WO2021019923A1 - 導電性組成物、導電性膜、接点部材および導電性組成物の製造方法 - Google Patents

導電性組成物、導電性膜、接点部材および導電性組成物の製造方法 Download PDF

Info

Publication number
WO2021019923A1
WO2021019923A1 PCT/JP2020/022918 JP2020022918W WO2021019923A1 WO 2021019923 A1 WO2021019923 A1 WO 2021019923A1 JP 2020022918 W JP2020022918 W JP 2020022918W WO 2021019923 A1 WO2021019923 A1 WO 2021019923A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive film
composition
graphene
layer graphene
Prior art date
Application number
PCT/JP2020/022918
Other languages
English (en)
French (fr)
Inventor
亮介 佐々木
彬人 竹内
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Priority to CN202080033864.7A priority Critical patent/CN113795557A/zh
Priority to DE112020002761.9T priority patent/DE112020002761T5/de
Priority to JP2020551589A priority patent/JP6845602B1/ja
Publication of WO2021019923A1 publication Critical patent/WO2021019923A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/06Contacts characterised by the shape or structure of the contact-making surface, e.g. grooved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts

Definitions

  • the present invention relates to a method for producing a conductive composition, a conductive film, a contact member, and a conductive composition used for a contact rubber switch or the like.
  • a contact rubber switch which is a contact member having a conductive contact portion, is arranged on an electrode provided in the wiring of a circuit board, and the conductive contact portion connects the electrodes to input on / off or the like.
  • the operation is performed.
  • a contact member or a contact rubber switch on which a conductive film made of conductive ink is formed is used.
  • Patent Document 1 discloses a method of forming a conductive portion by dropping conductive ink onto a contact rubber conductive portion.
  • Patent Document 2 discloses a manufacturing method in which a conductive ink is transferred to a cover member molded of an elastic material to form a conductive portion. Conductive inks are used in both documents, but their composition is not described.
  • the conductive film obtained by applying the conductive ink (conductive composition) is required to have low electrical resistance.
  • a contact rubber switch used in an in-vehicle device preferably has a large electrical load on a contact member for connecting electrodes and has a low resistance because a large current flows through the wiring of a circuit board.
  • the present invention is configured to have the following features in order to achieve the above object.
  • the conductive composition of the present invention is a conductive composition containing an elastomer, multi-layer graphene, and a conductive filler, and the multi-layer graphene has an average major axis of 5 ⁇ m or more and 100 ⁇ m or less, and is average. It is characterized in that the thickness is 5 nm or more and 100 nm or less.
  • the conductive film obtained by using the conductive composition of the present invention can reduce its electrical resistance, particularly its volume resistivity, as compared with the conventional one.
  • the elastomer can be a thermosetting liquid silicone elastomer.
  • the conductive film obtained by using the conductive composition of the present invention has a strength as a contact member and keystroke as compared with the case where other elastomers are used. Durability is improved.
  • the conductive filler can be conductive carbon black.
  • a conductive film obtained by using the conductive composition of the present invention is formed by using the conductive carbon black as the conductive filler and by the synergistic effect of the combination of the multilayer graphene and the conductive carbon black.
  • the electrical resistance of the conductive film, particularly its volume resistivity can be made smaller than in the past.
  • the BET specific surface area of the multilayer graphene can be 20 m 2 / g or more and 35 m 2 / g or less.
  • the conductive film obtained by using the conductive composition of the present invention has an electrical resistance as compared with the conventional one. In particular, its volume resistivity can be significantly reduced.
  • the conductive film of the present invention is formed from the conductive composition of the present invention (that is, the conductive composition according to any one of claims 1 to 4).
  • the electrical resistance of the conductive film can be made smaller than before.
  • the average distance between adjacent multi-layer graphenes can be 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the average distance between the double glazings is 0.01 ⁇ m or more and 10 ⁇ m or less, so that the double glazings are close to each other. Conductivity is obtained. As a result, the electrical resistance of the conductive film can be lowered as compared with the conventional case.
  • the multi-layer graphene is dispersed and arranged in a substantially layered manner in a cross section obtained by cutting the conductive film of the present invention in the vertical direction.
  • the multi-layer graphene is dispersed and arranged in a substantially layered manner, so that the conductive film is not dispersed in a substantially layered manner, particularly in the plane direction of the conductive film. Conductivity is improved.
  • the multi-layer graphenes are alternately dispersed and arranged, so that the conductive film is not particularly dispersed and alternately dispersed. Conductivity in the thickness direction of the sex film is improved.
  • the volume resistivity can be set to 0.1 ⁇ ⁇ cm or more and 2.0 ⁇ ⁇ cm or less.
  • the electrical resistance of the conductive film becomes smaller than before.
  • the contact member of the present invention is characterized by having the conductive film of the present invention (that is, the conductive film according to any one of claims 5 to 9) at the contact portion.
  • the electrical resistance, particularly the volume resistivity of the conductive portion of the contact member can be made smaller than in the conventional case.
  • the method for producing a conductive composition of the present invention comprises a step of mixing a liquid composition containing a conductive filler and a solvent, and a step of mixing the liquid composition with an elastomer and multi-layer graphene. It is characterized by having.
  • the method for producing a conductive composition of the present invention having the above steps, it is possible to mix under an appropriate viscosity in each step. As a result, the finally obtained conductive composition has a uniform composition.
  • the content of the conductive carbon black is the conductivity excluding the conductive carbon black and the multilayer graphene. It is 10 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the sex composition, and the content of the multilayer graphene is 100 parts by mass of the conductive composition excluding the conductive carbon black and the multilayer graphene. On the other hand, it can be 10 parts by mass or more and 50 parts by mass or less.
  • the conductive filler is conductive carbon black
  • the content of the conductive carbon black and the multi-layer graphene is set within the above range, thereby between the multi-layer graphenes.
  • the conductive carbon black is dispersed in the conductive film, and the conductivity of the conductive film obtained from the conductive composition is improved.
  • the electric resistance can be made lower than that of the conventional conductive composition.
  • the conductive film of the present invention can have a lower electrical resistance than the conventional one.
  • the contact member of the present invention can lower the electrical resistance of the contact portion as compared with the conventional one.
  • the method for producing a conductive composition of the present invention can provide a conductive composition having low conductivity and excellent uniformity.
  • the present invention will be described in detail based on the embodiments.
  • the conductive composition of the present invention is a conductive composition containing an elastomer, multi-layer graphene, and a conductive filler, and the multi-layer graphene has an average major axis of 5 ⁇ m or more and 100 ⁇ m or less and an average thickness of 5 nm or more and 100 nm. It is characterized by the following.
  • multi-layer graphene in the present invention means a laminated body of at least two or more layers of graphene other than single-layer graphene.
  • Single-layer graphene refers to a single layer having a thickness of one atom peeled off from graphite, which is a multi-layer structure, and refers to a structure in which six-membered rings of carbon atoms are connected in a plane.
  • the "multi-layer graphene” in the present specification is one in which several to several hundred layers of single-layer graphene are laminated, and the number of layers is smaller than that of graphite particles.
  • multi-layer graphene in the present specification is commercially available and is generally called “multi-layer graphene”, and commercially available “thin-layer graphene”, “minor-layer graphene”, and “multi-layer graphene”. It shall include what is generally called.
  • Ethylene-propylene rubber chlorosulfonated polyethylene rubber, acrylic rubber, epichlorohydrin rubber, fluororubber, urethane rubber and other crosslinked rubbers, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, ester-based thermoplastic elastomers, urethane
  • thermoplastic elastomers such as based thermoplastic elastomers, amide-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, and fluorine-based thermoplastic elastomers.
  • silicone rubber is preferable as a contact member from the viewpoints of small compression set, adhesion, keying durability, and small change in characteristics at high and low temperatures (environment resistance).
  • a thermosetting liquid silicone elastomer is preferable from the viewpoint of processability for producing a conductive composition and a conductive film.
  • the average major axis of the multilayer graphene is 5 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably. It is 10 ⁇ m or more and 30 ⁇ m or less. If the average major axis of the multi-layer graphene is less than 5 ⁇ m, it becomes necessary to add a large amount of the multi-layer graphene, the conductive composition becomes highly viscous, and workability is impaired.
