WO2021019752A1 - イメージング質量分析装置 - Google Patents

イメージング質量分析装置 Download PDF

Info

Publication number
WO2021019752A1
WO2021019752A1 PCT/JP2019/030129 JP2019030129W WO2021019752A1 WO 2021019752 A1 WO2021019752 A1 WO 2021019752A1 JP 2019030129 W JP2019030129 W JP 2019030129W WO 2021019752 A1 WO2021019752 A1 WO 2021019752A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
data matrix
data
mass
unit
Prior art date
Application number
PCT/JP2019/030129
Other languages
English (en)
French (fr)
Inventor
建悟 竹下
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US17/628,969 priority Critical patent/US20220262611A1/en
Priority to JP2021536565A priority patent/JP7248126B2/ja
Priority to CN201980098410.5A priority patent/CN114096839A/zh
Priority to PCT/JP2019/030129 priority patent/WO2021019752A1/ja
Publication of WO2021019752A1 publication Critical patent/WO2021019752A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • G06F2218/14Classification; Matching by matching peak patterns

Definitions

  • the present invention relates to an imaging mass spectrometer.
  • Mass spectrometric imaging is a method of investigating the distribution of substances having a specific mass based on the results of mass spectrometry on a plurality of measurement points in a predetermined region on a sample such as a biological tissue section. It is being applied to search for drugs and biomarkers, and to investigate the causes of various diseases and diseases.
  • Mass Spectrometry A mass spectrometer for performing an imaging method is generally called an imaging mass spectrometer.
  • an imaging mass spectrometer In an imaging mass spectrometer, generally, one measurement point included in a two-dimensional range set on a sample is irradiated with an ionization probe such as a small-diameter laser beam to ionize the sample components existing at the measurement point. Then, the ions generated thereby or the ions secondarily generated from the ions by dissociation or the like are subjected to mass spectrometry. Then, by repeating the same measurement while scanning the irradiation position of the ionization probe two-dimensionally on the sample, mass spectrum data over a predetermined mass-to-charge ratio m / z range corresponding to a large number of measurement points are sequentially obtained. collect.
  • an ionization probe such as a small-diameter laser beam
  • the data acquired by the imaging mass spectrometer in this way is three-dimensional data obtained by adding information on the position of the measurement point to the two-dimensional data of the mass-to-charge ratio m / z-ion intensity obtained by mass spectrometry at one measurement point. It is data.
  • this three-dimensional data forms as many mass spectrometric image images showing the spatial distribution of ion intensity as the number of mass-to-charge ratio axial data points within the mass-to-charge ratio range in which mass spectrometry was performed. It is data, and it is a huge amount.
  • Non-Patent Document 1 In data analysis in an imaging mass analyzer, in order to extract information having a remarkable spatial distribution and significant increase / decrease or difference in ion intensity from such a huge amount of data, principal component analysis, cluster analysis, etc. The method of multivariate analysis is widely used (see Non-Patent Document 1 and the like).
  • a process of creating a data matrix of a predetermined format based on the collected data is usually performed as a preprocessing work of the analysis (see Patent Document 1 and the like).
  • this data matrix ion intensity data at a specific mass charge ratio value is arranged in the row direction or column direction by the number of measurement points on the sample, and the data arrangement in one row or one column is the mass charge ratio axis. It is arranged in the column direction or the row direction by the number of data points in the direction.
  • the number of data points in the mass-to-charge ratio axis direction is very large, so only the data points corresponding to the center of gravity position (mass-to-charge ratio) of the peak detected on the mass spectrum can be extracted, or at a predetermined mass-to-charge ratio interval. Therefore, it is common to reduce the number of data points in the direction of the mass-to-charge ratio axis by performing downsampling (that is, thinning out the data), thereby reducing the total amount of data.
  • the progress of technology in the field of mass spectrometry has been remarkable, and in the imaging mass spectrometer, the improvement of the mass resolution and the improvement of the spatial resolution of the mass spectrometry imaging image (that is, the improvement of the resolution) are remarkable. Therefore, the number of data points is significantly increased especially in the direction of the mass-to-charge ratio axis and the direction of the position information of the measurement points, and the total amount of data obtained for one two-dimensional region on the sample exceeds 100 GB. There are even more. In addition, the number of peaks detected in the mass spectrum is increasing as the mass resolution is improved. For these reasons, multivariate analysis for finding significant mass spectrometric imaging images from a huge amount of data is becoming more and more important.
