WO2021020486A1 - 燃料タンクシステム - Google Patents

燃料タンクシステム Download PDF

Info

Publication number
WO2021020486A1
WO2021020486A1 PCT/JP2020/029170 JP2020029170W WO2021020486A1 WO 2021020486 A1 WO2021020486 A1 WO 2021020486A1 JP 2020029170 W JP2020029170 W JP 2020029170W WO 2021020486 A1 WO2021020486 A1 WO 2021020486A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel tank
control
valve
fuel
Prior art date
Application number
PCT/JP2020/029170
Other languages
English (en)
French (fr)
Inventor
亨介 植松
卓也 大島
松永 英雄
篤志 若松
嵩博 筒井
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to US17/631,265 priority Critical patent/US12078130B2/en
Priority to JP2021535411A priority patent/JP7124971B2/ja
Priority to CN202080055059.4A priority patent/CN114207266A/zh
Priority to EP20847109.4A priority patent/EP4006330A4/en
Publication of WO2021020486A1 publication Critical patent/WO2021020486A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This disclosure relates to a fuel tank system.
  • a fuel tank system that seals a fuel tank has been known in order to prevent the release of fuel evaporative gas generated in the fuel tank of a vehicle having an internal combustion engine into the atmosphere (for example, Japanese Patent No. 4110931). And Japanese Patent No. 6015936).
  • the fuel tank system described in Japanese Patent No. 4110931 includes a closed valve for controlling the conduction state between the fuel tank and the canister.
  • the sealing valve is closed while the internal combustion engine is stopped to seal the fuel tank, and the sealing valve is opened when the fuel tank is refueled.
  • 6015936 a closed valve, a first on-off valve that opens and closes between the communication passage and the intake passage of the internal combustion engine, and a second opening and closing that opens and closes between the canister and the communication passage. Equipped with a valve.
  • the sealing valve and the first on-off valve are opened, and the second on-off valve is closed.
  • the fuel tank system described in Japanese Patent No. 4110931 and the fuel tank system described in Japanese Patent No. 6015936 are opened from the closed state in order to diagnose the failure of the closed valve. , Detects changes in pressure inside the fuel tank.
  • the fuel tank system described in Japanese Patent No. 4110931 and the fuel tank system described in Japanese Patent No. 6015936 are devices other than the closed valve (for example, a pressure sensor) among the devices included in the fuel tank system. I have not diagnosed the failure of. Even if a device other than the closed valve included in the fuel tank system fails, the fuel evaporative gas may leak from the fuel tank system. Therefore, if a device other than the closed valve included in the fuel tank system fails, the fuel evaporative gas may be released to the atmosphere.
  • the embodiment of the present disclosure provides a fuel tank system capable of suppressing a decrease in usability.
  • the fuel tank system according to the present disclosure is a fuel tank system for a vehicle having an internal combustion engine.
  • the fuel tank system according to the present disclosure includes a fuel storage unit, a processing unit, and a control unit.
  • the fuel storage unit has a sealing valve and seals the fuel tank for storing fuel.
  • the processing unit processes the fuel evaporative gas in the fuel tank.
  • the control unit diagnoses the failure of the fuel storage unit and the processing unit.
  • the fuel storage unit includes a first pressure detection unit and a second pressure detection unit.
  • the first pressure detection unit detects the pressure in the fuel tank.
  • the second pressure detection unit is arranged at a position different from that of the first pressure detection unit, and detects the pressure in the fuel tank.
  • the control unit has at least one or both of the first pressure value detected by the first pressure detection unit and the second pressure value detected by the second pressure detection unit when the pressure of the fuel tank is changed.
  • the failure part of the fuel storage part and the processing part is identified by the change, and fail-safe control is performed according to the failure part.
  • this fuel tank system two detectors are used to diagnose which of the devices included in the fuel tank system is out of order, identify the failed part, and perform fail-safe control.
  • fail-safe control that uniformly prohibits specific control regardless of the faulty part is not performed.
  • the fail-safe control may include a control that prohibits pressure control and a control that prohibits refueling control.
  • Pressure control reduces the pressure in the fuel tank.
  • Refueling control makes it possible to open the fuel refueling port, which is the refueling port of the fuel tank.
  • the control unit may perform at least one of a control that prohibits pressure control and a control that prohibits refueling control, depending on the faulty part.
  • the processing unit may include a canister, a pressure generating unit, and a third pressure detecting unit.
  • the control unit changes the pressure of the fuel tank when the pressure in the fuel tank is changed by the pressure generating unit, and either or both of the first pressure value and the second pressure value, and the third pressure detecting unit detects the change. 3.
  • the faulty part may be specified in either the first pressure detection unit or the second pressure detection unit.
  • control unit may specify the faulty part as the first tank pressure detection unit and prohibit the pressure control.
  • control unit may specify the faulty part as the second pressure detection unit and prohibit refueling control.
  • the processing unit may have a continuous passage, a first on-off valve, and a second on-off valve.
  • the communication passage may communicate the closed valve with the intake passage of the internal combustion engine.
  • the first on-off valve may open and close between the intake passage and the communication passage.
  • the second on-off valve may open and close between the canister and the communication passage.
  • the control unit When the pressure of the fuel tank is changed by the pressure generating part, the control unit does not change both the first pressure value and the second pressure value, and then closes the second on-off valve to change the pressure of the canister. If the third pressure value does not change when the pressure is increased, the failure site and the failure may be specified as the closing and fixing of the sealing valve.
  • the control unit may identify that the closed valve is closed and stuck, and prohibit pressure control and refueling control.
  • the fuel tank system according to another invention of the present disclosure is a fuel tank system for a vehicle having an internal combustion engine.
  • the fuel tank system according to the present disclosure includes a fuel storage unit, a processing unit, and a control unit.
  • the fuel storage unit has a sealing valve and seals the fuel tank for storing fuel.
  • the processing unit processes the fuel evaporative gas in the fuel tank.
  • the control unit performs a first failure diagnosis and a second failure diagnosis, and diagnoses a failure of the fuel storage unit and the processing unit.
  • the control unit ends the failure diagnosis if the fuel storage unit and the processing unit are normal. If there is a possibility of failure in either or both of the fuel storage unit and the processing unit, the control unit performs a third failure diagnosis and a fourth failure diagnosis to identify the failure site.
  • the failure diagnosis of the fuel storage unit is performed with the closed valve closed.
  • the failure diagnosis of the processing unit is performed with the closed valve closed.
  • the pressure of the fuel tank is changed with the closed valve open to perform the failure diagnosis.
  • the failure diagnosis is performed by opening the processing unit to the atmosphere with the closed valve closed. The control unit performs fail-safe control in response to the faulty part.
  • the first failure diagnosis and the second failure diagnosis by performing the first failure diagnosis and the second failure diagnosis, it is possible to perform a failure diagnosis of the device included in the fuel tank system without opening the sealing valve. Further, in the first failure diagnosis and the second failure diagnosis, the third failure diagnosis and the fourth failure diagnosis are performed only when there is a possibility of failure in either or both of the processing unit and the fuel storage unit. The faulty part can be identified. That is, if all the devices included in the fuel tank system are normal, the failure can be diagnosed without opening the sealing valve even once. In addition, even if there is a possibility of failure in either one or both of the processing section and the fuel storage section, the failure site can be quickly opened by opening the sealing valve once in the third failure diagnosis and the fourth failure diagnosis. Identify and perform fail-safe control. This makes it possible to provide a fuel tank system capable of suppressing a decrease in usability due to fail-safe control.
  • the figure which shows the switching valve in the open state of FIG. The figure which shows the switching valve in the closed state of FIG.
  • the flowchart of the first failure diagnosis performed by the control unit of FIG. The flowchart of the second failure diagnosis performed by the control unit of FIG.
  • the flowchart of the 3rd failure diagnosis performed by the control unit of FIG. The timing chart in the third failure diagnosis of FIG.
  • the flowchart of the 4th failure diagnosis performed by the control unit of FIG. The timing chart in the 4th failure diagnosis of FIG.
  • the fuel tank system 1 includes a fuel storage unit 20, a processing unit 30, and a control unit 40.
  • the fuel tank system 1 is mounted on the vehicle C.
  • the vehicle C is a hybrid vehicle or a plug-in hybrid vehicle having a motor (not shown) and an internal combustion engine 10 and traveling by using one or both of the motor and the internal combustion engine 10. ..
  • the vehicle C has an ignition switch 40a.
  • the ignition switch 40a is electrically connected to an ECU (Electr speciallynic Control Unit) 42 described later.
  • the control unit 40 is activated when the ignition switch 40a is turned on by the user of the vehicle C. Further, the control unit 40 goes into a sleep state when the ignition switch 40a is turned off by the user.
  • the internal combustion engine 10 has an intake passage 10a, a fuel injection valve 10b, and a fuel pipe 10c, and mixes and burns the air sucked from the intake passage 10a and the fuel injected from the fuel injection valve 10b.
  • the fuel storage unit 20 includes a fuel tank 21, a sealing valve 22, a first tank pressure sensor (an example of a first pressure detection unit) 23, a second tank pressure sensor (an example of a second pressure detection unit) 24, and the like. It has a vapor passage 25 and. The fuel storage unit 20 seals the fuel tank 21.
  • the fuel tank 21 includes a fuel filler port 21a, a fuel pump 21b, a fuel cutoff valve 21c, and a leveling valve 21d.
  • the fuel filler port 21a is a fuel inlet to the fuel tank 21.
  • the fuel pump 21b supplies fuel from the fuel tank 21 to the fuel injection valve 10b via the fuel pipe 10c.
  • the fuel cutoff valve 21c prevents the outflow of fuel from the fuel tank 21 to the processing unit 30.
  • the leveling valve 21d controls the liquid level in the fuel tank 21 at the time of refueling. Further, the fuel evaporative gas generated in the fuel tank 21 is discharged to the processing unit 30 via the fuel cutoff valve 21c and the leveling valve 21d.
  • the sealing valve 22 seals the fuel tank 21 by opening and closing the vapor passage 25.
  • the closed valve 22 is an electromagnetic solenoid valve, and the valve is closed when the solenoid solenoid is not energized (OFF), and a drive signal is supplied to the solenoid solenoid from the outside to be energized (ON). It is a normally closed type solenoid valve that opens.
  • the vapor passage 25 communicates the fuel tank 21 with the closed valve 22.
  • the first tank pressure sensor 23 is arranged on the vapor passage 25 and detects the pressure in the fuel tank 21 in the vapor passage 25.
  • the first tank pressure sensor 23 is an absolute pressure sensor, and detects the pressure in the fuel tank 21 as an absolute pressure.
  • the second tank pressure sensor 24 is arranged at a position different from that of the first tank pressure sensor 23.
  • the second tank pressure sensor 24 is arranged above the fuel tank 21.
  • the second tank pressure sensor 24 is a differential pressure type sensor that detects the pressure by the difference from the atmospheric pressure, and detects the pressure in the fuel tank 21 as a gauge pressure.
  • the first tank pressure sensor 23 is mainly provided so that the pressure can be detected even when the pressure in the fuel tank 21 rises.
  • the second tank pressure sensor 24 is provided so as to be able to detect whether or not the pressure in the fuel tank 21 is near the atmospheric pressure mainly when refueling. Therefore, the first tank pressure sensor 23 has a wider range of pressure that can be detected than the second tank pressure sensor 24.
  • the second tank pressure sensor 24 can detect the pressure more accurately than the first tank pressure sensor 23.
  • the processing unit 30 includes a canister 31, a purge passage (continuous passage) 32, a purge valve (an example of a first on-off valve) 33, and a bypass valve (an example of a second on-off valve). ) 34, a negative pressure pump (an example of a pressure generating unit) 35, a switching valve 36, and a canister pressure sensor (an example of a third pressure detecting unit) 37.
  • the processing unit 30 processes by burning the fuel evaporative gas of the fuel tank 21 in the internal combustion engine 10 or by adsorbing the fuel evaporative gas on the canister 31.
  • the canister 31 adsorbs the fuel evaporative gas of the fuel tank 21.
  • the purge passage 32 communicates the closed valve 22 with the intake passage 10a of the internal combustion engine.
  • the canister 31 is provided with activated carbon inside, and the fuel evaporative gas generated in the fuel tank 21 is adsorbed by the activated carbon.
  • the canister 31 is connected to a passage branched from the purge passage 32.
  • the canister 31 is provided to supply the fuel evaporative gas adsorbed by the canister 31 to the intake passage 10a via the purge passage 32.
  • the purge valve 33 opens and closes between the intake passage 10a and the purge passage 32.
  • the purge valve 33 is an electromagnetic solenoid valve, which is opened by an instruction from the control unit 40 during pressure control and purge control (release control) described later to supply fuel evaporative gas to the intake passage 10a. ..
  • the purge valve 33 is a normally closed type solenoid valve that is closed when the solenoid solenoid is not energized (OFF), and is opened when a drive signal is supplied to the solenoid solenoid from the outside and is energized (ON). It is a valve.
  • the bypass valve 34 opens and closes between the canister 31 and the purge passage 32.
  • the bypass valve 34 is a solenoid valve, and in the case of pressure control described later, the bypass valve 34 is closed according to an instruction from the control unit 40 to shut off the supply of fuel evaporative gas to the canister 31.
  • the bypass valve 34 opens according to the instruction from the control unit 40 and supplies the fuel evaporative gas adsorbed on the canister 31 to the purge passage 32.
  • the bypass valve 34 is a normally open type solenoid valve that is opened when the solenoid solenoid is not energized (OFF), and is closed when a drive signal is supplied to the solenoid solenoid from the outside and is energized (ON). It is a valve.
  • the negative pressure pump 35, the switching valve 36, and the canister pressure sensor 37 are provided in the module 38 connected to the canister 31.
  • the module 38 is provided with a canister side passage 38a, an atmosphere side passage 38b, a pump passage 38c, and a bypass passage 38d.
  • the negative pressure pump 35 is provided between the pump passage 38c and the atmospheric side passage 38b.
  • the bypass passage 38d is provided with a reference orifice 38e that generates a reference pressure at the time of leak diagnosis.