  • the average major axis of the multilayer graphene exceeds 100 ⁇ m, it may exceed the thickness of the conductive film and be exposed on the surface of the conductive film. Further, from the viewpoint of reducing the electrical resistance of the conductive film obtained by using the conductive composition, the average thickness of the multilayer graphene is 5 nm or more and 100 nm or less, preferably 10 nm or more and 30 nm or less. If the average thickness of the multi-layer graphene is less than 5 nm, the conductivity is lowered because it approximates the single-layer graphene. On the other hand, when the average thickness of the multilayer graphene exceeds 100 nm, the aspect ratio becomes small and the conductivity decreases.
  • the "average major axis of multi-layer graphene” was calculated as follows. That is, the same conductive film obtained by using the conductive composition is cut vertically from four different directions to obtain four cross sections. Next, four cross sections are photographed with a scanning electron microscope (hereinafter sometimes abbreviated as "SEM") to obtain four SEM images. The major axis of each of 100 multi-layer graphenes observed from these four SEM images is measured, and the top 10% is assumed to be the longest diameter in order from the longest one, and the longest diameter of the multi-layer graphene between these four SEM images is assumed. The average value of was taken as "the average major axis of multi-layer graphene". The “average major axis of graphene in the cross section of the conductive film” in the examples described later was also determined in the same manner as described above.
  • the "average thickness of multi-layer graphene” was calculated as follows. That is, the same conductive film obtained by using the conductive composition is cut vertically from four different directions to obtain four cross sections. The four cross sections are then photographed with a scanning electron microscope (SEM) to obtain four SEM images. The thickness of each of 100 multi-layer graphenes observed from these four SEM images was measured, and the average value of the total thickness of 400 multi-layer graphenes was referred to as "average thickness of multi-layer graphene". did.
  • the “average thickness of graphene in the cross section of the conductive film” in the examples described later was also determined in the same manner as described above.
  • the oil absorption of the multilayer graphene is 2.5 cc / g or more and 4.5 cc / g.
  • the following is preferable, and more preferably 2.5 cc / g or more and 3.5 cc / g or less.
  • the oil absorption amount was measured according to JIS K 5101-13-1: 2004 (ISO 787-5: 1980). If the oil absorption amount becomes too large, the solvent and oil component in the conductive composition, the low molecular weight component in the elastomer and the like are easily adsorbed, and the conductive composition does not come together in the form of ink, which is not preferable. The strength of the obtained conductive film is also reduced.
  • the BET specific surface area of the multilayer graphene Is preferably 15 m 2 / g or more and 40 m 2 / g or less, and more preferably 20 m 2 / g or more and 35 m 2 / g or less.
  • the BET specific surface area was measured according to JIS Z 8830: 2013 (ISO 9277: 2010).
  • the method for measuring the adsorbed gas shall be the carrier gas method, and the analysis of the adsorption data shall be performed by the one-point method.
  • the BET specific surface area of graphene is too large, the solvent, the oil component, and the low molecular weight component in the elastomer are easily adsorbed, and the conductive composition is not organized into an ink, which is not preferable. The strength of the obtained conductive film is also reduced.
  • Single-layer graphene has a large specific surface area and tends to absorb a large amount of oil.
  • conductive filler examples include silver, copper, gold, silver-coated copper, bimetal powder, graphite particles, carbon nanotubes, and the like. Included are conductive carbon black, other carbon homogenes, other metals or metal oxides, or conductive powders thereof, which may be used alone or in combination of two or more.
  • conductive carbon black is preferable from the viewpoint of lowering the electrical resistance of the conductive film in combination with the multilayer graphene.
  • the conductive carbon black include acetylene black, Ketjen black, other furnace black, channel black, and thermal lamp black. In the present specification, the conductive filler does not contain multi-layer graphene.
  • the BET ratio of the conductive carbon black from the viewpoint of lowering the electrical resistance of the conductive film obtained by using the conductive composition and making the conductive composition a predetermined viscosity in consideration of workability.
  • the surface area is preferably 10 m 2 / g or more and 1300 m 2 / g or less, and more preferably 30 m 2 / g or more and 300 m 2 / g or less.
  • the BET specific surface area was measured according to JIS Z 8830: 2013 (ISO 9277: 2010).
  • the conductive film of the present invention is formed from the above-mentioned conductive composition of the present invention.
  • FIG. 1 shows an SEM image obtained by SEM of a vertical cross section of the conductive film 10 of an example of the present invention. Further, FIG. 2 shows an enlarged SEM image in which the white square portion shown in FIG. 1 is enlarged. Hereinafter, it will be described with reference to FIGS. 1 and 2.
  • the conductive film 10 of an example of the present invention contains an elastomer 30, multi-layer graphene 20a and 20b, and a conductive filler 40.
  • the double glazing extending in the direction along the plane of the conductive film 10 is 20a
  • the double glazing extending in the thickness direction is 20b. Since the elastomer 30, the multilayer graphenes 20a and 20b and the conductive filler 40 are the same as those described in the above-mentioned conductive composition, the description thereof will be omitted here.
  • FIG. 2 cracks are observed in the cross section of the conductive film 10 in the form of black lines, and it can be seen that the multilayer graphenes 20a and 20b extend along the cracks.
  • the distances between the adjacent multi-layer graphene 20a, the multi-layer graphene 20b, and the multi-layer graphene 20a, 20b (white bidirectional arrows shown in FIG. 2). ) Is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • the average distance between the multilayer graphenes in the conductive film of the present invention is the average value of the distances between 100 adjacent multilayer graphenes observed in the SEM image in a vertical cross section from one direction of the conductive film.
  • the average distance between the multi-layer graphene 20a, the multi-layer graphene 20b, and the multi-layer graphene 20a, 20b is 0.01 ⁇ m or more and 10 ⁇ m or less.
  • the multi-layer graphene 20a, the multi-layer graphene 20b, and the multi-layer graphene 20a, 20b are close to each other.
  • conductivity between the multi-layer graphene 20a, the multi-layer graphene 20b, and the multi-layer graphene 20a, 20b can be obtained.
  • the electrical resistance of the conductive film 10 can be lowered as compared with the conventional case.
  • the multilayer graphene 20a extends in a direction along the plane of the conductive film 10 and is dispersed and arranged in a substantially layered manner.
  • the multilayer graphene 20a is dispersed and arranged in a substantially layered manner, so that the conductive film 10 is particularly dispersed in the plane direction as compared with the case where the conductive film 10 is not dispersed in a substantially layered manner. Conductivity is improved.
  • the multilayer graphenes 20a and 20b are alternately dispersed and arranged in an intersecting manner.
  • the multilayer graphenes 20a and 20b are dispersed and arranged alternately so as to be compared with the case where the graphenes 20a and 20b are not alternately dispersed and arranged.
  • the conductivity of the conductive film 10 in the thickness direction is improved.
  • the volume resistivity of the conductive film 10 is preferably 0.1 ⁇ ⁇ cm or more and 2.0 ⁇ ⁇ cm or less, more preferably 0.3 ⁇ ⁇ cm or more and 1.8 ⁇ ⁇ cm or less, and 0.3 ⁇ . -It is more preferably cm or more and 1.3 ⁇ -cm or less.
  • the volume resistivity was measured according to JIS K 7194-1994. Details of the measurement will be described in Examples described later.
  • the content of the conductive carbon black excludes the conductive carbon black and the multilayer graphene.
  • the conductive composition is preferably 10 parts by mass or more and 80 parts by mass or less, more preferably 30 parts by mass or more and 60 parts by mass or less, and further 40 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass. preferable.
  • the content of the multi-layer graphene is the same as that of the conductive carbon black and the multi-layer graphene from the viewpoint of improving the conductivity.
  • the conductive composition to be removed is preferably 10 parts by mass or more and 50 parts by mass or less, more preferably 15 parts by mass or more and 50 parts by mass or less, and 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass. More preferred.
  • the contact member of the present invention has the above-mentioned conductive film of the present invention at the contact portion.
  • a contact rubber switch which is a contact member having a conductive contact portion, is conventionally used.
  • the contact member is composed of a main body and a contact portion, and is formed by using an elastomer. By having a conductive film on the surface of the contact portion, the contact portion becomes a conductive contact portion.
  • the elastomer the same elastomer as the elastomer used in the above-mentioned conductive composition (for example, silicone rubber) can be used.
  • the method for producing a conductive composition of the present invention includes a step (S100) of mixing a liquid composition containing a conductive filler, a solvent and a dispersant, and a compound of the liquid composition with an elastomer. It is characterized by having a step (S102) of blending and mixing the layer graphene.
