WO2021020235A1 - 二次電池、電池パック、電動工具、電動式航空機及び電動車両 - Google Patents

二次電池、電池パック、電動工具、電動式航空機及び電動車両 Download PDF

Info

Publication number
WO2021020235A1
WO2021020235A1 PCT/JP2020/028291 JP2020028291W WO2021020235A1 WO 2021020235 A1 WO2021020235 A1 WO 2021020235A1 JP 2020028291 W JP2020028291 W JP 2020028291W WO 2021020235 A1 WO2021020235 A1 WO 2021020235A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
secondary battery
insulating member
Prior art date
Application number
PCT/JP2020/028291
Other languages
English (en)
French (fr)
Inventor
寅治 菅野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021536973A priority Critical patent/JP7315005B2/ja
Priority to CN202080048860.6A priority patent/CN114072947A/zh
Publication of WO2021020235A1 publication Critical patent/WO2021020235A1/ja
Priority to US17/564,970 priority patent/US20220123371A1/en
Priority to JP2023104665A priority patent/JP7563533B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery, a battery pack, an electric tool, an electric aircraft and an electric vehicle.
  • Lithium-ion batteries have been widely used in automobiles and machines, and high-output batteries are required.
  • High-rate discharge has been proposed as one of the methods for producing this high output.
  • the resistance inside the battery becomes a problem, and in order to overcome this, for example, a structure is created in which the positive electrode foil and the negative electrode foil are collected on both end faces of the electrode winding body, and welded to the current collector plate at multiple points. We are trying to reduce the resistance. In such a structure, the positive electrode foil and the negative electrode foil may come into contact with the outer can, and there is a possibility of short circuit.
  • Patent Document 1 discloses a cylindrical battery having a structure that covers a part of a side surface and a lower end surface of the electrode assembly with a finishing tape for fixing the wound cylindrical electrode assembly.
  • the finishing tape can reduce the impact from the outside and prevent the electrode assembly from being damaged, and that the electrolytic solution easily permeates when the bottom surface of the electrode assembly is exposed.
  • Patent Document 1 does not consider any protection or insulation of the top side of the cylindrical electrode assembly. Further, the insulation structure, the protective structure, and the permeability of the electrolytic solution of the electrode assembly having the positive electrode current collector plate and the negative electrode current collector plate on the upper and lower end faces of the cylindrical electrode assembly have not been studied.
  • the present invention can shorten the injection time of the electrolytic solution to put into practical use a highly productive battery, and prevent an internal short circuit, damage to the electrode assembly, and generation of metal powder during battery assembly.
  • One of the purposes is to provide a battery having an insulating member.
  • the present invention presents an electrode winding body having a wound structure in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a separator, and a positive electrode current collector plate and a negative electrode current collector.
  • the positive electrode has a positive electrode active material uncoated portion on a strip-shaped positive electrode foil.
  • the negative electrode has a negative electrode active material uncoated portion on a strip-shaped negative electrode foil. The positive electrode active material uncoated portion is joined to the positive electrode current collector plate on one of the end faces of the electrode winding body.
  • the negative electrode active material uncoated portion is joined to the negative electrode current collector plate on the other end face of the electrode winding body.
  • the positive electrode active material uncoated portion and the negative electrode active material uncoated portion have a flat surface formed by bending and overlapping toward the central axis of the wound structure. It is a secondary battery provided with at least a first insulating member that covers an edge portion on the top side of the electrode winding body and a second insulating member that covers at least an edge portion on the bottom side of the electrode winding body.
  • the present invention includes the above-mentioned secondary battery and A control unit that controls the secondary battery and It is a battery pack having an exterior body containing a secondary battery.
  • the present invention is a power tool having the above-mentioned battery pack and using the battery pack as a power source.
  • the present invention includes the above-mentioned battery pack and With multiple rotors, A motor that rotates each rotor and Support shafts that support the rotor and motor, respectively, A motor control unit that controls the rotation of the motor, Equipped with a power supply line that supplies power to the motor An electric aircraft with a battery pack connected to a power supply line.
  • the present invention has the secondary battery described above.
  • a converter that receives power from a secondary battery and converts it into vehicle driving force, It is an electric vehicle having a control device that performs information processing on vehicle control based on information on a secondary battery.
  • the present invention it is possible to realize a battery for high-rate discharge that can quickly inject an electrolytic solution while preventing an electrical short circuit. It should be noted that the contents of the present invention are not limitedly interpreted by the effects exemplified in the present specification.
  • FIG. 1 is a schematic cross-sectional view of a battery according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of the arrangement relationship between the positive electrode, the negative electrode, and the separator in the electrode winding body.
  • FIG. 3A is a plan view of the positive electrode current collector plate
  • FIG. 3B is a plan view of the negative electrode current collector plate.
  • 4A to 4F are diagrams illustrating a battery assembly process according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view of the battery showing the lengths a1, b1 and b3 of the first insulating member.
  • FIG. 6 is a schematic cross-sectional view of the battery showing the lengths a2 and b2 of the second insulating member.
  • FIG. 5 is a schematic cross-sectional view of the battery showing the lengths a1, b1 and b3 of the first insulating member.
  • FIG. 6 is a schematic cross-sectional view of the battery showing the lengths a
  • FIG. 7 is a connection diagram used for explaining a battery pack as an application example of the present invention.
  • FIG. 8 is a connection diagram used for explaining a power tool as an application example of the present invention.
  • FIG. 9 is a connection diagram used for explaining an unmanned aerial vehicle as an application example of the present invention.
  • FIG. 10 is a connection diagram used for explaining an electric vehicle as an application example of the present invention.
  • a cylindrical lithium ion battery will be described as an example of the secondary battery.
  • a battery other than the lithium ion battery or a battery other than the cylindrical shape may be used.
  • FIG. 1 is a schematic cross-sectional view of a cylindrical lithium ion battery 1.
  • the lithium ion battery 1 includes, for example, a pair of insulating plates 12 and 13 and an electrode winding body 20 inside a cylindrical outer can 11.
  • the lithium ion battery 1 may further include, for example, any one or more of the thermal resistance (PTC) element and the reinforcing member inside the outer can 11.
  • PTC thermal resistance
  • the lithium ion battery 1 may be simply referred to as "battery 1".
  • the outer can 11 is mainly a member for accommodating the electrode winding body 20.
  • the outer can 11 is, for example, a cylindrical container in which one end is open and the other end is closed. That is, the outer can 11 has an open end portion (open end portion 11N).
  • the outer can 11 contains any one or more of metal materials such as iron, aluminum and alloys thereof. However, the surface of the outer can 11 may be plated with any one or more of metal materials such as nickel.
  • Each of the insulating plates 12 and 13 is, for example, a dish-shaped plate having a surface perpendicular to the winding axis of the electrode winding body 20, that is, a surface perpendicular to the Z axis in FIG. Further, the insulating plates 12 and 13 function as the top-side insulating plate 12 and the bottom-side insulating plate 13, respectively, and are arranged so as to sandwich the electrode winding body 20 with each other.
  • a battery lid 14 and a safety valve mechanism 30 are crimped to the open end portion 11N of the outer can 11 via a gasket 15, and a crimping structure 11R (crimp structure) is formed.
  • a crimping structure 11R crimp structure
  • the battery lid 14 is a member that mainly closes the open end 11N of the outer can 11 when the electrode winding body 20 or the like is housed inside the outer can 11.
  • the battery lid 14 contains, for example, the same material as the material for forming the outer can 11.
  • the central region of the battery lid 14 projects, for example, in the + Z direction. As a result, the region (peripheral region) of the battery lid 14 other than the central region is in contact with, for example, the safety valve mechanism 30.
  • the gasket 15 is a member that is mainly interposed between the outer can 11 (bent portion 11P) and the battery lid 14 to seal the gap between the bent portion 11P and the battery lid 14.
  • the surface of the gasket 15 may be coated with, for example, asphalt.
  • the gasket 15 contains, for example, any one or more of the insulating materials.
  • the type of the insulating material is not particularly limited, and is, for example, a polymer material such as polybutylene terephthalate (PBT) and polyp-mouth pyrene (PP). Above all, the insulating material is preferably polybutylene terephthalate. This is because the gap between the bent portion 11P and the battery lid 14 is sufficiently sealed while the outer can 11 and the battery lid 14 are electrically separated from each other.
  • the safety valve mechanism 30 mainly releases the internal pressure of the outer can 11 by releasing the sealed state of the outer can 11 as necessary when the internal pressure (internal pressure) of the outer can 11 rises.
  • the cause of the increase in the internal pressure of the outer can 11 is, for example, a gas generated due to a decomposition reaction of the electrolytic solution during charging / discharging.
  • a band-shaped positive electrode 21 and a band-shaped negative electrode 22 are spirally wound with a separator 23 sandwiched between them, and are housed in an outer can 11 in a state of being impregnated with an electrolytic solution.
  • the positive electrode 21 has a positive electrode active material layer 21B formed on one side or both sides of the positive electrode foil 21A, and the material of the positive electrode foil 21A is, for example, a metal foil made of aluminum or an aluminum alloy.
  • the negative electrode 22 has a negative electrode active material layer 22B formed on one side or both sides of the negative electrode foil 22A, and the material of the negative electrode foil 22A is, for example, a metal foil made of nickel, a nickel alloy, copper, or a copper alloy.
  • the separator 23 is a porous and insulating film that electrically insulates the positive electrode 21 and the negative electrode 22 while allowing the movement of substances such as ions and electrolytes.
  • the positive electrode active material layer 21B and the negative electrode active material layer 22B each cover many parts of the positive electrode foil 21A and the negative electrode foil 22A, respectively, but both intentionally cover the periphery of one end in the minor axis direction of the band. Absent.
  • the portion where the active material layers 21B and 22B are not coated is hereinafter appropriately referred to as an active material uncoated portion.
  • the electrode winding body 20 is wound by stacking the positive electrode uncoated portion 21C and the negative electrode active material uncoated portion 22C via a separator 23 so as to face in opposite directions. ..
  • the end of the separator 23 is fixed by attaching the fixing tape 46 to the side surface portion 45 of the electrode winding body so that the winding looseness does not occur.
  • FIG. 2 shows an example of the structure before winding in which the positive electrode 21, the negative electrode 22, and the separator 23 are laminated.
  • the width of the active material uncoated portion 21C (upper shaded portion in FIG. 2) of the positive electrode is A
  • the length of the positive electrode active material uncoated portion 21C protruding from one end in the width direction of the separator 23 is C
  • the length of the negative electrode active material uncoated portion 22C protruding from the other end of the separator 23 in the width direction is D. Is.
  • the positive electrode active material uncoated portion 21C is made of, for example, aluminum and the negative electrode active material uncoated portion 22C is made of, for example, copper
  • the positive electrode active material uncoated portion 21C is generally more negative electrode active material non-coated portion 21C. Softer than the covering portion 22C (low Young rate). Therefore, in one embodiment, A> B and C> D are more preferable.
  • the positive electrode active material uncoated portion 21C and the negative electrode active material uncoated portion 22C are bent at the same pressure from both electrode sides at the same time. At that time, the height measured from the tip of the separator 23 of the bent portion may be about the same for the positive electrode 21 and the negative electrode 22.
  • the active material uncoated portions 21C and 22C are bent and appropriately overlap each other, the active material uncoated portions 21C and 22C and the current collector plates 24 and 25 can be easily joined by laser welding.
  • Joining in one embodiment means that they are joined by laser welding, but the joining method is not limited to laser welding.
  • the positive electrode 21 has an insulating layer 101 (gray region portion in FIG. 2) covering a section having a width of 3 mm including the boundary between the active material uncoated portion 21C and the active material coated portion 21B. Then, the entire region of the active material non-coated portion 21C of the positive electrode facing the active material coated portion 22B of the negative electrode via the separator is covered with the insulating layer 101.
  • the insulating layer 101 has an effect of reliably preventing an internal short circuit of the battery 1 when a foreign substance enters between the active material coating portion 22B of the negative electrode and the active material non-coating portion 21C of the positive electrode. Further, the insulating layer 101 has an effect of absorbing the impact when an impact is applied to the battery 1 and surely preventing the positive electrode active material uncoated portion 21C from bending or short-circuiting with the negative electrode 22.
  • the electrode winding body 20 has a substantially columnar shape, and a through hole 26 is provided in the center.
  • the through hole 26 is a hole for inserting the winding core for assembling the electrode winding body 20 and the electrode rod for welding. Since the electrode winding body 20 is wound by overlapping the positive electrode uncoated portion 21C and the negative electrode active material uncoated portion 22C so as to face in opposite directions, one surface of the end portion of the electrode winding body is wound.
  • the positive electrode active material uncoated portion 21C gathers on the (end face 41), and the negative electrode active material uncoated portion 22C gathers on the other surface (end face 42) of the end portion of the electrode winding body 20.
  • the active material uncoated portions 21C and 22C are bent (that is, wound) in the through hole 26 (central axis) direction.
  • the end faces 41 and 42 are flat surfaces (the non-covered portions of the active material on the adjacent circumferences are overlapped and bent).
  • the "flat surface” includes not only a completely flat surface but also a surface having some unevenness and surface roughness to the extent that the active material uncoated portion and the current collector plate can be joined. ..
  • the through hole 26 is used as a hole for inserting a welding tool in the assembly process of the lithium ion battery 1.
  • the groove 43 remains in the flat surface even after the active material uncoated portions 21C and 22C are bent, and the portion without the groove 43 is joined (welded or the like) to the positive electrode current collector plate 24 or the negative electrode current collector plate 25. ing.
  • the groove 43 may be joined to a part of the current collector plates 24 and 25.
  • the edge line on the positive electrode side is defined.
  • the edge portion 51 on the top side is referred to, and the edge line on the negative electrode side is referred to as the edge portion 52 on the bottom side.
  • the detailed configuration of the electrode winding body 20, that is, the detailed configurations of the positive electrode 21, the negative electrode 22, the separator 23, and the electrolytic solution will be described later.