  • the canister pressure sensor 37 is provided in the pump passage 38c, and detects the pressure when a negative pressure is generated in the canister 31 by the negative pressure pump 35.
  • the switching valve 36 When the switching valve 36 is open, the canister side passage 38a and the atmosphere side passage 38b communicate with each other to open the canister 31 to the atmosphere.
  • the negative pressure pump 35 When the negative pressure pump 35 operates in this state, a negative pressure corresponding to the diameter of the reference orifice 38e is generated in the pump passage 38c.
  • the control unit 40 stores the value of the negative pressure detected by the canister pressure sensor 37 at this time as the reference pressure Pref.
  • the switching valve 36 communicates the canister side passage 38a and the pump passage 38c in the closed state so that a negative pressure can be generated in the canister 31.
  • the canister pressure sensor 37 detects when the fuel storage unit 20 or the processing unit 30 has a hole larger than the reference orifice 38e.
  • the negative pressure becomes smaller than the reference pressure Ref.
  • the control unit 40 diagnoses the leak of the fuel evaporative gas of the fuel storage unit 20 or the processing unit 30.
  • the switching valve 36 is driven by, for example, an electromagnetic solenoid.
  • the switching valve 36 is in an open state when the electromagnetic solenoid is in a non-energized state (OFF), and is in a closed state when a drive signal is supplied to the electromagnetic solenoid from the outside and is in an energized state (ON).
  • the control unit 40 acquires information from each detection unit of the fuel storage unit 20 and the processing unit 30, and transmits a signal for controlling each valve to each valve.
  • a signal for controlling each valve In the present embodiment, when the term "open control” is used, it means that the control unit 40 transmits a control signal for opening each valve and instructs each valve to actually open the valve. .. Each valve receives the control signal of open control and actually opens if there is no failure.
  • closed control indicates that the control unit 40 transmits a control signal for closing each valve and instructs each valve to actually open the valve. Each valve receives a control signal for closing control and actually closes if there is no failure.
  • the control unit 40 performs at least the first failure diagnosis, the second failure diagnosis, the third failure diagnosis, the fourth failure diagnosis, and the fail-safe control. Further, when the pressure of the fuel tank 21 rises above a certain level, the control unit 40 opens and controls the closed valve 22 and the purge valve 33, closes and controls the bypass valve 34, and lowers the pressure in the fuel tank 21. Take control. Further, when refueling, the control unit 40 controls the opening of the closed valve 22 and the bypass valve 34 to control the pressure of the fuel tank 21 to atmospheric pressure. In this way, the control unit 40 performs pressure control (pressure release control) for reducing the pressure in the fuel tank 21, and if the pressure does not decrease, records that there is an abnormality.
  • pressure control pressure release control
  • control unit 40 opens and controls the purge valve 33 and the bypass valve 34 to perform purge control (release control) in which the fuel evaporative gas adsorbed on the canister 31 is sucked into the operating internal combustion engine 10. Further, the control unit 40 unlocks the fuel lid (not shown) so that the fuel filler port 21a can be opened when the pressure control at the time of refueling is completed, and refueling control for notifying the user of the vehicle C. Do. On the other hand, for example, as a fail-safe control, when the refueling control is prohibited (refueling prohibited), the control unit 40 does not unlock the fuel lid and notifies the user that the refueling is prohibited.
  • control unit 40 has a functional configuration realized by software stored in the ECU 42.
  • the ECU 42 is actually composed of an arithmetic unit including a timer, a memory, and a microcomputer including an input / output buffer and the like.
  • the ECU 42 controls various devices so that the internal combustion engine 10 is in a desired operating state based on signals from each sensor and various devices, as well as maps and programs stored in the memory. Note that various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits). Further, each sensor and each valve are electrically connected to the ECU 42.
  • the ON-OFF corresponding to the various devices in each timing chart indicates a state in which the control unit 40 transmits a control signal instructing the various devices to be energized (ON) or non-energized (OFF). That is, the ON-OFF state of each timing chart does not indicate the actual operating state of various devices.
  • the sensor value in each timing chart is a value acquired from each sensor, and is not a value indicating the actual pressure of various devices. That is, each timing chart is a timing chart corresponding to the control procedure of the control unit 40.
  • FIG. 4 shows a control procedure in the first failure diagnosis performed by the control unit 40.
  • the control unit 40 starts a first failure diagnosis for diagnosing a failure of the fuel storage unit 20 with the sealing valve 22 closed after a lapse of TmIG for a predetermined period (S1).
  • the state in which the closed valve 22 is closed means that the closed valve 22 is closed and controlled, and the control unit 40 does not transmit a control signal instructing the closed valve 22 to energize (ON). is there.
  • the control unit 40 acquires the first pressure value P1 detected by the first tank pressure sensor 23. If the absolute value of the first pressure value P1 is equal to or greater than the first predetermined value D1 (S2 Yes), the control unit 40 proceeds to S3.
  • the control unit 40 acquires a record of the abnormality during pressure control, and if there is no record of the abnormality (S3 Yes), the process proceeds to S4.
  • an abnormality during pressure control means that the pressure control when the pressure of the fuel tank 21 rises above a certain level does not end within a predetermined time, or the pressure control at the time of refueling does not end within a predetermined time. And, when no failure is diagnosed in the fuel storage unit 20 and the processing unit 30 during these controls.
  • the control unit 40 acquires the second pressure value P2 detected by the second tank pressure sensor 24.
  • the control unit 40 calculates the difference between the first pressure value P1 and the second pressure value P2. If the difference is within the predetermined range ⁇ Q (S4 Yes), the control unit 40 proceeds to S5.
  • the predetermined range ⁇ Q is a value preset according to the location where the first tank pressure sensor 23 and the second tank pressure sensor 24 are arranged and the pressure detection characteristics.
  • the control unit 40 diagnoses that the fuel storage unit 20 is normal (S5). Then, the control unit 40 proceeds to the second failure diagnosis for diagnosing the failure of the processing unit 30 with the sealing valve 22 closed (S6).
  • the control unit 40 When the absolute value of the first pressure value P1 is smaller than the first predetermined value D1 (S2 No), when there is a pressure control abnormality (S3 No), the difference between the first pressure value P1 and the second pressure value P2 is predetermined. If it is larger than the range ⁇ Q (S4 No), it is assumed that the fuel storage unit 20 has a failure, and the control unit 40 fails to make a normal diagnosis (S8). That is, the control unit 40 diagnoses that one or more of the first tank pressure sensor 23, the second tank pressure sensor 24, and the vapor passage 25, which the fuel storage unit 20 has, has a failure. When the control unit 40 diagnoses that the fuel storage unit 20 is not normal, the control unit 40 opens and controls the closed valve 22 to perform a third failure diagnosis described later, and identifies the failure portion (S9).
  • control unit 40 diagnoses that the processing unit 30 has a failure in the second failure diagnosis described later (S7 Yes)
  • the control unit 40 opens and controls the sealing valve 22 to perform the third failure diagnosis and determines the failure part. Identify (S9).
  • the control unit 40 starts the negative pressure pump 35 (S21). At this time, the third pressure value P3 detected by the canister pressure sensor 37 drops to the reference pressure Pref. After that, the control unit 40 closes and controls the switching valve 36 to start depressurizing the canister 31 (S22). In this state, if the bypass valve 34 is actually opened according to the instruction from the control unit 40, the purge passage 32 and the canister 31 are depressurized.
  • the control unit 40 acquires the first third pressure value P3 as the acquisition value P31 when the first predetermined period Tm1 elapses (S23 Yes) after the start of depressurization (after the switching valve 36 is closed and controlled). ). The control unit 40 then closes and controls the bypass valve 34 (S25).
  • the control unit 40 acquires the second third pressure value P3 as the acquisition value P32 when the second predetermined period Tm2 elapses after the decompression (S26 Yes).
  • the acquired value P32 of the second third pressure value P3 is equal to or less than the first predetermined pressure PT1 (S28 Yes)
  • the acquired value P31 of the first third pressure value P3 and the second third pressure value P3 The ratio (P32 / P31) of the acquired value P32 of is calculated, and when the ratio is equal to or less than the second predetermined value D2, it is diagnosed that there is no leak in the purge passage 32 (S30).
  • the first acquired value P31 of the third pressure value P3 is a value when the bypass valve 34 is open-controlled, and when the bypass valve 34 is actually open, the canister 31 and the purge passage 32 are included. It is the pressure value in space.
  • the acquired value P32 of the second third pressure value P3 is a value when the bypass valve 34 is closed and controlled, and when the bypass valve 34 is actually closed, only the canister 31 is included and purged.
  • the passage 32 is the pressure value of the space not included. Therefore, if there is no leak in either the canister 31 or the purge passage 32, the ratio of the acquired value P31 and the acquired value P32 is the second predetermined value D2 or less.
  • both the acquired value P31 and the acquired value P32 are maintained in a state where the decompression amount is small. As a result, the ratio of the acquired value P31 and the acquired value P32 becomes the second predetermined value D2 or less.
  • the acquired value P31 is maintained in a state where the reduced pressure amount is small, and the acquired value P32 is maintained in a state where the reduced pressure amount is large. As a result, the ratio of the acquired value P31 and the acquired value P32 becomes larger than the second predetermined value D2.
  • the control unit 40 diagnoses that there is a leak in the purge passage 32 (S38). If the acquired value P32 is larger than the first predetermined pressure PT1 (S28 No), it is diagnosed that there is some kind of failure (for example, the canister 31 may be leaking), and the process proceeds to S37.
  • the control unit 40 opens and controls the purge valve 33 (S31), calculates the difference between the atmospheric pressure P0 and the third pressure value P3, and diagnoses whether this difference is equal to or higher than the second predetermined pressure PT2 (S32). That is, the control unit 40 diagnoses whether the processing unit 30 (canister 31) is maintained at a negative pressure.
  • the control unit 40 diagnoses that the bypass valve 34 is not open-fixed (S33). That is, when the bypass valve 34 is open and fixed, when the purge valve 33 is actually opened, the canister 31 to the intake passage 10a are in a communicating state, and the processing unit 30 is opened to the atmosphere. In this state, the negative pressure of the processing unit 30 cannot be maintained.
  • the control unit 40 can diagnose the presence or absence of open sticking of the bypass valve 34. Therefore, when the difference is smaller than the second predetermined pressure PT2 (S32 No), the control unit 40 diagnoses that the bypass valve 34 is open and stuck (S39). When the control unit 40 diagnoses that the bypass valve 34 is open and stuck, the refueling control is prohibited (refueling prohibited) as a fail-safe control (S41), the process is returned to the first failure diagnosis, and the flag of the failure diagnosis end is recorded. ..
  • the control unit 40 diagnoses that the bypass valve 34 does not open and stick, the control unit 40 controls the bypass valve 34 to open (S34) and calculates the difference between the atmospheric pressure P0 and the third pressure value P3. , Diagnose whether this difference is equal to or less than the third predetermined pressure PT3 (S35). That is, when the bypass valve 34 and the purge valve 33 are actually opened, the canister 31 to the intake passage 10a are in a communicating state, and the processing unit 30 is in a state of being open to the atmosphere. In this state, the third pressure value P3 returns to a value close to the atmospheric pressure P0.
  • the control unit 40 has both the purge valve 33 and the bypass valve 34. Diagnosis is that there is no closure (S36). On the other hand, when the difference between the atmospheric pressure P0 and the third pressure value P3 is larger than the third predetermined pressure PT3 which is a value near the atmospheric pressure (S35 No), the control unit 40 is either the purge valve 33 or the bypass valve 34.
  • Diagnose that one or both may be in a closed-fixed state (S40).
  • the control unit 40 opens the switching valve 36 (S37), ends the process of the second failure diagnosis, and returns to the flow of the first failure diagnosis.
  • the control unit 40 records the diagnosis completion flag.
  • the third failure diagnosis is the state V4 or later shown in the timing chart of FIG.
  • the control unit 40 diagnoses whether or not the negative pressure pump 35 is operating (S50), and if it is not operating (S50 No), activates the negative pressure pump 35 (S51).
  • the control unit 40 controls the opening of the closed valve 22 (S52), controls the closing of the purge valve 33, controls the opening, and controls the closing (S53).
  • the purge valve 33 is not closed and fixed, the fuel tank 21 communicates with the intake passage 10a and becomes the atmospheric pressure P0 (see time t8 to time t9 in FIG. 7).
  • the control unit 40 acquires the second pressure value P2 of the second tank pressure sensor 24 as the acquired value P21, and as the first condition, whether or not the acquired value P21 is within the predetermined pressure range ⁇ Px (range of ⁇ Px to + Px). Is diagnosed (S54). When the first condition is satisfied (S54 Yes), the control unit 40 diagnoses that the second tank pressure sensor 24 has not failed (S69). Here, when the second tank pressure sensor 24 is operating normally, the actual pressure of the fuel tank 21 is the atmospheric pressure P0. Therefore, the acquired value P21 should also be within the predetermined pressure range ⁇ Px near the atmospheric pressure P0 (see the solid line of the second pressure value P2 from time t7 to time t10 in FIG. 7). On the other hand, if the second tank pressure sensor 24 has a shift failure, it shifts from this range and shifts (see the broken line E1 of the second pressure value P2 from time t7 to time t10 in FIG. 7).
  • the control unit 40 closes and controls the switching valve 36 to start depressurizing the fuel tank 21 (S55).
  • the control unit 40 determines whether the change value ⁇ P1 of the first pressure value P1 acquired from the first tank pressure sensor 23 after the switching valve 36 is closed is the fifth predetermined pressure PT5 (for example, 1 kPa). Diagnose whether or not (S56). That is, when the first pressure value P1 shows a constant value even though the control unit 40 controls to open the closed valve 22 to reduce the pressure in the fuel tank 21 (FIG. 7, 1st).
  • the control unit 40 determines whether the change value ⁇ P2 of the second pressure value P2 acquired from the second tank pressure sensor 24 after the switching valve 36 is closed is the fourth predetermined pressure PT4 (for example, 1 kPa). Diagnose whether or not (S57). That is, when the second pressure value P2 shows a constant value even though the control unit 40 controls to open the closed valve 22 to reduce the pressure in the fuel tank 21 (FIG. 7, 1st). It is suspected that the pressure value P is from time t10 to time t11, see the two-dot chain line E3, S57 No), the sealing valve 22 is closed and stuck, and the bypass valve 34 is closed and stuck.
