WO2021022565A1 - 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途 - Google Patents

一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途 Download PDF

Info

Publication number
WO2021022565A1
WO2021022565A1 PCT/CN2019/099854 CN2019099854W WO2021022565A1 WO 2021022565 A1 WO2021022565 A1 WO 2021022565A1 CN 2019099854 W CN2019099854 W CN 2019099854W WO 2021022565 A1 WO2021022565 A1 WO 2021022565A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
sucrose
sucrose fatty
preparation
acid ester
Prior art date
Application number
PCT/CN2019/099854
Other languages
English (en)
French (fr)
Inventor
马丁·格哈特·班威尔
徐怀义
蓝平
黄瀚霖
汪勇
梁敏怡
Original Assignee
广州嘉德乐生化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州嘉德乐生化科技有限公司 filed Critical 广州嘉德乐生化科技有限公司
Priority to CN201980003471.9A priority Critical patent/CN110891962A/zh
Priority to PCT/CN2019/099854 priority patent/WO2021022565A1/zh
Publication of WO2021022565A1 publication Critical patent/WO2021022565A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8634Peak quality criteria

Definitions

  • the application relates to the technical field of sucrose esters, and in particular to a sucrose fatty acid ester and a preparation method, quantitative analysis method and application thereof.
  • sucrose fatty acid esters are a class of green non-ionic surfactants, which have the advantages of wide hydrophilic-lipophilic balance, excellent emulsifying properties, non-toxic, and biodegradable. They are widely used in food, Medicine, cosmetics and other industries.
  • the industrial production of sucrose fatty acid esters mainly adopts the transesterification method, which can be subdivided into solvent method and solvent-free method.
  • the sucrose fatty acid ester obtained by these two methods not only contains sucrose fatty acid monoester, sucrose fatty acid diester and Sucrose fatty acid polyesters also contain unreacted sucrose, fatty acid methyl esters, catalysts and other impurities. Among them, the content of sucrose fatty acid monoesters is usually between 20% and 55%, and the monoester content is low, which is not conducive to sucrose fatty acid esters. Applications.
  • sucrose esters mainly relies on high performance liquid chromatography, signal detection and conversion analysis by evaporative light scattering detector.
  • the commonly used content determination method is the external standard method, which is to prepare a standard curve of gradient concentration and measure the sample. Calculate the concentration of the monoester in the peak area of the monoester to calculate the content of the monoester in the sample.
  • Most sucrose ester researchers use column chromatography to separate sucrose monoesters from Mitsubishi sucrose ester products as standard products.
  • the fatty acid raw materials used in the production process are mixed acids containing palmitic acid and stearic acid.
  • the separated monoester is a mixture of sucrose palmitic acid monoester and stearic acid monoester, and then quantitative analysis of the mixed monoester is performed. Such a quantitative method has certain inaccuracies and errors.
  • CN103396460B discloses a method for preparing sucrose esters. First, a small amount of water and free fatty acids in fatty acid methyl esters are removed, and then a solid catalyst is added to the dehydrated fatty acid methyl esters, and sucrose is added in a certain proportion under uniform stirring conditions .
  • the invention uses common industrial alkaline earth metal oxides as solid catalysts. The reaction conditions are mild. The solid catalyst will not remain in the product and can be reused. It is environmentally friendly and reduces costs. However, the content of monoesters in the obtained sucrose ester needs to be Further improve.
  • CN104004033B discloses a method for purifying and separating sucrose fatty acid esters, including the following steps: a. Dissolving and dispersing crude sucrose fatty acid esters in organic solvent A, and recovering sucrose through filtration to obtain a crude sucrose fatty acid ester solution; b. sucrose The crude fatty acid ester solution is added with alkaline earth metal salt under stirring at 25-80°C for metathesis reaction, and then solid-liquid separation is carried out at 5-80°C to obtain filtrate A and solid B; c. The filtrate A is washed with water, distilled to recover the solvent, and dried Sucrose fatty acid ester product A is obtained; d. Solid B is extracted with organic solvent B at 50-80° C.
  • the extract is washed with water, distilled to recover the solvent, and dried to obtain sucrose fatty acid ester product B.
  • the invention has the advantages of simple technical process, less organic solvent usage, less side reactions, high product content and recovery rate, and simultaneously completes the separation of sucrose mono- and double-esters to obtain products with different sucrose mono-ester contents, and the sucrose in the crude sucrose ester can be It has the advantages of recycling, low waste, and easy handling, but the monoester content of the obtained sucrose fatty acid ester is only 75.2%, which still needs to be further improved.
  • CN103087118A discloses a method for purifying sucrose fatty acid ester.
  • the method is to dissolve the crude sucrose ester in an organic solvent that can be separated from water to obtain a crude sucrose ester solution, and add dropwise an aqueous solution of alkaline earth metal salts and/or alkaline earth metal oxides under stirring to make the crude sucrose ester