  • the data matrix required as preprocessing for multivariate analysis is created.
  • the time required for this is very long. For example, with an imaging mass spectrometer currently on the market, it takes about 5 to 10 hours at the fastest to acquire imaging mass spectrometry data having a resolution of 100 Mpixel and a total amount of data of several hundred GB. It takes several hours or more to create a data matrix based on the obtained data.
  • it is necessary to first perform the process of creating a data matrix so the user must first perform the process of creating a substantial multivariate analysis. I had to wait for about an hour, which was a big stress for the user.
  • the present invention has been made in view of the above problems, and its main purpose is to perform multivariate analysis based on the obtained data from the time when imaging mass spectrometry is performed and data is collected, and the results are obtained. It is an object of the present invention to provide an imaging mass spectrometer capable of reducing the stress of waiting for a user's time and improving work efficiency.
  • the imaging mass spectrometer made to solve the above problems
  • An analysis execution unit that executes mass spectrometry for each of a plurality of measurement points set in a two-dimensional region on a sample and collects mass spectrum data over a predetermined mass-to-charge ratio range for each measurement point.
  • a condition storage unit that stores data matrix creation conditions when creating a data matrix based on mass spectrum data obtained by analysis in the analysis execution unit, and a condition storage unit. Based on the mass spectrum data already collected at that time according to the data matrix creation conditions stored in the condition storage unit from the middle of executing the analysis by the analysis execution unit or after the analysis is completed. And the data matrix creation unit that creates the data matrix Is provided.
  • a data matrix is created for multivariate analysis, etc., in a state where all measurements on the sample are completed and mass spectrum data for each measurement point on the sample is stored.
  • the user instructed to perform the data matrix creation process after setting the data matrix creation conditions, and the imaging mass spectrometer created the data matrix in response to the above settings and instructions.
  • the data matrix creation condition for creating the data matrix based on the mass spectrum data obtained by the analysis is set in the condition storage unit in advance, usually before the execution of the analysis. Is stored in.
  • This data matrix creation condition may be set by the user at any time prior to the execution of the analysis, or may be default information prepared by the device manufacturer or the like.
  • the analysis execution unit performs mass spectrometry on a plurality of measurement points set in the two-dimensional region on the sample. Start and collect mass spectrum data over a predetermined mass-to-charge ratio range for each measurement point.
  • the data matrix creation unit creates a data matrix based on the mass spectrum data according to the data matrix creation conditions already set, without depending on the instruction from the user, from the middle of the analysis or after the analysis is completed. create. That is, in the imaging mass spectrometer according to the above aspect of the present invention, the collection of data by analysis and the creation of a data matrix based on the collected data are continuously or substantially integrally (partially in parallel). Will be executed.
  • the imaging mass spectrometer since the data matrix has already been completed when the user tries to perform the multivariate analysis, the work of creating the data matrix which was conventionally necessary is performed. Multivariate analysis can be performed immediately by omitting it. As a result, it is possible to reduce the stress of waiting for the user to perform multivariate analysis and improve work efficiency.
  • the time required to complete the analysis is substantially extended by the time required for the data matrix creation process, but it takes a long time to acquire the data by the analysis. Analysis work is often performed automatically at night and on holidays. Therefore, even if the time required to complete the analysis is extended by adding the time for creating the data matrix, it does not pose a big problem for the user in many cases, and there is an advantage that the multivariate analysis can be started immediately. Is much larger.
  • the above-mentioned data matrix is a data sequence in which it is easy to extract ionic strength data of all measurement points with respect to an arbitrary or specific mass-to-charge ratio, a mass spectrometric imaging image at a specific mass-to-charge ratio is formed. It is suitable for. Therefore, according to the imaging mass spectrometer according to the above aspect of the present invention, it is possible to quickly display the mass spectrometric imaging image after the data acquisition is completed.