  • insulating tapes 53 and 54 are, for example, adhesive tapes in which the material of the base material layer is made of polypropylene, polyethylene terephthalate, or polyimide, and the base material layer has an adhesive layer on one surface.
  • the insulating tapes 53 and 54 are arranged so as not to overlap with the fixing tape 46 attached to the side surface portion 45, and the insulating tapes 53 and 54 are arranged.
  • the thickness of the fixing tape 46 is set to be equal to or less than the thickness of the fixing tape 46.
  • the edge portion 51 on the top side although it depends on the shape of the positive electrode current collector plate 24 (see FIG. 3A), the portion where the positive electrode current collector plate 24 is provided and the positive electrode active material uncoated portion 21C are exposed. There is a part that is.
  • the insulating tape 53 preferably covers both of these portions at the edge portion 51. Further, it is preferable that the edge portion 51 on the top side is completely covered (in the case of the cylindrical type, over the entire circumference).
  • the edge portion 52 on the bottom side although it depends on the shape of the negative electrode current collector plate 25 (see FIG. 3B), the portion where the negative electrode current collector plate 25 is provided and the negative electrode active material uncoated portion 22C are exposed. There is a part that is.
  • the insulating tape 54 preferably covers both of these portions at the edge portion 52. Further, it is preferable that the edge portion 52 on the bottom side is completely covered (in the case of the cylindrical type, over the entire circumference).
  • the insulating tape 53 (first insulating member) is placed directly below the apex P of the constricted portion 11S of the outer can 11 from a part of the side surface portion 45 of the electrode winding body 20 via the edge portion 51 on the top side. It covers a range exceeding 0.5 mm or more (Fig. 1).
  • the insulating tape 53 Due to the arrangement of the insulating tape 53 (first insulating member) on the top side and the positive electrode current collector plate 24, the insulating tape 53 extends to a position in contact with the folded strip-shaped portion 32 of the positive electrode current collector plate 24. Can be done. Similarly, due to the arrangement of the insulating tape 54 (second insulating member) on the bottom side and the negative electrode current collector plate 25, the insulating tape 54 extends to a position where it contacts the folded strip-shaped portion 34 of the negative electrode current collector plate 25. It can be extended (Fig. 5).
  • the positive electrode current collector plate 24 and the negative electrode current collector plate 25 are arranged on the end faces 41 and 42, and the positive electrode and negative electrode active material uncoated portions 21C existing on the end faces 41 and 42 are provided. , 22C is welded at multiple points to keep the internal resistance of the battery low. The fact that the end faces 41 and 42 are bent to become a flat surface also contributes to lowering the resistance.
  • FIGS. 3A and 3B show an example of a current collector plate.
  • FIG. 3A is a positive electrode current collector plate 24, and FIG. 3B is a negative electrode current collector plate 25.
  • the material of the positive current collector plate 24 is, for example, a metal plate made of aluminum or an aluminum alloy alone or a composite material
  • the material of the negative electrode current collector plate 25 is, for example, a nickel, a nickel alloy, a copper or a copper alloy single unit or a composite material. It is a metal plate made of wood.
  • the shape of the positive electrode current collector plate 24 is a flat fan-shaped fan-shaped portion 31 with a rectangular strip-shaped portion 32 attached. There is a hole 35 near the center of the fan-shaped portion 31, and the position of the hole 35 is a position corresponding to the through hole 26.
  • the portion shown by the diagonal line in FIG. 3A is the insulating portion 32A to which the insulating tape is attached or the insulating material is applied to the strip-shaped portion 32, and the portion below the shaded portion in the drawing is to the sealing plate which also serves as an external terminal.
  • the connection portion 32B In the case of a battery structure in which the through hole 26 does not have a metal center pin (not shown), the band-shaped portion 32 is unlikely to come into contact with the negative electrode potential portion, so that even if the insulating portion 32A is not provided. good. In that case, the width between the positive electrode 21 and the negative electrode 22 can be increased by an amount corresponding to the thickness of the insulating portion 32A to increase the charge / discharge capacity.
  • the shape of the negative electrode current collector plate 25 is almost the same as that of the positive electrode current collector plate 24, but the strip-shaped portion is different.
  • the strip-shaped portion 34 of the negative electrode current collector plate of FIG. 3B is shorter than the strip-shaped portion 32 of the positive electrode current collector plate, and has no portion corresponding to the insulating portion 32A.
  • the band-shaped portion 34 has a round projection portion (projection) 37 indicated by a plurality of circles.
  • the negative electrode current collector plate 25 has a hole 36 near the center of the fan-shaped portion 33, and the position of the hole 36 is a position corresponding to the through hole 26. Since the fan-shaped portion 31 of the positive electrode current collector plate 24 and the fan-shaped portion 33 of the negative electrode current collector plate 25 have a fan shape, they cover a part of the end faces 41 and 42. The reason why it does not cover the whole is to allow the electrolytic solution to smoothly penetrate into the electrode winding body when assembling the battery, or to release the gas generated when the battery becomes abnormally high temperature or overcharged to the outside of the battery. This is to make it easier.
  • the positive electrode active material layer 21B contains, as the positive electrode active material, any one or more of the positive electrode materials capable of occluding and releasing lithium. However, the positive electrode active material layer 21B may further contain any one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material is preferably a lithium-containing compound, and more specifically, a lithium-containing composite oxide, a lithium-containing phosphoric acid compound, or the like.
  • the lithium-containing composite oxide is an oxide containing lithium and one or more other elements (elements other than lithium) as constituent elements, and is, for example, any one of a layered rock salt type and a spinel type. It has a crystal structure.
  • the lithium-containing phosphoric acid compound is a phosphoric acid compound containing lithium and one or more other elements as constituent elements, and has a crystal structure such as an olivine type.
  • the positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compounds.
  • the synthetic rubber is, for example, styrene-butadiene rubber, fluorine-based rubber, ethylene propylene diene and the like.
  • the polymer compounds are, for example, polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent contains, for example, any one or more of carbon materials and the like.
  • the carbon material is, for example, graphite, carbon black, acetylene black, ketjen black and the like.
  • the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as it is a conductive material.
  • the surface of the negative electrode foil 22A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 22B to the negative electrode foil 22A.
  • the surface of the negative electrode foil 22A may be roughened at least in the region facing the negative electrode active material layer 22B.
  • the roughening method is, for example, a method of forming fine particles by using an electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode foil 22A by an electrolytic method in the electrolytic cell, so that the surface of the negative electrode foil 22A is provided with irregularities.
  • the copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 22B contains any one or more of the negative electrode materials capable of occluding and releasing lithium as the negative electrode active material. However, the negative electrode active material layer 22B may further contain any one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the negative electrode material is, for example, a carbon material. This is because a high energy density can be stably obtained because the change in the crystal structure during the occlusion and release of lithium is very small. Further, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
  • the carbon material is, for example, graphitizable carbon, non-graphitizable carbon, graphite and the like.
  • the interplanar spacing of the (002) plane in graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less.
  • the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, calcined organic polymer compound, activated carbon, carbon blacks and the like. These cokes include pitch coke, needle coke, petroleum coke and the like.
  • the organic polymer compound calcined product is obtained by calcining (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or lower, or amorphous carbon.
  • the shape of the carbon material may be any of fibrous, spherical, granular and scaly.
  • the open circuit voltage that is, the battery voltage
  • the same positive electrode activity is compared with the case where the open circuit voltage at the time of full charge is 4.20 V. Even if a substance is used, the amount of lithium released per unit mass increases, so the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. As a result, a high energy density can be obtained.
  • the separator 23 is interposed between the positive electrode 21 and the negative electrode 22, and allows lithium ions to pass through while preventing a short circuit of current due to contact between the positive electrode 21 and the negative electrode 22.
  • the separator 23 is, for example, any one type or two or more types of porous membranes such as synthetic resin and ceramic, and may be a laminated film of two or more types of porous membranes.
  • Synthetic resins include, for example, polytetrafluoroethylene, polypropylene and polyethylene.
  • the separator 23 may include, for example, the above-mentioned porous film (base material layer) and a polymer compound layer provided on one side or both sides of the base material layer. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the electrode winding body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is less likely to increase even if charging and discharging are repeated, and battery swelling is suppressed. Will be done.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride.
  • a solution in which the polymer compound is dissolved in an organic solvent or the like is applied to the base material layer, and then the base material layer is dried. After immersing the base material layer in the solution, the base material layer may be dried.
  • the polymer compound layer may contain any one or more of insulating particles such as inorganic particles.
  • the types of inorganic particles are, for example, aluminum oxide and aluminum nitride.
  • the electrolyte contains a solvent and an electrolyte salt. However, the electrolytic solution may further contain any one or more of other materials such as additives.
  • the solvent contains any one or more of non-aqueous solvents such as organic solvents.
  • the electrolytic solution containing a non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • Non-aqueous solvents are, for example, cyclic carbonates, chain carbonates, lactones, chain carboxylic acid esters and nitriles (mononitriles).
  • the electrolyte salt contains, for example, any one or more of salts such as lithium salt.
  • the electrolyte salt may contain, for example, a salt other than the lithium salt.
  • the salt other than lithium is, for example, a salt of a light metal other than lithium.
  • Lithium salts include, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiAsF 6 ), and tetraphenyl.
  • Lithium borate LiB (C 6 H 5 ) 4
  • lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • LiCl lithium chloride
  • LiBr lithium bromide
  • any one or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoride is preferable, and lithium hexafluorophosphate is more preferable. ..
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3 mol / kg with respect to the solvent.
  • the positive electrode active material is applied to the surface of the strip-shaped positive electrode foil 21A, which is used as the coating portion of the positive electrode 21, and the negative electrode active material is applied to the surface of the band-shaped negative electrode foil 22A, which is applied to the negative electrode 22. It was used as a covering part.
  • the active material uncoated portions 21C and 22C in which the positive electrode active material and the negative electrode active material were not coated were produced on one end in the lateral direction of the positive electrode 21 and one end in the lateral direction of the negative electrode 22.
  • a notch was made in a part of the active material uncoated portions 21C and 22C, which corresponds to the beginning of winding when winding.
  • the positive electrode 21 and the negative electrode 22 were subjected to steps such as drying. Then, the active material uncoated portion 21C of the positive electrode and the active material uncoated portion 22C of the negative electrode are overlapped with each other via the separator 23 so as to be in opposite directions, so that a through hole 26 is formed on the central axis, and a notch is prepared.
  • the electrode winding body 20 as shown in FIG. 4A was produced by winding in a spiral shape and attaching a fixing tape 46 to the outermost periphery so that the electrode winding body 20 is arranged near the central axis.
  • FIG. 4B by pressing the end of a thin flat plate (for example, 0.5 mm in thickness) perpendicular to the end faces 41 and 42, the end faces 41 and 42 are locally bent to form the groove 43. did.
  • a groove 43 extending from the through hole 26 in the radial direction toward the central axis was produced.
  • the number and arrangement of the grooves 43 shown in FIG. 4B are merely examples.
  • FIG. 4C the same pressure is applied from both poles at the same time in a direction substantially perpendicular to the end faces 41 and 42, and the positive electrode active material uncoated portion 21C and the negative electrode active material uncoated portion 22C are bent to bend the end faces.
  • insulating tapes 53 and 54 were attached to the top side edge portion 51 and the bottom side edge portion 52, respectively.
  • the strips 32 and 34 of the current collector plates 24 and 25 are bent, inserted into the holes of the top side insulating plate 12 and the bottom side insulating plate 13, respectively, and assembled in the outer can 11 shown in FIG. 4E as described above.
  • the electrode winding body 20 was inserted, and the bottom of the outer can 11 and the negative electrode current collector plate 25 were welded.
  • a constricted portion 11S was formed in the vicinity of the opening of the outer can 11.
  • the band-shaped portion 32 of the positive electrode current collector plate and the safety valve mechanism 30 were welded.
  • the gasket 15, the safety valve mechanism 30, and the battery lid 14 were sealed using the constricted portion 11S.
  • the present invention will be specifically described based on an example in which the lithium ion battery 1 produced as described above is used and the difference in short-circuit rate and the difference in liquid injection time are compared.
  • the present invention is not limited to the examples described below.
  • the battery size was 21700, and the material of the base material layer of the insulating tape 53 was polyimide.
  • the relationship between the length (b1) on the end surface 41 of the electrode winding body 20 and the internal short rate was determined.
  • FIG. 5 is a view showing the top side of the battery 1.
  • the length (b1) means the length from the position directly below the apex P of the constricted portion 11S to the end of the insulating tape 53. Of the surface of the constricted portion (inner surface of the can), the point closest to the electrode winding body 20 is defined as the apex P (see FIG. 5).
  • the internal short rate of Examples 1 to 3 was as small as 0%, but the internal short rates of Comparative Example 1 and Comparative Example 2 were relatively large. From the results in Table 1, of the insulating tape 53 covering the edge portion 51 on the top side, when the length (b1) on the end surface 41 of the electrode winding body 20 is 0.5 (mm) or more, an internal short circuit occurs. was able to prevent.
  • the length (a1) on the side surface portion 45 of the electrode winding body 20 was determined.
  • the length a1 refers to the length from the surface of the insulating tape 53 covering the end surface 41 (including the thickness of the insulating tape 53) to the lower end of the insulating tape 53 on the side surface portion 45. ..