  • the fatty acid soaps in the solution generate fatty acid alkaline earth metal salts that are insoluble in organic solvents, and then remove the formed solid fatty acid alkaline earth metal salts, then add brine for stirring and extraction, stand still to separate the lower aqueous layer, and cool the supernatant with stirring
  • the temperature reaches 0°C-40°C
  • the sucrose ester crystals are precipitated in the form of precipitation, the liquid is removed to take the solid matter, and the sucrose ester product is obtained after drying.
  • the invention introduces a cooling crystallization process, removes the problem of unreacted raw materials such as fatty acid methyl esters remaining in the product, and further improves the content level of the product.
  • the total ester content in the product reaches more than 98%, but the monoester content The highest is only 71.4%, and it will even be as low as 19.6%, which needs further improvement.
  • one of the objectives of this application is to provide a method for preparing sucrose fatty acid esters.
  • the sucrose fatty acid ester prepared by the method has a high monoester content and a high total monoester yield.
  • This application provides a preparation method of sucrose fatty acid ester, the preparation method includes the following steps:
  • a surfactant is added in the step of the transesterification reaction.
  • the addition of the surfactant can promote the reaction of sucrose and fatty acid methyl esters to form sucrose fatty acid monoesters, thereby preparing sucrose fatty acid esters with high monoester content, up to 91.3% , And the total monoester yield is high, up to 57.0%.
  • the fatty acid methyl ester includes methyl stearate or methyl palmitate, preferably methyl stearate.
  • the added amount of the fatty acid methyl ester is 50-60wt.% of the added amount of sucrose, for example, 51wt.%, 52wt.%, 53wt.%, 54wt.%, 55wt.%, 56wt.%, 57wt. %, 58wt.%, 59wt.%, etc., preferably 58wt.%.
  • the surface active agent includes an ionic surface active agent and/or a nonionic surface active agent.
  • the ionic surfactant includes any one or a combination of at least two of potassium stearate, magnesium stearate and zinc stearate, preferably potassium stearate.
  • potassium stearate has the best promotion effect on the reaction of sucrose and fatty acid methyl esters to form sucrose fatty acid monoesters.
  • the non-ionic surfactant includes any one or a combination of sucrose fatty acid monoester, Tween 20, Mitsubishi S-1570, Span 80 and Mitsubishi S-570, preferably Span 80 and/or Mitsubishi S-570, more preferably Mitsubishi S-570.
  • Tween 20 is polyoxyethylene (20) sorbitan monolaurate; Span 80 is polyoxyethylene (20) sorbitan monooleate; Japan Mitsubishi S-1570 is Japan Mitsubishi Corporation S-1570 Model sucrose ester; Japan Mitsubishi S-570 is the model S-570 sucrose ester of Japan Mitsubishi Corporation.
  • Span 80 and/or Mitsubishi S-570 have a better effect on the reaction of sucrose and fatty acid methyl esters to produce sucrose fatty acid monoesters, especially Mitsubishi S-570 has the best effect.
  • the added amount of the surfactant is 0.5-2wt.% of the added amount of sucrose, such as 0.6wt.%, 0.7wt.%, 0.8wt.%, 0.9wt.% , 1wt.%, 1.1wt.%, 1.2wt.%, 1.3wt.%, 1.4wt.%, 1.5wt.%, 1.6wt.%, 1.7wt.%, 1.8wt.%, 1.9wt.%, etc. , Preferably 1wt.%.
  • the catalyst includes potassium carbonate and/or potassium hydroxide, preferably potassium carbonate.
  • the added amount of the catalyst is 1-4 wt.% of the added amount of sucrose.
  • the solvent includes N,N-dimethylformamide, dimethylsulfoxide, a mixture of N,N-dimethylformamide and toluene or N,N-dimethylformamide A mixture of formamide and tetrahydrofuran, preferably N,N-dimethylformamide.
  • the volume ratio of N,N-dimethylformamide and toluene in the mixture of N,N-dimethylformamide and toluene is 3:1.
  • the volume ratio of N,N-dimethylformamide and tetrahydrofuran in the mixture of N,N-dimethylformamide and tetrahydrofuran is 3:1.
  • step (1) 2-4mL solvent is used for every 1g of sucrose, for example, 2.2mL, 2.5mL, 2.8mL, 3mL, 3.2mL, 3.4mL, 3.5mL, 3.6mL, 3.7mL, 3.8mL, 3.9 mL etc.
  • the temperature of the transesterification reaction in step (1) is 80-120°C, such as 82°C, 85°C, 88°C, 90°C, 92°C, 95°C, 98°C, 100°C, 120°C, etc., It is preferably 100°C.
  • step (1) the transesterification reaction is carried out under reduced pressure.
  • the transesterification reaction is carried out under a pressure condition of 6-12 kPa (for example, 7 kPa, 8 kPa, 9 kPa, 10 kPa, 11 kPa, etc.), and preferably the transesterification reaction is carried out under a pressure condition of 10 kPa.
  • the transesterification reaction time is 2-4h, such as 2.2h, 2.3h, 2.4h, 2.5h, 2.6h, 2.7h, 2.8h, 2.9h, 3h, 3.2h , 3.3h, 3.4h, 3.5h, 3.6h, 3.7h, 3.8h, 3.9h, etc., preferably 3h.
  • step (1) the product of the transesterification reaction is concentrated
  • the concentration method includes any one or a combination of at least two of vacuum distillation, vacuum drying and natural volatilization.
  • step (1) specifically includes: adding sucrose, fatty acid methyl esters accounting for 50-60 wt.% of sucrose addition, catalyst accounting for 1-4 wt.% of sucrose addition, and surface area accounting for 0.5-2 wt.% of sucrose addition