  • the block diagram of the main part of the imaging mass spectrometer which is one Embodiment of this invention.
  • the figure which shows the concept of a data matrix The figure which shows an example of the condition setting screen in the imaging mass spectrometer of this embodiment.
  • FIG. 1 is a block diagram of a main part of the imaging mass spectrometer of the present embodiment.
  • FIG. 2 is an explanatory diagram of a mass spectrometry operation in the imaging mass spectrometer of the present embodiment.
  • the imaging mass spectrometer of the present embodiment can perform mass spectrometry on a large number of measurement points in a two-dimensional region on a sample and acquire mass spectrometric data for each measurement point.
  • a user interface a unit 1, a control unit 3 that controls the operation of each unit included in the imaging mass spectrometry unit 1, a data processing unit 4 that stores and processes data obtained by the imaging mass spectrometry unit 1, and an input that is a user interface.
  • a unit 5 and a display unit 6 are provided.
  • the imaging mass spectrometer 1 provides a mass spectrometer capable of MS / MS analysis (or MS n analysis in which n is 2 or more), for example, a MALDI ionized ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS). Including. Instead of the MALDI-IT-TOFMS, a triple quadrupole mass spectrometer equipped with a MALDI ion source, a quadrupole-time-of-flight mass spectrometer, or the like may be used.
  • the ion source is not limited to the MALDI ion source, and ionization may be performed using an LDI ion source, a SALDI ion source, or a particle beam such as an ion beam or an electron beam instead of a laser beam.
  • mass spectrometry (normal mass spectrometry or normal mass spectrometry) for a plurality of measurement points 82 in the two-dimensional region 81 on the sample 80 placed on the sample table (not shown) MS / MS analysis) is executed sequentially. Then, for each measurement point, data constituting a mass spectrum as shown in FIG. 2 can be acquired.
  • the control unit 3 includes an analysis control unit 31, an analysis condition storage unit 32, and an analysis condition setting unit 33 as functional blocks, and the analysis condition setting unit 33 is a data matrix creation condition setting unit as a lower function block. Includes 34.
  • the data processing unit 4 includes an MS imaging data storage unit 41, a data matrix creation unit 42, a matrix data storage unit 43, a multivariate analysis execution unit 44, an imaging image creation unit 45, and a display processing unit 46 as functional blocks. ..
  • control unit 3 and the data processing unit 4 are composed of a general-purpose computer 2 such as a personal computer, and by executing the dedicated control / processing software installed in the computer, each of the control unit 3 and the data processing unit 4 A functional block can be embodied.
  • the imaging mass spectrometer of the present embodiment can perform multivariate analysis based on a large amount of data obtained by performing imaging mass spectrometry on a sample. Next, a series of processes and operations from collecting such data to outputting the results of multivariate analysis will be described.
  • FIG. 3 is an explanatory diagram of a series of work flows from analysis to multivariate analysis in the imaging mass spectrometer of the present embodiment.
  • the analysis condition setting unit 33 displays the analysis condition setting screen in a predetermined format on the display unit 6 in response to the operation.
  • FIG. 5 is an example of the analysis condition setting screen 100.
  • the analysis condition setting screen 100 includes a sample selection area 101 to be set, a laser irradiation condition setting area 102, an MS analysis condition setting area 103, and a data storage condition setting area 104.
  • the laser irradiation condition setting area 102 and the MS analysis condition setting area 103 are the analysis conditions when the imaging mass spectrometric analysis unit 1 executes the analysis.
  • the laser irradiation condition setting area 102 is the time of ionization with the MALDI ion source.
  • MS analysis condition setting area 103 is an area for setting analysis conditions other than the ion source.
  • the data storage condition setting area 104 is an area for setting conditions for storing the mass spectrum data collected by the imaging mass spectrometric analysis unit 1, and includes a data matrix creation condition setting area. ing.
  • the conditions that can be set in the laser irradiation condition setting area 102 are the number of irradiations per measurement point, the frequency of repeating the laser irradiation, the laser irradiation diameter, and the laser intensity.