  • the internal short rate of Examples 4 to 6 was as small as 0%, but the internal short rates of Comparative Example 3 and Comparative Example 4 were relatively large. From Table 2, among the insulating tape 53 covering the edge portion 51 on the top side, when the length (a1) on the side surface portion 45 of the electrode winding body 20 is 0.5 (mm) or more, an internal short circuit occurs. Was able to be prevented.
  • FIG. 6 is a view showing the bottom side of the battery 1.
  • the internal short rate and the presence or absence of fallen metal during assembly were determined depending on whether or not the insulating tape 53 was attached to the top side edge portion 51 and the bottom side edge portion 52.
  • Insulating tapes 53 and 54 were not attached to the edge portion 51 on the top side or the edge portion 52 on the bottom side.
  • Example 15 the internal short rate was as small as 0%, and there was no metal that fell off during assembly, whereas in Comparative Examples 11 to 13, the internal short rate was relatively large. Or / and there was metal that fell off during assembly.
  • the internal short-circuit rate was 0%, and when the insulating tape 54 was attached to the edge portion 52 on the bottom side, there was no falling metal during assembly. ..
  • Metals that fall off during assembly may adversely affect the battery 1 as contamination. From Table 5, when the insulating tapes 53 and 54 are attached to both the top side edge portion 51 and the bottom side edge portion 52, internal short circuit can be prevented and no falling metal is generated during assembly. I found out.
  • the length (b3) on the end surface 41 of the electrode winding body 20, and the insulating tape 54 covering the edge portion 52 on the bottom side was determined.
  • the length b3 is the length from the surface of the insulating tape 53 on the side surface portion 45 (including the thickness of the insulating tape) to the end of the insulating tape 53 covering the end surface 41 on the central axis side.
  • the length b2 extends from the surface of the insulating tape 54 on the side surface portion 45 (including the thickness of the insulating tape) to the end of the insulating tape 54 covering the end surface 42 on the central axis side. Refers to the length of.
  • the value of the injection time was relatively small, whereas the value of the injection time of Comparative Example 21 and Comparative Example 22 was relatively large. From Table 6, when b3 and b2 are 5 mm or less, that is, when the ratio of b3 to the radius of the electrode winding body 20 and the ratio of b2 to the radius of the electrode winding body 20 are 50% or less, the electrolytic solution is injected. The increase in time was relatively small. Therefore, the insulating tape 53 (first insulating member) that covers the edge portion 51 on the top side covers a position separated from the edge portion 51 toward the through hole 26 by half or less of the radius of the electrode winding body 20.
  • the length (a1) on the side surface portion 45 of the electrode winding body 20 and the insulating tape 54 covering the edge portion 52 on the bottom side was determined.
  • the length a2 refers to the length from the surface of the insulating tape 54 covering the end surface 42 (including the thickness of the insulating tape 54) to the upper end of the insulating tape 54 on the side surface portion 45. ..
  • the number and arrangement of the grooves 43 may be other than those illustrated in the figure.
  • the positive electrode current collector plate 24 and the negative electrode current collector plate 25 are provided with fan-shaped portions 31 and 33, but may have other shapes.
  • FIG. 7 is a block diagram showing a circuit configuration example when a battery according to an embodiment of the present invention (hereinafter, appropriately referred to as a secondary battery) is applied to the battery pack 330.
  • the battery pack 300 includes a switch unit 304 including an assembled battery 301, an exterior, a charge control switch 302a, and a discharge control switch 303a, a current detection resistor 307, a temperature detection element 308, and a control unit 310.
  • the battery pack 300 includes a positive electrode terminal 321 and a negative electrode terminal 322, and at the time of charging, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the charger, respectively, and charging is performed. Further, when using an electronic device, the positive electrode terminal 321 and the negative electrode terminal 322 are connected to the positive electrode terminal and the negative electrode terminal of the electronic device, respectively, and discharge is performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the secondary battery 301a is the secondary battery of the present invention.
  • FIG. 7 the case where the six secondary batteries 301a are connected in two parallels and three series (2P3S) is shown as an example, but in addition, n parallel m series (n and m are integers). In addition, any connection method may be used.
  • the switch unit 304 includes a charge control switch 302a and a diode 302b, and a discharge control switch 303a and a diode 303b, and is controlled by the control unit 310.
  • the diode 302b has a polarity opposite to the charging current flowing from the positive electrode terminal 321 toward the assembled battery 301 and a forward polarity with respect to the discharging current flowing from the negative electrode terminal 322 toward the assembled battery 301.
  • the diode 303b has polarities in the forward direction with respect to the charge current and in the reverse direction with respect to the discharge current.
  • the switch portion 304 is provided on the + side, but it may be provided on the ⁇ side.
  • the charge control switch 302a is turned off when the battery voltage reaches the overcharge detection voltage, and is controlled by the charge / discharge control unit so that the charge current does not flow in the current path of the assembled battery 301. After the charge control switch 302a is turned off, only discharging is possible via the diode 302b. Further, it is controlled by the control unit 310 so as to be turned off when a large current flows during charging and cut off the charging current flowing in the current path of the assembled battery 301.
  • the discharge control switch 303a is turned off when the battery voltage becomes the over-discharge detection voltage, and is controlled by the control unit 310 so that the discharge current does not flow in the current path of the assembled battery 301. After the discharge control switch 303a is turned off, only charging is possible via the diode 303b. Further, it is controlled by the control unit 310 so as to be turned off when a large current flows during discharging and to cut off the discharging current flowing in the current path of the assembled battery 301.
  • the temperature detection element 308 is, for example, a thermistor, which is provided in the vicinity of the assembled battery 301, measures the temperature of the assembled battery 301, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and each of the secondary batteries 301a constituting the assembled battery 301, A / D converts the measured voltage, and supplies the measured voltage to the control unit 310.
  • the current measuring unit 313 measures the current using the current detection resistor 307, and supplies the measured current to the control unit 310.
  • the switch control unit 314 controls the charge control switch 302a and the discharge control switch 303a of the switch unit 304 based on the voltage and current input from the voltage detection unit 311 and the current measurement unit 313.
  • the switch control unit 314 sends a control signal to the switch unit 304 when any voltage of the secondary battery 301a becomes equal to or lower than the overcharge detection voltage or the overdischarge detection voltage, or when a large current suddenly flows. By sending, overcharge, overdischarge, and overcurrent charge / discharge are prevented.
  • the overcharge detection voltage is defined as, for example, 4.20V ⁇ 0.05V
  • the overdischarge detection voltage is defined as, for example, 2.4V ⁇ 0.1V. ..
  • the charge / discharge switch a semiconductor switch such as a MOSFET can be used.
  • the parasitic diode of the MOSFET functions as the diodes 302b and 303b.
  • the switch control unit 314 supplies control signals DO and CO to the respective gates of the charge control switch 302a and the discharge control switch 303a, respectively.
  • the charge control switch 302a and the discharge control switch 303a are of the P channel type, they are turned on by a gate potential lower than a predetermined value by a predetermined value or more. That is, in the normal charging / discharging operation, the control signals CO and DO are set to the low level, and the charging control switch 302a and the discharging control switch 303a are turned on.
  • control signals CO and DO are set to a high level, and the charge control switch 302a and the discharge control switch 303a are turned off.
  • the memory 317 is composed of a RAM or a ROM, for example, an EPROM (Erasable Programmable Read Only Memory) which is a non-volatile memory.
  • EPROM Erasable Programmable Read Only Memory
  • the numerical value calculated by the control unit 310, the internal resistance value of the battery in the initial state of each secondary battery 301a measured at the stage of the manufacturing process, and the like are stored in advance, and can be rewritten as appropriate. .. Further, by storing the fully charged capacity of the secondary battery 301a, for example, the remaining capacity can be calculated together with the control unit 310.
  • the temperature detection unit 318 measures the temperature using the temperature detection element 308, performs charge / discharge control when abnormal heat generation occurs, and corrects the calculation of the remaining capacity.
  • Examples of power storage systems etc.
  • the battery according to the embodiment of the present invention described above can be mounted on or used to supply electric power to a device such as an electronic device, an electric vehicle, an electric aircraft, or a power storage device.
  • Electronic devices include, for example, notebook computers, smartphones, tablet terminals, PDAs (Personal Digital Assistants), mobile phones, wearable terminals, cordless phone handsets, video movies, digital still cameras, electronic books, electronic dictionaries, music players, radios, etc. Headphones, game machines, navigation systems, memory cards, pacemakers, hearing aids, power tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical care Equipment, robots, road conditioners, traffic lights, etc. can be mentioned.
  • Examples of electric vehicles include railroad vehicles, golf carts, electric carts, electric vehicles (including hybrid vehicles), etc., which are used as drive power sources or auxiliary power sources.
  • Examples of the power storage device include a power storage power source for buildings such as houses or power generation equipment.
  • the electric screwdriver 431 contains a motor 433 such as a DC motor in the main body. The rotation of the motor 433 is transmitted to the shaft 434, and the shaft 434 drives a screw into the object.
  • the electric screwdriver 431 is provided with a trigger switch 432 operated by the user.
  • the battery pack 430 and the motor control unit 435 are housed in the lower housing of the handle of the electric screwdriver 431.
  • the battery pack 300 can be used as the battery pack 430.
  • the motor control unit 435 controls the motor 433.
  • Each part of the electric screwdriver 431 other than the motor 433 may be controlled by the motor control unit 435.
  • the battery pack 430 and the electric screwdriver 431 are engaged with each other by engaging members provided therein.
  • each of the battery pack 430 and the motor control unit 435 is provided with a microcomputer. Battery power is supplied from the battery pack 430 to the motor control unit 435, and information on the battery pack 430 is communicated between both microcomputers.
  • the battery pack 430 is detachable from, for example, the electric screwdriver 431.
  • the battery pack 430 may be built in the electric screwdriver 431.
  • the battery pack 430 is attached to the charging device at the time of charging.
  • a part of the battery pack 430 may be exposed to the outside of the electric screwdriver 431 so that the exposed portion can be visually recognized by the user.
  • an LED may be provided on the exposed portion of the battery pack 430 so that the user can confirm whether the LED emits light or turns off.
  • the motor control unit 435 controls, for example, the rotation / stop of the motor 433 and the rotation direction. Further, the power supply to the load is cut off at the time of over-discharging.
  • the trigger switch 432 is inserted between the motor 433 and the motor control unit 435, for example, and when the user pushes the trigger switch 432, power is supplied to the motor 433 and the motor 433 rotates. When the user returns the trigger switch 432, the rotation of the motor 433 is stopped.
  • FIG. 9 is a plan view of an unmanned aerial vehicle.
  • the airframe is composed of a cylindrical or square tubular body portion as a central portion and support shafts 442a to 442f fixed to the upper part of the body portion.
  • the body portion has a hexagonal tubular shape, and six support shafts 442a to 442f extend radially from the center of the body portion at equiangular intervals.
  • the body portion and the support shafts 442a to 442f are made of a lightweight and high-strength material.
  • Motors 443a to 443f as drive sources for rotary blades are attached to the tips of the support shafts 442a to 442f, respectively.
  • Rotor blades 444a to 444f are attached to the rotating shafts of the motors 443a to 443f.
  • the circuit unit 445 including the motor control circuit for controlling each motor is attached to the central portion (upper part of the body portion) where the support shafts 442a to 442f intersect.
  • the battery section as a power source is located at the lower position of the fuselage section.
  • the battery section has three battery packs to supply power to a pair of motors and rotor blades having a 180 degree facing distance.
  • Each battery pack has, for example, a lithium ion secondary battery and a battery control circuit that controls charging and discharging.
  • the battery pack 300 can be used as the battery pack.
  • the motor 443a and the rotary blade 444a and the motor 443d and the rotary blade 444d form a pair.
  • FIG. 10 schematically shows an example of a configuration of a hybrid vehicle adopting a series hybrid system to which the present invention is applied.
  • the series hybrid system is a vehicle that runs on a power driving force converter using the electric power generated by a generator powered by an engine or the electric power temporarily stored in a battery.
  • the hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force converter 603, a drive wheel 604a, a drive wheel 604b, a wheel 605a, a wheel 605b, a battery 608, a vehicle control device 609, various sensors 610, and a charging port 611. Is installed.
  • the battery pack 300 of the present invention described above is applied to the battery 608.
  • the hybrid vehicle 600 runs on the power driving force conversion device 603 as a power source.
  • An example of the power driving force conversion device 603 is a motor.
  • the electric power of the battery 608 operates the electric power driving force conversion device 603, and the rotational force of the electric power driving force conversion device 603 is transmitted to the drive wheels 604a and 604b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force conversion device 603 can be applied to both an AC motor and a DC motor.
  • the various sensors 610 control the engine speed via the vehicle control device 609, and control the opening degree (throttle opening degree) of a throttle valve (not shown).
  • the various sensors 610 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 601 is transmitted to the generator 602, and the electric power generated by the generator 602 by the rotational force can be stored in the battery 608.
  • the resistance force at the time of deceleration is applied to the power driving force conversion device 603 as a rotational force, and the regenerative power generated by the power driving force conversion device 603 by this rotational force is the battery 608. Accumulate in.
  • the battery 608 By connecting the battery 608 to an external power source of the hybrid vehicle 600, it is possible to receive electric power from the external power source using the charging port 611 as an input port and store the received electric power.
  • an information processing device that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing device for example, there is an information processing device that displays the remaining battery level based on information on the remaining battery level.
  • the present invention is also effective for a parallel hybrid vehicle in which the outputs of the engine and the motor are used as drive sources, and the three methods of traveling only by the engine, traveling only by the motor, and traveling by the engine and the motor are appropriately switched and used. Applicable. Further, the present invention can be effectively applied to a so-called electric vehicle that travels by being driven only by a drive motor without using an engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