  • the fourth predetermined pressure PT4 for example, 1 kPa
  • the first tank pressure sensor 23 is provided in the vapor passage 25, while the second tank pressure sensor 24 is provided in the upper part of the fuel tank 21. Therefore, it is suspected that the vapor passage 25 is blocked.
  • the control unit 40 can diagnose that there are no failures such as closing and sticking of the sealing valve 22, closing and sticking of the bypass valve 34, and blocking of the vapor passage 25. (S71).
  • the control unit 40 determines whether or not the above-mentioned second and third conditions are satisfied (S58). However, regardless of whether the second condition and the third condition are satisfied (S58 Yes S58 No), the control unit 40 controls the switching valve 36 to close and starts depressurizing the fuel tank 21, and then the third condition. The depressurization is continued until Tm3 elapses for a predetermined period (S59 No). On the other hand, when the third predetermined period Tm3 has elapsed (S59 Yes), the control unit 40 proceeds to S60.
  • the control unit 40 acquires the change value ⁇ P3 of the third pressure value P3 detected by the canister pressure sensor 37 after the switching valve 36 is closed and controlled, and the change value ⁇ P3 of the third pressure value P3 is from the reference pressure Ref. It is diagnosed whether or not the pressure has dropped to the lower sixth predetermined pressure PT6 (S60). When the third pressure value P3 does not reach the sixth predetermined pressure PT6 (S60 No), the control unit 40 continues until the fourth predetermined period Tm4 elapses after depressurization (S74 No). As a result, the control unit 40 causes the module 38 including the negative pressure pump 35 to malfunction or the canister 31 to cause the one or both of the first pressure value P1 and the second pressure value P2 not to change.
  • the control unit 40 performs a combination of the first condition to the third condition with respect to the failure portion causing the one or both of the first pressure value P1 and the second pressure value P2 not to change. Identify. On the other hand, if the third pressure value P3 does not become the sixth predetermined pressure PT6 (S60 No) and the fourth predetermined period Tm4 elapses after depressurization, the process returns to the first failure diagnosis (S74 Yes).
  • the control unit 40 identifies that the first tank pressure sensor 23 is stuck (S72). That is, if the second pressure value P2 changes normally and only the first pressure value P1 does not change, the decompression of the fuel tank 21 is actually performed, and it can be identified that the first tank pressure sensor 23 is stuck. ..
  • the control unit 40 identifies that the first tank pressure sensor 23 is stuck, the pressure control is prohibited as a fail-safe control (S73), the process is returned to the first failure diagnosis, and the failure diagnosis end flag is recorded.
  • the control unit 40 specifies that the vapor passage 25 is blocked (S65) when the second condition is satisfied (S61 Yes) and only the third condition is not satisfied (S62 Yes). That is, if the first pressure value P1 changes normally and only the second pressure value P2 does not change, the second tank pressure sensor 24 is stuck, or the second tank pressure sensor 24 and the first tank pressure sensor 23 It is suspected that the vapor passage 25 between the two is blocked.
  • control unit 40 records that the second tank pressure sensor 24 is not stuck by detecting the pressure in the fuel tank 21 by the second tank pressure sensor 24 while the ignition switch 40a is on. ing. Therefore, the control unit 40 can identify the blockage of the vapor passage 25. When the control unit 40 identifies that the vapor passage 25 is blocked, refueling control and pressure control are prohibited as fail-safe control (S66), the process is returned to the first failure diagnosis, and the failure diagnosis end flag is recorded.
  • fail-safe control S66
  • the control unit 40 diagnoses whether or not the first condition is satisfied (S63). If the first condition is not satisfied (S63 No), the control unit 40 identifies it as a shift failure of the second tank pressure sensor 24 (S67). That is, if the control unit 40 does not have the first tank pressure sensor 23 stuck and the vapor passage 25 is not blocked and only condition 1 is not satisfied, the second pressure value P2 is an abnormal value, so that the second tank It can be identified that the cause is a shift failure of the pressure sensor 24. When the control unit 40 identifies the shift failure of the second tank pressure sensor 24, the control unit 40 prohibits the refueling control as a fail-safe control (S68).
  • the control unit 40 causes sticking of the first tank pressure sensor 23, shift failure of the second tank pressure sensor 24, and blockage of the vapor passage 25. It can be diagnosed that it is not. That is, the failure diagnosis of the device other than the closed valve 22 in the fuel storage unit 20 is completed, the purge valve 33 and the bypass valve 34 of the processing unit 30 are closed and fixed, the closed valve 22 of the fuel storage unit 20 is open and fixed, or It is diagnosed that there is a closed sticking failure, and the process proceeds to the fourth failure diagnosis (S64).
  • the fourth failure diagnosis is the state V6 or later shown in the timing chart of FIG.
  • the control unit 40 controls the bypass valve 34 to be closed (S81) and separates the canister 31 from the purge passage 32.
  • the control unit 40 opens the switching valve 36, opens the canister 31 to the atmosphere (S82), and sets the pressure inside the canister 31 to the reference pressure Pref (see FIG. 9, time t13, third pressure value P3). ).
  • the control unit 40 controls the closing of the sealing valve 22 to seal the fuel tank 21 (S83).
  • the control unit 40 separates the fuel storage unit 20 and the processing unit 30, and advances the failure diagnosis of the purge valve 33, the bypass valve 34, and the sealing valve 22 of the fuel storage unit 20 of the processing unit 30.
  • the control unit 40 opens and controls the purge valve 33 and the bypass valve 34 (S84). As a result, the processing unit 30 communicates with the intake passage 10a and becomes open to the atmosphere (see FIG. 9, time t14 to time t15, third pressure value P3).
  • the control unit 40 identifies that the closed valve 22 is open-fixed (S97). That is, when the first pressure value P and the second pressure value P2 become the atmospheric pressure P0 even though the control unit 40 controls the closing valve 22 (FIG. 9, the time of the first pressure value P).
  • the closed valve 22 is actually open despite the instruction from the control unit 40. Thereby, the control unit 40 can identify that the closed valve 22 is open-fixed.
  • the control unit 40 determines that the closed valve 22 is open-fixed, the refueling control is prohibited as a fail-safe control (S98), the process is returned to the third failure determination, and the failure diagnosis end flag is recorded.
  • the control unit 40 closes the switching valve 36 and starts depressurizing the processing unit 30 (S86).
  • the control unit 40 acquires the third pressure value P3 and diagnoses whether or not the canister 31 has reduced the pressure (S87).
  • the control unit 40 sets the second condition and the third condition in the third failure diagnosis. Obtain the result (S88).
  • the control unit 40 determines that the purge valve 33 is closed and fixed when either one or both of the first pressure value P1 and the second pressure value P2 changes (S88 Yes). Identify (S89). That is, in the third failure diagnosis, when either one or both of the first pressure value P1 and the second pressure value P2 changes, the bypass valve 34 and the closed valve 22 receive a control signal from the control unit 40. It means that it was opened (see FIGS. 6S70 and S71).
  • the control unit 40 can diagnose that the bypass valve 34 is not closed and fixed. Further, the control unit 40 can diagnose that the closed valve 22 is not closed and fixed. As a result, the control unit 40 can identify that the cause of the depressurization of the canister 31 (see FIG. 9, time t15 to time t16, third pressure value P3, broken line E5) is the closing and sticking of the purge valve 33.
  • the control unit 40 determines that the purge valve 33 is closed and stuck, the pressure control and the release control are prohibited as fail-safe control (S90), the process is returned to the third failure diagnosis, and the failure diagnosis end flag is recorded. To do.
  • the control unit 40 specifies that the bypass valve 34 is closed and fixed (S91) when both the first pressure value P1 and the second pressure value P2 do not change (S88 No). ). That is, in the third failure diagnosis, if both the first pressure value P1 and the second pressure value P2 do not change, there is a failure on the passage from the fuel tank 21 to the negative pressure pump 35. That is, it is suspected that the bypass valve 34 is closed or stuck, or the closed valve 22 is closed and stuck. However, in the fourth failure determination, the fact that the canister 31 can reduce the pressure even when the processing unit 30 is open to the atmosphere (see FIG.
  • third pressure value P3, broken line E6 means that the bypass valve 34 Is not actually open and is closed and fixed. Thereby, the control unit 40 can identify that the bypass valve 34 is closed and fixed. When the control unit 40 determines that the bypass valve 34 is closed and stuck, it prohibits refueling control and release control as fail-safe control (S92), returns the process to the third failure diagnosis, and records the flag of the failure diagnosis end. To do.
  • the control unit 40 acquires the results of the second condition and the third condition in the third failure diagnosis (S93).
  • the control unit 40 diagnoses that the purge valve 33 is not closed and fixed and is normal. (S94). That is, in the third failure diagnosis, when either one or both of the first pressure value P1 and the second pressure value P2 changes, the bypass valve 34 and the closed valve 22 receive the control signal of the control unit 40. It means that it actually opened (see Fig. 6, S70 and S71).
  • the fact that the canister 31 cannot reduce the pressure means that the purge valve 33 is not closed and fixed, and is actually opened in response to the control signal of the control unit 40. As a result, the control unit 40 can identify that the purge valve 33 is normal.
  • the control unit 40 diagnoses that the sealing valve 22 is closed and stuck (S95). That is, in the third failure diagnosis, if both the first pressure value P1 and the second pressure value P2 do not change, there is a failure on the passage from the fuel tank 21 to the negative pressure pump 35. That is, it is suspected that the bypass valve 34 is closed or stuck, or the closed valve 22 is closed and stuck.
  • the control unit 40 can identify that the closed valve 22 is closed and fixed.
  • the control unit 40 determines that the closed valve 22 is closed and stuck, the pressure control and the refueling control are prohibited as fail-safe control (S96), the process is returned to the third failure diagnosis, and the flag of the failure diagnosis end is recorded. To do.
  • the failure portion can be identified by using the first tank pressure sensor 23 and the second tank pressure sensor 24.
  • fail-safe control can be performed according to the faulty part. For example, when the first tank pressure sensor 23 is fixed, refueling control is possible if the second tank pressure sensor 24, the sealing valve 22, and the bypass valve 34 are normal. Therefore, when the first tank pressure sensor 23 is fixed, the control unit 40 does not prohibit refueling as a fail-safe control. This makes it possible to provide a fuel tank system capable of suppressing a decrease in usability even when the first tank pressure sensor 23 is fixed. Further, when the first tank pressure sensor 23 is fixed, the release control is not prohibited.
  • control unit 40 does not prohibit the release control when the closed valve 22 is closed and fixed.
  • the fuel evaporative gas adsorbed on the canister 31 can be processed.
  • the control unit 40 does not prohibit pressure control when it is specified that the bypass valve 34 is closed and fixed.
  • the pressure of the fuel tank 21 can be reduced even when it is specified that the bypass valve 34 is closed and fixed.
  • control unit 40 can identify the failure part, it can determine whether pressure control, release control, and refueling control are possible according to the failure part. Therefore, it is not necessary to perform fail-safe control that uniformly prohibits specific control regardless of the faulty part. As a result, the fail-safe control limits the functions of the vehicle C and can prevent the usability from being lowered.
  • control unit 40 can perform the failure diagnosis of the purge valve 33 and the bypass valve 34 without actually opening the closed valve 22 by performing the first failure diagnosis and the second failure diagnosis. That is, if all of these devices included in the fuel tank system 1 are normal, the control unit 40 can diagnose the failure without opening the sealing valve 22 even once.
  • the control unit 40 has a third failure when there is a possibility that the device of either the fuel storage unit 20 and the processing unit 30 or both of them may have a failure.
  • the failure site is identified by performing the diagnosis and the fourth failure diagnosis. Further, since the closed valve 22 is opened in the third failure diagnosis and the closed valve 22 is closed in the fourth failure diagnosis, the control unit 40 can identify the failure site only by opening the closed valve 22 once. As a result, the fuel tank system 1 can suppress the amount of fuel evaporative gas adsorbed on the canister 31.
  • the more times the sealing valve 22 is actually opened the more the sealing valve 22 is consumed. Further, the longer the startup time of the fuel tank system 1, the higher the power consumption. According to the fuel tank system 1, since the control unit 40 can quickly identify the failure portion only by opening the sealing valve 22 once, the first failure diagnosis to the fourth failure diagnosis can be performed in a short time. As a result, the durability of the fuel tank system 1 is improved, and power consumption can be suppressed. As a result, in the fuel tank system 1, not only the deterioration of usability due to the fail-safe control is suppressed, but also the function of the vehicle C is restricted due to the durability of the fuel tank system 1 or the power consumption, and the usability is reduced. It is also possible to suppress a decrease in tee.
  • first tank pressure sensor 23 and the second tank pressure sensor 24 have different arrangements and different detection characteristics, but the present disclosure is not limited thereto.
  • the first tank pressure sensor and the second tank pressure sensor may differ in either arrangement or detection characteristics.
  • the processing unit 30 has a bypass valve 34 as a second on-off valve, but the present disclosure is not limited to this.
  • the control unit 40 may only diagnose whether or not the purge valve 33 is closed and stuck with the closed valve 22 closed.
  • the processing unit 30 uses the negative pressure pump 35 as the pressure generating unit, but the present disclosure is not limited to this.
  • the pressure generating part may be a pressure pump.
  • Fuel tank system 10 Internal combustion engine 10a: Intake passage 20: Fuel storage unit 21: Fuel tank 22: Seal valve 23: First tank pressure sensor (first pressure detection unit) 24: Second tank pressure sensor (second pressure detector) 25: Vapor passage 30: Processing unit 31: Canister 32: Purge passage (continuous passage) 33: Purge valve (first on-off valve) 34: Bypass valve (second on-off valve) 35: Negative pressure pump 36: Switching valve 37: Canister pressure sensor (third pressure detector) 40: Control unit 40a: Ignition switch C: Vehicle P0: Atmospheric pressure P1: First pressure value P2: Second pressure value P3: Third pressure value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