  • the active agent is added to the solvent, and 2-4 mL of solvent is used for each 1 g of sucrose, and the transesterification reaction is performed at 80-120° C. and 6-10 kPa for 3 hours, and the reaction product is concentrated to obtain the crude sucrose fatty acid ester product.
  • the purification method in step (2) includes extraction and/or recrystallization, preferably extraction and recrystallization.
  • the purification method is: first extracting the crude sucrose fatty acid ester product, and then performing recrystallization.
  • the solvent for the extraction is a mixture of n-butanol/brine.
  • the volume ratio of n-butanol and brine in the n-butanol/brine mixture is 1-2:1, preferably 1.5:1.
  • the solvent for recrystallization is a 95% ethanol-water solution.
  • 95% is the volume ratio of ethanol to the solution.
  • the separation method includes filtration.
  • step (2) specifically includes: extracting the crude sucrose fatty acid ester product through a mixture of n-butanol/brine with a volume ratio of 1-2:1, collecting the organic phase, and dissolving the organic phase in Recrystallize in 95% ethanol, filter, and dry the upper solid obtained by filtration to obtain the sucrose fatty acid ester.
  • the second objective of this application is to provide a sucrose fatty acid ester obtained by the preparation method described in one of the objectives.
  • the content of the sucrose fatty acid monoester in the sucrose fatty acid ester is 66-91% by weight, for example 66 %, 67%, 69%, 70%, 72%, 75%, 78%, 80%, 83%, 86%, 87%, 89%, 90%, 91%, etc., preferably 78-91%, more preferably 84-91%.
  • the third objective of this application is to provide a quantitative analysis method of sucrose fatty acid monoesters in sucrose fatty acid esters according to the second objective, which includes the following steps:
  • sucrose and fatty acid are reacted, and the sucrose fatty acid monoester standard product is obtained after column chromatography;
  • sucrose fatty acid monoester standard product is made into standard solutions of different concentrations, and the standard solutions of different concentrations are analyzed by liquid chromatography and integrated to obtain the peak area, and the concentration of the standard solution and the peak area are linearly analyzed , Get the standard curve;
  • the fatty acid includes stearic acid or palmitic acid.
  • the fatty acid is stearic acid
  • the concentration of the standard solution includes 1.5 mg/mL, 1.2 mg/mL, 1.0 mg/mL, 0.7 mg/mL, 0.5 mg/mL, and 0.3 mg/mL.
  • the fatty acid is palmitic acid
  • the concentration of the standard solution includes 2.5 mg/mL, 2.0 mg/mL, 1.7 mg/mL, 1.5 mg/mL, 1.0 mg/mL, and 0.8 mg /mL.
  • the fourth object of the present application is to provide a use of the sucrose fatty acid ester according to the third object, which is used for stabilizing emulsion, foaming, antibacterial or anti-aging.
  • a surfactant is added in the step of the transesterification reaction.
  • the addition of the surfactant can promote the reaction of sucrose and fatty acid methyl esters to form sucrose fatty acid monoesters, thereby preparing sucrose fatty acid esters with high monoester content.
  • the monoester content is 66.1%-91.3%, and the total monoester yield is 42.0%-57.0%.
  • Figure 1 is a liquid phase spectrum obtained in Test Example 1 of the present application.
  • This embodiment provides a method for preparing sucrose fatty acid ester, which specifically includes the following steps:
  • sucrose ester A which has higher monoester content
  • sucrose ester B which has higher monoester content
  • sucrose ester B its content of diester and polyester is relatively high
  • Examples 2-16 and Comparative Example 1 respectively provide preparation methods of sucrose fatty acid esters. The differences from Example 1 are shown in Table 1. Except for the conditions in Table 1, everything else is the same as Example 1.
  • DMF is N,N-dimethylformamide
  • DMSO is dimethyl sulfoxide
  • THF is tetrahydrofuran
  • the slash means no corresponding substance is added.
  • the total yield of monoesters of stearate the amount of total monoesters/the amount of methyl stearate ⁇ 100%.
  • the total yield of palmitic acid monoester the amount of monoester total substance/the amount of methyl palmitate substance ⁇ 100%
  • Example 1 91.3% 31.4% 57.0%
  • Example 2 68.6% 18.9% 43.2%
  • Example 3 69.5% 20.2% 44.1%
  • Example 4 90.8% 20.4% 52.9%
  • Example 5 90.0% 25.2% 51.5%
  • Example 6 87.9% 27.3% 50.1%
  • Example 7 81.8% 23.5% 45.2%
  • Example 8 84.4% 29.5% 49.9%
  • Example 9 80.1% 26.6% 45.7%
  • Example 10 82.8% 24.4% 50.2%
  • Example 11 78.3% 22.4% 42.2%
  • Example 12 74.1% 19.4% 42.0%
  • Example 13 66.1% 18.9% 42.6%
  • Example 14 74.3% 21.3% 43.8%
  • Example 15 81.8% 24.8% 47.7%
  • Example 16 90.0% 26.6% 50.3% Comparative example 1 66.0% 18.3% 39.7%
  • sucrose esters have higher monoester content, and the total monoester The yield is higher.
  • sucrose ester has a higher monoester content and a higher total monoester yield.
  • Example 14 Comparing Example 1 and Example 14, it can be seen that when potassium carbonate is selected as the catalyst (Example 1), the obtained sucrose ester has a higher monoester content and a higher total monoester yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Quality & Reliability (AREA)
  • Saccharide Compounds (AREA)