セパレータ(23)を介して帯状の正極(21)と帯状の負極(22)とが積層され、巻回された構造を有する電極巻回体と、正極集電板(24)及び負極集電板(25)が、外装缶(11)に収容された二次電池において、正極(21)は、帯状の正極箔(21A)上に、正極活物質非被覆部(21C)を有し、負極(22)は、帯状の負極箔(22A)上に、負極活物質非被覆部(22C)を有し、正極活物質非被覆部(21C)は、電極巻回体の端面の一方において、正極集電板(24)と接合され、負極活物質非被覆部(22C)は、電極巻回体の端面の他方において、負極集電板(25)と接合され、正極活物質非被覆部(21C)と負極活物質非被覆部(22C)とが、巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面(41、42)を有し、少なくとも電極巻回体のトップ側のエッジ部(51)を覆う第1絶縁部材(53)と、少なくとも電極巻回体のボトム側のエッジ部(52)を覆う第2絶縁部材(54)が設けられている二次電池である。

Description

二次電池、電池パック、電動工具、電動式航空機及び電動車両
 本発明は、二次電池、電池パック、電動工具、電動式航空機及び電動車両に関する。
 リチウムイオン電池は自動車や機械などに使用が拡大され、高出力の電池が必要とされてきている。この高出力を生み出す方法の一つとして、ハイレート放電が提案されている。ハイレート放電では電池内部の抵抗が問題となり、これを克服するために、例えば、正極箔と負極箔を電極巻回体の両端面に集める構造を作製し、集電板と多点で溶接をして低抵抗化を図っている。このような構造では、正極箔や負極箔が外装缶と接触する恐れがあり、ショートする可能性が有った。
 例えば、特許文献1には、巻回された円筒状の電極アセンブリを固定する仕上げテープによって、電極アセンブリの側面と下端面の一部を覆う構造を有する円筒形電池が開示されている。ここでは、仕上げテープによって外部からの衝撃を低減し電極アセンブリの損傷を防止できるということや、電極アセンブリの底面が露出していると電解液が浸透しやすいということを開示している。
米国特許出願公開第2016/141560号明細書
 しかしながら、特許文献1では、円筒状の電極アセンブリのトップ側の保護や絶縁については何も検討されていない。また、円筒状の電極アセンブリの上下の端面にそれぞれ正極集電板と負極集電板を有する電極アセンブリの絶縁構造、保護構造と電解液の浸透性の両立については検討されていない。
 従って、本発明は、電解液の注液時間をより短縮して生産性の高い電池を実用化するとともに、電池の組立時における内部ショートや電極アセンブリの損傷や金属粉の発生を防ぐことのできる絶縁部材を有する電池を提供することを目的の一つとする。
 上述した課題を解決するために、本発明は、セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、正極集電板及び負極集電板が、外装缶に収容された二次電池において、
 正極は、帯状の正極箔上に、正極活物質非被覆部を有し、
 負極は、帯状の負極箔上に、負極活物質非被覆部を有し、
 正極活物質非被覆部は、電極巻回体の端面の一方において、正極集電板と接合され、
 負極活物質非被覆部は、電極巻回体の端面の他方において、負極集電板と接合され、
 正極活物質非被覆部と負極活物質非被覆部とが、巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面を有し、
 少なくとも電極巻回体のトップ側のエッジ部を覆う第1絶縁部材と、少なくとも電極巻回体のボトム側のエッジ部を覆う第2絶縁部材が設けられている二次電池である。
 また、本発明は、上述した二次電池と、
 二次電池を制御する制御部と、
 二次電池を内包する外装体と
 を有する電池パックである。
 本発明は、上述した電池パックを有し、電池パックを電源として使用する電動工具である。
 本発明は、上述した電池パックと、
 複数の回転翼と、
 回転翼をそれぞれ回転させるモータと、
 回転翼及びモータをそれぞれ支持する支持軸と、
 モータの回転を制御するモータ制御部と、
 モータに電力を供給する電力供給ラインとを備え、
 電池パックが電力供給ラインに接続されている電動式航空機である。
 本発明は、上述した二次電池を有し、
 二次電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置とを有する電動車両である。
 本発明の少なくとも実施の形態によれば、電気的ショートを防止しながら電解液の注入が速く行えるハイレート放電用の電池を実現することができる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。
図1は、一実施の形態に係る電池の概略断面図である。 図2は、電極巻回体における正極、負極とセパレータの配置関係の一例を説明する図である。 図3Aは、正極集電板の平面図であり、図3Bは負極集電板の平面図である。 図4Aから図4Fは、一実施の形態に係る電池の組み立て工程を説明する図である。 図5は、第1絶縁部材の長さa1、b1とb3を示す電池の概略断面図である。 図6は、第2絶縁部材の長さa2とb2を示す電池の概略断面図である。 図7は、本発明の応用例としての電池パックの説明に使用する接続図である。 図8は、本発明の応用例としての電動工具の説明に使用する接続図である。 図9は、本発明の応用例としての無人航空機の説明に使用する接続図である。 図10は、本発明の応用例としての電動車両の説明に使用する接続図である。
 以下、本発明の実施の形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<1.一実施の形態>
<2.変形例>
<3.応用例>
 以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施の形態等に限定されるものではない。
 本発明の実施の形態では、二次電池として、円筒形状のリチウムイオン電池を例にして説明する。勿論、リチウムイオン電池以外の他の電池や円筒形状以外の電池が用いられても良い。
<1.一実施の形態>
 まず、リチウムイオン電池の全体構成に関して説明する。図1は、円筒型のリチウムイオン電池1の概略断面図である。
 図1に示すように、リチウムイオン電池1は、例えば、円筒状の外装缶11の内部に、一対の絶縁板12,13と、電極巻回体20とを備えている。ただし、リチウムイオン電池1は、例えば、さらに、外装缶11の内部に、熱感抵抗(PTC)素子及び補強部材などのうちのいずれか1種類又は2種類以上を備えていてもよい。以下、リチウムイオン電池1を単に「電池1」と表現する場合がある。
[外装缶]
 外装缶11は、主に、電極巻回体20を収納する部材である。この外装缶11は、例えば、一端部が開放されると共に他端部が閉塞された円筒状の容器である。すなわち、外装缶11は、開放された一端部(開放端部11N)を有している。この外装缶11は、例えば、鉄、アルミニウム及びそれらの合金などの金属材料のうちのいずれか1種類又は2種類以上を含んでいる。ただし、外装缶11の表面には、例えば、ニッケルなどの金属材料のうちのいずれか1種類又は2種類以上が鍍金されていてもよい。
[絶縁板]
 絶縁板12,13のそれぞれは、例えば、電極巻回体20の巻回軸に対して垂直な面、すなわち図1中のZ軸に垂直な面を有する皿状の板である。また、絶縁板12,13は、それぞれトップ側絶縁板12、ボトム側絶縁板13として機能し、互いに電極巻回体20を挟むように配置されている。
[かしめ構造]
 外装缶11の開放端部11Nには、電池蓋14及び安全弁機構30がガスケット15を介して、かしめられており、かしめ構造11R(クリンプ構造)が形成されている。これにより、外装缶11の内部に電極巻回体20などが収納された状態において、その外装缶11は密閉されている。
[電池蓋]
 電池蓋14は、主に、外装缶11の内部に電極巻回体20などが収納された状態において、その外装缶11の開放端部11Nを閉塞する部材である。この電池蓋14は、例えば、外装缶11の形成材料と同様の材料を含んでいる。電池蓋14のうちの中央領域は、例えば、+Z方向に突出している。これにより、電池蓋14のうちの中央領域以外の領域(周辺領域)は、例えば、安全弁機構30に接触している。
[ガスケット]
 ガスケット15は、主に、外装缶11(折り曲げ部11P)と電池蓋14との間に介在することにより、その折り曲げ部11Pと電池蓋14との間の隙間を封止する部材である。ただし、ガスケット15の表面には、例えば、アスファルトなどが塗布されていてもよい。
 このガスケット15は、例えば、絶縁性材料のうちのいずれか1種類又は2種類以上を含んでいる。絶縁性材料の種類は、特に限定されないが、例えば、ポリブチレンテレフタレート(PBT)及びポリプ口ピレン(PP)などの高分子材料である。中でも、絶縁性材料は、ポリブチレンテレフタレートであることが好ましい。外装缶11と電池蓋14とを互いに電気的に分離しながら、折り曲げ部11Pと電池蓋14との間の隙間が十分に封止されるからである。
[安全弁機構]
 安全弁機構30は、主に、外装缶11の内部の圧力(内圧)が上昇した際に、必要に応じて外装缶11の密閉状態を解除することにより、その内圧を開放する。外装缶11の内圧が上昇する原因は、例えば、充放電時において電解液の分解反応に起因して発生するガスなどである。
[電極巻回体]
 円筒形状のリチウムイオン電池では、帯状の正極21と帯状の負極22がセパレータ23を挟んで渦巻き状に巻回されて、電解液に含浸された状態で、外装缶11に収まっている。正極21は正極箔21Aの片面又は両面に正極活物質層21Bを形成したものであり、正極箔21Aの材料は例えば、アルミニウムやアルミニウム合金でできた金属箔である。負極22は負極箔22Aの片面又は両面に負極活物質層22Bを形成したものであり、負極箔22Aの材料は例えば、ニッケル、ニッケル合金、銅や銅合金でできた金属箔である。セパレータ23は多孔質で絶縁性のあるフィルムであり、正極21と負極22とを電気的に絶縁しながら、イオンや電解液等の物質の移動を可能にしている。
 正極活物質層21Bと負極活物質層22Bはそれぞれ、正極箔21Aと負極箔22Aとの多くの部分を覆うが、どちらも帯の短軸方向にある片方の端周辺を意図的に被覆していない。この活物質層21B,22Bが被覆されていない部分を、以下、適宜、活物質非被覆部と称する。円筒形状の電池では、電極巻回体20は正極の活物質非被覆部21Cと負極の活物質非被覆部22Cが逆方向を向くようにしてセパレータ23を介して重ねられて巻回されている。電極巻回体は、その側面部45に固定テープ46を貼り付けることによってセパレータ23の端部が固定され、巻きゆるみが生じないようになっている。
 図2に正極21、負極22とセパレータ23を積層した巻回前の構造の一例を示す。正極の活物質非被覆部21C(図2の上側の斜線部分)の幅はAであり、負極の活物質非被覆部22C(図2の下側の斜線部分)の幅はBである。一実施の形態ではA>Bであることが好ましく、例えばA=7(mm)、B=4(mm)である。正極の活物質非被覆部21Cがセパレータ23の幅方向の一端から突出した長さはCであり、負極の活物質非被覆部22Cがセパレータ23の幅方向の他端から突出した長さはDである。一実施の形態ではC>Dであることが好ましく、例えば、C=4.5(mm)、D=3(mm)である。
 正極の活物質非被覆部21Cは例えばアルミニウムなどからなり、負極の活物質非被覆部22Cは例えば銅などからなるので、一般的に正極の活物質非被覆部21Cの方が負極の活物質非被覆部22Cよりも柔らかい(ヤング率が低い)。このため、一実施の形態では、A>BかつC>Dがより好ましく、この場合、両極側から同時に同じ圧力で正極の活物質非被覆部21Cと負極の活物質非被覆部22Cとが折り曲げられるとき、折り曲げられた部分のセパレータ23の先端から測った高さは正極21と負極22とで同じくらいになることがある。このとき、活物質非被覆部21C,22Cが折り曲げられて適度に重なり合うので、活物質非被覆部21C,22Cと集電板24,25とのレーザ溶接による接合を容易に行うことができる。一実施の形態における接合とは、レーザ溶接により繋ぎ合わされていることを意味するが、接合方法はレーザ溶接に限定されない。
 正極21は、活物質非被覆部21Cと活物質被覆部21Bとの境界を含む幅3mmの区間が絶縁層101(図2の灰色の領域部分)で被覆されている。そして、セパレータを介して負極の活物質被覆部22Bに対向する正極の活物質非被覆部21Cの全ての領域が絶縁層101で覆われている。絶縁層101は、負極の活物質被覆部22Bと正極の活物質非被覆部21Cとの間に異物が侵入したときに、電池1の内部短絡を確実に防ぐ効果がある。また、絶縁層101は、電池1に衝撃が加わったときに、その衝撃を吸収し、正極の活物質非被覆部21Cが折れ曲がりや、負極22との短絡を確実に防ぐ効果がある。
 電極巻回体20は略円柱状の形態を有し、中心には、貫通孔26が空いている。貫通孔26は電極巻回体20の組み立て用の巻き芯と溶接用の電極棒を差し込むための孔である。電極巻回体20は、正極の活物質非被覆部21Cと負極の活物質非被覆部22Cが逆方向を向くように重ねて巻回してあるので、電極巻回体の端部の一方の面(端面41)には、正極の活物質非被覆部21Cが集まり、電極巻回体20の端部の他方の面(端面42)には、負極の活物質非被覆部22Cが集まる。電流を取り出すための集電板24,25との接触を良くするために、活物質非被覆部21C,22Cは貫通孔26(中心軸)方向に曲折されて(すなわち、巻回された状態で隣接する周の活物質非被覆部同士が重なって曲折されて)、端面41,42が平坦面となっている。なお、本明細書において「平坦面」とは、完全に平坦な面のみならず、活物質非被覆部と集電板が接合可能な程度において、多少の凹凸や表面粗さを有する表面も含む。
 活物質非被覆部21C,22Cがそれぞれ重なるようにして曲折することで、一見、端面41,42を平坦面にすることが可能に思われるが、曲折する前に何らの加工もないと、曲折するときに端面41,42にシワやボイド(空隙、空間)が発生して、端面41,42が平坦面とならない。ここで、「シワ」や「ボイド」とは曲折した活物質非被覆部21C,22Cに偏りが生じ、端面41,42が平坦面とはならない部分である。このシワやボイドの発生を防止するために、端面41、42には放射方向に溝43(例えば図4Bを参照)が形成されている。電極巻回体20の中心軸には貫通孔26があり、貫通孔26はリチウムイオン電池1の組み立て工程で、溶接器具を差し込む孔として使用される。貫通孔26の付近にある、正極21と負極22との巻き始めの活物質非被覆部21C,22Cには切欠きがある。これは貫通孔26に向かって曲折したとき貫通孔26を塞がないようにするためである。溝43は、活物質非被覆部21C,22Cを曲折した後も平坦面内に残っており、溝43の無い部分が、正極集電板24又は負極集電板25と接合(溶接等)されている。なお、平坦面のみならず、溝43が集電板24,25の一部と接合されていてもよい。