制御部は、燃料タンクを密閉する燃料貯蔵部と、燃料タンクの燃料蒸発ガスを処理する処理部の故障を診断する。燃料貯蔵部の第1圧力検知部は、燃料タンクの圧力を検知する。燃料貯蔵部の第2圧力検知部は、第1圧力検知部と異なる位置に配置され、燃料タンクの圧力を検知する。制御部は、燃料タンクの圧力を変化させた際の、第1圧力検知部で検知した第1圧力値および第2圧力検知部で検知した第2圧力値のいずれか一方、または、両方の変化によって、燃料貯蔵部および処理部の故障部位を特定する。

Description

燃料タンクシステム
 本開示は、燃料タンクシステムに関する。
 従来、内燃機関を有する車両の燃料タンク内で発生した燃料蒸発ガスの大気への放出を防止するために、燃料タンクを密閉する燃料タンクシステムが知られている(例えば、日本国特許4110931号公報および日本国特許6015936号公報)。日本国特許4110931号公報に記載された燃料タンクシステムでは、燃料タンクとキャニスタとの導通状態を制御する密閉弁を備える。日本国特許4110931号公報に記載された燃料タンクシステムでは、内燃機関が停止中は密閉弁を閉じて燃料タンクを密閉し、燃料タンクに給油する際は、密閉弁を開く。日本国特許6015936号公報に記載された燃料タンクシステムでは、密閉弁と、連通路と内燃機関の吸気通路の間を開閉する第1開閉弁と、キャニスタと連通路の間を開閉する第2開閉弁を備える。日本国特許6015936号公報に記載された燃料タンクシステムでは、燃料タンクの圧力を下げる際に、密閉弁および第1開閉弁を開き、第2開閉弁を閉じる。
 また、日本国特許4110931号公報に記載された燃料タンクシステムおよび日本国特許6015936号公報に記載された燃料タンクシステムは、密閉弁の故障を診断するために、密閉弁を閉じた状態から開いて、燃料タンク内の圧力の変化を検知している。
 日本国特許4110931号公報に記載された燃料タンクシステムおよび日本国特許6015936号公報に記載された燃料タンクシステムは、燃料タンクシステムに含まれる装置のうち、密閉弁以外の装置(例えば、圧力センサ)の故障について診断してない。燃料タンクシステムに含まれる密閉弁以外の装置が故障した場合であっても、燃料タンクシステムから燃料蒸発ガスが漏れるおそれがある。このため、燃料タンクシステムに含まれる密閉弁以外の装置が故障すると、燃料蒸発ガスが大気に放出されるおそれがある。
 また、日本国特許4110931号公報に記載された燃料タンクシステムおよび日本国特許6015936号公報に記載された燃料タンクシステムでは、故障部位が特定されていないために、故障部位に対応したフェールセーフ制御ができない。このため、日本国特許4110931号公報に記載された燃料タンクシステムおよび日本国特許6015936号公報に記載された燃料タンクシステムは、故障部位によらず一律に車両の機能を制限するフェールセーフ制御を行う。これによって、ユーザビリティーが低下するという問題がある。
 本開示の実施形態は、ユーザビリティーの低下を抑制できる燃料タンクシステムを提供する。
 本開示に係る燃料タンクシステムは、内燃機関を有する車両の燃料タンクシステムである。本開示に係る燃料タンクシステムは、燃料貯蔵部と、処理部と、制御部と、を備える。燃料貯蔵部は、密閉弁を有し、燃料を貯蔵する燃料タンクを密閉する。処理部は、燃料タンクの燃料蒸発ガスを処理する。制御部は、燃料貯蔵部と、処理部の故障を診断する。燃料貯蔵部は、第1圧力検知部と、第2圧力検知部と、を有する。第1圧力検知部は、燃料タンクの圧力を検知する。第2圧力検知部は、第1圧力検知部と異なる位置に配置され、燃料タンクの圧力を検知する。制御部は、燃料タンクの圧力を変化させた際の、少なくとも第1圧力検知部で検知した第1圧力値および第2圧力検知部で検知した第2圧力値のいずれか一方、または、両方の変化によって、燃料貯蔵部および処理部の故障部位を特定し、故障部位に応じて、フェールセーフ制御を行う。
 この燃料タンクシステムによれば、2つの検知部を用いて、燃料タンクシステムに含まれる装置のうちいずれの装置が故障しているか診断し、故障部位を特定してフェールセーフ制御を行う。これによって、例えば、故障部位によらず一律に特定の制御を禁止するようなフェールセーフ制御を行わない。この結果、フェールセーフ制御によるユーザビリティーの低下を抑制できる燃料タンクシステムを提供できる。
 フェールセーフ制御は、圧力制御を禁止する制御と、給油制御を禁止する制御と、を含んでもよい。圧力制御は、燃料タンクの圧力を下げる。給油制御は、燃料タンクの給油口である燃料給油口を開放可能にする。制御部は、故障部位に応じて、圧力制御を禁止する制御、および給油制御を禁止する制御のうち、少なくともいずれか一つを行ってもよい。
 処理部は、キャニスタと、圧力発生部と、第3圧力検知部と、を有してもよい。制御部は、圧力発生部によって燃料タンクの圧力を変化させた際の、第1圧力値および第2圧力値のいずれか一方、または、両方の変化と、第3圧力検知部によって検知された第3圧力値の変化と、によって、故障部位を第1圧力検知部および第2圧力検知部のいずれか一方に特定してもよい。
 制御部は、第3圧力値および第2圧力値が変化し、第1圧力値が変化しない場合に、故障部位を第1タンク圧力検知部に特定し圧力制御を禁止してもよい。
 制御部は、第3圧力値および第1圧力値が変化し、第2圧力値が変化しない場合に、故障部位を第2圧力検知部に特定し給油制御を禁止してもよい。
 処理部は、連通路と、第1開閉弁と、第2開閉弁と、を有してもよい。連通路は、密閉弁と内燃機関の吸気通路とを連通してもよい。第1開閉弁は、吸気通路と連通路の間を開閉してもよい。第2開閉弁は、キャニスタと連通路の間を開閉してもよい。制御部は、密閉弁を閉制御し、第1開閉弁および第2開閉弁を開制御した際に、第1圧力値および第2圧力値の両方が大気圧となった場合に、故障部位およびその故障を密閉弁の開固着に特定してもよい。制御部は、密閉弁の開固着であると特定し、給油制御を禁止してもよい。
 制御部は、圧力発生部によって燃料タンクの圧力を変化させた際に、第1圧力値および第2圧力値の両方が変化せず、その後、第2開閉弁を閉してキャニスタの圧力を変化させた際に、第3圧力値が変化しない場合に、故障部位およびその故障を密閉弁の閉固着に特定してもよい。制御部は、密閉弁の閉固着であると特定し、圧力制御および給油制御を禁止してもよい。
 本開示の別の発明に係る燃料タンクシステムは、内燃機関を有する車両の燃料タンクシステムである。本開示に係る燃料タンクシステムは、燃料貯蔵部と、処理部と、制御部と、を備える。燃料貯蔵部は、密閉弁を有し、燃料を貯蔵する燃料タンクを密閉する。処理部は、燃料タンクの燃料蒸発ガスを処理する。制御部は、第1故障診断と、第2故障診断と、を行い、燃料貯蔵部および処理部の故障を診断する。制御部は、燃料貯蔵部および処理部が正常であれば故障診断を終了する。制御部は、燃料貯蔵部および処理部のいずれ一方、または、両方に故障の可能性があれば、第3故障診断と、第4故障診断と、を行い、故障部位を特定する。第1故障診断は、密閉弁を閉じた状態で燃料貯蔵部の故障診断を行う。第2故障診断は、密閉弁を閉じた状態で処理部の故障診断を行う。第3故障診断は、密閉弁を開いた状態で燃料タンクの圧力を変化させて故障診断を行う。第4故障診断は、密閉弁を閉じた状態で処理部を大気開放状態にして故障診断を行う。制御部は、故障部位に対応して、フェールセーフ制御を行う。
 この燃料タンクシステムによれば、第1故障診断と、第2故障診断を行うことによって、密閉弁を開くことなく、燃料タンクシステムに含まれる装置の故障診断を行える。さらに、第1故障診断と、第2故障診断において、処理部および燃料貯蔵部のいずれか一方、または、両方に故障の可能性があるときのみ、第3故障診断と、第4故障診断を行って、故障部位を特定できる。すなわち、燃料タンクシステムに含まれる装置が、全て正常であれば、密閉弁を一度もあけることなく、故障の診断ができる。また、処理部および燃料貯蔵部のいずれか一方、または、両方に故障の可能性があっても、第3故障診断と、第4故障診断で一回密閉弁を開くだけで迅速に故障部位を特定し、フェールセーフ制御を行う。これによって、フェールセーフ制御よるユーザビリティーの低下を抑制できる燃料タンクシステムを提供できる。
本開示の一実施形態に係る燃料タンクシステムの構成を示す図。 図1の開状態の切替弁を示す図。 図1の閉状態の切替弁を示す図。 図1の制御部が行う第1故障診断のフローチャート。 図1の制御部が行う第2故障診断のフローチャート。 図1の制御部が行う第3故障診断のフローチャート。 図6の第3故障診断におけるタイミングチャート。 図1の制御部が行う第4故障診断のフローチャート。 図8の第4故障診断におけるタイミングチャート。
 以下、本開示の実施形態について、図面を参照しながら説明する。
 図1に示すように、燃料タンクシステム1は、燃料貯蔵部20と、処理部30と、制御部40と、を備える。燃料タンクシステム1は、車両Cに搭載される。本実施形態では、車両Cは、モータ(図示せず)と内燃機関10を有し、モータおよび内燃機関10のどちらか一方、または、両方を用いて走行するハイブリット車やプラグインハイブリッド車である。また、車両Cはイグニッションスイッチ40aを有する。イグニッションスイッチ40aは、後述するECU(Electrоnic Control Unit)42と電気的に接続される。制御部40は、車両Cのユーザによってイグニッションスイッチ40aがオンされることで、起動する。また、制御部40は、ユーザによってイグニッションスイッチ40aがオフされることで、スリープ状態になる。内燃機関10は、吸気通路10aと、燃料噴射弁10bと、燃料配管10cを有し、吸気通路10aから吸入した空気と、燃料噴射弁10bから噴射した燃料を混合して燃焼させる。
 燃料貯蔵部20は、燃料タンク21と、密閉弁22と、第1タンク圧センサ(第1圧力検知部の一例)23と、第2タンク圧センサ(第2圧力検知部の一例)24と、ベーパ通路25と、を有する。燃料貯蔵部20は、燃料タンク21を密閉する。
 燃料タンク21は、燃料給油口21aと、燃料ポンプ21bと、燃料カットオフバルブ21cと、レベリングバルブ21dと、を含む。燃料給油口21aは、燃料タンク21への燃料注入口である。燃料ポンプ21bは、燃料を燃料タンク21から燃料配管10cを経由して燃料噴射弁10bに供給する。燃料カットオフバルブ21cは、燃料タンク21から処理部30への燃料の流出を防止する。レベリングバルブ21dは、給油時に燃料タンク21内の液面を制御する。また、燃料タンク21内で発生した燃料蒸発ガスは、燃料カットオフバルブ21cおよびレベリングバルブ21dを経由して、処理部30に排出される。
 密閉弁22は、ベーパ通路25を開閉することで、燃料タンク21を密閉する。本実施形態では、密閉弁22は、電磁ソレノイドバルブであり、電磁ソレノイドが無通電の状態(OFF)で閉弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると開弁状態となるノーマルクローズタイプの電磁弁である。ベーパ通路25は、燃料タンク21と密閉弁22とを連通する。
 第1タンク圧センサ23は、ベーパ通路25上に配置され、ベーパ通路25において燃料タンク21内の圧力を検知する。第1タンク圧センサ23は、絶対圧センサであり、燃料タンク21内の圧力を絶対圧として検知する。
 第2タンク圧センサ24は、第1タンク圧センサ23と異なる位置に配置される。本実施形態では、第2タンク圧センサ24は、燃料タンク21の上部に配置される。第2タンク圧センサ24は、大気圧との差によって圧力を検知する差圧式のセンサであり、燃料タンク21内の圧力をゲージ圧として検知する。