  • the conductive filler and the multi-layer graphene can be mixed and mixed in a separate step, so that the conductive filler and the multi-layer graphene are mixed in the same step. It is possible to suppress an increase in viscosity as compared with the case of Further, since the conductive filler and the elastomer can be mixed in a separate step, an increase in viscosity can be suppressed as compared with the case where the conductive filler and the elastomer are mixed in the same step. As a result, since they can be mixed under an appropriate viscosity in each of the above-mentioned steps, the finally obtained conductive composition can be uniformly dispersed.
  • a dispersant or the like can be used.
  • it is conductive by a step of mixing a liquid composition containing a conductive filler, a solvent and a dispersant (S100), and a step of mixing the liquid composition with an elastomer and multi-layer graphene (S102).
  • S100 a conductive filler
  • S102 a solvent and a dispersant
  • the sex composition can be produced.
  • the content of the conductive carbon black is 100, which is the conductive composition excluding the conductive carbon black and the multilayer graphene. It is 10 parts by mass or more and 80 parts by mass or less with respect to parts by mass, and the content of the multi-layer graphene is 10 parts by mass with respect to 100 parts by mass of the conductive composition excluding the conductive carbon black and the multi-layer graphene. It is preferably 10 parts or more and 50 parts by mass or less.
  • the conductive filler is conductive carbon black
  • the content of the conductive carbon black and the multi-layer graphene is set within the above range, thereby between the multi-layer graphenes.
  • the conductive carbon black is dispersed in the conductive film, and the conductivity of the conductive film obtained from the conductive composition is improved.
  • Sample 1 50 parts by mass of trade name "# 3030B" (manufactured by Mitsubishi Chemical Co., Ltd.) as conductive carbon black, 160 parts by mass of naphthenic hydrocarbon solvent as solvent, and 8.2 parts by mass of fatty acid ester dispersant as dispersant.
  • trade name "# 3030B" manufactured by Mitsubishi Chemical Co., Ltd.
  • conductive carbon black 160 parts by mass of naphthenic hydrocarbon solvent as solvent
  • 8.2 parts by mass of fatty acid ester dispersant as dispersant.
  • the product "iGurafen- ⁇ S" (major axis: 3 to 30 ⁇ m, thickness: 10 nm, BET specific surface area 27 m 2 / g, oil absorption: 2.5 to 3.5 cc /) as “multilayer graphene 1” g, 20 parts by mass of Aitec Co., Ltd., 100 parts by mass of the trade name "ELATOSIL (registered trademark) LR 6250 F” (manufactured by Wacker Chemie AG), which becomes silicone rubber as an elastomer, is vibrated and stirred with the vibration stirrer for 3 minutes. Was done.
  • the conductive composition 1 is applied to the surface of a base material made of PET by a bar coating method, and then heated at 150 ° C. for 1 hour to dry the coating film and proceed with the crosslinking reaction to increase the thickness.
  • a 30 ⁇ m conductive film 1 was manufactured.
  • Samples 2-5 In Sample 1, the amounts of the double glazing and the conductive carbon black used in Sample 1 were changed as shown in Table 1, but they were mixed in the same manner as in the preparation method of Sample 1 to have a conductive composition. Obtained items 2-5. Then, the conductive films 2 to 5 were manufactured in the same manner as in Example 1.
  • Samples 6-10 The product "iGurafen- ⁇ S" which is the multi-layer graphene 1 used in the sample 1 and the product “iGurafen- ⁇ ” which is the “multi-layer graphene 2" (major axis: 10 to 100 ⁇ m, thickness: 10 nm, BET specific surface area 20 to Samples except that the amount was changed to 27 m 2 / g, oil absorption: 4.5 cc / g, manufactured by Aitec Co., Ltd.), and the blending amounts of multi-layer graphene and conductive carbon black were changed as shown in Table 2. The mixture was mixed in the same manner as in the production method of No. 1 to obtain conductive compositions 6 to 10, respectively. Then, the conductive films 6 to 10 were manufactured in the same manner as in Example 1.
  • Samples 11 to 13 The product "iGurafen- ⁇ S" which is the multi-layer graphene used in the sample 1 and the product "N006-P” which is the thin-layer graphene (major axis: 5 ⁇ m, thickness: 10 to 20 nm, BET specific surface area 15 m 2 / g or more) , Angstron Materials Asia Limited), and the amount of thin-layer graphene blended was changed as shown in Table 3, but the mixture was mixed in the same manner as in the preparation method of Sample 1, and each of them was made into a conductive composition 11. ⁇ 13 was obtained. Then, the conductive films 11 to 13 were manufactured in the same manner as in Example 1.
  • Samples 14-16 The product "iGurafen- ⁇ S" which is the multi-layer graphene used in the sample 1 is the product "N008-N” which is the minority layer graphene (major axis: 5 ⁇ m, thickness: 50 to 100 nm, BET specific surface area 30 m 2 / g or less. , Angstron Materials Asia Limited), and the blending amount of minority layer graphene was changed as shown in Table 4, but the mixture was mixed in the same manner as in the preparation method of Sample 1 to prepare the conductive composition 14. ⁇ 16 was obtained. Then, the conductive films 14 to 16 were manufactured in the same manner as in Example 1.
  • Sample 17 The product "iGurafen- ⁇ S" which is the multi-layer graphene 1 used in the sample 1 and the product "N002-PDR” which is the single-layer graphene (major axis: 10 ⁇ m or less, thickness: 1 nm, BET specific surface area 400 to 500 m 2 / g). , Angstron Materials Asia Limited), and the amount of thin-layer graphene blended was changed as shown in Table 5, except that the conductive composition 17 was mixed in the same manner as in the preparation method of Sample 1. Obtained. Then, the conductive film 17 was manufactured in the same manner as in Example 1.
  • Sample 18 As shown in Table 5, the product name "# 3030B" (trade name “# 3030B”), which is the conductive carbon black used in sample 1 as a conductive filler, does not contain the multi-layer graphene used in sample 1 and does not contain other graphene. Except that 50 parts by mass of Mitsubishi Chemical Co., Ltd.) and 20 parts by mass of carbon fiber trade name "XN-100" (manufactured by Nippon Graphite Fiber Co., Ltd.) were mixed, they were mixed in the same manner as in the preparation method of sample 1. , A conductive composition 18 was obtained. Then, the conductive film 18 was manufactured in the same manner as in Example 1.
  • Sample 19 In Sample 1, the mixture was mixed in the same manner as in Sample 1 except that 20 parts by mass of the carbon fiber trade name "XN-100" (manufactured by Nippon Graphite Fiber Co., Ltd.) was further added as the conductive filler. , Conductive composition 19 was obtained. Then, the conductive film 19 was manufactured in the same manner as in Example 1.
  • XN-100 manufactured by Nippon Graphite Fiber Co., Ltd.
  • Sample 20 As shown in Table 5, the trade name "# 3030B" (trade name “# 3030B”), which is the conductive carbon black used in Sample 1 as a conductive filler, does not contain the multi-walled graphene used in Sample 1 and does not contain other graphene. Mitsubishi Chemical Co., Ltd.) 50 parts by mass and 2.5 parts by mass of the trade name "JENOTUBE 8A” (manufactured by Korea Trade and Investment Emerging Corporation), which is a carbon nanotube as a conductive filler, are used. The same as above was mixed to obtain a conductive composition 20. Then, the conductive film 20 was manufactured in the same manner as in Example 1.
  • Sample 21 In Sample 1, the mixture was mixed in the same manner as in Sample 1 except that 2.5 parts by mass of the carbon nanotube product name "JENOTUBE 8A" (manufactured by Korea Trade and Investment Emerging Corporation) was further added as the conductive filler. The conductive composition 21 was obtained. Then, the conductive film 21 was manufactured in the same manner as in Example 1.
  • JENOTUBE 8A manufactured by Korea Trade and Investment Emerging Corporation
  • volume resistivity The volume resistivity of the produced conductive film was measured.
  • the volume resistivity was measured in accordance with JIS K 7194-1994.
  • the product name "Loresta GP” manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the thickness of the conductive film (test piece) is 20 to 30 ⁇ m.
  • Average major axis of graphene in cross section of conductive membrane The same conductive film is cut vertically from four different directions to obtain four cross sections. The four cross sections are then photographed with a scanning electron microscope (SEM) to obtain four SEM images. The major axis of each of 100 graphenes observed from these four SEM images is measured, and the top 10% is assumed to be the longest diameter in order from the longest one, and the average value of the longest diameters of graphene between these four SEM images is calculated. , "Average major axis of graphene in the cross section of the conductive film".
  • graphene is a general term for multi-layer graphene, thin-layer graphene, minority-layer graphene, and single-layer graphene.
  • Average thickness of graphene in cross section of conductive membrane The same conductive film is cut vertically from four different directions to obtain four cross sections. Next, four cross sections are photographed by SEM to obtain four SEM images. The thickness of each of 100 graphenes observed from these four SEM images was measured, and the average value of the total thickness of 400 graphenes was defined as "the average thickness of graphene in the cross section of the conductive film". did. Similar to the above, "graphene” is a general term for multi-layer graphene, thin-layer graphene, minority-layer graphene, and single-layer graphene.
  • the average distance between graphenes in a conductive film is the average value of the distances between 100 adjacent graphenes observed in the SEM image in a vertical cross section from one direction of the conductive film. Similar to the above, "graphene” is a general term for multi-layer graphene, thin-layer graphene, minority-layer graphene, and single-layer graphene.
  • the conductive film containing thin-layer graphene, minority-layer graphene, or multi-layer graphene 1 and 2 had a lower volume resistivity than the single-layer graphene. Furthermore, from the results of Samples 1 to 14, the volume resistivity of the conductive film may decrease in the order of single-layer graphene, thin-layer graphene, minority-layer graphene, multi-layer graphene 2, and multi-layer graphene 1 to be blended. Do you get it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