 なお、ここでは電極巻回体20又は電極巻回体20に正極集電板24と負極集電板25とが溶接された電極巻回体を略円柱とみなした場合、正極側のエッジラインをトップ側のエッジ部51と称し、負極側のエッジラインをボトム側のエッジ部52と称することとする。
 電極巻回体20の詳細な構成、すなわち正極21、負極22、セパレータ23及び電解液のそれぞれの詳細な構成に関しては、後述する。
[絶縁部材]
 絶縁部材の構成について、図1,図5及び図6を参照して説明する。端面41,42に集まっている活物質非被覆部21C,22Cは剥き出しの金属箔なので、活物質非被覆部21C,22Cと外装缶11とが近接したときにショートする可能性がある。また、端面41にある正極集電板24と外装缶11とが近接したときにショートする可能性がある。そのため、外装缶11との電気的絶縁性を持たせるために、トップ側のエッジ部51とボトム側のエッジ部52は、絶縁部材が被覆されている。絶縁部材としては種々の素材を用いることが可能であるが、ここでは絶縁テープ53,54を例に挙げて説明する。絶縁テープ53,54は、例えば、基材層の材質がポリプロピレン、ポリエチレンテレフタレート、ポリイミドのうち何れかで構成され、基材層の一面に粘着層を有している粘着テープである。絶縁テープ53,54の設置により電極巻回体20の容積を減らさないために、絶縁テープ53,54は側面部45に貼付された固定テープ46と重ならないように配置され、絶縁テープ53,54の厚さは固定テープ46の厚さ以下に設定されている。
 トップ側のエッジ部51においては、正極集電板24の形状にもよるが(図3A参照)、正極集電板24が設けられている部分と、正極活物質非被覆部21Cが露出している部分がある。絶縁テープ53は、エッジ部51において、これらの部分を両方覆っていることが好ましい。更には、トップ側のエッジ部51をすべて(円筒型の場合、全周に亘って)覆っていることが好ましい。
 ボトム側のエッジ部52においては、負極集電板25の形状にもよるが(図3B参照)、負極集電板25が設けられている部分と、負極活物質非被覆部22Cが露出している部分がある。絶縁テープ54は、エッジ部52において、これらの部分を両方覆っていることが好ましい。更には、ボトム側のエッジ部52をすべて(円筒型の場合、全周に亘って)覆っていることが好ましい。
 特に、トップ側のエッジ部51ではショートが起こりやすく、外部から電池1への衝撃で、端面41が外装缶11に形成されるくびれ部11Sと接触して、ショートが起こる可能性が有る。このため、絶縁テープ53(第1絶縁部材)は、電極巻回体20の側面部45の一部からトップ側のエッジ部51を経由して外装缶11のくびれ部11Sの頂点Pの直下を0.5mm以上超える範囲迄を覆っている(図1)。トップ側の絶縁テープ53(第1絶縁部材)と正極集電板24との配置の関係から、絶縁テープ53は、正極集電板24の折り畳まれた帯状部32に接する位置まで延在させることができる。同様に、ボトム側の絶縁テープ54(第2絶縁部材)と負極集電板25との配置の関係から、絶縁テープ54は、負極集電板25の折り畳まれた帯状部34に接する位置までを延在させることができる(図5)。
 絶縁テープ53の端部が、正極集電板24の帯状部32の折り返し部を超えて接触した場合には、電池の中心軸方向のスペースが足りず、組立て不良が発生する。また、絶縁テープ54の端部が、負極集電板25の帯状部34の折り返し部を超えて接触した場合には、電池の中心軸方向のスペースが足りず、同様に組立て不良が発生する。
[集電板]
 通常のリチウムイオン電池では例えば、正極と負極との一か所ずつに電流取出し用のリードが溶接されているが、これでは電池の内部抵抗が大きく、放電時にリチウムイオン電池が発熱し高温になるため、ハイレート放電には適さない。そこで、一実施の形態のリチウムイオン電池では、端面41,42に正極集電板24と負極集電板25とを配置し、端面41,42に存在する正極や負極の活物質非被覆部21C,22Cと多点で溶接することで、電池の内部抵抗を低く抑えている。端面41,42が曲折して平坦面となっていることも低抵抗化に寄与している。
 図3A及び図3Bに、集電板の一例を示す。図3Aが正極集電板24であり、図3Bは負極集電板25である。正極集電板24の材料は例えば、アルミニウムやアルミニウム合金の単体若しくは複合材でできた金属板であり、負極集電板25の材料は例えば、ニッケル、ニッケル合金、銅や銅合金の単体若しくは複合材でできた金属板である。図3Aに示すように、正極集電板24の形状は平坦な扇形をした扇状部31に、矩形の帯状部32が付いた形状になっている。扇状部31の中央付近に孔35があいていて、孔35の位置は貫通孔26に対応する位置である。
 図3Aの斜線で示す部分は帯状部32に絶縁テープが貼付されているか絶縁材料が塗布された絶縁部32Aであり、図面の斜線部より下側の部分は外部端子を兼ねた封口板への接続部32Bである。なお、貫通孔26に金属製のセンターピン(図示せず)を備えていない電池構造の場合には帯状部32が負極電位の部位と接触する可能性が低いため、絶縁部32Aが無くても良い。その場合には、正極21と負極22との幅を絶縁部32Aの厚さに相当する分だけ大きくして充放電容量を大きくすることができる。
 負極集電板25の形状は正極集電板24と殆ど同じ形状だが、帯状部が異なっている。図3Bの負極集電板の帯状部34は、正極集電板の帯状部32より短く、絶縁部32Aに相当する部分がない。帯状部34には、複数の丸印で示される丸型の突起部(プロジェクション)37がある。抵抗溶接時には、電流が突起部に集中し、突起部が溶けて帯状部34が外装缶11の底に溶接される。正極集電板24と同様に、負極集電板25には扇状部33の中央付近に孔36があいていて、孔36の位置は貫通孔26に対応する位置である。正極集電板24の扇状部31と負極集電板25の扇状部33は扇形の形状をしているため、端面41,42の一部を覆うようになっている。全部を覆わない理由は、電池を組み立てる際に電極巻回体へ電解液を円滑に浸透させる為、あるいは電池が異常な高温状態や過充電状態になったときに発生したガスを電池外へ放出しやすくする為である。
[正極]
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵及び放出することが可能である正極材料のうちのいずれか1種類又は2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤及び正極導電剤などの他の材料のうちのいずれか1種類又は2種類以上を含んでいてもよい。正極材料は、リチウム含有化合物であることが好ましく、より具体的にはリチウム含有複合酸化物及びリチウム含有リン酸化合物などであることが好ましい。
 リチウム含有複合酸化物は、リチウムと1種類又は2種類以上の他元素(リチウム以外の元素)とを構成元素として含む酸化物であり、例えば、層状岩塩型及びスピネル型などのうちのいずれかの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1種類又は2種類以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。
 正極結着剤は、例えば、合成ゴム及び高分子化合物などのうちのいずれか1種類又は2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム及びエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデン及びポリイミドなどである。
 正極導電剤は、例えば、炭素材料などのうちのいずれか1種類又は2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラック及びケッチェンブラックなどである。ただし、正極導電剤は、導電性を有する材料であれば、金属材料及び導電性高分子などでもよい。
[負極]
 負極箔22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極箔22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極箔22Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極箔22Aの表面に微粒子が形成されるため、その負極箔22Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵及び放出することが可能である負極材料のうちのいずれか1種類又は2種類以上を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤及び負極導電剤などの他の材料のうちのいずれか1種類又は2種類以上を含んでいてもよい。
 負極材料は、例えば、炭素材料である。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層22Bの導電性が向上するからである。
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素及び黒鉛などである。ただし、難黒鉛化性炭素における(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛における(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭及びカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークス及び石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂及びフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状及び鱗片状のうちのいずれでもよい。
 リチウムイオン電池1では、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、その完全充電時の開回路電圧が4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られる。
[セパレータ]
 セパレータ23は、正極21と負極22との間に介在しており、正極21と負極22との接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。セパレータ23は、例えば、合成樹脂及びセラミックなどの多孔質膜のうちのいずれか1種類又は2種類以上であり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレン及びポリエチレンなどである。
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面又は両面に設けられた高分子化合物層とを含んでいてもよい。正極21及び負極22のそれぞれに対するセパレータ23の密着性が向上するため、電極巻回体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、電池膨れが抑制される。
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子化合物は、ポリフッ化ビニリデン以外でもよい。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。この高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類又は2種類以上を含んでいてもよい。無機粒子の種類は、例えば、酸化アルミニウム及び窒化アルミニウムなどである。
[電解液]
 電解液は、溶媒及び電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類又は2種類以上を含んでいてもよい。
 溶媒は、有機溶媒などの非水溶媒のうちのいずれか1種類又は2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステル及びニトリル(モノニトリル)などである。
 電解質塩は、例えば、リチウム塩などの塩のうちのいずれか1種類又は2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム以外の塩は、例えば、リチウム以外の軽金属の塩などである。
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六フッ化ヒ酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C654)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、テトラクロロアルミン酸リチウム(LiAlCl4)、六フッ化ケイ酸二リチウム(Li2SF6)、塩化リチウム(LiCl)及び臭化リチウム(LiBr)などである。
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム及び六フッ化ヒ酸リチウムのうちのいずれか1種類又は2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kgから3mol/kgであることが好ましい。
[リチウムイオン電池の作製方法]
 図4Aから図4Fを参照して、一実施の形態のリチウムイオン電池1の作製方法について述べる。まず、正極活物質を、帯状の正極箔21Aの表面に塗着させ、これを正極21の被覆部とし、負極活物質を、帯状の負極箔22Aの表面に塗着させ、これを負極22の被覆部とした。このとき、正極21の短手方向の一端と負極22の短手方向の一端に、正極活物質と負極活物質が塗着されていない活物質非被覆部21C,22Cを作製した。活物質非被覆部21C,22Cの一部であって、巻回するときの巻き始めに当たる部分に、切欠きを作製した。正極21と負極22とには乾燥等の工程を行った。そして、正極の活物質非被覆部21Cと負極の活物質非被覆部22Cが逆方向となるようにセパレータ23を介して重ね、中心軸に貫通孔26ができるように、且つ、作製した切欠きが中心軸付近に配置されるように、渦巻き状に巻回して、最外周に固定テープ46を貼り付けて、図4Aのような電極巻回体20を作製した。