 第1タンク圧センサ23は、主として燃料タンク21内の圧力が上昇した場合であっても圧力が検知できるように設けられる。一方、第2タンク圧センサ24は、主として給油する際に燃料タンク21内の圧力が大気圧近傍にあるか否かを検知できるように設けられる。このため、第1タンク圧センサ23は、第2タンク圧センサ24よりも検知できる圧力の幅が広い。一方、第2タンク圧センサ24は、第1タンク圧センサ23よりも圧力を精度よく検知できる。
 図1および図2に示すように、処理部30は、キャニスタ31と、パージ通路(連通路)32と、パージ弁(第1開閉弁の一例)33と、バイパス弁(第2開閉弁の一例)34と、負圧ポンプ(圧力発生部の一例)35と、切替弁36と、および、キャニスタ圧センサ(第3圧力検知部の一例)37と、を備える。処理部30は、燃料タンク21の燃料蒸発ガスを内燃機関10で燃焼させる、または、燃料蒸発ガスをキャニスタ31に吸着させることで処理する。
 キャニスタ31は、燃料タンク21の燃料蒸発ガスを吸着する。パージ通路32は、密閉弁22と内燃機関の吸気通路10aとを連通する。キャニスタ31は、内部に活性炭を具備し、燃料タンク21で発生した燃料蒸発ガスを活性炭によって吸着する。キャニスタ31は、パージ通路32から分岐した通路に接続される。キャニスタ31は、キャニスタ31が吸着した燃料蒸発ガスを、パージ通路32を介して吸気通路10aに供給するために設けられる。
 パージ弁33は、吸気通路10aとパージ通路32の間を開閉する。本実施形態では、パージ弁33は、電磁ソレノイドバルブであり、後述する圧力制御、パージ制御(放出制御)の際に、制御部40からの指示によって開いて燃料蒸発ガスを吸気通路10aに供給する。パージ弁33は、例えば電磁ソレノイドが無通電の状態(OFF)で閉弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると開弁状態となるノーマルクローズタイプの電磁弁である。
 バイパス弁34は、キャニスタ31とパージ通路32の間を開閉する。本実施形態では、バイパス弁34は、電磁ソレノイドバルブであり、後述する圧力制御の場合に、制御部40からの指示によって閉じてキャニスタ31への燃料蒸発ガスの供給を遮断する。一方、バイパス弁34は、パージ制御(放出制御)の場合に、制御部40からの指示によって開いてキャニスタ31に吸着された燃料蒸発ガスをパージ通路32に供給する。バイパス弁34は、例えば電磁ソレノイドが無通電の状態(OFF)で開弁状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)となると閉弁状態となるノーマルオープンタイプの電磁弁である。
 負圧ポンプ35、切替弁36、および、キャニスタ圧センサ37は、キャニスタ31に接続されるモジュール38内に設けられる。図2に示すように、モジュール38には、キャニスタ側通路38aと、大気側通路38bと、ポンプ通路38cと、バイパス通路38dが設けられる。負圧ポンプ35は、ポンプ通路38cと大気側通路38bの間に設けられる。バイパス通路38dには、リーク診断時の基準となる圧力を発生させる基準オリフィス38eが設けられる。キャニスタ圧センサ37は、ポンプ通路38cに設けられ、負圧ポンプ35でキャニスタ31内に負圧を発生させた際の圧力を検知する。
 切替弁36は、開状態ではキャニスタ側通路38aと大気側通路38bとを連通し、キャニスタ31を大気開放状態にする。この状態で、負圧ポンプ35が稼働すると、基準オリフィス38eの径に応じた負圧がポンプ通路38cに発生する。制御部40は、このときのキャニスタ圧センサ37で検知する負圧の値を基準圧Prefとして記憶する。一方、図3に示すように、切替弁36は、閉状態ではキャニスタ側通路38aとポンプ通路38cとを連通し、キャニスタ31に負圧を発生可能な状態にする。このような状態で、負圧ポンプ35がキャニスタ31に負圧を発生させると、燃料貯蔵部20または処理部30に基準オリフィス38eよりも大きな穴が存在する場合に、キャニスタ圧センサ37で検知する負圧が基準圧Prefよりも小さくなる。制御部40は、このようにして燃料貯蔵部20または処理部30の燃料蒸発ガスのリークを診断する。切替弁36は、例えば電磁ソレノイドで駆動される。切替弁36は、電磁ソレノイドが無通電の状態(OFF)であるときには開状態となり、電磁ソレノイドに外部から駆動信号が供給され通電の状態(ON)のときには閉状態となる。
 制御部40は、燃料貯蔵部20および処理部30の各検知部からの情報を取得し、各弁を制御するための信号を各弁に送信する。なお、本実施形態において、「開制御」と記す場合は、制御部40が各弁を開いた状態にするための制御信号を送信し、各弁に実際に開くように指示をすることを示す。各弁は、開制御の制御信号をうけて、故障がなければ実際に開く。また、「閉制御」と記す場合も同様に、制御部40が各弁を閉じた状態にするための制御信号を送信し、各弁に実際に開くように指示をすることを示す。各弁は、閉制御の制御信号をうけて、故障がなければ実際に閉じる。
 制御部40は、少なくとも、第1故障診断と、第2故障診断と、第3故障診断と、第4故障診断と、フェールセーフ制御と、を行う。また、制御部40は、燃料タンク21の圧力が一定以上に上昇した場合に、密閉弁22およびパージ弁33を開制御し、バイパス弁34を閉制御して、燃料タンク21内の圧力を下げる制御を行う。また、制御部40は、給油する際に、密閉弁22およびバイパス弁34を開制御して、燃料タンク21の圧力を大気圧にする制御を行う。このように、制御部40は、燃料タンク21内の圧力を下げる圧力制御(圧抜き制御)を行い、圧力が低下しない場合は異常があるとして記録する。また、制御部40は、パージ弁33およびバイパス弁34を開制御して、キャニスタ31に吸着した燃料蒸発ガスを運転中の内燃機関10に吸わせるパージ制御(放出制御)を行う。さらに、制御部40は、給油する際の圧力制御が完了すると、燃料給油口21aを開放可能なように、フューエルリッド(図示せず)のロックを解除し、車両Cのユーザに報知する給油制御を行う。一方、制御部40は、例えば、フェールセーフ制御として、給油制御が禁止(給油禁止)された場合は、フューエルリッドのロックを解除せず、給油が禁止されている旨をユーザに報知する。
 また、本実施形態では、制御部40は、ECU42に記憶されるソフトウェアによって実現される機能構成である。ECU42は、実際には、タイマーを含む演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成される。ECU42は、各センサおよび各種装置からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、内燃機関10が、所望の運転状態となるように各種装置を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。また、各センサと、各バルブは、ECU42と電気的に接続される。
 次に図4、図5、図6、および、図8のフローチャート、図7、および、図9のタイミングチャートを用いて、制御部40の制御手順について説明する。なお、各タイミングチャートの各種装置に対応するON-OFFは、各種装置に通電(ON)、無通電(OFF)を指示する制御信号を、制御部40が各種装置に送信した状態を示す。すなわち、各タイミングチャートのON-OFF状態は、実際の各種装置の作動状態を示すものではなない。また、各タイミングチャートの、センサの値は、各センサから取得した値であり、実際の各種装置の圧力を示す値ではない。すなわち、各タイミングチャートは、制御部40の制御手順に対応したタイミングチャートである。
 図4は、制御部40が行う第1故障診断における制御手順を示す。制御部40は、イグニッションスイッチ40aがオフされたのち、所定期間TmIG経過後に密閉弁22を閉じた状態で燃料貯蔵部20の故障を診断する第1故障診断を開始する(S1)。ここで、密閉弁22を閉じた状態とは、密閉弁22を閉制御した状態ということであり、制御部40が密閉弁22に通電(ON)を指示する制御信号を送信していない状態である。制御部40は、第1タンク圧センサ23で検知した第1圧力値P1を取得する。制御部40は、第1圧力値P1の絶対値が第1所定値D1以上であれば(S2 Yes)、S3へ処理を進める。
 制御部40は、圧力制御中の異常の記録を取得し、異常の記録がなければ(S3 Yes)S4に処理を進める。ここで、圧力制御中の異常とは、燃料タンク21の圧力が一定以上に上昇した際の圧力制御が所定時間内に終了しない場合、給油する際の圧力制御が所定時間内に終了しない場合、および、これら制御中に燃料貯蔵部20および処理部30に何らかの故障が診断されてない場合、である。
 制御部40は、第2タンク圧センサ24で検知した第2圧力値P2を取得する。制御部40は、第1圧力値P1と第2圧力値P2との差を算出する。制御部40は、差が所定範囲ΔQ以内である場合は(S4 Yes)、S5に処理を進める。上記のとおり、第1タンク圧センサ23と、第2タンク圧センサ24は、配置される場所、および、圧力の検知特性が異なる。このため、燃料タンク21内の実際の圧力値は同一であるにもかかわらず、第1圧力値P1および第2圧力値P2は、所定範囲ΔQ以内の差をもつ。この所定範囲ΔQは、第1タンク圧センサ23および第2タンク圧センサ24の配置される場所、および、圧力の検知特性に応じて予め設定された値である。
 制御部40は、燃料貯蔵部20が正常であると診断する(S5)。そして、制御部40は、密閉弁22を閉じた状態で処理部30の故障を診断する第2故障診断に進む(S6)。
 なお、第1圧力値P1の絶対値が第1所定値D1より小さい場合(S2 No)、圧力制御異常がある場合(S3 No)、第1圧力値P1と第2圧力値P2の差が所定範囲ΔQより大きい場合(S4 No)は、燃料貯蔵部20に故障があるとして、制御部40は正常診断不成立とする(S8)。すなわち、制御部40は、燃料貯蔵部20が有する、第1タンク圧センサ23、第2タンク圧センサ24、およびベーパ通路25のいずれか一つ、または、複数に故障があると診断する。制御部40は、燃料貯蔵部20が正常でないと診断した場合は、密閉弁22を開制御して、後述する第3故障診断を行い、故障部位を特定する(S9)。
 また、制御部40は、後述する第2故障診断において、処理部30に故障があると診断した場合は(S7 Yes)、密閉弁22を開制御して第3故障診断を行い、故障部位を特定する(S9)。
 次に図5のフローチャートを用いて、制御部40が行う第2故障診断における制御手順を説明する。なお、第2故障診断は、バイパス弁34を開制御した状態で開始される。
 制御部40は、負圧ポンプ35を起動する(S21)。このとき、キャニスタ圧センサ37で検知した第3圧力値P3が基準圧Prefまで下がる。その後、制御部40は、切替弁36を閉制御してキャニスタ31の減圧を開始する(S22)。この状態では、制御部40からの指示によって実際にバイパス弁34が開いた状態であれば、パージ通路32とキャニスタ31が減圧される。制御部40は、減圧開始後(切替弁36を閉制御してから)第1所定期間Tm1経過した場合に(S23 Yes)、1回目の第3圧力値P3を取得値P31として取得する(S24)。制御部40は、その後バイパス弁34を閉制御する(S25)。制御部40は、減圧後第2所定期間Tm2経過した場合に(S26 Yes)、2回目の第3圧力値P3を取得値P32として取得する。そして2回目の第3圧力値P3の取得値P32が第1所定圧力PT1以下の場合は(S28 Yes)、1回目の第3圧力値P3の取得値P31と、2回目の第3圧力値P3の取得値P32の比(P32/P31)を算出し、比が第2所定値D2以下の場合に、パージ通路32にリークが無いと診断する(S30)。