Abstract

一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途,所述制备方法包括如下步骤:(1)将蔗糖、脂肪酸甲酯、催化剂和表面活性剂加入至溶剂中,进行酯交换反应,得到蔗糖脂肪酸酯粗产品;(2)将所述蔗糖脂肪酸酯粗产品进行纯化、分离,得到所述蔗糖脂肪酸酯。通过在酯交换反应步骤加入表面活性剂,促进蔗糖与脂肪酸甲酯反应生成蔗糖脂肪酸单酯,从而制备得到高单酯含量的蔗糖脂肪酸酯,且单酯总产率高。

Description

一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途 技术领域
本申请涉及蔗糖酯技术领域,尤其涉及一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途。
背景技术
蔗糖脂肪酸酯(也称蔗糖酯)是一类绿色的非离子型表面活性剂,具有亲水亲油平衡值宽、乳化性能优异、无毒、可生物降解等优点,被广泛用于食品、医药、化妆品等行业。目前,蔗糖脂肪酸酯的工业生产主要是采用酯交换法,可细分为溶剂法和无溶剂法,这两种方法得到的蔗糖脂肪酸酯中不仅含有蔗糖脂肪酸单酯、蔗糖脂肪酸二酯和蔗糖脂肪酸多酯,还含有未反应的蔗糖、脂肪酸甲酯、催化剂等杂质,其中,蔗糖脂肪酸单酯的含量通常在20%-55%之间,单酯含量较低,不利于蔗糖脂肪酸酯的应用。
进行蔗糖酯的定量分析主要依靠高效液相色谱法,通过蒸发光散射检测器进行信号检测及转换分析,常用的含量测定方法是外标法,即制备梯度浓度的标准品标准曲线,测出样品中单酯的峰面积,求出单酯浓度,从而计算出样品中单酯的含量。大多数的蔗糖酯研究学者多从三菱蔗糖酯产品中通过柱层析法分离得到蔗糖单酯作为标准品,但是由于生产工艺中所用的脂肪酸原料是包含棕榈酸及硬脂酸的混合酸,所以分离得到的单酯是蔗糖棕榈酸单酯及硬脂酸单酯的混合物,再进行混合单酯的定量分析,这样的定量方法是存在一定的不准确性及误差。
CN103396460B公开了一种蔗糖酯的制备方法,首先除去脂肪酸甲酯中的少量水和自由的脂肪酸,再将固体催化剂加入除水后的脂肪酸甲酯中,搅拌均匀 的条件下按一定的比例加入蔗糖。该发明采用工业上常见的碱土金属氧化物作为固体催化剂,反应条件温和,固体催化剂不会残留在产品中并且可以重复利用,对环境友好降低成本,但是所得到的蔗糖酯中单酯的含量有待进一步提升。
CN104004033B公开了一种蔗糖脂肪酸酯的提纯分离方法,包括如下步骤:a、将蔗糖脂肪酸酯粗品溶解分散于有机溶剂A中,经过滤回收蔗糖后得到蔗糖脂肪酸酯粗品溶液;b、蔗糖脂肪酸酯粗品溶液在25-80℃搅拌下加入碱土金属盐进行复分解反应,然后在5-80℃下进行固液分离得到滤液A和固体B;c、滤液A经水洗、蒸馏回收溶剂、干燥得蔗糖脂肪酸酯产品A;d、固体B再加有机溶剂B于50-80℃萃取,萃取液经水洗、蒸馏回收溶剂、干燥即得蔗糖脂肪酸酯产品B。该发明具有工艺过程简便、有机溶剂使用量少、副反应少、产品含量和回收率高,并同时完成蔗糖单双酯分离而得到不同蔗糖单酯含量的产品,而且蔗糖酯粗品中的蔗糖可回收套用并且三废量少且易处理等优点,但是得到的蔗糖脂肪酸酯的单酯含量最高仅为75.2%,仍有待进一步的提升。
CN103087118A公开了一种蔗糖脂肪酸酯的提纯方法。该方法是将蔗糖酯粗品溶解在能与水分离的有机溶剂中,得到蔗糖酯粗品溶液,在搅拌下滴加溶有碱土金属盐和/或碱土金属氧化物的盐类水溶液,使蔗糖酯粗品溶液中的脂肪酸皂类物质生成不溶于有机溶剂的脂肪酸碱土金属盐,然后除去生成的固体物脂肪酸碱土金属盐,再加入盐水进行搅拌萃取,静置分离下层水层,上清液在搅拌下冷却至0℃-40℃,蔗糖酯结晶物以沉淀的形式析出,除去液体取固体物质,干燥后得到蔗糖酯产品。该发明引入了冷却结晶的工艺过程,去除了未反应原料如脂肪酸甲酯等在产品中的残留的问题,进一步提高了产品的含量等级,产品中总酯含量达到98%以上,但是单酯含量最高仅为71.4%,甚至会低至19.6%,有待进一步提升。
因此,本领域亟待开发一种新的蔗糖脂肪酸酯的制备方法,得到高单酯含量的蔗糖脂肪酸酯,同时需要研究一种误差较小的定量分析方法以检测蔗糖脂肪酸酯中的单酯含量。
发明内容
针对现有技术的不足,本申请的目的之一在于提供一种蔗糖脂肪酸酯的制备方法。所述方法制备得到的蔗糖脂肪酸酯中的单酯含量高、单酯总产率高。
为达此目的,本申请采用如下技术方案:
本申请提供一种蔗糖脂肪酸酯的制备方法,所述制备方法包括如下步骤:
(1)将蔗糖、脂肪酸甲酯、催化剂和表面活性剂加入至溶剂中,进行酯交换反应,得到蔗糖脂肪酸酯粗产品;以及
(2)将所述蔗糖脂肪酸酯粗产品进行纯化、分离,得到所述蔗糖脂肪酸酯。
本申请在酯交换反应的步骤中加入表面活性剂,表面活性剂的加入能够促进蔗糖与脂肪酸甲酯反应生成蔗糖脂肪酸单酯,从而制备得到高单酯含量的蔗糖脂肪酸酯,可达91.3%,且单酯总产率高,可达57.0%。
优选地,步骤(1)中,所述脂肪酸甲酯包括硬脂酸甲酯或棕榈酸甲酯,优选硬脂酸甲酯。
当选择用硬脂酸甲酯或棕榈酸甲酯与蔗糖进行酯交换反应时,表面活性剂促进生成单酯的效果更佳,特别是硬脂酸甲酯,效果最佳。
优选地,所述脂肪酸甲酯的加入量为所述蔗糖加入量的50-60wt.%,例如51wt.%、52wt.%、53wt.%、54wt.%、55wt.%、56wt.%、57wt.%、58wt.%、59wt.%等,优选58wt.%。
优选地,步骤(1)中,所述表面活性剂包括离子型表面活性剂和/或非离子型表面活性剂。
优选地,所述离子型表面活性剂包括硬脂酸钾、硬脂酸镁和硬脂酸锌中的任意一种或至少两种组合,优选硬脂酸钾。
离子型表面活性剂中,硬脂酸钾对于蔗糖与脂肪酸甲酯反应生成蔗糖脂肪酸单酯的促进作用最佳。