 次に、図4Bのように、薄い平板(例えば厚さ0.5mm)などの端を端面41,42に対して垂直に押し付けることで、端面41,42を局所的に折り曲げて溝43を作製した。この方法で貫通孔26から放射方向に、中心軸に向かって延びる溝43を作製した。図4Bに示される、溝43の数や配置はあくまでも一例である。そして、図4Cのように、両極側から同時に同じ圧力を端面41,42に対して略垂直方向に加え、正極の活物質非被覆部21Cと負極の活物質非被覆部22Cを折り曲げて、端面41,42が平坦面となるように形成した。このとき、端面41,42にある活物質非被覆部21C,22Cが、貫通孔26側に向かって重なって曲折するように、平板の板面などで荷重を加えた。その後、端面41に正極集電板24の扇状部31をレーザ溶接し、端面42に負極集電板25の扇状部33をレーザ溶接した。
 その後、図4Dのように、トップ側のエッジ部51とボトム側のエッジ部52とに、それぞれ絶縁テープ53,54を貼付けた。そして、集電板24,25の帯状部32,34を折り曲げ、トップ側絶縁板12、ボトム側絶縁板13の穴にそれぞれ挿通し、図4Eに示される外装缶11内に上記のように組立てを行った電極巻回体20を挿入し、外装缶11の底と負極集電板25の溶接を行った。次に、外装缶11の開口部近傍にくびれ部11Sを形成した。電解液を外装缶11内に注入後、正極集電板の帯状部32と安全弁機構30を溶接した。図4Fのように、くびれ部11Sを利用してガスケット15、安全弁機構30及び電池蓋14で密封した。
 以下、上記のようにして作製したリチウムイオン電池1を用い、ショート率の違いや注液時間の違いなどを比較した実施例に基づいて本発明を具体的に説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。
 以下の全ての実施例と比較例において、電池サイズは21700とし、絶縁テープ53の基材層の材質をポリイミドとした。
 まずは、トップ側のエッジ部51を被覆する絶縁テープ53のうち、電極巻回体20の端面41上での長さ(b1)と内部ショート率の関係を求めた。図5は電池1のトップ側を表示した図である。前記長さ(b1)とは、図5に示すようにくびれ部11Sの頂点Pの直下の位置から絶縁テープ53の端部までの長さを意味する。なお、くびれ部の表面(缶の内面)のうち、前記電極巻回体20に最も近接した点を頂点Pと定義する(図5参照)。
[実施例1]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、b1=1.5(mm)とした。
[実施例2]
 実施例1と同様に絶縁テープ53を貼付し、b1=1.0(mm)とした。
[実施例3]
 実施例1と同様に絶縁テープ53を貼付し、b1=0.5(mm)とした。
[比較例1]
 実施例1と同様に絶縁テープ53を貼付し、b1=0.3(mm)とした。
[比較例2]
 実施例1と同様に絶縁テープ53を貼付し、b1=0(mm)とした。
[評価]
 上記電池について、評価を行った。100本の組み立て終了後の電池1に対する、初回充電中に内部短絡した電池(充電ができない電池)の本数の割合を内部ショート率とした。
[表1]
Figure JPOXMLDOC01-appb-I000001
 実施例1から実施例3の内部ショート率は0%と小さかったが、比較例1と比較例2の内部ショート率は比較的大きかった。表1の結果より、トップ側のエッジ部51を被覆する絶縁テープ53のうち、電極巻回体20の端面41上での長さ(b1)が0.5(mm)以上のとき、内部ショートを防ぐことができた。
 次に、トップ側のエッジ部51を被覆する絶縁テープ53のうち、電極巻回体20の側面部45上での長さ(a1)と内部ショート率の関係を求めた。なお、図5に示すように、長さa1は、端面41を覆う絶縁テープ53の表面から(絶縁テープ53の厚みを含んで)、側面部45における絶縁テープ53の下端までの長さを指す。
[実施例4]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、a1=1.5(mm)とした。
[実施例5]
 実施例4と同様に絶縁テープ53を貼付し、a1=1.0(mm)とした。
[実施例6]
 実施例4と同様に絶縁テープ53を貼付し、a1=0.5(mm)とした。
[比較例3]
 実施例4と同様に絶縁テープ53を貼付し、a1=0.3(mm)とした。
[比較例4]
 実施例4と同様に絶縁テープ53を貼付し、a1=0(mm)とした。
[評価]
 上記電池について、評価を行った。100本の組み立て終了後の電池1に対する、初回充電中に内部短絡した電池(充電ができない電池)の本数の割合を内部ショート率とした。
[表2]
Figure JPOXMLDOC01-appb-I000002
 実施例4から実施例6の内部ショート率は0%と小さかったが、比較例3と比較例4の内部ショート率は比較的大きかった。表2より、トップ側のエッジ部51を被覆する絶縁テープ53のうち、電極巻回体20の側面部45上での長さ(a1)が0.5(mm)以上であるとき、内部ショートを防止できた。
 次に、ボトム側のエッジ部52とへの、絶縁テープ54の貼付による、組立時脱落金属の発生率について求めた。図6は電池1のボトム側を表示した図である。
[実施例7]
 図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、b2=1.5(mm)とした。
[実施例8]
 実施例7と同様に絶縁テープ54を貼付し、b2=1.0(mm)とした。
[実施例9]
 実施例7と同様に絶縁テープ54を貼付し、b2=0.5(mm)とした。
[比較例5]
 実施例7と同様に絶縁テープ54を貼付し、b2=0.3(mm)とした。
[比較例6]
 実施例7と同様に絶縁テープ54を貼付し、b2=0(mm)とした。
 [評価]
 100本の電極巻回体20を外装缶11に挿入する工程において、負極箔22C及び負極集電板25が外装缶11に接触して金属粉が発生した場合を組立時脱落金属が有りとし、その発生率(%)を算出した。
[表3]
Figure JPOXMLDOC01-appb-I000003
 実施例7から実施例9の組み立て時脱落金属の発生率は0%と小さかったが、比較例5と比較例6の組み立て時脱落金属の発生率は比較的大きかった。表3より、b2≧0.5(mm)のとき、組立時脱落金属が無かったことが分かった。
[実施例10]
 図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、a2=1.5(mm)とした。
[実施例11]
 実施例10と同様に絶縁テープ54を貼付し、a2=1.0(mm)とした。
[実施例12]
 実施例10と同様に絶縁テープ54を貼付し、a2=0.5(mm)とした。
[比較例7]
 実施例10と同様に絶縁テープ54を貼付し、a2=0.3(mm)とした。
[比較例8]
 実施例10と同様に絶縁テープ54を貼付し、a2=0(mm)とした。
 [評価]
 100本の電極巻回体20を外装缶11に挿入する工程において、負極箔22C及び負極集電板25が外装缶11に接触して金属粉が発生した場合を組立時脱落金属が有りとし、その発生率(%)を算出した。
[表4]
Figure JPOXMLDOC01-appb-I000004
 実施例10から実施例12の組み立て時脱落金属の発生率は0%と小さかったが、比較例7と比較例8の組み立て時脱落金属の発生率は比較的大きかった。表4より、a2≧0.5(mm)のとき、組立時脱落金属が無かったことが分かった。したがって、b2≧0.5(mm)、且つ、a2≧0.5(mm)のとき、電池1の組立時における金属粉が発生しないと言える。
 次に、トップ側のエッジ部51とボトム側のエッジ部52とへの、絶縁テープ53の貼付の有無による、内部ショート率と組み立て時脱落金属の有無について求めた。
[実施例15]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、a1=6.0(mm)、b1=3.0(mm)とし、図6のように、ボトム側のエッジ部52に絶縁テープ53を貼付し、a2=6.0(mm)、b2=3.0(mm)とした。
[比較例11]
 トップ側のエッジ部51にもボトム側のエッジ部52にも絶縁テープ53,54を貼付しなかった。
[比較例12]
 図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、a2=6.0(mm)、b2=3.0(mm)とした。トップ側のエッジ部51には絶縁テープ53を貼付しなかった。
[比較例13]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、a1=6.0(mm)、b1=3.0(mm)とした。ボトム側のエッジ部52には絶縁テープ54を貼付しなかった。
[評価]
 上記電池について、評価を行った。100本の組み立て終了後の電池1に対する、初回充電中に内部短絡した電池(充電ができない電池)の本数の割合を内部ショート率とした。電極巻回体20を外装缶11に挿入する工程において、負極箔22C及び負極集電板25が外装缶11に接触して金属粉が発生した場合を組立時脱落金属が有りとし、金属粉が発生しない場合を組立時脱落金属が無しとした。
[表5]
Figure JPOXMLDOC01-appb-I000005
 実施例15では内部ショート率が0%と小さい値であり、且つ、組立時脱落金属は無かったのに対し、比較例11から比較例13では、内部ショート率が比較的大きい値であった、又は/及び、組み立て時脱落金属が有りだった。トップ側のエッジ部51に絶縁テープ53が貼付されているとき、内部ショート率は0%であり、ボトム側のエッジ部52に絶縁テープ54が貼付されているとき、組立時脱落金属が無かった。組立時脱落金属はコンタミネーションとして、電池1に悪い影響を及ぼす可能性が有る。表5より、トップ側のエッジ部51とボトム側のエッジ部52との両方に絶縁テープ53,54を貼付した場合には、内部ショートを防ぐことができ、組立時脱落金属の発生が無いことが分かった。
 次に、トップ側のエッジ部51を被覆する絶縁テープ53のうち、電極巻回体20の端面41上での長さ(b3)、ボトム側のエッジ部52を被覆する絶縁テープ54のうち、電極巻回体20の端面42上での長さ(b2)と電解液の注液時間の関係を求めた。なお、図5に示すように、長さb3は、側面部45における絶縁テープ53の表面から(絶縁テープの厚みを含んで)、端面41を覆う絶縁テープ53の中心軸側の端までの長さを指し、図6に示すように、長さb2は、側面部45における絶縁テープ54の表面から(絶縁テープの厚みを含んで)、端面42を覆う絶縁テープ54の中心軸側の端までの長さを指す。
[実施例21]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、b3=b2=1(mm)とした。
[実施例22]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=2(mm)とした。
[実施例23]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=3(mm)とした。
[実施例24]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=4(mm)とした。
[実施例25]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=5(mm)とした。
[比較例21]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=6(mm)とした。
[比較例22]
 実施例21と同様に絶縁テープ53,54を貼付し、b3=b2=7(mm)とした。
[評価]
 上記電池について、評価を行った。電解液を注入し始めてから注入が完了するまでの時間を計測し、注入時間とした。
[表6]
Figure JPOXMLDOC01-appb-I000006
 実施例21から実施例25では、注液時間の値が比較的小さかったのに対し、比較例21と比較例22の注液時間の値は比較的大きかった。表6より、b3とb2とが5mm以下、即ち、電極巻回体20の半径に対するb3の割合と電極巻回体20の半径に対するb2の割合とが50%以下のとき、電解液の注液時間の増大が比較的小さかった。したがって、トップ側のエッジ部51を被覆する絶縁テープ53(第1絶縁部材)は、エッジ部51から貫通孔26に向かって、電極巻回体20の半径の半分以下離れた位置までを被覆し、ボトム側のエッジ部52を被覆する絶縁テープ54(第2絶縁部材)は、エッジ部52から貫通孔26に向かって、電極巻回体20の半径の半分以下離れた位置までを被覆するとき、電解液の注液時間の増大が抑えられることが分かった。
 次に、トップ側のエッジ部51を被覆する絶縁テープの53うち、電極巻回体20の側面部45上での長さ(a1)、ボトム側のエッジ部52を被覆する絶縁テープ54のうち、電極巻回体20の側面部45上での長さ(a2)と電解液の注液時間の関係を求めた。なお、図6に示すように、長さa2は、端面42を覆う絶縁テープ54の表面から(絶縁テープ54の厚みを含んで)、側面部45における絶縁テープ54の上端までの長さを指す。
[実施例31]
 図5のように、トップ側のエッジ部51に絶縁テープ53を貼付し、図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、a1=a2=1(mm)とし、b3=b2=1(mm)とした。
[実施例32]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=2(mm)とし、b3=b2=1(mm)とした。
[実施例33]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=3(mm)とし、b3=b2=1(mm)とした。
[実施例34]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=4(mm)とし、b3=b2=1(mm)とした。
[実施例35]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=5(mm)とし、b3=b2=1(mm)とした。