  • the conditions that can be set in the MS analysis condition setting area 103 are the polarity of the ion to be measured, the event type (selection between normal mass spectrometry and MS / MS analysis), the measurement range (mass-to-charge ratio range of the measurement target), and , Detector voltage, and when MS / MS spectrometry is selected for the event type, the mass-to-charge ratio value of the precursor ion, the resolution of the quadrupole mass filter (Q1) in the previous stage, and the collision energy ( CE) and other settings are possible.
  • a data file name box 105 for specifying a file name of a data storage destination and a dropdown box 106 for selecting a data matrix creation condition are arranged, and a data matrix creation condition setting is performed.
  • this drop-down box 106 one can be selected from a plurality of options prepared in advance as data matrix creation conditions.
  • the data matrix has a mass-to-charge ratio value (m / z value) in one direction (horizontal direction in this example) and a mass-to-charge ratio value (m / z value) in the other direction (vertical direction in this example) in a two-dimensional region.
  • the position information of the measurement points is arranged, and the ion intensity data for a certain mass-to-charge ratio value at a certain measurement point is used as an element of each matrix.
  • the data matrix creation condition indicates how to determine the horizontal m / z value of this matrix.
  • the specific contents of the data matrix creation conditions will be described.
  • the m / z value of the data matrix is determined as follows. First, the maximum ionic strength data is searched for each m / z value from the mass spectra at all measurement points, and the maximum ionic strength data is arranged along the m / z axis to create a maximum intensity spectrum. Next, a peak is detected in the maximum intensity spectrum according to a predetermined peak detection condition, and centroid processing is performed for each detected peak to calculate the position of the center of gravity of the peak. Then, the m / z values corresponding to the positions of the centers of gravity of all the detected peaks are set as the m / z values of the data matrix, that is, the m / z values in FIG.
  • information such as the m / z value derived from the matrix for MALDI, whose m / z value is known and clearly unnecessary for analysis. It may have a function of removing.
  • the m / z value listed in the target list set by the user is used as it is as the m / z value of the data matrix, that is, the m / z value in FIG.
  • a list setting button appears at the right end thereof.
  • the data matrix creation condition setting unit 34 displays the target list setting screen 200 as shown in FIG. 7 on a separate screen. The user inputs the name of the compound to be measured and the corresponding m / z value in the target list 201.
  • information such as a compound name and m / z value can be read into the target list 201 from a separately created compound list or the like.
  • the target list 201 is confirmed by clicking the "OK" button 202.
  • the user appropriately sets each item in the laser irradiation condition, the MS analysis condition, and the data storage condition on the displayed analysis condition setting screen.
  • the data matrix creation conditions can be set by selecting in the drop-down box 106 as described above and setting the target list (step S1).
  • the data file name box 105 an appropriate file name for storing the mass spectrum data collected by the analysis and the data after the data matrix is created may be set.
  • the analysis condition setting unit 33 stores the analysis conditions including the data matrix creation condition in the analysis condition storage unit 32.
  • the analysis control unit 31 performs the imaging mass spectrometry according to the analysis conditions stored in the analysis condition storage unit 32. 1 is controlled.
  • the imaging mass spectrometric unit 1 sequentially executes mass spectrometry for each measurement point set in the two-dimensional region 81 on the sample 80, and acquires mass spectrum data corresponding to each measurement point (step). S3).
  • the acquired data is stored in the MS imaging data storage unit 41 in the data processing unit 4.
  • the mass spectrum data for one measurement point at this time is determined by the resolution of the apparatus over a predetermined mass-to-charge ratio range (mass-to-charge ratio range set as MS analysis conditions) as shown as an example in FIG. It is a one-dimensional data string of the ion intensity value of the mass-to-charge ratio interval.
  • the file of the data storage destination in the MS imaging data storage unit 41 is a file to which the file name set in the data file name box 105 is assigned.
  • the data matrix creation unit 42 continues to start the data matrix creation process based on the collected mass spectrum data (step S4).
  • the data matrix creation unit 42 creates a data matrix according to the data matrix creation conditions set on the analysis condition setting screen 100 before executing the analysis.