 すなわち、1回目の第3圧力値P3の取得値P31はバイパス弁34を開制御している際の値であり、実際にバイパス弁34が開いている場合は、キャニスタ31とパージ通路32を含む空間の圧力値である。一方、2回目の第3圧力値P3の取得値P32は、バイパス弁34を閉制御している際の値であり、実際にバイパス弁34が閉じている場合は、キャニスタ31のみを含み、パージ通路32は含まない空間の圧力値である。よって、キャニスタ31およびパージ通路32のいずれにもリークがなければ、取得値P31と、取得値P32の比は第2所定値D2以下になる。また、キャニスタ31のみにリークの可能性がある場合も、取得値P31、および取得値P32のいずれも、減圧量が小さい状態で維持される。この結果、取得値P31と、取得値P32の比は第2所定値D2以下になる。一方、パージ通路32にリークがあれば、取得値P31は、減圧量が小さい状態で維持され、取得値P32は、減圧量が大きい状態で維持される。この結果、取得値P31と、取得値P32の比は第2所定値D2よりも大きくなる。このように、制御部40は、取得値P31と、取得値P32の比が、第2所定値D2よりも大きい場合は(S29 No)、パージ通路32にリークがあると診断する(S38)。また、取得値P32が第1所定圧力PT1よりも大きい場合は(S28 No)、なんらかの故障(例えば、キャニスタ31がリークしている可能性)があると診断し、S37に処理を進める。
 次に、制御部40は、パージ弁33を開制御し(S31)、大気圧P0と第3圧力値P3の差を算出し、この差が第2所定圧力PT2以上か診断する(S32)。つまり、制御部40は、処理部30(キャニスタ31)が負圧に維持されているかを診断する。制御部40は、差が第2所定圧力PT2以上の場合は(S32 Yes)、バイパス弁34の開固着なしと診断する(S33)。すなわち、バイパス弁34が開固着ありの場合に、パージ弁33が実際に開くと、キャニスタ31から吸気通路10aまでが連通状態となり、処理部30が大気開放された状態となる。この状態となると、処理部30の負圧は維持できなくなる。これによって、制御部40は、バイパス弁34の開固着の有無を診断できる。したがって、制御部40は、差が第2所定圧力PT2より小さい場合は(S32 No)、バイパス弁34の開固着ありと診断する(S39)。制御部40は、バイパス弁34の開固着ありと診断すると、フェールセーフ制御として給油制御を禁止(給油禁止)し(S41)、処理を第1故障診断に戻し、故障診断終了のフラグを記録する。
 一方、制御部40がバイパス弁34の開固着なしと診断した場合に、制御部40は、バイパス弁34を開制御して(S34)、大気圧P0と第3圧力値P3の差を算出し、この差が第3所定圧力PT3以下か診断する(S35)。すなわち、バイパス弁34およびパージ弁33が実際に開いた状態では、キャニスタ31から吸気通路10aまでが連通状態となり、処理部30が大気開放された状態となる。この状態となると、第3圧力値P3は大気圧P0に近い値まで戻る。もし、第3圧力値P3が大気圧P0近傍まで戻らない場合は、パージ弁33およびバイパス弁34のいずれか一方、または両方が閉固着の状態である。そこで、制御部40は、大気圧P0と第3圧力値P3の差が大気圧近傍の値である第3所定圧力PT3以下の場合は(S35 Yes)、パージ弁33およびバイパス弁34の両方の閉固着なしと診断する(S36)。一方、制御部40は、大気圧P0と第3圧力値P3の差が大気圧近傍の値である第3所定圧力PT3よりも大きい場合は(S35 No)、パージ弁33およびバイパス弁34のいずれか一方、または両方が閉固着の状態にある可能性があると診断する(S40)。制御部40は、以上の診断を終えると、切替弁36を開状態にして(S37)、第2故障診断の処理を終了し、第1故障診断のフローに戻る。制御部40は、診断が完了した場合は、診断完了フラグを記録する。
 次に図6のフローチャートおよび、図7のタイミングチャートを用いて、制御部40が行う第3故障診断における制御手順を説明する。第3故障診断は、図7のタイミングチャートに示す状態V4以降である。
 第3故障診断において、制御部40は、負圧ポンプ35が稼働中か否か診断し(S50)、稼働していない場合は(S50 No)、負圧ポンプ35を起動させる(S51)。制御部40は、密閉弁22を開制御し(S52)、パージ弁33を閉制御し、開制御し、また閉制御する(S53)。これによって、もしパージ弁33が閉固着していなければ、燃料タンク21は、吸気通路10aと連通し、大気圧P0となる(図7 時刻t8から時刻t9参照)。
 制御部40は、第2タンク圧センサ24の第2圧力値P2を取得値P21として取得し、第1条件として取得値P21が所定圧力範囲ΔPx(-Pxから+Pxの範囲)以内にあるか否かを診断する(S54)。制御部40は、第1条件が成立している場合は(S54 Yes)、第2タンク圧センサ24が故障していないと診断する(S69)。ここで、第2タンク圧センサ24が、正常に作動している場合、燃料タンク21の実際の圧力は大気圧P0となる。従って、取得値P21も大気圧P0近傍の所定圧力範囲ΔPx以内の値となるはずである(図7 時刻t7から時刻t10の第2圧力値P2の実線参照)。一方、第2タンク圧センサ24がシフト故障していると、この範囲からシフトしてずれる(図7 時刻t7から時刻t10の第2圧力値P2の破線E1参照)。
 制御部40は、切替弁36を閉制御して、燃料タンク21の減圧を開始する(S55)。制御部40は、第2条件として第1タンク圧センサ23から取得した第1圧力値P1の、切替弁36を閉制御してからの変化値ΔP1が、第5所定圧力PT5(例えば1kPa)か否かを診断する(S56)。すなわち、制御部40が密閉弁22を開制御して、燃料タンク21を減圧するように制御しているにもかかわらず、第1圧力値P1が一定の値を示す場合は(図7 第1圧力値Pの時刻t10から時刻t11 2点鎖線E2参照 S56 No)、第1タンク圧センサ23の固着、密閉弁22の閉固着、バイパス弁34の閉固着が疑われる。一方、制御部40は、第1圧力値P1が変化すれば(S56 Yes)、第1タンク圧センサ23の固着、密閉弁22の閉固着、および、バイパス弁34の閉固着、の各故障がないと診断できる(S70)。
 制御部40は、第3条件として第2タンク圧センサ24から取得した第2圧力値P2の、切替弁36を閉制御してからの変化値ΔP2が、第4所定圧力PT4(例えば1kPa)か否かを診断する(S57)。すなわち、制御部40が密閉弁22を開制御して、燃料タンク21を減圧するように制御しているにもかかわらず、第2圧力値P2が一定の値を示す場合は(図7 第1圧力値Pの時刻t10から時刻t11 2点鎖線E3参照 S57 No)、密閉弁22の閉固着、バイパス弁34の閉固着が疑われる。また、第1タンク圧センサ23は、ベーパ通路25に設けられる一方、第2タンク圧センサ24は燃料タンク21の上部に設けられる。このため、ベーパ通路25の閉塞も疑われる。一方、制御部40は、第2圧力値P2が変化すれば(S57 Yes)、密閉弁22の閉固着、バイパス弁34の閉固着、およびベーパ通路25の閉塞、の各故障がないと診断できる(S71)。
 制御部40は、上述の第2条件かつ第3条件が成立したか否か判定する(S58)。しかし、制御部40は、第2条件かつ第3条件が成立したか否かにかかわらず(S58 Yes S58 No)、切替弁36を閉制御して燃料タンク21の減圧を開始してから第3所定期間Tm3経過するまで、減圧を続ける(S59 No)。一方、制御部40は、第3所定期間Tm3経過した場合は(S59 Yes)、S60へ処理を進める。
 制御部40は、キャニスタ圧センサ37によって検知した第3圧力値P3の、切替弁36を閉制御してからの変化値ΔP3を取得し、第3圧力値P3の変化値ΔP3が基準圧Prefよりも低い第6所定圧力PT6まで下がったか否かを診断する(S60)。制御部40は、第3圧力値P3が第6所定圧力PT6とならない場合は(S60 No)、減圧後第4所定期間Tm4経過まで続ける(S74 No)。これによって、制御部40は、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方の値が変化しない原因について、負圧ポンプ35を含むモジュール38の作動不良や、キャニスタ31のリークや閉塞、の故障ではないことが診断できる。そこで、制御部40は、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方の値が変化しない原因となる故障部位について、第1条件から第3条件の組み合わせ行うことによって特定する。一方、第3圧力値P3が第6所定圧力PT6とならず(S60 No)、減圧後第4所定期間Tm4経過した場合は、処理を第1故障診断に戻す(S74 Yes)。
 制御部40は、第2条件のみが成立しない場合は、第1タンク圧センサ23の固着ありと特定する(S72)。すなわち、第2圧力値P2が正常に変化し、第1圧力値P1のみが変化しなければ、燃料タンク21の減圧は実際に行われており、第1タンク圧センサ23の固着ありと特定できる。制御部40は、第1タンク圧センサ23の固着と特定すると、フェールセーフ制御として圧力制御を禁止し(S73)、処理を第1故障診断に戻し、故障診断終了のフラグを記録する。
 制御部40は、第2条件は成立し(S61 Yes)、第3条件のみ成立しない場合は(S62 Yes)、ベーパ通路25の閉塞と特定する(S65)。すなわち、第1圧力値P1が正常に変化し、第2圧力値P2のみが変化しなければ、第2タンク圧センサ24の固着、もしくは、第2タンク圧センサ24と、第1タンク圧センサ23の間にあるベーパ通路25の閉塞が疑われる。
 ここで、制御部40は、イグニッションスイッチ40aがオンの間に、第2タンク圧センサ24によって燃料タンク21内の圧力を検知することで、第2タンク圧センサ24の固着が無いことを記録している。このため、制御部40は、ベーパ通路25の閉塞と特定できる。制御部40は、ベーパ通路25の閉塞と特定すると、フェールセーフ制御として給油制御および圧力制御を禁止し(S66)、処理を第1故障診断に戻し、故障診断終了のフラグを記録する。
 制御部40は、第2条件かつ第3条件が成立した場合は(S62 Nо、S58 Yes)、第1条件が成立したか否か診断する(S63)。制御部40は、第1条件が成立しない場合は(S63 No)、第2タンク圧センサ24のシフト故障と特定する(S67)。すなわち、制御部40は、第1タンク圧センサ23の固着、および、ベーパ通路25の閉塞もなく、条件1のみが成立しない場合は、第2圧力値P2が異常値であるため、第2タンク圧センサ24のシフト故障が原因であると特定できる。制御部40は、第2タンク圧センサ24のシフト故障と特定すると、フェールセーフ制御として給油制御を禁止する(S68)。一方、制御部40は、第1条件が成立した場合は(S63 Yes)、第1タンク圧センサ23の固着、第2タンク圧センサ24のシフト故障、および、ベーパ通路25の閉塞のいずれも発生していないと診断できる。すなわち、燃料貯蔵部20のうち密閉弁22を除く装置の故障診断が完了し、処理部30のパージ弁33およびバイパス弁34の閉固着、燃料貯蔵部20の密閉弁22の開固着、または、閉固着の故障があると診断し、第4故障診断へ処理を進める(S64)。