従来に比べ、より電気抵抗が小さい導電性組成物および導電性膜、接点部材、ならびに該導電性組成物の製造方法を提供する。導電性組成物は、エラストマーと、複層グラフェンと、導電性フィラーとを含み、前記複層グラフェンが、長径5μm以上100μm以下および厚さ5nm以上30nm以下である。また、導電性膜は、前記導電性組成物から形成され、接点部材の接点部を構成する。また、導電性組成物の製造方法は、導電性フィラーと溶剤とを含む液状組成物を混合する工程と、前記液状組成物にエラストマーと複層グラフェンとを配合して混合する工程と、を有する。

Description

導電性組成物、導電性膜、接点部材および導電性組成物の製造方法
 本発明は、接点ゴムスイッチ等に用いられる導電性組成物、導電性膜、接点部材および導電性組成物の製造方法に関する。
 従来、回路基板の配線に設けられた電極上には、導電性の接点部を有する接点部材である接点ゴムスイッチが配置され、導電性の接点部が電極間を接続することによりオンオフ等の入力操作が行われる。例えば導電性インクからなる導電性膜が形成された接点部材、接点ゴムスイッチが用いられる。
 特開昭61-245417号公報(特許文献1)は、導電インクを接点ゴム導通部に滴下して導通部を形成する方法を開示する。
 特開2000-113759号公報(特許文献2)は、弾性素材で成形されるカバー部材に、導電性インクを転写して導電部を形成する製造方法を開示する。
 いずれの文献にも導電性インクが用いられるが、その組成については記載されていない。
特開昭61-245417号公報 特開2000-113759号公報
 導電性インク(導電性組成物)を塗布して得られる導電性膜は、電気抵抗が低いことが求められる。特に車載機器に用いられる接点ゴムスイッチは、回路基板の配線に大電流が流されるため、電極間を接続するための接点部材に対して電気的負荷が大きく、低抵抗であることが好ましい。
 上記目的を達成すべく本発明は以下の特徴を有するものとして構成される。
 即ち、本発明の導電性組成物は、エラストマーと、複層グラフェンと、導電性フィラーとを含む導電性組成物であって、前記複層グラフェンは、平均長径が5μm以上100μm以下であり、平均厚さが5nm以上100nm以下であることを特徴とする。
 本発明の導電性組成物を用いて得られる導電性膜は、従来に比べて、その電気抵抗、特にその体積抵抗率を小さくすることができる。
 前記本発明の導電性組成物において、前記エラストマーが、熱硬化型液状シリコーンエラストマーとすることができる。
 前記エラストマーとして、熱硬化型液状シリコーンエラストマーを用いることにより、他のエラストマーを用いた場合に比べ、本発明の導電性組成物を用いて得られる導電性膜は、その接点部材としての強度や打鍵耐久性が向上する。
 前記本発明の導電性組成物において、前記導電性フィラーが、導電性カーボンブラックとすることができる。
 前記導電性フィラーとして、導電性カーボンブラックを用いることで、前記複層グラフェンと導電性カーボンブラックの組み合わせによる相乗効果により、本発明の導電性組成物を用いて得られる導電性膜を形成したときに、従来に比べて、導電性膜の電気抵抗、特にその体積抵抗率をより小さくすることができる。
 前記本発明の導電性組成物において、前記複層グラフェンのBET比表面積は、20m/g以上35m/g以下とすることができる。
 前記複層グラフェンのBET比表面積を、15m/g以上40m/g以下とすることにより、本発明の導電性組成物を用いて得られる導電性膜は、従来に比べて、その電気抵抗、特にその体積抵抗率を、大幅に小さくすることができる。
 本発明の導電性膜は、前記本発明の導電性組成物(即ち、請求項1~4の何れか1項記載の導電性組成物)から形成されるものである。
 前記導電性膜が、前記本発明の導電性組成物から形成されることにより、従来に比べ、導電性膜の電気抵抗、特に体積抵抗率をより小さくすることができる。
 前記本発明の導電性膜を垂直方向に切った断面において、隣接する前記複層グラフェンどうしの平均距離が、0.01μm以上10μm以下であるとすることができる。
 前記導電性膜を垂直方向に切った断面において、前記複層グラフェンどうしの平均距離が、0.01μm以上10μm以下であることにより、前記複層グラフェンどうしが近接するため、前記複層グラフェンどうしの導通性が得られる。その結果、前記導電性膜の電気抵抗を、従来に比べ、低くすることができる。
 前記本発明の導電性膜を垂直方向に切った断面において、前記複層グラフェンが、略層状に分散配置されているとすることができる。
 前記導電性膜を垂直方向に切った断面において、前記複層グラフェンが、略層状に分散配置されていることにより、略層状に分散していない場合に比べ、特に前記導電性膜の面方向における導通性が向上する。
 前記本発明の導電性膜を垂直方向に切った断面において、前記複層グラフェンどうしが、交差して交互に分散配置されているとすることができる。
 前記導電性膜を垂直方向に切った断面において、前記複層グラフェンどうしが、交差して交互に分散配置されていることにより、交差して交互に分散配置されていない場合に比べ、特に前記導電性膜の厚み方向における導通性が向上する。
 前記本発明の導電性膜において、体積抵抗率が0.1Ω・cm以上2.0Ω・cm以下であるとすることができる。
 前記導電性膜の体積抵抗率を上記範囲にすることにより、従来に比べ、導電性膜の電気抵抗がより小さくなる。
 本発明の接点部材は、前記本発明の前記導電性膜(即ち、請求項5~9の何れか1項記載の導電性膜)を接点部に有することを特徴とする。
 前記接点部材が、前記本発明の導電性膜を接点部に有することにより、従来に比べ、接点部材の導電部の電気抵抗、特に体積抵抗率をより小さくすることができる。
 本発明の導電性組成物の製造方法は、導電性フィラーと溶剤とを含む液状組成物を混合する工程と、前記液状組成物にエラストマーと複層グラフェンとを配合して混合する工程と、を有することを特徴とする。
 上記工程を有する本発明の導電性組成物の製造方法によれば、各工程において適切な粘度のもとで混合することができる。これにより、最終的に得られた導電性組成物が均一な組成となる。
 前記本発明の導電性組成物の製造方法において、前記導電性フィラーが導電性カーボンブラックである場合、前記導電性カーボンブラックの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く前記導電性組成物100質量部に対して10質量部以上80質量部以下であり、前記複層グラフェンの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く前記導電性組成物100質量部に対して10質量部以上50質量部以下であるとすることができる。
 前記導電性組成物の製造方法において、導電性フィラーが導電性カーボンブラックである場合、前記導電性カーボンブラックと前記複層グラフェンとの含有量を、上記範囲にすることにより、前記複層グラフェン間に前記導電性カーボンブラックが分散して、前記導電性組成物から得られる導電性膜の導通性が向上する。
 本発明の導電性組成物によれば、従来の導電性組成物に比べ、電気抵抗をより低くすることができる。また、本発明の導電性膜は、従来に比べ、電気抵抗をより低くすることができる。また、本発明の接点部材は、従来に比べ、接点部の電気抵抗をより低くすることができる。また、本発明の導電性組成物の製造方法は、導電性が低く、かつ均一性に優れた導電性組成物を提供することができる。
本発明の一例の導電性膜の垂直方向における断面を走査電子顕微鏡(SEM)により撮影したSEM画像である。 図1に示す白四角部分の拡大SEM画像である。 本発明における導電性組成物の製造方法を説明するフロー図である。
〔導電性組成物〕