  • centroid of maximum intensity spectrum when "centroid of maximum intensity spectrum" is set as a data matrix creation condition, the data matrix creation unit 42 first sets all the measurement points stored in the MS imaging data storage unit 41. The maximum ion intensity is searched for each mass-to-charge ratio value based on the mass spectrum data for. Then, the maximum intensity spectrum is created by using the maximum ionic strength value for each mass-to-charge ratio value. Next, peak detection is performed in this maximum intensity spectrum, and centroid treatment, that is, the position of the center of gravity of the peak is obtained for each detected peak. If the number of peaks detected in the maximum intensity spectrum is 100, 100 different mass-to-charge ratio values can be obtained.
  • This mass-to-charge ratio value is adopted as the m / z value in the data matrix, and the ionic strength data at the m / z value is extracted from the mass spectrum data at each measurement point. Then, a data matrix as shown in FIG. 4 is created using the extracted ionic strength data.
  • the data matrix creation unit 42 may use the mass-to-charge ratio value listed in the designated target list, for example, the target list shown in FIG. For example, two m / z values, m / z 126.32 and m / z 158.45, are adopted as the m / z values in the data matrix. Then, the ionic strength data at the above m / z value is extracted from the mass spectrum data at each measurement point, and the extracted ionic strength data is used to create a data matrix as shown in FIG.
  • the data matrix creation unit 42 stores the data matrix created as described above in the matrix data storage unit 43 (step S5).
  • the MS imaging data storage unit 41 and the matrix data storage unit 43 are separated here for convenience of explanation, in reality, all of them are combined into one file having the data file name set in the data storage conditions. All you have to do is store the data.
  • the analysis of the sample is executed, and the data matrix based on the acquired data is created and stored in the matrix data storage unit 43. Is not required and is performed continuously. Therefore, here, data acquisition by analysis and data matrix creation are substantially integrated.
  • the time required for analysis on a sample varies depending on the size of the two-dimensional region on the sample, spatial resolution (interval between measurement points), etc., but generally it takes several hours or more.
  • the time required to create the data matrix may be about several hours depending on the data matrix creation conditions and the number of measurement points, so if the data matrix creation is performed integrally, the user will analyze that much.
  • the time to finish will be extended.
  • the work of analysis by the imaging mass spectrometer is often performed in an unmanned state such as at night or on holidays, and the user (analyzer) is not in a situation of waiting until the end of analysis. Therefore, as described above, extending the time until the end of the analysis does not pose a big problem for the user.
  • step S6 When it is desired to perform multivariate analysis based on the collected data after the analysis is completed (immediately after or at a later date, etc.), the user performs a predetermined operation on the input unit 5, specifies the data file to be analyzed, and then analyzes. Instruct execution (step S6).
  • the multivariate analysis execution unit 44 which has received the instruction to start the analysis, reads the data necessary for the multivariate analysis from the matrix data storage unit 43, and immediately executes the multivariate analysis process using the data (step S7). .. Then, when the multivariate analysis is completed, the analysis result is output to the display unit 6 through the display processing unit 46 and displayed (step S8).
  • the time required for multivariate analysis differs depending on the amount of data to be analyzed, the type of multivariate analysis method, etc., but in any case, it will be shortened by several hours in some cases because the data matrix is not created. ..
  • the user confirms the progress of the multivariate analysis and if the analysis is found to be inappropriate, the analysis is interrupted or the parameters are changed. is there. Therefore, the user is often present even during the execution of the multivariate analysis, but waiting until the creation of the data matrix is completed tends to cause a great deal of mental stress and reduce the work efficiency.
  • the imaging mass spectrometer of the present embodiment since there is no waiting time for creating a data matrix, the desired multivariate analysis can be performed immediately, the stress of waiting is reduced, and the work efficiency is improved. ..
  • creating a data matrix following the analysis is also advantageous in displaying a mass spectrometric imaging image.
  • the data corresponding to the target mass-to-charge ratio is searched from the mass-to-charge ratio value-ionic strength data array for each measurement point and the imaging image is obtained. Need to be configured. Therefore, as the amount of data in the mass-to-charge ratio direction and the position direction increases, it takes more time to create and display an imaging image.