[実施例36]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=6(mm)とし、b3=b2=1(mm)とした。
[実施例37]
 実施例31と同様に絶縁テープ53,54を貼付し、a1=a2=7(mm)とし、b3=b2=1(mm)とした。
[比較例31]
図6のように、ボトム側のエッジ部52に絶縁テープ54を貼付し、a2=30(mm)とし、b2=1(mm)とした。トップ側のエッジ部51には絶縁テープ53を貼付しなかった。
[評価]
 上記電池について、評価を行った。電解液を注入し始めてから注入が完了するまでの時間を計測し、注入時間とした。
[表7]
Figure JPOXMLDOC01-appb-I000007
 実施例31から実施例37の注液時間の値は比較的小さかったのに対し、比較例31の注液時間の値は比較的大きかった。表7より、a1とa2とが7(mm)以下のとき、電解液の注液を速くできた。また、表7の結果から、表6においてa1とa2と注液時間との関係はとても小さいことが分かった。表7のデータは、表6のサポートデータとなることが判明した。
<2.変形例>
 以上、本発明の一実施の形態について具体的に説明したが、本発明の内容は上述した実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
 溝43の数や配置は図で例示したもの以外であってもよい。
 正極集電板24と負極集電板25は、扇形の形状をした扇状部31,33を備えていたが、それ以外の形状であってもよい。
<3.応用例>
「電池パックの例」
 図7は、本発明の一実施の形態に係る電池(以下、二次電池と適宜称する)を電池パック330に適用した場合の回路構成例を示すブロック図である。電池パック300は、組電池301、外装、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。
 また、電池パック300は、正極端子321及び負極端子322を備え、充電時には正極端子321及び負極端子322がそれぞれ充電器の正極端子、負極端子に接続され、充電が行われる。また、電子機器使用時には、正極端子321及び負極端子322がそれぞれ電子機器の正極端子、負極端子に接続され、放電が行われる。
 組電池301は、複数の二次電池301aを直列及び/又は並列に接続してなる。この二次電池301aは本発明の二次電池である。なお、図7では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されているが、その他、n並列m直列(n,mは整数)のように、どのような接続方法でもよい。
 スイッチ部304は、充電制御スイッチ302a及びダイオード302b、ならびに放電制御スイッチ303a及びダイオード303bを備え、制御部310によって制御される。ダイオード302bは、正極端子321から組電池301の方向に流れる充電電流に対して逆方向で、負極端子322から組電池301の方向に流れる放電電流に対して順方向の極性を有する。ダイオード303bは、充電電流に対して順方向で、放電電流に対して逆方向の極性を有する。尚、例では+側にスイッチ部304を設けているが、-側に設けても良い。
 充電制御スイッチ302aは、電池電圧が過充電検出電圧となった場合にOFFされて、組電池301の電流経路に充電電流が流れないように充放電制御部によって制御される。充電制御スイッチ302aのOFF後は、ダイオード302bを介することによって放電のみが可能となる。また、充電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる充電電流を遮断するように、制御部310によって制御される。
 放電制御スイッチ303aは、電池電圧が過放電検出電圧となった場合にOFFされて、組電池301の電流経路に放電電流が流れないように制御部310によって制御される。放電制御スイッチ303aのOFF後は、ダイオード303bを介することによって充電のみが可能となる。また、放電時に大電流が流れた場合にOFFされて、組電池301の電流経路に流れる放電電流を遮断するように、制御部310によって制御される。
 温度検出素子308は例えばサーミスタであり、組電池301の近傍に設けられ、組電池301の温度を測定して測定温度を制御部310に供給する。電圧検出部311は、組電池301及びそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。
 スイッチ制御部314は、電圧検出部311及び電流測定部313から入力された電圧及び電流を基に、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aのいずれかの電圧が過充電検出電圧若しくは過放電検出電圧以下になったとき、また、大電流が急激に流れたときに、スイッチ部304に制御信号を送ることにより、過充電及び過放電、過電流充放電を防止する。
 ここで、例えば、二次電池がリチウムイオン二次電池の場合、過充電検出電圧が例えば4.20V±0.05Vと定められ、過放電検出電圧が例えば2.4V±0.1Vと定められる。
 充放電スイッチは、例えばMOSFETなどの半導体スイッチを使用できる。この場合MOSFETの寄生ダイオードがダイオード302b及び303bとして機能する。充放電スイッチとして、Pチャンネル型FETを使用した場合は、スイッチ制御部314は、充電制御スイッチ302a及び放電制御スイッチ303aのそれぞれのゲートに対して、制御信号DO及びCOをそれぞれ供給する。充電制御スイッチ302a及び放電制御スイッチ303aはPチャンネル型である場合、ソース電位より所定値以上低いゲート電位によってONする。すなわち、通常の充電及び放電動作では、制御信号CO及びDOをローレベルとし、充電制御スイッチ302a及び放電制御スイッチ303aをON状態とする。
 そして、例えば過充電若しくは過放電の際には、制御信号CO及びDOをハイレベルとし、充電制御スイッチ302a及び放電制御スイッチ303aをOFF状態とする。
 メモリ317は、RAMやROMからなり例えば不揮発性メモリであるEPROM(Erasable Programmable Read Only Memory)などからなる。メモリ317では、制御部310で演算された数値や、製造工程の段階で測定された各二次電池301aの初期状態における電池の内部抵抗値などが予め記憶され、また適宜、書き換えも可能である。また、二次電池301aの満充電容量を記憶させておくことで、制御部310とともに例えば残容量を算出することができる。
 温度検出部318では、温度検出素子308を用いて温度を測定し、異常発熱時に充放電制御を行ったり、残容量の算出における補正を行ったりする。
「蓄電システムなどの例」
 上述した本発明の一実施の形態に係る電池は、例えば電子機器や電動車両、電動式航空機、蓄電装置などの機器に搭載又は電力を供給するために使用することができる。
 電子機器として、例えばノート型パソコン、スマートフォン、タブレット端末、PDA(携帯情報端末)、携帯電話、ウェアラブル端末、コードレスフォン子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機などが挙げられる。
 また、電動車両としては鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)などが挙げられ、これらの駆動用電源又は補助用電源として用いられる。蓄電装置としては、住宅をはじめとする建築物用又は発電設備用の電力貯蔵用電源などが挙げられる。
 以下では、上述した適用例のうち、上述した本発明の電池を適用した蓄電装置を用いた蓄電システムの具体例を説明する。
「電動工具の一例」
 図8を参照して、本発明が適用可能な電動工具例えば電動ドライバの一例について概略的に説明する。電動ドライバ431は、本体内にDCモータ等のモータ433が収納されている。モータ433の回転がシャフト434に伝達され、シャフト434によって被対象物にねじが打ち込まれる。電動ドライバ431には、ユーザが操作するトリガースイッチ432が設けられている。
 電動ドライバ431の把手の下部筐体内に、電池パック430及びモータ制御部435が収納されている。電池パック430として電池パック300を使用することができる。モータ制御部435は、モータ433を制御する。モータ433以外の電動ドライバ431の各部が、モータ制御部435によって制御されてもよい。図示しないが電池パック430と電動ドライバ431はそれぞれに設けられた係合部材によって係合されている。後述するように、電池パック430及びモータ制御部435のそれぞれにマイクロコンピュータが備えられている。電池パック430からモータ制御部435に対して電池電源が供給されると共に、両者のマイクロコンピュータ間で電池パック430の情報が通信される。
 電池パック430は、例えば、電動ドライバ431に対して着脱自在とされる。電池パック430は、電動ドライバ431に内蔵されていてもよい。電池パック430は、充電時には充電装置に装着される。なお、電池パック430が電動ドライバ431に装着されているときに、電池パック430の一部が電動ドライバ431の外部に露出し、露出部分をユーザが視認できるようにしてもよい。例えば、電池パック430の露出部分にLEDが設けられ、LEDの発光及び消灯をユーザが確認できるようにしてもよい。
 モータ制御部435は、例えば、モータ433の回転/停止、並びに回転方向を制御する。さらに、過放電時に負荷への電源供給を遮断する。トリガースイッチ432は、例えば、モータ433とモータ制御部435の間に挿入され、ユーザがトリガースイッチ432を押し込むと、モータ433に電源が供給され、モータ433が回転する。ユーザがトリガースイッチ432を戻すと、モータ433の回転が停止する。
「無人航空機」
 本発明を電動式航空機用の電源に適用した例について、図9を参照して説明する。本発明は、無人航空機(所謂ドローン)の電源に対して適用できる。図9は、無人航空機の平面図である。中心部としての円筒状又は角筒状の胴体部と、胴体部の上部に固定された支持軸442a~442fとから機体が構成される。一例として、胴体部が6角筒状とされ、胴体部の中心から6本の支持軸442a~442fが等角間隔で放射状に延びるようになされている。胴体部及び支持軸442a~442fは、軽量で強度の高い材料から構成されている。
 支持軸442a~442fの先端部には、回転翼の駆動源としてのモータ443a~443fがそれぞれ取り付けられている。モータ443a~443fの回転軸に回転翼444a~444fが取り付けられている。各モータを制御するためのモータ制御回路を含む回路ユニット445は支持軸442a~442fが交わる中心部(胴体部の上部)に取り付けられている。
 さらに、胴体部の下側の位置に動力源としてのバッテリ部が配置されている。バッテリ部は、180度の対向間隔を有するモータ及び回転翼の対に対して電力を供給するように3個の電池パックを有している。各電池パックは、例えばリチウムイオン二次電池と充放電を制御するバッテリ制御回路とを有する。電池パックとして電池パック300を使用することができる。モータ443a及び回転翼444aと、モータ443d及び回転翼444dとが対を構成する。同様に、(モータ443b,回転翼444b)と(モータ443e,回転翼444e)とが対を構成し、(モータ443c,回転翼444c)と(モータ443f,回転翼444f)とが対を構成する。これらの対と電池パックとが等しい数とされている。
「車両用蓄電システム」
 本発明を電動車両用の蓄電システムに適用した例について、図10を参照して説明する。図10に、本発明が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両600には、エンジン601、発電機602、電力駆動力変換装置603、駆動輪604a、駆動輪604b、車輪605a、車輪605b、バッテリ608、車両制御装置609、各種センサ610、充電口611が搭載されている。バッテリ608に対して、上述した本発明の電池パック300が適用される。
 ハイブリッド車両600は、電力駆動力変換装置603を動力源として走行する。電力駆動力変換装置603の一例は、モータである。バッテリ608の電力によって電力駆動力変換装置603が作動し、この電力駆動力変換装置603の回転力が駆動輪604a、604bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置603が交流モータでも直流モータでも適用可能である。各種センサ610は、車両制御装置609を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ610には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン601の回転力は発電機602に伝えられ、その回転力によって発電機602により生成された電力をバッテリ608に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両600が減速すると、その減速時の抵抗力が電力駆動力変換装置603に回転力として加わり、この回転力によって電力駆動力変換装置603により生成された回生電力がバッテリ608に蓄積される。
 バッテリ608は、ハイブリッド車両600の外部の電源に接続されることで、その外部電源から充電口611を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力がいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本発明は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本発明は有効に適用可能である。
1・・・リチウムイオン電池,12・・・絶縁板,20・・・電極巻回体,21・・・正極,21A・・・正極箔,21B・・・正極活物質層,21C・・・正極の活物質非被覆部,22・・・負極,22A・・・負極箔,22B・・・負極活物質層,22C・・・負極の活物質非被覆部,23・・・セパレータ,24・・・正極集電板,25・・・負極集電板,26・・・貫通孔,41,42・・・端部,43・・・溝,45・・・側面部,46・・・固定テープ,51・・・トップ側のエッジ部,52・・・ボトム側のエッジ部,53,54・・・絶縁テープ,101・・・絶縁層