 本発明について実施形態に基づき詳しく説明する。本発明の導電性組成物は、エラストマーと、複層グラフェンと、導電性フィラーとを含む導電性組成物であって、前記複層グラフェンが、平均長径5μm以上100μm以下および平均厚さ5nm以上100nm以下であることを特徴とする。
 ここで、本発明における「複層グラフェン」は、単層グラフェン以外の少なくとも2層以上のグラフェンの積層体を意味する。単層グラフェンは、多層構造である黒鉛(グラファイト)から剥がれた厚さが原子1個分の単一層をいい、炭素原子の六員環が平面状につらなった構造をいう。本明細書における「複層グラフェン」は、単層グラフェンが数層~数百層積層されたものであり、黒鉛(グラファイト)粒子よりもその積層数は少ない。本明細書における「複層グラフェン」は、市販のもので「複層グラフェン」と一般的に呼ばれるもの、および、市販のもので「薄層グラフェン」や「少数層グラフェン」、「多層グラフェン」と一般的に呼ばれるものなども含むものとする。
 次に、本発明の導電性組成物の構成について、詳細に説明する。
<エラストマー>
 本発明の導電性組成物に用いられるエラストマーとしては、例えば、シリコーンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、1,2-ポリブタジエン、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、エピクロロヒドリンゴム、フッ素ゴム、ウレタンゴム等の架橋ゴムや、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、フッ素系熱可塑性エラストマーなどの熱可塑性エラストマーが挙げられる。これらの材質の中でも接点部材として圧縮永久歪が小さいこと、密着性、打鍵耐久性、高温や低温で特性変化の小さい(耐環境性)等の観点からシリコーンゴムが好ましい。さらに、導電性組成物および導電性膜を製造する加工性から熱硬化型液状シリコーンエラストマーが好ましい。
<複層グラフェン>
 前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くするという観点から、複層グラフェンの平均長径は、5μm以上100μm以下であり、好ましくは10μm以上100μm以下であり、より好ましくは10μm以上30μm以下である。複層グラフェンの平均長径が5μm未満であると、複層グラフェンを多く添加する必要が生じ、導電性組成物が高粘度になり作業性が損なわれる。一方、複層グラフェンの平均長径が100μmを超えると、場合によっては導電性膜の厚みを超えて導電性膜の表面に露出するおそれがある。また、前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くするという観点から、複層グラフェンの平均厚さは、5nm以上100nm以下であり、好ましくは10nm以上30nm以下である。複層グラフェンの平均厚さが5nm未満であると、単層グラフェンに近似するため、導電性が低下する。一方、複層グラフェンの平均厚さが100nmを超えると、アスペクト比が小さくなり、導電性が低下する。
 本明細書中において、「複層グラフェンの平均長径」は、以下のように求めた。即ち、導電性組成物を用いて得られる、同じ導電性膜を、異なる4つの方向から垂直方向に切断し、4つの断面を得る。次いで、4つの断面を走査電子顕微鏡(以下「SEM」と略すことがある)により撮影し、4つのSEM画像を得る。この4つのSEM画像より観察される、それぞれ100個の複層グラフェンの長径を測定して長いものから順に上位10%を最長径と想定し、これら4つのSEM画像間の複層グラフェンの最長径の平均値を、「複層グラフェンの平均長径」とした。後述する実施例における「導電性膜の断面におけるグラフェンの平均長径」についても、上記同様にして求めた。
 また、本明細書中において、「複層グラフェンの平均厚さ」は、以下のように求めた。即ち、導電性組成物を用いて得られる、同じ導電性膜を、異なる4つの方向から垂直方向に切断し、4つの断面を得る。次いで、4つの断面を走査電子顕微鏡(SEM)により撮影し、4つのSEM画像を得る。この4つのSEM画像より観察される、それぞれ100個の複層グラフェンの厚さを測定し、これら計400個の複層グラフェンの厚さの平均値を、「複層グラフェンの平均厚さ」とした。後述する実施例における「導電性膜の断面におけるグラフェンの平均厚さ」についても、上記同様にして求めた。
 前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くし、かつ、強度を高くするという観点から、前記複層グラフェンの吸油量は、2.5cc/g以上4.5cc/g以下が好ましく、2.5cc/g以上3.5cc/g以下であることがより好ましい。ここで、吸油量は、JIS K 5101-13-1:2004(ISO 787-5:1980)に準拠して測定した。吸油量が大きくなりすぎると、導電性組成物中の溶剤やオイル成分、エラストマー内の低分子量成分等が吸着されやすく、導電性組成物がインク状にまとまらなくなり好ましくない。得られる導電性膜の強度も低下する。
 前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くし、かつ、作業性を考慮して導電性組成物を所定の粘度にするという観点から、前記複層グラフェンのBET比表面積は、15m/g以上40m/g以下が好ましく、20m/g以上35m/g以下がより好ましい。ここで、BET比表面積は、JIS Z 8830:2013(ISO 9277:2010)に準拠して測定した。吸着ガスの測定方法はキャリアガス法で、吸着データの解析は一点法で行うものとする。グラフェンのBET比表面積が大きくなりすぎると、溶剤やオイル成分、エラストマー内の低分子量成分が吸着されやすく、導電性組成物がインク状にまとまらなくなり好ましくない。得られる導電性膜の強度も低下する。単層グラフェンは比表面積が大きく、吸油量も大きくなりやすい。
<導電性フィラー>
 前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くするという観点から、導電性フィラーとしては、例えば、銀、銅、金、銀コート銅、バイメタル粉末、黒鉛粒子、カーボンナノチューブ、導電性カーボンブラック、またはその他の炭素同素体、その他の金属または金属酸化物、またはその導電性粉末が挙げられ、これらを単独または2種以上を組み合わせでもよい。前記複層グラフェンとの組み合わせで導電性膜の電気抵抗をより低くするという観点から、前記導電性フィラーとして、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、その他のファーネスブラック、チャネルブラック、サーマルランプブラックなどが挙げられる。なお本明細書において、導電性フィラーは複層グラフェンを含まないものとする。
 前記導電性組成物を用いて得られる導電性膜の電気抵抗を低くし、かつ、作業性を考慮して導電性組成物を所定の粘度にするという観点から、前記導電性カーボンブラックのBET比表面積は、10m/g以上1300m/g以下が好ましく、30m/g以上300m/g以下がより好ましい。ここで、BET比表面積は、JIS Z 8830:2013(ISO 9277:2010)に準拠して測定した。
〔導電性膜〕
 本発明の導電性膜は、上述した本発明の導電性組成物から形成されるものである。
 図1には、本発明の一例の導電性膜10の垂直方向における断面をSEMにより撮影したSEM画像が示されている。また、図2には、図1に示す白四角部分を拡大した拡大SEM画像が示されている。以下、図1および図2を用いて説明する。