优选地,所述非离子型表面活性剂包括蔗糖脂肪酸单酯、吐温20、日本三菱S-1570、司盘80和日本三菱S-570中的任意一种或至少两种组合,优选司盘80和/或日本三菱S-570,进一步优选日本三菱S-570。
其中吐温20为聚氧乙烯(20)山梨醇酐单月桂酸酯;司盘80为聚氧乙烯(20)山梨醇酐单油酸酯;日本三菱S-1570为日本三菱株式会社S-1570型号蔗糖酯;日本三菱S-570为日本三菱株式会社S-570型号蔗糖酯。
非离子型表面活性剂中,司盘80和/或日本三菱S-570对于蔗糖与脂肪酸甲酯反应生成蔗糖脂肪酸单酯的促进作用更佳,特别是日本三菱S-570效果最佳。
优选地,步骤(1)中,所述表面活性剂的加入量为所述蔗糖加入量的0.5-2wt.%,例如0.6wt.%、0.7wt.%、0.8wt.%、0.9wt.%、1wt.%、1.1wt.%、1.2wt.%、1.3wt.%、1.4wt.%、1.5wt.%、1.6wt.%、1.7wt.%、1.8wt.%、1.9wt.%等,优选1wt.%。
优选地,步骤(1)中,所述催化剂包括碳酸钾和/或氢氧化钾,优选碳酸钾。
优选地,步骤(1)中,所述催化剂的加入量为所述蔗糖加入量的1-4wt.%。
优选地,步骤(1)中,所述溶剂包括N,N-二甲基甲酰胺、二甲基亚砜、N,N-二甲基甲酰胺和甲苯的混合物或N,N-二甲基甲酰胺和四氢呋喃的混合物,优选N,N-二甲基甲酰胺。
优选地,所述N,N-二甲基甲酰胺和甲苯的混合物中N,N-二甲基甲酰胺和甲苯的体积比为3:1。
优选地,所述N,N-二甲基甲酰胺和四氢呋喃的混合物中N,N-二甲基甲酰胺和四氢呋喃的体积比为3:1。
优选地,步骤(1)中,每1g蔗糖对应使用2-4mL溶剂,例如2.2mL、2.5mL、2.8mL、3mL、3.2mL、3.4mL、3.5mL、3.6mL、3.7mL、3.8mL、3.9mL等。
优选地,步骤(1)中所述酯交换反应的温度为80-120℃,例如82℃、85℃、88℃、90℃、92℃、95℃、98℃、100℃、120℃等,优选100℃。
优选地,步骤(1)中,所述酯交换反应在减压条件下进行。
优选地,步骤(1)中,所述酯交换反应在6-12kPa(例如7kPa、8kPa、9kPa、10kPa、11kPa等)压力条件下进行,优选所述酯交换反应在10kPa压力条件下进行。
优选地,步骤(1)中,所述酯交换反应的时间为2-4h,例如2.2h、2.3h、2.4h、2.5h、2.6h、2.7h、2.8h、2.9h、3h、3.2h、3.3h、3.4h、3.5h、3.6h、3.7h、3.8h、3.9h等,优选3h。
优选地,步骤(1)中,对所述酯交换反应的产物进行浓缩;
优选地,步骤(1)中,所述浓缩的方法包括减压蒸馏、真空干燥和自然挥发中的任意一种或至少两种组合。
优选地,步骤(1)具体包括:将蔗糖、占蔗糖加入量50-60wt.%的脂肪酸甲酯、占蔗糖加入量1-4wt.%的催化剂和占蔗糖加入量0.5-2wt.%的表面活性剂加入至溶剂中,每1g蔗糖对应使用2-4mL溶剂,在80-120℃、6-10kPa条件下进行酯交换反应3h,将反应产物浓缩,得到蔗糖脂肪酸酯粗产品。
优选地,步骤(2)中所述纯化的方法包括萃取和/或重结晶,优选萃取和重结晶。
优选地,步骤(2)中,所述纯化的方法为:先对所述蔗糖脂肪酸酯粗产品进行萃取,再进行重结晶。
优选地,所述萃取的溶剂为正丁醇/盐水混合物。
优选地,所述正丁醇/盐水混合物中正丁醇和盐水的体积比为1-2:1,优选1.5:1。
优选地,所述重结晶的溶剂为95%的乙醇-水溶液。其中,95%为乙醇占溶液的体积比。
优选地,步骤(2)中,所述分离的方法包括过滤。
优选地,步骤(2)具体包括:将所述蔗糖脂肪酸酯粗产品通过体积比为1-2:1的正丁醇/盐水的混合物进行萃取,收集有机相,将所述有机相溶解于95%的乙醇中进行重结晶,过滤,将过滤得到的上层固体干燥,得到所述蔗糖脂肪酸酯。
本申请的目的之二在于提供一种目的之一所述的制备方法得到的蔗糖脂肪酸酯,按重量计,所述蔗糖脂肪酸酯中蔗糖脂肪酸单酯的含量为66-91%,例如66%、67%、69%、70%、72%、75%、78%、80%、83%、86%、87%、89%、90%、91%等,优选78-91%,进一步优选84-91%。
本申请的目的之三在于提供一种目的之二所述的蔗糖脂肪酸酯中蔗糖脂肪酸单酯的定量分析方法,所述包括如下步骤:
(a)将蔗糖与脂肪酸反应,经柱层析后得到蔗糖脂肪酸单酯标准品;
(b)将所述蔗糖脂肪酸单酯标准品制成不同浓度标准溶液,对所述不同浓度的标准溶液分别进行液相色谱分析并积分得到峰面积,将标准溶液的浓度与峰面积进行线性分析,得到标准曲线;以及
(c)通过所述标准曲线对蔗糖脂肪酸酯中蔗糖脂肪酸单酯含量进行定量分析。
优选地,步骤(a)中,所述脂肪酸包括硬脂酸或棕榈酸。
优选地,步骤(a)中,所述脂肪酸为硬脂酸,所述标准溶液的浓度包括1.5mg/mL、1.2mg/mL、1.0mg/mL、0.7mg/mL、0.5mg/mL和0.3mg/mL。
优选地,步骤(a)中,所述脂肪酸为棕榈酸,所述标准溶液的浓度包括2.5mg/mL、2.0mg/mL、1.7mg/mL、1.5mg/mL、1.0mg/mL和0.8mg/mL。
本申请的目的之四在于提供一种目的之三所述的蔗糖脂肪酸酯的用途,所述蔗糖脂肪酸酯用于稳定乳液、发泡、抑菌或抗老化。
相对于现有技术,本申请的有益效果在于:
本申请在酯交换反应的步骤中加入表面活性剂,表面活性剂的加入能够促进蔗糖与脂肪酸甲酯反应生成蔗糖脂肪酸单酯,从而制备得到高单酯含量的蔗糖脂肪酸酯,单酯含量为66.1%-91.3%,且单酯总产率为42.0%-57.0%。
附图说明
图1是本申请测试例1中得到的液相谱图。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种蔗糖脂肪酸酯的制备方法,具体包括如下步骤:
(1)将5g蔗糖、2.9g硬脂酸甲酯、145mg碳酸钾(催化剂)和50mg硬脂酸钾(表面活性剂)加入至20mL的DMF中,在100℃、10kPa条件下进行酯交换反应3h,将反应产物进行减压蒸馏,得到蔗糖脂肪酸酯粗产品。
(2)将步骤(1)得到的蔗糖脂肪酸酯粗产品通过体积比为1.5:1的正丁醇/盐水的混合物进行萃取,收集有机相,将所述有机相溶解于95%的乙醇-水溶液 中进行重结晶,过滤,取过滤得到的上层固体干燥,得到蔗糖脂肪酸酯A(简称蔗糖酯A,其单酯含量较高),取过滤得到的下层液体,经浓缩和干燥后,得到蔗糖脂肪酸酯B(简称蔗糖酯B,其二酯和多酯含量较高),其中,蔗糖脂肪酸酯A中单酯含量为91.3%,蔗糖脂肪酸酯B中单酯含量为31.4%,单酯总产率为51.0%。
实施例2-16以及对比例1分别提供了蔗糖脂肪酸酯的制备方法,与实施例1的区别如表1所示,除表1中的条件外,其他均与实施例1相同。
表1
Figure PCTCN2019099854-appb-000001
Figure PCTCN2019099854-appb-000002
其中,DMF为N,N-二甲基甲酰胺,DMSO为二甲基亚砜,THF为四氢呋喃,斜杠代表不添加对应物质。
测试例1
上述实施例和对比例中单酯含量以及单酯总产率的分析方法如下:
(a)将蔗糖与硬脂酸反应,经柱层析后得到蔗糖硬脂酸单酯标准品;将蔗 糖与棕榈酸反应,经柱层析后得到蔗糖棕榈酸单酯标准品;使用液相色谱仪water e2695及2424ELSD测试得到蔗糖的出峰时间为0.8分钟,蔗糖棕榈酸单酯标准品的出峰时间为9分钟,蔗糖硬脂酸单酯标准品的出峰时间为17分钟,如图1所示;
(b)配制系列浓度蔗糖棕榈酸单酯样品溶液:
2.5mg/mL、2.0mg/mL、1.7mg/mL、1.5mg/mL、1.0mg/mL、0.8mg/mL;
配制系列浓度蔗糖硬脂酸单酯样品溶液:
1.5mg/mL、1.2mg/mL、1.0mg/mL、0.7mg/mL、0.5mg/mL、0.3mg/mL;
按照上述谱图(图1)的液相条件将标准品的浓度与峰面积进行线性分析,得到标准曲线,蔗糖棕榈酸单酯标准曲线方程为:Y=7000000X-4000000(R 2=0.9900),蔗糖硬脂酸单酯的标准曲线方程为Y=10000000X-2000000(R 2=0.9952),其中Y代表峰面积,X代表浓度。标准曲线的决定系数都趋近于1,可认为标准曲线在一定浓度范围呈线性关系。
(c)通过所制定的曲线对上述实施例和对比例中的样品中单酯含量进行分析检测,并计算单酯总产率,单酯总产率的计算方法为:
硬脂酸单酯总产率=单酯总物质的量/硬脂酸甲酯物质的量×100%。
棕榈酸单酯总产率=单酯总物质的量/棕榈酸甲酯物质的量×100%
测试结果如表2所示。
表2
  蔗糖酯A单酯含量 蔗糖酯B单酯含量 单酯总产率
实施例1 91.3% 31.4% 57.0%
实施例2 68.6% 18.9% 43.2%
实施例3 69.5% 20.2% 44.1%
实施例4 90.8% 20.4% 52.9%
实施例5 90.0% 25.2% 51.5%
实施例6 87.9% 27.3% 50.1%
实施例7 81.8% 23.5% 45.2%
实施例8 84.4% 29.5% 49.9%
实施例9 80.1% 26.6% 45.7%
实施例10 82.8% 24.4% 50.2%
实施例11 78.3% 22.4% 42.2%
实施例12 74.1% 19.4% 42.0%
实施例13 66.1% 18.9% 42.6%
实施例14 74.3% 21.3% 43.8%
实施例15 81.8% 24.8% 47.7%
实施例16 90.0% 26.6% 50.3%
对比例1 66.0% 18.3% 39.7%
由表2可知,实施例中蔗糖酯A单酯含量为66.1%-91.3%,单酯总产率为42.0%-57.0%,而对比例1相对于实施例1仅不加入表面活性剂,得到的蔗糖酯A中单酯含量仅为66.0%,单酯总产率仅为39.7%,与实施例1的91.3%和57.0%相差较大,由此可知,本申请提供的在酯交换反应步骤加入表面活性剂的方法能够明显提高产物蔗糖酯中的单酯含量,且单酯总产率较高。
对比实施例1-3可知,使用硬脂酸钾(实施例1),相对于其他的离子型表面活性剂(实施例2和3),获得的蔗糖酯中单酯含量更高,单酯总产率更高。
对比实施例4-8可知,使用日本三菱S-570和司盘80(实施例4和5),相对于其他类型的非离子型表面活性剂(实施例6-8),得的蔗糖酯中单酯含量更高,单酯总产率更高。
对比实施例1和9可知,使用硬脂酸甲酯与蔗糖反应(实施例1),相较于棕榈酸甲酯(实施例9),获得的蔗糖酯中单酯含量更高,单酯总产率更高。
对比实施例10-13可知,当选用DMF作为酯交换反应的溶剂时(实施例10),得到的蔗糖酯中单酯含量更高,单酯总产率更高。
对比实施例1和实施例14可知,当选用碳酸钾作为催化剂时(实施例1),得到的蔗糖酯中单酯含量更高,单酯总产率更高。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种蔗糖脂肪酸酯的制备方法,其包括如下步骤:
    (1)将蔗糖、脂肪酸甲酯、催化剂和表面活性剂加入至溶剂中,进行酯交换反应,得到蔗糖脂肪酸酯粗产品;以及
    (2)将所述蔗糖脂肪酸酯粗产品进行纯化、分离,得到所述蔗糖脂肪酸酯。
  2. 根据权利要求1所述的制备方法,其中,步骤(1)中,所述脂肪酸甲酯包括硬脂酸甲酯或棕榈酸甲酯。
  3. 根据权利要求2所述的制备方法,其中,步骤(1)中,所述脂肪酸甲酯的加入量为所述蔗糖加入量的50-60wt.%,优选58wt.%。