  • the imaging image creating unit 45 specifies the target mass-to-charge ratio. The ionic strength data of all the corresponding measurement points are promptly read out from the matrix data storage unit 43 to form an imaging image. Thereby, the mass spectrometric imaging image at the mass-to-charge ratio specified by the user can be quickly displayed.
  • the data matrix creation process was performed after all the data was collected by the analysis, but depending on the data matrix creation conditions, the data matrix creation is started even if all the data are not available. can do. Specifically, if it is a data matrix creation condition that it is not necessary to first perform processing using mass spectrum data at all measurement points, such as the maximum intensity spectrum and the average intensity spectrum, analysis of all measurement points can be performed. You can start creating the data matrix even before you finish. In that case, the creation of the data matrix may be started from the middle of the analysis. As a result, the time required to complete the data matrix can be shortened.
  • step S1 can be omitted. That is, the user does not set the data matrix creation condition or other analysis conditions, and adopts a configuration in which the analysis is executed or the data matrix creation is executed according to the analysis conditions stored in the analysis condition storage unit 32 in advance. You can also. Further, the analysis conditions other than the data matrix creation conditions may be set by the user before the analysis, and the data matrix creation conditions may be stored in the analysis condition storage unit 32 in advance.
  • the imaging mass spectrometric unit 1 is not limited to directly irradiating a measurement point on a sample with an ionizing probe such as a laser beam to perform mass spectrometry, and each measurement point on the sample is used for mass spectrometry.
  • an ionizing probe such as a laser beam to perform mass spectrometry
  • each measurement point on the sample is used for mass spectrometry.
  • the sample corresponding to each measurement point is irradiated with an ionization probe to perform mass spectrometry and mass spectrometric data is collected. May be good.
  • any mass spectrum data corresponding to each measurement point on the sample may be collected.
  • the imaging mass spectrometer is An analysis execution unit that executes mass spectrometry for each of a plurality of measurement points set in a two-dimensional region on a sample and collects mass spectrum data over a predetermined mass-to-charge ratio range for each measurement point.
  • a condition storage unit that stores data matrix creation conditions when creating a data matrix based on mass spectrum data obtained by analysis in the analysis execution unit, and a condition storage unit. Based on the mass spectrum data already collected at that time according to the data matrix creation conditions stored in the condition storage unit during the execution of the analysis by the analysis execution unit or after the analysis is completed. And the data matrix creation unit that creates the data matrix Is provided.
  • the imaging mass spectrometer described in the first section since the data matrix has already been completed when the user tries to perform multivariate analysis, the work of creating the data matrix, which was conventionally required, is omitted immediately. Multivariate analysis can be performed. As a result, it is possible to reduce the stress of waiting for the user to perform multivariate analysis and improve work efficiency.
  • the created data matrix is a data array in which it is easy to extract ionic strength data of all measurement points with respect to an arbitrary or specific mass-to-charge ratio, a mass spectrometric imaging image at a specific mass-to-charge ratio is formed. It is suitable for. Therefore, according to the imaging mass spectrometer described in the first item, it is possible to quickly display the mass spectrometric imaging image after the data acquisition is completed.
  • the imaging mass spectrometer according to item 1 may further include a multivariate analysis processing unit that performs multivariate analysis using the data matrix created by the data matrix creation unit. it can.
  • the imaging mass spectrometer described in item 2 for example, it is possible to perform multivariate analysis using the data matrix following the creation of the data matrix.
  • the user can set arbitrary or desired data matrix creation conditions according to the purpose of analysis, the use of the data matrix, and the like.
  • condition setting unit shall allow the user to set the data matrix creation condition together with the analysis condition at the time of analysis by the analysis execution unit. Can be done.
  • the analysis conditions and the data matrix creation conditions can be set together, so that the user's labor can be reduced.
  • the data matrix creation unit sets the start time of the data matrix creation process according to the data matrix creation conditions stored in the condition storage unit. , It is possible to switch between the middle of execution of the analysis by the analysis execution unit and immediately after the end of the analysis.
  • the time required to complete the data matrix may be shortened by starting the data matrix creation process during the execution of the analysis.
  • the data matrix creation condition may be such that a data matrix is created for the mass-to-charge ratio listed in the list of target substances. ..