 次に図8のフローチャートおよび、図9のタイミングチャートを用いて、制御部40が行う第4故障診断における制御手順を説明する。第4故障診断は、図9のタイミングチャートに示す状態V6以降である。
 第4故障診断において、制御部40は、バイパス弁34を閉制御し(S81)、キャニスタ31をパージ通路32から分離する。この状態で、制御部40は、切替弁36を開状態にし、キャニスタ31を大気開放状態にし(S82)、キャニスタ31内の圧力を基準圧Prefにする(図9 時刻t13 第3圧力値P3参照)。その後、制御部40は、密閉弁22を閉制御して燃料タンク21を密閉する(S83)。これによって、制御部40は、燃料貯蔵部20と、処理部30を分離し、処理部30のパージ弁33、バイパス弁34、および、燃料貯蔵部20の密閉弁22の故障診断を進める。
 制御部40は、パージ弁33およびバイパス弁34を開制御する(S84)。これによって、処理部30は、吸気通路10aと連通し大気開放状態になる(図9 時刻t14から時刻t15 第3圧力値P3参照)。制御部40は、この状態で第1圧力値P1および第2圧力値P2が大気圧P0になった場合(S85 Yes)、密閉弁22は開固着していると特定する(S97)。すなわち、制御部40は、密閉弁22を閉制御しているにもかかわらず、第1圧力値Pおよび第2圧力値P2が大気圧P0になる場合は(図9 第1圧力値Pの時刻t14から時刻t15 1点鎖線E4参照)、制御部40の指示にもかかわらず、実際は密閉弁22が開いた状態である。これによって、制御部40は、密閉弁22は開固着していると特定できる。制御部40は、密閉弁22が開固着していると特定すると、フェールセーフ制御として給油制御を禁止し(S98)、第3故障判定に処理を戻し、故障診断終了のフラグを記録する。
 制御部40は、第1圧力値P1および第2圧力値P2に変化が無い場合は(S85 Nо)、切替弁36を閉じて処理部30の減圧を開始する(S86)。制御部40は、第3圧力値P3を取得し、キャニスタ31が減圧したか否か診断する(S87)。
 制御部40は、処理部30が大気開放状態にもかかわらず、キャニスタ31が減圧し第3圧力値P3が変化した場合は(S87 Yes)、第3故障診断における第2条件および第3条件の結果を取得する(S88)。制御部40は、第3故障診断において、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方が変化した場合は(S88 Yes)、パージ弁33が閉固着していると特定する(S89)。すなわち、第3故障診断において、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方が変化した場合は、バイパス弁34および密閉弁22は、制御部40からの制御信号によって開いたということである(図6 S70およびS71参照)。これによって、制御部40は、バイパス弁34は閉固着してないと診断できる。また、制御部40は、密閉弁22は閉固着していないと診断できる。この結果、制御部40は、キャニスタ31が減圧した(図9 時刻t15から時刻t16 第3圧力値P3 破線E5参照)原因が、パージ弁33の閉固着であると特定できる。制御部40は、パージ弁33が閉固着していると特定すると、フェールセーフ制御として圧力制御および放出制御を禁止し(S90)、処理を第3故障診断に戻し、故障診断終了のフラグを記録する。
 制御部40は、第3故障判定において、第1圧力値P1および第2圧力値P2の両方が変化しなかった場合は(S88 No)、バイパス弁34が閉固着していると特定する(S91)。すなわち、第3故障診断において、第1圧力値P1および第2圧力値P2の両方が変化しなかった場合は、燃料タンク21から負圧ポンプ35の通路上に故障がある。つまり、バイパス弁34の閉固着、または、密閉弁22の閉固着が疑われる。しかし、第4故障判定において、処理部30が大気開放状態であるにかかわらず、キャニスタ31が減圧できる(図9 時刻t15から時刻t16 第3圧力値P3 破線E6参照)ということは、バイパス弁34が実際には開いておらず閉固着しているということである。これによって、制御部40は、バイパス弁34が閉固着していると特定できる。制御部40は、バイパス弁34が閉固着していると特定すると、フェールセーフ制御として給油制御および放出制御を禁止し(S92)、処理を第3故障診断に戻し、故障診断終了のフラグを記録する。
 制御部40は、キャニスタ31が減圧せず第3圧力値P3が変化しなかった場合は(S87 No)、第3故障診断における第2条件および第3条件の結果を取得する(S93)。制御部40は、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方が変化した場合は(S93 Yes)、パージ弁33は閉固着しておらず正常であると診断する(S94)。すなわち、第3故障診断において、第1圧力値P1および第2圧力値P2のいずれか一方、または、両方が変化した場合は、バイパス弁34および密閉弁22は、制御部40の制御信号をうけて実際に開いたということである(図6 S70およびS71参照)。これに加えて、第4故障診断において、キャニスタ31が減圧できないということは、パージ弁33は閉固着しておらず、制御部40の制御信号をうけて実際に開いたとうことである。この結果、制御部40は、パージ弁33が正常であることを特定できる。
 制御部40は、第1圧力値P1および第2圧力値P2の両方が変化しなかった場合は(S93 No)、密閉弁22が閉固着していると診断する(S95)。すなわち、第3故障診断において、第1圧力値P1および第2圧力値P2の両方が変化しなかった場合は、燃料タンク21から負圧ポンプ35の通路上に故障がある。つまり、バイパス弁34の閉固着、または、密閉弁22の閉固着が疑われる。しかし、第4故障判定において、処理部30が大気開放状態であり、キャニスタ31が減圧できないということは、バイパス弁34は、実際に開いており閉固着していないということである。これによって、制御部40は、密閉弁22が閉固着していると特定できる。制御部40は、密閉弁22が閉固着していると特定すると、フェールセーフ制御として圧力制御および給油制御を禁止し(S96)、処理を第3故障診断に戻し、故障診断終了のフラグを記録する。
 以上説明した通り、燃料タンクシステム1によれば、第1タンク圧センサ23と、第2タンク圧センサ24を用いて故障部位を特定できる。これによって、故障部位に応じたフェールセーフ制御ができる。例えば、第1タンク圧センサ23が固着している場合に、第2タンク圧センサ24、密閉弁22、およびバイパス弁34が正常でれば給油制御は可能である。このため、制御部40は、第1タンク圧センサ23が固着している場合に、フェールセーフ制御として給油禁止は行わない。これによって、第1タンク圧センサ23が固着している場合であっても、ユーザビリティーの低下を抑制できる燃料タンクシステムを提供できる。また、第1タンク圧センサ23が固着している場合は、放出制御も禁止しない。これによって、燃料タンク21の圧力が上昇することを防止できる。このため、燃料タンク21の圧力が上昇することによる車両Cの機能が制限されることを抑制できる。この結果、ユーザビリティーの低下を抑制できる。
 また、制御部40は、密閉弁22の閉固着の場合は、放出制御を禁止しない。これによってキャニスタ31に吸着した燃料蒸発ガスを処理できる。この結果、キャニスタ31の燃料蒸発ガス吸着量が過大となることによる車両Cの機能が制限されることを防止できる。さらに、バイパス弁34の閉固着であれば、制御部40がバイパス弁34を閉制御して行う圧力制御に影響がない。このため、制御部40は、バイパス弁34の閉固着であると特定された場合は、圧力制御を禁止しない。これによって、バイパス弁34の閉固着であると特定された場合であっても、燃料タンク21の圧力を下げることができる。この結果、燃料タンク21の圧力が上昇することによる車両の機能が制限されることを抑制できる。
 すなわち、制御部40は、故障部位が特定できるので、故障部位に応じて、圧力制御、放出制御、および給油制御が可能か否か判断できる。このため、故障部位によらず一律に特定の制御を禁止するようなフェールセーフ制御を行う必要がない。この結果、フェールセーフ制御によって、車両Cの機能が制限され、ユーザビリティーが低下することを抑制できる。
 さらに、制御部40は、第1故障診断、および、第2故障診断を行うことによって、パージ弁33およびバイパス弁34の故障診断を、密閉弁22を実際に開くことなくできる。すなわち、制御部40は、燃料タンクシステム1に含まれるこれら装置が、全て正常であれば、密閉弁22を一度もあけることなく、故障の診断ができる。
 また、制御部40は、第1故障診断および第2故障診断において、燃料貯蔵部20および処理部30のいずれか一方、または、両方が有する装置に故障の可能性がある場合に、第3故障診断および第4故障診断を行うことによって、故障部位を特定する。さらに、第3故障診断において密閉弁22を開き、第4故障診断において密閉弁22を閉じるので、制御部40は、密閉弁22を1回開くだけで故障部位を特定できる。これによって、燃料タンクシステム1は、キャニスタ31に吸着する燃料蒸発ガスの量を抑制できる。
 さらに、密閉弁22が実際に開く回数が多いほど、密閉弁22が消耗する。また、燃料タンクシステム1の起動時間が長いほど、消費電力が多くなる。燃料タンクシステム1によれば、制御部40は、密閉弁22を1回開くだけで故障部位を迅速に特定できるので、短時間で第1故障診断から第4故障診断を行える。これによって、燃料タンクシステム1の耐久性が向上し、消費電力も抑えることができる。この結果、燃料タンクシステム1では、フェールセーフ制御によるユーザビリティーの低下を抑制するだけでなく、燃料タンクシステム1の耐久性、または、消費電力が原因となって車両Cの機能が制限され、ユーザビリティーが低下することも抑制できる。
 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
 上記実施形態では、第1タンク圧センサ23および第2タンク圧センサ24は、異なる配置かつ、異なる検知特性を有するが、本開示はこれに限定されない。第1タンク圧センサおよび第2タンク圧センサは、配置、および、検知特性のいずれか一方が異なればよい。
 上記実施形態では、処理部30は、第2開閉弁としてバイパス弁34を有するが、本開示はこれに限定されない。制御部40は、バイパス弁34が無い場合は、密閉弁22を閉じた状態でパージ弁33の閉固着の有無の診断だけを行ってもよい。
 上記実施形態では、処理部30は、圧力発生部として負圧ポンプ35を用いるが、本開示はこれに限定されない。圧力発生部は、加圧ポンプであってもよい。
 本出願は、2019年7月30日出願の日本特許出願特願2019-139520に基づくものであり、その内容はここに参照として取り込まれる。
1:燃料タンクシステム
10:内燃機関
10a:吸気通路
20:燃料貯蔵部
21:燃料タンク
22:密閉弁
23:第1タンク圧センサ(第1圧力検知部)
24:第2タンク圧センサ(第2圧力検知部)
25:ベーパ通路
30:処理部
31:キャニスタ
32:パージ通路(連通路)
33:パージ弁(第1開閉弁)
34:バイパス弁(第2開閉弁)
35:負圧ポンプ
36:切替弁
37:キャニスタ圧センサ(第3圧力検知部)
40:制御部
40a:イグニッションスイッチ
C:車両
P0:大気圧
P1:第1圧力値
P2:第2圧力値
P3:第3圧力値