  4. 根据权利要求1-3中任一项所述的制备方法,其中,步骤(1)中,所述表面活性剂包括离子型表面活性剂和/或非离子型表面活性剂。
  5. 根据权利要求4所述的制备方法,其中,所述离子型表面活性剂包括硬脂酸钾、硬脂酸镁和硬脂酸锌中的任意一种或至少两种组合;并且
    所述非离子型表面活性剂包括蔗糖脂肪酸单酯、吐温20、日本三菱S-1570、司盘80和日本三菱S-570中的任意一种或至少两种组合。
  6. 根据权利要求5所述的制备方法,其中,步骤(1)中,所述表面活性剂的加入量为所述蔗糖加入量的0.5-2wt.%,优选1wt.%。
  7. 根据权利要求1-6中任一项所述的制备方法,其中,步骤(1)中,所述催化剂包括碳酸钾和/或氢氧化钾;并且
    所述催化剂的加入量为所述蔗糖加入量的1-4wt.%。
  8. 根据权利要求1-7中任一项所述的制备方法,其中,步骤(1)中,所述溶剂包括N,N-二甲基甲酰胺、二甲基亚砜、N,N-二甲基甲酰胺和甲苯的混合物或N,N-二甲基甲酰胺和四氢呋喃的混合物。
  9. 根据权利要求8所述的制备方法,其中,所述N,N-二甲基甲酰胺和甲苯 的混合物中N,N-二甲基甲酰胺和甲苯的体积比为3:1;
    优选地,所述N,N-二甲基甲酰胺和四氢呋喃的混合物中N,N-二甲基甲酰胺和四氢呋喃的体积比为3:1;
    优选地,步骤(1)中,每1g蔗糖对应使用2-4mL溶剂。
  10. 根据权利要求1-9中任一项所述的制备方法,其中,步骤(1)中所述酯交换反应的温度为80-120℃,优选100℃;
    优选地,步骤(1)中,所述酯交换反应在减压条件下进行;
    优选地,步骤(1)中,所述酯交换反应在6-12kPa压力条件下进行,优选所述酯交换反应在10kPa压力条件下进行;
    优选地,步骤(1)中,所述酯交换反应的时间为2-4h,优选3h;
    优选地,步骤(1)中,对所述酯交换反应的产物进行浓缩;
    优选地,步骤(1)中,所述浓缩的方法包括减压蒸馏、真空干燥和自然挥发中的任意一种或至少两种组合;
    优选地,步骤(1)具体包括:将蔗糖、占蔗糖加入量50-60wt.%的脂肪酸甲酯、占蔗糖加入量1-4wt.%的催化剂和占蔗糖加入量0.5-2wt.%的表面活性剂加入至溶剂中,每1g蔗糖对应使用2-4mL溶剂,在80-120℃、6-12kPa条件下进行酯交换反应3h,将反应产物浓缩,得到蔗糖脂肪酸酯粗产品。
  11. 根据权利要求1-10中任一项所述的制备方法,其中,步骤(2)中所述纯化的方法包括萃取和/或重结晶,优选萃取和重结晶;
    优选地,步骤(2)中,所述纯化的方法为:先对所述蔗糖脂肪酸酯粗产品进行萃取,再进行重结晶;
    优选地,所述萃取的溶剂为正丁醇/盐水混合物;
    优选地,所述正丁醇/盐水混合物中正丁醇和盐水的体积比为1-2:1,优选 1.5:1;
    优选地,所述重结晶的溶剂为95%的乙醇-水溶液;
    优选地,步骤(2)中,所述分离的方法包括过滤;
    优选地,步骤(2)具体包括:将所述蔗糖脂肪酸酯粗产品通过体积比为1-2:1的正丁醇/盐水的混合物进行萃取,收集有机相,将所述有机相溶解于95%的乙醇中进行重结晶,过滤,将过滤得到的上层固体干燥,得到所述蔗糖脂肪酸酯。
  12. 一种根据权利要求1-11中任一项所述的制备方法得到的蔗糖脂肪酸酯,其包含按重量计含量为66-91%,优选78-91%,进一步优选84-91%的蔗糖脂肪酸单酯。
  13. 一种根据权利要求12所述的蔗糖脂肪酸酯中蔗糖脂肪酸单酯的定量分析方法,其包括如下步骤:
    (a)将蔗糖与脂肪酸反应,经柱层析后得到蔗糖脂肪酸单酯标准品;
    (b)将所述蔗糖脂肪酸单酯标准品制成不同浓度标准溶液,对所述不同浓度的标准溶液分别进行液相色谱分析并积分得到峰面积,将标准溶液的浓度与峰面积进行线性分析,得到标准曲线;以及
    (c)通过所述标准曲线对蔗糖脂肪酸酯中蔗糖脂肪酸单酯含量进行定量分析。
  14. 根据权利要求13所述的定量分析方法,其中,步骤(a)中,所述脂肪酸包括硬脂酸或棕榈酸;
    优选地,步骤(a)中,所述脂肪酸为硬脂酸,所述标准溶液的浓度包括1.5mg/mL、1.2mg/mL、1.0mg/mL、0.7mg/mL、0.5mg/mL和0.3mg/mL;
    优选地,步骤(a)中,所述脂肪酸为棕榈酸,所述标准溶液的浓度包括2.5mg/mL、2.0mg/mL、1.7mg/mL、1.5mg/mL、1.0mg/mL和0.8mg/mL。
  15. 一种根据权利要求12所述的蔗糖脂肪酸酯用于稳定乳液、发泡、抑菌或抗老化的用途。
PCT/CN2019/099854 2019-08-08 2019-08-08 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途 WO2021022565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003471.9A CN110891962A (zh) 2019-08-08 2019-08-08 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途
PCT/CN2019/099854 WO2021022565A1 (zh) 2019-08-08 2019-08-08 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099854 WO2021022565A1 (zh) 2019-08-08 2019-08-08 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途