 本発明の一例の導電性膜10は、エラストマー30と、複層グラフェン20a,20bと、導電性フィラー40とを含む。ここで、導電性膜10の平面に沿った方向に延びる複層グラフェンを20a、厚さ方向に延びる複層グラフェンを20bとする。なお、エラストマー30、複層グラフェン20a,20bおよび導電性フィラー40は、上述の導電性組成物において説明したものと同じであることから、ここではその説明を省略する。また図2においては、導電性膜10の断面に亀裂が黒い線状に観察され、複層グラフェン20a,20bはこの亀裂に沿っても延びていることがわかる。
 導電性膜10を垂直方向に切った断面において、それぞれ隣接する複層グラフェン20aどうし、複層グラフェン20bどうし、および複層グラフェンの20a,20bどうしの距離(図2に示された白抜き両方向矢印)の平均値が、0.01μm以上10μm以下であることが好ましく、0.05μm以上10μm以下であることがより好ましい。本発明の導電性膜における複層グラフェンどうしの平均距離は、導電性膜の一方向から垂直断面でSEM画像において観察される100個の隣接する複層グラフェン間距離の平均値である。
 上記断面において、複層グラフェン20aどうし、複層グラフェン20bどうし、および複層グラフェンの20a,20bどうしの平均距離(図2に示された白抜き両方向矢印)が、0.01μm以上10μm以下であることにより、複層グラフェン20aどうし、複層グラフェン20bどうし、および複層グラフェンの20a,20bどうしが近接する。これにより、複層グラフェン20aどうし、複層グラフェン20bどうし、および複層グラフェンの20a,20bどうしの導通性が得られる。その結果、導電性膜10の電気抵抗を、従来に比べ、低くすることができる。
 図2に示すように、導電性膜10を垂直方向に切った断面において、複層グラフェン20aが、導電性膜10の平面に沿った方向に延び、略層状に分散配置されている。導電性膜10を垂直方向に切った断面において、複層グラフェン20aが、略層状に分散配置されていることにより、略層状に分散していない場合に比べ、特に導電性膜10の面方向における導通性が向上する。
 図2に示すように、導電性膜10を垂直方向に切った断面において、複層グラフェン20a,20bどうしが、交差して交互に分散配置されている。導電性膜10を垂直方向に切った断面において、複層グラフェン20a,20bどうしが、交差して交互に分散配置されていることにより、交差して交互に分散配置されていない場合に比べ、特に導電性膜10の厚さ方向における導通性が向上する。
 導電性膜10の体積抵抗率は、0.1Ω・cm以上2.0Ω・cm以下であることが好ましく、0.3Ω・cm以上1.8Ω・cm以下であることがより好ましく、0.3Ω・cm以上1.3Ω・cm以下であることがさらに好ましい。ここで、体積抵抗率は、JIS K 7194-1994に準拠して測定した。測定の詳細については、後述する実施例において記載する。
 本発明の導電性膜は、導通性を向上させる観点から、導電性フィラーが導電性カーボンブラックである場合、前記導電性カーボンブラックの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く導電性組成物を100質量部に対して10質量部以上80質量部以下であることが好ましく、30質量部以上60質量部以下であることがより好ましく、40質量部以上50質量部以下がさらに好ましい。また、本発明の導電性膜は、導通性を向上させる観点から、導電性フィラーが導電性カーボンブラックである場合、前記複層グラフェンの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く導電性組成物を100質量部に対して10質量部以上50質量部以下であることが好ましく、15質量部以上50質量部以下がより好ましく、20質量部以上50質量部以下であることがさらに好ましい。
〔接点部材〕
 本発明の接点部材は、上述した本発明の導電性膜を接点部に有するものである。導電性の接点部を有する接点部材である接点ゴムスイッチが従来用いられる。
 接点部材は、本体と接点部とから構成され、エラストマーを用いて形成される。接点部の表面に導電性膜を有することで、導電性の接点部となる。エラストマーとしては前記の導電性組成物に用いられるエラストマーと同様のもの(例えばシリコーンゴム)を用いることができる。
〔導電性組成物の製造方法〕
 本発明の導電性組成物の製造方法は、図3に示すように、導電性フィラーと溶剤と分散剤とを含む液状組成物を混合する工程(S100)と、前記液状組成物にエラストマーと複層グラフェンとを配合して混合する工程(S102)と、を有することを特徴とする。
 上記工程の順で導電性組成物を製造することによって、導電性フィラーと複層グラフェンとを別工程で配合して混合することができるため、導電性フィラーと複層グラフェンとを同じ工程で混合する場合に比べ、粘度の上昇を抑制することができる。また、導電性フィラーとエラストマーとを別工程で配合して混合することができるため、導電性フィラーとエラストマーとを同じ工程で混合する場合に比べ、やはり粘度の上昇を抑制することができる。その結果、上述の各工程において適切な粘度のもとで混合することができるため、最終的に得られた導電性組成物を均一に分散された組成とすることができる。他の配合材を含めることとしてもよく、分散剤などが利用できる。例えば、導電性フィラーと溶剤と分散剤とを含む液状組成物を混合する工程(S100)と、前記液状組成物にエラストマーと複層グラフェンとを配合して混合する工程(S102)と、によって導電性組成物を製造することができる。
 前記導電性組成物の製造方法において、導電性フィラーが導電性カーボンブラックである場合、前記導電性カーボンブラックの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く導電性組成物を100質量部に対して10質量部以上80質量部以下であり、前記複層グラフェンの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く導電性組成物を100質量部に対して10質量部以上50質量部以下とすることが好ましい。
 前記導電性組成物の製造方法において、導電性フィラーが導電性カーボンブラックである場合、前記導電性カーボンブラックと前記複層グラフェンとの含有量を、上記範囲にすることにより、前記複層グラフェン間に前記導電性カーボンブラックが分散して、前記導電性組成物から得られる導電性膜の導通性が向上する。
 次に実施例(比較例)に基づいて本発明をさらに詳しく説明する。
<試料の作製>
 試料1
 導電性カーボンブラックとして商品名「#3030B」(三菱ケミカル株式会社製)50質量部と、溶剤としてナフテン系炭化水素溶剤160質量部と、分散剤として脂肪酸エステル系分散剤8.2質量部と、を配合して、振動攪拌機を用いて、1分間振動攪拌を行い、次いでメッシュにより濾過を行い、液状組成物を得た。
 この液状組成物に、「複層グラフェン1」として商品「iGurafen-αS」(長径:3~30μm、厚さ:10nm、BET比表面積27m/g、吸油量:2.5~3.5cc/g、株式会社アイテック製)20質量部、エラストマーとしてシリコーンゴムになる商品名「ELATOSIL(登録商標) LR 6250 F」(Wacker Chemie AG製)100質量部を配合し、前記振動攪拌機で3分間振動攪拌を行った。得られた半製品100質量部に対して、希釈溶剤として脂肪族炭化水素溶剤130質量部、また、「ELATOSIL(登録商標) LR 6250 F」100質量部に対して、硬化剤として商品名「Wacker(登録商標) Crosslinker 525」10質量部を配合し、この配合物をプロペラ式攪拌機を用いて回転数600~700rpmで20分間攪拌して、導電性組成物1を得た。