  • the data matrix creation condition corresponds to a peak in the average mass spectrum or the maximum intensity mass spectrum calculated based on all the collected mass spectrum data. It is possible to create a data matrix for the mass-to-charge ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明の一態様のイメージング質量分析装置は、試料上の2次元領域内に設定された複数の測定点に対しそれぞれ質量分析を実行し、該測定点毎に所定の質量電荷比範囲に亘るマススペクトルデータを収集する分析実行部(1,31)と、分析実行部での分析により得られるマススペクトルデータに基づくデータ行列作成の際のデータ行列作成条件を記憶しておく条件記憶部(32)と、分析実行部による分析の実行途中から、又は該分析が終了したのに引き続いて、条件記憶部に記憶されているデータ行列作成条件に従って、その時点で既に収集されているマススペクトルデータに基づいてデータ行列を作成するデータ行列作成部(42)と、を備える。

Description

イメージング質量分析装置
 本発明はイメージング質量分析装置に関する。
 質量分析イメージング法は、生体組織切片などの試料上の所定の領域内の複数の測定点に対しそれぞれ質量分析を行った結果に基づき、特定の質量を有する物質の分布を調べる手法であり、創薬やバイオマーカ探索、各種疾病・疾患の原因究明などへの応用が進められている。質量分析イメージング法を実施するための質量分析装置は、一般にイメージング質量分析装置と呼ばれている。
 イメージング質量分析装置では一般に、試料上に設定された2次元範囲に含まれる一つの測定点に対し、細径のレーザ光などのイオン化プローブを照射し、その測定点に存在する試料成分をイオン化して、それにより生成されたイオン又はそのイオンから解離等により2次的に生成されたイオンを質量分析する。そして、イオン化プローブの照射位置を試料上で2次元的に走査しながら同じ測定を繰り返すことにより、多数の測定点にそれぞれ対応する、所定の質量電荷比m/z範囲に亘るマススペクトルデータを順次収集する。
 このようにしてイメージング質量分析装置において取得されるデータは、一つの測定点における質量分析による質量電荷比m/z-イオン強度の2次元データに、さらに測定点の位置の情報を加えた3次元データである。換言すれば、この3次元データは、イオン強度の空間的な分布を示す質量分析イメージ画像を、質量分析が実施された質量電荷比範囲内の質量電荷比軸方向のデータ点の数だけ形成するデータであり、非常に膨大な量である。イメージング質量分析装置におけるデータ解析では、こうした膨大な量のデータの中から着目すべき空間分布や有意であるイオン強度の増減或いは差異などを有する情報を抽出するため、主成分分析やクラスタ分析などの多変量解析の手法が広く利用されている(非特許文献1など参照)。
 多変量解析を効率的に行うために、通常、解析の前処理作業として、収集されたデータに基づいて所定形式のデータ行列を作成する処理が行われる(特許文献1等参照)。このデータ行列は、特定の質量電荷比値におけるイオン強度データが試料上の測定点の数の分だけ行方向又は列方向に配列され、さらにその1行又は1列のデータ配列が質量電荷比軸方向のデータ点の数の分だけ列方向又は行方向に配列されたものである。通常、質量電荷比軸方向のデータ点数は非常に多いため、マススペクトル上で検出されるピークの重心位置(質量電荷比)に対応するデータ点のみを抽出したり、所定の質量電荷比間隔で以てダウンサンプリング(つまりはデータの間引き)を行ったりすることで、質量電荷比軸方向のデータ点数を減らし、それによってデータの総量を削減するのが一般的である。
特開2010-261882号公報
「IMAGEREVEALTM MS 質量分析イメージングのデータ解析を簡単に、思い通りに」、[online]、株式会社島津製作所、[2019年7月4日検索]、インターネット<URL: https://www.an.shimadzu.co.jp/bio/imagereveal/index.htm>