Claims (18)

  1.  セパレータを介して帯状の正極と帯状の負極とが積層され、巻回された構造を有する電極巻回体と、正極集電板及び負極集電板が、外装缶に収容された二次電池において、
     前記正極は、帯状の正極箔上に、正極活物質非被覆部を有し、
     前記負極は、帯状の負極箔上に、負極活物質非被覆部を有し、
     前記正極活物質非被覆部は、前記電極巻回体の端面の一方において、前記正極集電板と接合され、
     前記負極活物質非被覆部は、前記電極巻回体の端面の他方において、前記負極集電板と接合され、
     前記正極活物質非被覆部と前記負極活物質非被覆部とが、前記巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面を有し、
     少なくとも前記電極巻回体のトップ側のエッジ部を覆う第1絶縁部材と、少なくとも前記電極巻回体のボトム側のエッジ部を覆う第2絶縁部材が設けられている二次電池。
  2.  前記平坦面には溝が形成されている請求項1に記載の二次電池。
  3.  前記外装缶の開口部において、一又は複数の曲折部分の頂点を含むくびれ部を有し、
     前記第1絶縁部材のうち、前記電極巻回体の側面部上での長さをa1(mm)とし、
     前記くびれ部の頂点のうち、前記電極巻回体に最も近接した頂点から、前記第1絶縁部材の前記中心軸側の端部までの水平方向の長さをb1(mm)とするとき、
       0.5≦b1 かつ 0.5≦a1 
     を満たす請求項1又は2に記載の二次電池。
  4.  記第2絶縁部材のうち、前記電極巻回体の側面部上での長さをa2(mm)とし、
     前記第2絶縁部材のうち、前記電極巻回体の端部上での長さをb2(mm)とするとき、
       0.5≦b2 かつ 0.5≦a2 
     を満たす請求項1から3の何れかに記載の二次電池。
  5.  前記の第1絶縁部材の長さb3が前記電極巻回体の半径の1/2以下であり、及び/又は、
     前記第2絶縁部材の長さb2が前記電極巻回体の半径の1/2以下である請求項1から4の何れかに記載の二次電池。
  6.  前記正極集電板と前記負極集電板の少なくとも一方は折り畳まれた帯状部を有し、
     前記第1絶縁部材の端部は、前記正極集電板の折り畳まれた帯状部に接触せず、及び/又は、
     前記第2絶縁部材の端部は、前記負極集電板の帯状部に接触していないことを特徴とする請求項1から5の何れかに記載の二次電池。
  7.  前記電極巻回体の側面部に貼り付けられた固定テープを有し、
     前記第1絶縁部材又は前記第2絶縁部材の少なくとも一方は、前記固定テープと重ならないように配置される請求項1から6の何れかに記載の二次電池。
  8.  前記第1絶縁部材又は前記第2絶縁部材の少なくとも一方の厚さは、前記固定テープの厚さ以下である請求項1から7の何れかに記載の二次電池。
  9.  前記第1絶縁部材又は前記第2絶縁部材の少なくとも一方は、基材層の少なくとも一面に粘着層を有し、前記基材層の材質がポリプロピレン、ポリエチレンテレフタレート、ポリイミドのうち何れかで構成される粘着テープである請求項1から8の何れかに記載の二次電池。
  10.  前記外装缶内にトップ側絶縁板が設けられており、
     前記第1絶縁部材は、前記正極集電板と前記トップ側絶縁板の間に介在している請求項1から9の何れかに記載の二次電池。
  11.  前記外装缶内にボトム側絶縁板が設けられており、
     前記第2絶縁部材は、前記負極集電板と前記ボトム側絶縁板の間に介在している請求項1から10の何れかに記載の二次電池。
  12.  前記正極活物質非被覆部の幅は、前記負極活物質非被覆部の幅よりも大きく、
     前記正極及び負極の活物質非被覆部の端部はそれぞれ前記セパレータの端部よりも外側に突出しており、且つ、前記正極活物質非被覆部が前記セパレータの幅方向の一端から突出した部分の長さは、前記負極活物質非被覆部が前記セパレータの幅方向の他端から突出した部分の長さよりも大きい請求項1から11の何れかに記載の二次電池。
  13.  前記正極活物質非被覆部のうち、前記セパレータを挟んで前記負極に対向する部分に絶縁層を有する請求項1から12の何れかに記載の二次電池。
  14.  請求項1に記載の二次電池と、
     前記二次電池を制御する制御部と、
     前記二次電池を内包する外装体と
     を有する電池パック。
  15.  請求項14に記載の電池パックを有し、前記電池パックを電源として使用する電動工具。
  16.  請求項14に記載の電池パックと、
     複数の回転翼と、
     前記回転翼をそれぞれ回転させるモータと、
     前記回転翼及びモータをそれぞれ支持する支持軸と、
     前記モータの回転を制御するモータ制御部と、
     前記モータに電力を供給する電力供給ラインとを備え、
     前記電池パックが前記電力供給ラインに接続されている電動式航空機。
  17.  対向する前記回転翼の対を複数有し、
     前記電池パックを複数有し、
     前記回転翼の複数の対と複数の前記電池パックとが等しい数とされた請求項16に記載の電動式航空機。
  18.  請求項1から13の何れかに記載の二次電池を有し、
     前記二次電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     前記二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置とを有する電動車両。
PCT/JP2020/028291 2019-07-30 2020-07-21 二次電池、電池パック、電動工具、電動式航空機及び電動車両 WO2021020235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021536973A JP7315005B2 (ja) 2019-07-30 2020-07-21 二次電池、電池パック、電動工具、電動式航空機及び電動車両
CN202080048860.6A CN114072947A (zh) 2019-07-30 2020-07-21 二次电池、电池包、电动工具、电动式航空器及电动车辆
US17/564,970 US20220123371A1 (en) 2019-07-30 2021-12-29 Secondary battery, battery pack, electric tool, electric aircraft, and electric vehicle
JP2023104665A JP7563533B2 (ja) 2019-07-30 2023-06-27 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140287 2019-07-30
JP2019-140287 2019-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/564,970 Continuation US20220123371A1 (en) 2019-07-30 2021-12-29 Secondary battery, battery pack, electric tool, electric aircraft, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2021020235A1 true WO2021020235A1 (ja) 2021-02-04

Family

ID=74228779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028291 WO2021020235A1 (ja) 2019-07-30 2020-07-21 二次電池、電池パック、電動工具、電動式航空機及び電動車両

Country Status (4)

Country Link
US (1) US20220123371A1 (ja)
JP (2) JP7315005B2 (ja)
CN (1) CN114072947A (ja)
WO (1) WO2021020235A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022223531A1 (en) * 2021-04-22 2022-10-27 Northvolt Ab Cylindrical secondary cell
WO2023055088A1 (ko) 2021-09-30 2023-04-06 주식회사 엘지에너지솔루션 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2024004627A1 (ja) * 2022-06-28 2024-01-04 パナソニックエナジー株式会社 密閉電池
WO2024090282A1 (ja) * 2022-10-28 2024-05-02 株式会社村田製作所 二次電池および電池パック
EP4325637A4 (en) * 2021-11-19 2024-10-16 Lg Energy Solution Ltd SECONDARY BATTERY AND BATTERY PACK AND VEHICLE WITH IT

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765856A (ja) * 1993-08-23 1995-03-10 Toshiba Corp Ptc素子及びこれを用いた二次電池
JPH11339768A (ja) * 1998-05-27 1999-12-10 Shin Kobe Electric Mach Co Ltd 捲回式電池
JP2008166030A (ja) * 2006-12-27 2008-07-17 Sanyo Electric Co Ltd 渦巻電極体の製造方法及びこれを用いた密閉型電池の製造方法
WO2011001639A1 (ja) * 2009-06-30 2011-01-06 パナソニック株式会社 非水電解質二次電池
JP2011159582A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 電池及びその製造方法
JP2015122276A (ja) * 2013-12-25 2015-07-02 三洋電機株式会社 円筒形電池
JP2016219439A (ja) * 2012-02-15 2016-12-22 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
WO2017061066A1 (ja) * 2015-10-05 2017-04-13 ソニー株式会社 残量測定装置、電池パック、電動工具、電動式航空機、電動車両及び電源装置
JP2019003789A (ja) * 2017-06-14 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273931A (ja) 2000-03-28 2001-10-05 Sanyo Electric Co Ltd 非水電解液二次電池
JP5465755B2 (ja) * 2005-08-30 2014-04-09 三洋電機株式会社 非水系二次電池
JP2008192524A (ja) * 2007-02-07 2008-08-21 Hitachi Maxell Ltd 筒形非水電解液一次電池
KR101023865B1 (ko) * 2009-02-25 2011-03-22 에스비리모티브 주식회사 이차 전지
EP2620964A4 (en) * 2010-09-24 2016-01-27 Shin Kobe Electric Machinery ENERGY STORAGE DEVICE AND METHOD FOR PRODUCING THE ENERGY STORAGE DEVICE
JP6070552B2 (ja) * 2011-06-28 2017-02-01 日本ケミコン株式会社 蓄電デバイスの製造方法
WO2014080638A1 (ja) * 2012-11-26 2014-05-30 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
CN106992320A (zh) 2016-01-20 2017-07-28 松下能源(无锡)有限公司 非水电解液电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765856A (ja) * 1993-08-23 1995-03-10 Toshiba Corp Ptc素子及びこれを用いた二次電池
JPH11339768A (ja) * 1998-05-27 1999-12-10 Shin Kobe Electric Mach Co Ltd 捲回式電池
JP2008166030A (ja) * 2006-12-27 2008-07-17 Sanyo Electric Co Ltd 渦巻電極体の製造方法及びこれを用いた密閉型電池の製造方法
WO2011001639A1 (ja) * 2009-06-30 2011-01-06 パナソニック株式会社 非水電解質二次電池
JP2011159582A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 電池及びその製造方法
JP2016219439A (ja) * 2012-02-15 2016-12-22 株式会社Gsユアサ 蓄電素子及び蓄電素子の製造方法
JP2015122276A (ja) * 2013-12-25 2015-07-02 三洋電機株式会社 円筒形電池
WO2017061066A1 (ja) * 2015-10-05 2017-04-13 ソニー株式会社 残量測定装置、電池パック、電動工具、電動式航空機、電動車両及び電源装置
JP2019003789A (ja) * 2017-06-14 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022223531A1 (en) * 2021-04-22 2022-10-27 Northvolt Ab Cylindrical secondary cell
EP4080634A3 (en) * 2021-04-22 2023-03-08 Northvolt AB Cylindrical secondary cell
US11670815B2 (en) 2021-04-22 2023-06-06 Northvolt Ab Cylindrical secondary cell
WO2023055088A1 (ko) 2021-09-30 2023-04-06 주식회사 엘지에너지솔루션 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
EP4325637A4 (en) * 2021-11-19 2024-10-16 Lg Energy Solution Ltd SECONDARY BATTERY AND BATTERY PACK AND VEHICLE WITH IT
WO2024004627A1 (ja) * 2022-06-28 2024-01-04 パナソニックエナジー株式会社 密閉電池
WO2024090282A1 (ja) * 2022-10-28 2024-05-02 株式会社村田製作所 二次電池および電池パック

Also Published As

Publication number Publication date
JP2023115135A (ja) 2023-08-18
US20220123371A1 (en) 2022-04-21
JP7315005B2 (ja) 2023-07-26
CN114072947A (zh) 2022-02-18
JP7563533B2 (ja) 2024-10-08
JPWO2021020235A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2021020237A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020119A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020117A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020235A1 (ja) 二次電池、電池パック、電動工具、電動式航空機及び電動車両
WO2021020277A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
US20220123372A1 (en) Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
JP7103525B2 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021024940A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021020279A1 (ja) 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両
WO2021153231A1 (ja) 二次電池、電子機器及び電動工具
US20240270395A1 (en) Secondary battery, battery pack, electronic equipment, electric tool, electric aircraft, and electric vehicle
JP7494949B2 (ja) 二次電池、電子機器及び電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846740

Country of ref document: EP

Kind code of ref document: A1