 次に、導電性組成物1をPET製の基材表面にバーコート法により塗布し、そののち、150℃で1時間加熱して、塗膜を乾燥させるとともに、架橋反応を進行させ、厚さ30μmの導電性膜1を製造した。
 試料2~5
 試料1において、試料1で用いた、複層グラフェン、導電性カーボンブラックの配合量を、表1に示すように変更した以外は、試料1の作製方法と同様に混合して、それぞれ導電性組成物2~5を得た。そして、実施例1と同様にして、導電性膜2~5を製造した。
 試料6~10
 試料1で用いた複層グラフェン1である商品「iGurafen-αS」を、「複層グラフェン2」である商品「iGurafen-α」(長径:10~100μm、厚さ:10nm、BET比表面積20~27m/g、吸油量:4.5cc/g、株式会社アイテック製)に変更し、かつ、複層グラフェン、導電性カーボンブラックの配合量を、表2に示すように変更した以外は、試料1の作製方法と同様に混合して、それぞれ導電性組成物6~10を得た。そして、実施例1と同様にして、導電性膜6~10を製造した。
 試料11~13
 試料1で用いた複層グラフェン1である商品「iGurafen-αS」を、薄層グラフェンである商品「N006-P」(長径:5μm、厚さ:10~20nm、BET比表面積15m/g以上、Angstron Materials Asia Limited製)に変更し、かつ、薄層グラフェンの配合量を、表3に示すように変更した以外は、試料1の作製方法と同様に混合して、それぞれ導電性組成物11~13を得た。そして、実施例1と同様にして、導電性膜11~13を製造した。
 試料14~16
 試料1で用いた複層グラフェン1である商品「iGurafen-αS」を、少数層グラフェンである商品「N008-N」(長径:5μm、厚さ:50~100nm、BET比表面積30m/g以下、Angstron Materials Asia Limited製)に変更し、かつ、少数層グラフェンの配合量を、表4に示すように変更した以外は、試料1の作製方法と同様に混合して、それぞれ導電性組成物14~16を得た。そして、実施例1と同様にして、導電性膜14~16を製造した。
 試料17
 試料1で用いた複層グラフェン1である商品「iGurafen-αS」を、単層グラフェンである商品「N002-PDR」(長径:10μm以下、厚さ:1nm、BET比表面積400~500m/g、Angstron Materials Asia Limited製)に変更し、かつ、薄層グラフェンの配合量を、表5に示すように変更した以外は、試料1の作製方法と同様に混合して、導電性組成物17を得た。そして、実施例1と同様にして、導電性膜17を製造した。
 試料18
 表5に示すように、試料1で用いた複層グラフェンを含まず、また他のグラフェンを含まず、導電性フィラーとして、試料1で用いた導電性カーボンブラックである商品名「#3030B」(三菱ケミカル株式会社製)50質量部と、炭素繊維である商品名「XN-100」(日本グラファイトファイバー株式会社製)20質量部を配合した以外は、試料1の作製方法と同様に混合して、導電性組成物18を得た。そして、実施例1と同様にして、導電性膜18を製造した。
 試料19
 試料1において、さらに、導電性フィラーとして、炭素繊維である商品名「XN-100」(日本グラファイトファイバー株式会社製)20質量部を配合した以外は、試料1の作製方法と同様に混合して、導電性組成物19を得た。そして、実施例1と同様にして、導電性膜19を製造した。
 試料20
 表5に示すように、試料1で用いた複層グラフェンを含まず、また他のグラフェンを含まず、導電性フィラーとして、試料1で用いた導電性カーボンブラックである商品名「#3030B」(三菱ケミカル株式会社製)50質量部と、導電性フィラーとしてのカーボンナノチューブである商品名「JENOTUBE 8A」(大韓貿易投資新興公社製)2.5質量部を配合した以外は、試料1の作製方法と同様に混合して、導電性組成物20を得た。そして、実施例1と同様にして、導電性膜20を製造した。
 試料21
 試料1において、さらに、導電性フィラーとして、カーボンナノチューブである商品名「JENOTUBE 8A」(大韓貿易投資新興公社製)2.5質量部を配合した以外は、試料1の作製方法と同様に混合して、導電性組成物21を得た。そして、実施例1と同様にして、導電性膜21を製造した。
 <各種測定方法、試験および評価>
 体積抵抗率の測定
 製造した導電性膜の体積抵抗率を、測定した。体積抵抗率の測定は、JIS K 7194-1994に準拠して行った。測定は、商品名「ロレスタGP」(株式会社三菱ケミカルアナリテック製)を用いた。導電性膜(試験片)の厚さは20~30μmである。
 導電性膜の断面におけるグラフェンの平均長径
 同じ導電性膜を、異なる4つの方向から垂直方向に切断し、4つの断面を得る。次いで、4つの断面を走査電子顕微鏡(SEM)により撮影し、4つのSEM画像を得る。この4つのSEM画像より観察される、それぞれ100個のグラフェンの長径を測定して長いものから順に上位10%を最長径と想定し、この4つのSEM画像間のグラフェンの最長径の平均値を、「導電性膜の断面におけるグラフェンの平均長径」とした。ここで、「グラフェン」とは、複層グラフェン、薄層グラフェン、少数層グラフェン、単層グラフェンの総称である。
 導電性膜の断面におけるグラフェンの平均厚さ
 同じ導電性膜を、異なる4つの方向から垂直方向に切断し、4つの断面を得る。次いで、4つの断面をSEMにより撮影し、4つのSEM画像を得る。この4つのSEM画像より観察される、それぞれ100個のグラフェンの厚さを測定し、これら計400個のグラフェンの厚さの平均値を、「導電性膜の断面におけるグラフェンの平均厚さ」とした。上記同様、「グラフェン」とは、複層グラフェン、薄層グラフェン、少数層グラフェン、単層グラフェンの総称である。
 導電性膜におけるグラフェン間平均距離:
 導電性膜におけるグラフェンどうしの平均距離は、導電性膜の一方向から垂直断面でSEM画像において観察される100個の隣接するグラフェン間距離の平均値である。上記同様、「グラフェン」とは、複層グラフェン、薄層グラフェン、少数層グラフェン、単層グラフェンの総称である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <試験結果の分析>
 試料1~16の結果より、複層グラフェンの配合量が多い方が、導電性膜の体積抵抗率が低くなることが分かった。また、試料1~10の結果より、導電性カーボンブラックも多い方が、導電性膜の体積抵抗が低くなることが分かった。
 試料1~17の結果より、単層グラフェンに比べ、薄層グラフェン、少数層グラフェン、あるいは複層グラフェン1,2を配合した導電性膜は、その体積抵抗率は低くなる効果が見られた。さらに、試料1~14の結果より、導電性膜の体積抵抗率は、配合される単層グラフェン、薄層グラフェン、少数層グラフェン、複層グラフェン2、複層グラフェン1の順で低くなることが分かった。
 試料1、18、20の結果より、グラフェンを含まない導電性膜は、その体積抵抗率が高くなることが分かった。また、試料18,19および試料20,21の結果より、複層グラフェンが配合されることで、導電性フィラーとして導電性カーボンブラックに炭素繊維を加えて配合した場合、および、導電性フィラーとして導電性カーボンブラックにカーボンナノチューブを加えて配合した場合の何れにおいても、導電性膜の体積抵抗率が大幅に低くなることが分かった。
 試料1~16の結果より、導電性膜におけるグラフェン間の平均距離が小さくになるにしたがって、概ね、導電性膜の体積抵抗率は低くなることが分かった。
  10 導電性膜
  20a、20b 複層グラフェン
  30 エラストマー
  40 導電性フィラー

