A (zh) * 2014-08-25 2014-12-03 重庆大学 基于微流控液滴生成技术的pva微球制备方法
CN104588139A (zh) * 2015-01-20 2015-05-06 重庆科技学院 一种制备微球的微流控芯片及使用方法
CN109482111A (zh) * 2018-11-07 2019-03-19 四川大学 子弹状非球形微颗粒和微囊及其制备方法
CN110585476A (zh) * 2019-08-02 2019-12-20 南方科技大学 非球形水凝胶微粒栓塞剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WANG QIN, ZHANG DI, XU HUIBI, YANG XIANGLIANG, SHEN AMY Q., YANG YAJIANG: "Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, vol. 12, no. 22, 1 January 2012 (2012-01-01), pages 4781, XP055777778, ISSN: 1473-0197, DOI: 10.1039/c2lc40740j *
WANG QIN, ZHANG DI, YANG XIANGLIANG, XU HUIBI, SHEN AMY Q., YANG YAJIANG: "Atom-economical in situ synthesis of BaSO4 as imaging contrast agents within poly(N-isopropylacrylamide) microgels using one-step droplet microfluidics", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 15, no. 8, 1 January 2013 (2013-01-01), GB, pages 2222, XP055777775, ISSN: 1463-9262, DOI: 10.1039/c3gc40728d *
XIAO, AI: "Microfluidic One-step Preparation of Magnetic Poly(Vinyl Alcohol) Microspheres and Their Applications in Interventional Embolization Therapy", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 30 November 2017 (2017-11-30), XP055777780 *
XU S ET AL: "Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, vol. 44, no. 5, 21 January 2005 (2005-01-21), pages 724 - 728, XP002542392, ISSN: 1433-7851, DOI: 10.1002/anie.200462226 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114748673A (zh) * 2022-04-18 2022-07-15 上海方润介入器械有限公司 一种栓塞微球的加工方法及栓塞微球

Also Published As

Publication number Publication date
CN110585476A (zh) 2019-12-20
CN110585476B (zh) 2022-05-17
US20220160930A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
WO2021023041A1 (zh) 非球形水凝胶微粒栓塞剂的制备方法
CN104829850B (zh) 一种球形海藻酸钙凝胶微粒的制备方法
He et al. A modified microfluidic chip for fabrication of paclitaxel-loaded poly (l-lactic acid) microspheres
KR101065807B1 (ko) 액적 기반의 미세유체 칩을 이용한 마이크로 캡슐 제조방법
TWI426087B (zh) 利用有機硼烷胺複合物之聚合物顆粒及膠囊化組合物
Breslauer et al. Generation of monodisperse silk microspheres prepared with microfluidics
JP3601284B2 (ja) 球状ポリアミドの製造方法
Lim et al. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices
JP2018537414A (ja) ゲルマイクロスフェアの作製及び使用のためのシステム及び方法
Zhang et al. A microfluidic approach to fabricate monodisperse hollow or porous poly (HEMA–MMA) microspheres using single emulsions as templates
JPH02238033A (ja) 多孔性重合体ビーズの製造法
CN104892833B (zh) 一种聚丙烯酸中空微凝胶的制备方法
Lee et al. Synthesis and utilization of E. coli‐encapsulated PEG‐based microdroplet using a microfluidic chip for biological application
CN113058511B (zh) 一种寡聚核苷酸载体微球的制备方法
Ahmed et al. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach
CN112495316A (zh) 一种基于亚稳态乳液制备微纳米凝胶微球的方法
CN107216421B (zh) 一种单分散聚苯乙烯微球及其制备方法与应用
CN102010488B (zh) 一种温敏性可降解微水凝胶及其制备和应用
Park et al. Synthesis and characterization of thermosensitive gelatin hydrogel microspheres in a microfluidic system
CN109988323B (zh) 一种常温下快速制备单分散聚乙烯醇微球的方法
Zhang et al. Recent progress in preparation and application of fibers using microfluidic spinning technology
Park et al. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells
Kurashina et al. Simultaneous crosslinking induces macroscopically phase-separated microgel from a homogeneous mixture of multiple polymers
Sivakumaran et al. Fabricating degradable thermoresponsive hydrogels on multiple length scales via reactive extrusion, microfluidics, self-assembly, and electrospinning
EP3615090A1 (en) Biodegradable microspheres incorporating radionuclides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850713

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20850713

Country of ref document: EP

Kind code of ref document: A1