Claims (8)

  1.  内燃機関を有する車両の燃料タンクシステムであって、
     密閉弁を有し、燃料を貯蔵する燃料タンクを密閉する燃料貯蔵部と、
     前記燃料タンクの燃料蒸発ガスを処理する処理部と、
     前記燃料貯蔵部と、前記処理部の故障を診断する制御部と、
    を備え、
     前記燃料貯蔵部は、
      前記燃料タンクの圧力を検知する第1圧力検知部と、
      前記第1圧力検知部と異なる位置に配置され、前記燃料タンクの圧力を検知する第2圧力検知部と、を有し、
     前記制御部は、
      前記燃料タンクの圧力を変化させた際の、少なくとも前記第1圧力検知部で検知した第1圧力値および第2圧力検知部で検知した第2圧力値のいずれか一方、または、両方の変化によって、前記燃料貯蔵部および前記処理部の故障部位を特定し、
     前記故障部位に応じて、フェールセーフ制御を行う、
    燃料タンクシステム。
  2.  前記フェールセーフ制御は、
     前記燃料タンクの圧力を下げる圧力制御を禁止する制御と、
     前記燃料タンクの給油口である燃料給油口を開放可能にする給油制御を禁止する制御と、を含み、
     前記制御部は、前記故障部位に応じて、圧力制御を禁止する制御、および給油制御を禁止する制御のうち、少なくともいずれか一つを行う、請求項1に記載の燃料タンクシステム。
  3.  前記処理部は、
      前記燃料タンクの燃料蒸発ガスを吸着するキャニスタと、
      前記キャニスタに接続されて、圧力を発生させる圧力発生部と、
      前記キャニスタの圧力を検知する第3圧力検知部と、
    を有し、
     前記制御部は、
      前記圧力発生部によって前記燃料タンクの圧力を変化させた際の、前記第1圧力値および前記第2圧力値のいずれか一方、または両方の変化と、前記第3圧力検知部によって検知された第3圧力値の変化と、によって、前記故障部位を前記第1圧力検知部および前記第2圧力検知部のいずれか一方に特定する、
    請求項1または2に記載の燃料タンクシステム。
  4.  前記制御部は、
      前記第3圧力値および前記第2圧力値が変化し、前記第1圧力値が変化しない場合に、前記故障部位を前記第1圧力検知部に特定し前記圧力制御を禁止する、請求項3に記載の燃料タンクシステム。
  5.  前記制御部は、
      前記第3圧力値および前記第1圧力値が変化し、前記第2圧力値が変化しない場合に、前記故障部位を前記第2圧力検知部に特定し前記給油制御を禁止する、請求項3または4に記載の燃料タンクシステム。
  6.  前記処理部は、
      前記密閉弁と前記内燃機関の吸気通路とを連通する連通路と、
      前記吸気通路と前記連通路の間を開閉する第1開閉弁と、
      前記キャニスタと前記連通路の間を開閉する第2開閉弁と、
    をさらに有し、
     前記制御部は、
      前記密閉弁を閉制御し、前記第1開閉弁および前記第2開閉弁を開制御した際に、前記第1圧力値および前記第2圧力値の両方が大気圧となった場合に、前記故障部位および当該故障部位の故障を前記密閉弁の開固着に特定し、前記給油制御を禁止する、請求項3から5のいずれか1項に記載の燃料タンクシステム。
  7.  前記制御部は、
      前記圧力発生部によって前記燃料タンクの圧力を変化させた際に、前記第1圧力値および前記第2圧力値の両方が変化せず、
      その後、前記第2開閉弁を閉して前記キャニスタの圧力を変化させた際に、前記第3圧力値が変化しない場合に、前記故障部位および当該故障部位の故障を前記密閉弁の閉固着に特定し、前記圧力制御および前記給油制御を禁止する、請求項6に記載の燃料タンクシステム。
  8.  内燃機関を有する車両の燃料タンクシステムであって、
     密閉弁を有し、燃料を貯蔵する燃料タンクを密閉する燃料貯蔵部と、
     前記燃料タンクの燃料蒸発ガスを処理する処理部と、
     前記燃料貯蔵部と、前記処理部の故障を診断する制御部と、
    を備え、
     前記制御部は、
      前記密閉弁を閉じた状態で前記燃料貯蔵部の故障診断を行う第1故障診断と、
      前記密閉弁を閉じた状態で前記処理部の故障診断を行う第2故障診断と、
    を行い、前記処理部および前記燃料貯蔵部の故障を診断し、
      前記処理部および前記燃料貯蔵部が正常であれば前記故障診断を終了し、
      前記処理部および前記燃料貯蔵部のいずれか一方、または、両方に故障の可能性があれば、
      前記密閉弁を開いた状態で前記燃料タンクの圧力を変化させて故障診断を行う第3故障診断と、
      前記密閉弁を閉じた状態で前記処理部を大気開放して故障診断を行う第4故障診断と、を行い、故障部位を特定し、前記故障部位に応じて、フェールセーフ制御を行う、燃料タンクシステム。
PCT/JP2020/029170 2019-07-30 2020-07-29 燃料タンクシステム WO2021020486A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/631,265 US12078130B2 (en) 2019-07-30 2020-07-29 Fuel tank system
JP2021535411A JP7124971B2 (ja) 2019-07-30 2020-07-29 燃料タンクシステム
CN202080055059.4A CN114207266A (zh) 2019-07-30 2020-07-29 燃料箱系统
EP20847109.4A EP4006330A4 (en) 2019-07-30 2020-07-29 FUEL TANK SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019139520 2019-07-30
JP2019-139520 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021020486A1 true WO2021020486A1 (ja) 2021-02-04

Family

ID=74229921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029170 WO2021020486A1 (ja) 2019-07-30 2020-07-29 燃料タンクシステム

Country Status (5)

Country Link
US (1) US12078130B2 (ja)
EP (1) EP4006330A4 (ja)
JP (1) JP7124971B2 (ja)
CN (1) CN114207266A (ja)
WO (1) WO2021020486A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020485A1 (ja) * 2019-07-30 2021-02-04 三菱自動車工業株式会社 燃料タンクシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015936B2 (ja) 1976-07-31 1985-04-23 コニカ株式会社 ハロゲン化銀写真感光材料
JP2001294052A (ja) * 2000-04-11 2001-10-23 Toyota Motor Corp 燃料タンクの異常診断方法及び異常診断装置
JP4110931B2 (ja) 2002-11-05 2008-07-02 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP2016169949A (ja) * 2015-03-11 2016-09-23 三菱電機株式会社 圧力センサの故障検出装置
US20180058384A1 (en) * 2016-08-26 2018-03-01 Ford Global Technologies, Llc Systems and methods for diagnosing components in a vehicle evaporative emissions system
JP2019139520A (ja) 2018-02-09 2019-08-22 キヤノン株式会社 情報処理システムと、その制御方法とプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419740B2 (ja) * 2004-07-23 2010-02-24 トヨタ自動車株式会社 インタンクキャニスタシステムの故障診断装置及び故障診断方法
JP5413402B2 (ja) * 2011-05-24 2014-02-12 トヨタ自動車株式会社 燃料タンク構造
US9086040B2 (en) * 2012-10-17 2015-07-21 Ford Global Technologies, Llc Fuel system degradation test using two fuel tanks
JP6015936B2 (ja) * 2012-12-26 2016-10-26 三菱自動車工業株式会社 燃料蒸発ガス排出抑止装置
JP5883777B2 (ja) 2012-12-27 2016-03-15 本田技研工業株式会社 蒸発燃料処理装置、および、蒸発燃料処理装置の診断方法
JP5783392B2 (ja) * 2013-08-28 2015-09-24 三菱自動車工業株式会社 燃料タンクシステム
US9382879B2 (en) * 2013-10-30 2016-07-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel evaporative gas emission suppression system
JP6269929B2 (ja) * 2013-11-15 2018-01-31 三菱自動車工業株式会社 車両の燃料装置
JP6348043B2 (ja) * 2014-10-15 2018-06-27 愛三工業株式会社 蒸発燃料処理装置
JP6642329B2 (ja) 2016-08-10 2020-02-05 株式会社デンソー 蒸発燃料処理システム
JP6742865B2 (ja) 2016-09-06 2020-08-19 愛三工業株式会社 蒸発燃料処理装置
KR102335377B1 (ko) * 2017-04-27 2021-12-06 현대자동차주식회사 Pcsv 진단 방법
US10138846B1 (en) * 2017-10-02 2018-11-27 Ford Global Technologies, Llc Systems and methods for an evaporative emissions system and fuel system having a single delta pressure sensor
WO2021020485A1 (ja) * 2019-07-30 2021-02-04 三菱自動車工業株式会社 燃料タンクシステム
CN114174668B (zh) * 2019-07-30 2023-12-12 三菱自动车工业株式会社 燃料箱系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015936B2 (ja) 1976-07-31 1985-04-23 コニカ株式会社 ハロゲン化銀写真感光材料
JP2001294052A (ja) * 2000-04-11 2001-10-23 Toyota Motor Corp 燃料タンクの異常診断方法及び異常診断装置
JP4110931B2 (ja) 2002-11-05 2008-07-02 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP2016169949A (ja) * 2015-03-11 2016-09-23 三菱電機株式会社 圧力センサの故障検出装置
US20180058384A1 (en) * 2016-08-26 2018-03-01 Ford Global Technologies, Llc Systems and methods for diagnosing components in a vehicle evaporative emissions system
JP2019139520A (ja) 2018-02-09 2019-08-22 キヤノン株式会社 情報処理システムと、その制御方法とプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006330A4

Also Published As

Publication number Publication date
EP4006330A1 (en) 2022-06-01
US12078130B2 (en) 2024-09-03
US20220316429A1 (en) 2022-10-06
CN114207266A (zh) 2022-03-18
JP7124971B2 (ja) 2022-08-24
JPWO2021020486A1 (ja) 2021-12-23
EP4006330A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
JP7099639B2 (ja) 燃料タンクシステム
JP6443548B2 (ja) 蒸発燃料処理装置の診断装置
WO2021020485A1 (ja) 燃料タンクシステム
CN110945230B (zh) 蒸发燃料处理装置的泄漏检测装置
US9145857B2 (en) Evaporative emission control device
JP4419740B2 (ja) インタンクキャニスタシステムの故障診断装置及び故障診断方法
WO2021020486A1 (ja) 燃料タンクシステム
US5355864A (en) Evaporative fuel-processing system for internal combustion engines
JP6172459B2 (ja) 燃料蒸発ガス排出抑止装置
JP6711465B2 (ja) 燃料蒸発ガス排出抑制装置
KR20020090332A (ko) 증발연료 처리장치의 고장 진단장치
JP7099638B2 (ja) 燃料タンクシステム
JP4538988B2 (ja) 蒸発燃料処理装置の故障診断装置
JP5963142B2 (ja) 蒸発燃料処理装置
JP6260771B2 (ja) 燃料蒸発ガス排出抑止装置
JP2004245112A (ja) 内燃機関の蒸発燃料制御装置
JP7408487B2 (ja) 車両の燃料タンクシステムおよびその異常診断方法
JP3219021B2 (ja) エバポパージシステムの故障診断装置
JP2021195908A (ja) 車両の燃料タンクシステムおよびその異常診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847109

Country of ref document: EP

Effective date: 20220228