Claims (12)

  1. エラストマーと、
    複層グラフェンと、
    導電性フィラーと、を含む導電性組成物であって、
    前記複層グラフェンは、平均長径が5μm以上100μm以下であり、平均厚さが5nm以上100nm以下であることを特徴とする導電性組成物。
  2. 前記エラストマーが、熱硬化型液状シリコーンエラストマーである
    請求項1記載の導電性組成物。
  3. 前記導電性フィラーが、導電性カーボンブラックである
    請求項1または請求項2記載の導電性組成物。
  4. 前記複層グラフェンのBET比表面積は、15m/g以上40m/g以下である
    請求項1~3の何れか1項記載の導電性組成物。
  5. 請求項1~4の何れか1項記載の導電性組成物から形成される導電性膜。
  6. 垂直方向に切った断面において、隣接する前記複層グラフェンどうしの平均距離が、0.01μm以上10μm以下である
    請求項5に記載の導電性膜。
  7. 垂直方向に切った断面において、前記複層グラフェンが、略層状に分散配置されている
    請求項5または請求項6に記載の導電性膜。
  8. 垂直方向に切った断面において、前記複層グラフェンどうしが、交差して交互に分散配置されている
    請求項5または請求項6に記載の導電性膜。
  9. 体積抵抗率が0.1Ω・cm以上2.0Ω・cm以下である
    請求項5~8の何れか1項記載の導電性膜。
  10. 請求項5~9の何れか1項記載の前記導電性膜を接点部に有する接点部材。
  11. 導電性フィラーと溶剤とを含む液状組成物を混合する工程と、
    前記液状組成物にエラストマーと複層グラフェンとを配合して混合する工程と、
    を有することを特徴とする導電性組成物の製造方法。
  12. 前記導電性フィラーが導電性カーボンブラックである場合、
    前記導電性カーボンブラックの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く前記導電性組成物100質量部に対して10質量部以上80質量部以下であり、
    前記複層グラフェンの含有量は、前記導電性カーボンブラック及び前記複層グラフェンを除く前記導電性組成物100質量部に対して10質量部以上50質量部以下である
    請求項11記載の導電性組成物の製造方法。
PCT/JP2020/022918 2019-07-30 2020-06-10 導電性組成物、導電性膜、接点部材および導電性組成物の製造方法 WO2021019923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080033864.7A CN113795557A (zh) 2019-07-30 2020-06-10 导电性组合物、导电性膜、触点构件以及导电性组合物的制造方法
DE112020002761.9T DE112020002761T5 (de) 2019-07-30 2020-06-10 Leitfähige Zusammensetzung, leitfähige Folie, Kontaktelement und Verfahren zur Herstellung einer leitfähigen Zusammensetzung
JP2020551589A JP6845602B1 (ja) 2019-07-30 2020-06-10 導電性組成物、導電性膜、接点部材および導電性組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-140319 2019-07-30
JP2019140319 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021019923A1 true WO2021019923A1 (ja) 2021-02-04

Family

ID=74230598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022918 WO2021019923A1 (ja) 2019-07-30 2020-06-10 導電性組成物、導電性膜、接点部材および導電性組成物の製造方法

Country Status (4)

Country Link
JP (1) JP6845602B1 (ja)
CN (1) CN113795557A (ja)
DE (1) DE112020002761T5 (ja)
WO (1) WO2021019923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010964A (zh) * 2022-07-07 2022-09-06 武汉纺织大学 一种可导电硅橡胶复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245329A (ja) * 2012-05-29 2013-12-09 Dow Corning Toray Co Ltd 導電性室温硬化型フルオロシリコーンゴム組成物
JP2015185309A (ja) * 2014-03-24 2015-10-22 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体および電気化学素子用電極
WO2017169627A1 (ja) * 2016-03-30 2017-10-05 住友理工株式会社 導電性膜およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245417A (ja) 1985-04-24 1986-10-31 富士ポリマテック株式会社 接点ゴムの導通部の形成法
JP3476372B2 (ja) 1998-10-05 2003-12-10 信越ポリマー株式会社 押釦スイッチ用カバー部材の製造方法およびその製造装置
TWI517774B (zh) * 2011-02-09 2016-01-11 創業發展聯盟技術有限公司 製造多層石墨烯被覆基板之方法
US20160096964A1 (en) * 2013-05-15 2016-04-07 Showa Denko K.K. Flaky graphite containing boron and production method therefor
WO2018135540A1 (ja) * 2017-01-19 2018-07-26 出光興産株式会社 グラフェン組成物、その製造方法及び導電膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245329A (ja) * 2012-05-29 2013-12-09 Dow Corning Toray Co Ltd 導電性室温硬化型フルオロシリコーンゴム組成物
JP2015185309A (ja) * 2014-03-24 2015-10-22 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体および電気化学素子用電極
WO2017169627A1 (ja) * 2016-03-30 2017-10-05 住友理工株式会社 導電性膜およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010964A (zh) * 2022-07-07 2022-09-06 武汉纺织大学 一种可导电硅橡胶复合材料的制备方法

Also Published As

Publication number Publication date
DE112020002761T5 (de) 2022-03-03
JP6845602B1 (ja) 2021-03-17
JPWO2021019923A1 (ja) 2021-09-13
CN113795557A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN109467931B (zh) 一种基于纳米液态金属的柔性介电弹性体复合材料及其制备方法
CN103959395B (zh) 导电性组合物和导电膜
WO2016114279A1 (ja) 導電性銀ペースト
CN101268524B (zh) 片状电子部件
KR20100066780A (ko) 전도성 페이스트와 이를 이용한 전도성 기판
JP2008208370A (ja) 伝導性材料
TWI712661B (zh) 導電糊及使用彼所形成之導電膜
WO2013161966A1 (ja) 導電性組成物
TWI480357B (zh) 導電膠組成物與電極的形成方法
WO2021019923A1 (ja) 導電性組成物、導電性膜、接点部材および導電性組成物の製造方法
JP2006083249A (ja) ナノカーボン配合ゴム組成物分散溶液の製造方法
JP2014133842A (ja) 導電性樹脂組成物
EP3667682B1 (en) Slurry for flexible electrodes, and flexible electrode using same
US11542381B2 (en) Silver-coated resin particle
WO2014084173A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
WO2015156137A1 (ja) 電磁波遮蔽用樹脂組成物、及び、ケーブル
JP2019185936A (ja) 銀被覆エラストマー粒子並びにこれを用いた柔軟導電材料及び導電ペースト
KR20120004122A (ko) 전도성 페이스트 및 이를 이용한 전극
KR20210029333A (ko) 전기전도성을 갖는 ptfe-cnt 복합소재
JPS63215745A (ja) 感圧導電性弾性体組成物
JP2006084726A5 (ja)
JP4333358B2 (ja) カーボンペースト
JP2007066743A (ja) 導電性ペースト組成物、燃料電池用導電性セパレータ及び燃料電池用導電性セパレータの製造方法
Tang et al. Enhancement of thermoelectric and mechanical properties of thermoplastic vulcanizates (TPVs) with hydroxylated graphene by dynamic vulcanization
JP2018206530A (ja) 太陽電池電極形成用導電性ペーストおよび太陽電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020551589

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846172

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20846172

Country of ref document: EP

Kind code of ref document: A1