Publications (1)

Publication Number Publication Date
WO2021022565A1 true WO2021022565A1 (zh) 2021-02-11

Family

ID=69753533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099854 WO2021022565A1 (zh) 2019-08-08 2019-08-08 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途

Country Status (2)

Country Link
CN (1) CN110891962A (zh)
WO (1) WO2021022565A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921060A (zh) * 2021-03-16 2021-06-08 浙江工业大学 一种有机溶剂中脂肪酶催化合成脂肪酸蔗糖酯的方法
CN113151373A (zh) * 2021-03-09 2021-07-23 武汉臻治生物科技有限公司 一种具有抗菌及抗肿瘤活性的蔗糖单酯的制备方法及其应用
CN113201032A (zh) * 2021-05-21 2021-08-03 武汉臻治生物科技有限公司 一种合成高纯度蔗糖单酯的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940054B (zh) * 2021-03-09 2023-01-20 武汉臻治生物科技有限公司 一种高单酯含量蔗糖酯制备方法
CN114929720A (zh) * 2022-04-15 2022-08-19 广州嘉德乐生化科技有限公司 一种具有高单酯含量的蔗糖酯的无溶剂合成方法
CN114806132B (zh) * 2022-06-09 2023-07-04 山东滨州金盛新材料科技有限责任公司 一种高亲水性聚甘油脂肪酸酯-蔗糖脂肪酸酯组合物的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408605A (zh) * 2013-08-02 2013-11-27 广西大学 一种复合超声场强化蔗糖酯合成反应的方法及装置
CN106083944A (zh) * 2016-06-08 2016-11-09 广州嘉德乐生化科技有限公司 一种蔗糖脂肪酸酯的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408605A (zh) * 2013-08-02 2013-11-27 广西大学 一种复合超声场强化蔗糖酯合成反应的方法及装置
CN106083944A (zh) * 2016-06-08 2016-11-09 广州嘉德乐生化科技有限公司 一种蔗糖脂肪酸酯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, ZHAOYANG; LI, WEIMIN; CHEN, QINGLIN: "Synthesis of sucrose fatty acid esters", CHINA OILS AND FATS, vol. 38, no. 8, 31 December 2013 (2013-12-31), pages 54 - 57, XP009525825, ISSN: 1003-7969 *
YANG QINPING, XU GUOLIANG, SHI YIPING, YUAN CHANGGUI, LI ZUYI: "Determination of Sucrose Fatty Acid Esters by HPLC and Thin-layer Chromatography Scanning", JOURNAL OF INSTRUMENTAL ANALYSIS, vol. 18, no. 1, 1 January 1999 (1999-01-01), XP055777605 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151373A (zh) * 2021-03-09 2021-07-23 武汉臻治生物科技有限公司 一种具有抗菌及抗肿瘤活性的蔗糖单酯的制备方法及其应用
CN113151373B (zh) * 2021-03-09 2023-07-04 武汉臻治生物科技有限公司 一种具有抗菌及抗肿瘤活性的蔗糖单酯的制备方法及其应用
CN112921060A (zh) * 2021-03-16 2021-06-08 浙江工业大学 一种有机溶剂中脂肪酶催化合成脂肪酸蔗糖酯的方法
CN112921060B (zh) * 2021-03-16 2024-06-07 浙江工业大学 一种有机溶剂中脂肪酶催化合成脂肪酸蔗糖酯的方法
CN113201032A (zh) * 2021-05-21 2021-08-03 武汉臻治生物科技有限公司 一种合成高纯度蔗糖单酯的方法

Also Published As

Publication number Publication date
CN110891962A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2021022565A1 (zh) 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途
EP2064169B1 (de) Rückgewinnung von bis(diarylphenol)-liganden bei der herstellung von isopulegol
CN101973970B (zh) 抗坏血酸酯的制备工艺
CN102775387B (zh) 一种盐酸法舒地尔的精制方法
CN102924474A (zh) 一种氯吡格雷硫酸氢盐晶型ⅰ的制备方法
JPH07118285A (ja) ショ糖脂肪酸エステルの製造方法
JPS6159720B2 (zh)
JP5092289B2 (ja) 光学活性N−tert−ブチルカルバモイル−L−tert−ロイシンの製造方法
HUE028377T2 (en) Method for cleaning mesotrione
JPWO2013153957A1 (ja) 水素化ビフェノールの製造方法
JP2019081742A (ja) 2,6−ナフタレンジカルボン酸の製造方法
JP4171635B2 (ja) 2−アルキル−2−アダマンチル(メタ)アクリレートの製造方法
EP0380159B1 (en) Process for purifying crude tetrabromobisphenol sulfone by extraction
JP3570760B2 (ja) 2−t−ブチルハイドロキノンの製造方法
JP3484792B2 (ja) テレフタル酸水スラリーの調製方法
JPH051090A (ja) シヨ糖脂肪酸エステルの分離・精製方法
US4269987A (en) Purification of triazoles
WO2017093192A1 (en) Crystallization of 25-hydroxy-7-dehydrocholsterol
JP2874281B2 (ja) ビフェニル―4,4’―ジオールの分離精製方法
JP6503228B2 (ja) 4−ヒドロキシ安息香酸長鎖エステルの精製方法
CN105348167A (zh) 奥拉西坦的精制方法
JP2001026563A (ja) アダマンタンポリオール類の分離方法
WO2023170706A1 (en) A process for the recovery and separation of fatty acids
SU332716A1 (ru) Способ выделени уксусной кислоты из кубового остатка производства винилацетата
JPH0745512B2 (ja) オリザノ−ル構成成分の濃縮精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940675

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19940675

Country of ref document: EP

Kind code of ref document: A1