 近年、質量分析分野の技術の進展は著しく、イメージング質量分析装置では、質量分解能の向上や、質量分析イメージング画像の空間分解能の向上(つまりは高解像度化)が顕著である。そのため、特に質量電荷比軸方向、及び、測定点の位置情報の方向におけるデータ点数が大幅に増加しており、試料上の一つの2次元領域に対して得られるデータの総量が100GBを超えることもあるほどである。また、質量分解能の向上に伴ってマススペクトルにおいて検出されるピークの数も増大している。こうしたことから、膨大な量のデータの中から有意な質量分析イメージング画像を探し出すための多変量解析はますます重要になってきている。
 しかしながら、上述したように、イメージング質量分析装置において収集されるデータ量が膨大であるうえにデータ行列自体も大規模になりがちであるため、多変量解析の前処理として必要となるデータ行列の作成に要する時間が非常に長くなっている。例えば、現時点で市販されているイメージング質量分析装置では、解像度が100Mpixelでデータ総量が数百GBであるイメージング質量分析データを取得するために最速で5~10時間程度を要するが、そうして得られたデータに基づいてデータ行列を作成する処理にも数時間以上を要している。既に収集されているデータを用いた多変量解析を行う際には、まずデータ行列を作成する処理を実施する必要があるため、ユーザは、実質的な多変量解析の処理を開始するまでに数時間程度待たなければならず、これはユーザにとって大きなストレスであった。
 本発明は上記課題に鑑みて成されたものであり、その主たる目的は、イメージング質量分析を実施してデータを収集する時点から、得られたデータに基づく多変量解析を行ってその結果を得るまでの間における、ユーザの時間待ちのストレスを軽減して作業効率を改善することができるイメージング質量分析装置を提供することにある。
 上記課題を解決するためになされた本発明の一態様に係るイメージング質量分析装置は、
 試料上の2次元領域内に設定された複数の測定点に対しそれぞれ質量分析を実行し、該測定点毎に所定の質量電荷比範囲に亘るマススペクトルデータを収集する分析実行部と、
 前記分析実行部での分析により得られるマススペクトルデータに基づくデータ行列作成の際のデータ行列作成条件を記憶しておく条件記憶部と、
 前記分析実行部による分析の実行途中から、又は該分析が終了したのに引き続いて、前記条件記憶部に記憶されているデータ行列作成条件に従って、その時点で既に収集されているマススペクトルデータに基づいてデータ行列を作成するデータ行列作成部と、
 を備えるものである。
 従来のイメージング質量分析装置を用いた解析では、試料に対する全ての測定が終了して試料上の各測定点に対するマススペクトルデータが保存されている状態で、多変量解析等のためにデータ行列を作成する必要が生じると、ユーザはデータ行列作成条件を設定したうえでデータ行列作成処理を行う指示を行い、イメージング質量分析装置は上記設定及び指示を受けてデータ行列作成を実施していた。
 これに対し、本発明の上記態様に係るイメージング質量分析装置では、分析によって得られるマススペクトルデータに基づくデータ行列作成のためのデータ行列作成条件が、条件記憶部に予め、通常は分析の実行前に、格納されている。このデータ行列作成条件は例えば、分析実行よりも前の任意の時点でユーザが設定するようにしてもよいし、装置メーカ等により用意されているデフォルトの情報であってもよい。データ行列作成条件が設定されている状態の下で、例えばユーザによる分析開始の指示等を受けて、分析実行部は、試料上の2次元領域内に設定された複数の測定点に対する質量分析を開始し、測定点毎に所定の質量電荷比範囲に亘るマススペクトルデータを収集する。データ行列作成部は、ユーザからの指示に拠ることなく、分析の実行途中から又は分析が終了したのに引き続いて、既に設定されているデータ行列作成条件に従って、マススペクトルデータに基づいてデータ行列を作成する。即ち、本発明の上記態様に係るイメージング質量分析装置では、分析によるデータの収集と収集されたデータに基づくデータ行列の作成とが連続的に又は実質的に一体に(一部は並行して)実行される。
 したがって、本発明の上記態様に係るイメージング質量分析装置によれば、ユーザが多変量解析を実施しようとする際に既にデータ行列が出来上がっているため、従来は必要であったデータ行列作成の作業を省いて直ぐに多変量解析を行うことができる。それにより、多変量解析を行う際のユーザの時間待ちのストレスを軽減し、作業効率を改善することができる。この態様に係るイメージング質量分析装置では、データ行列作成処理に要する時間の分だけ実質的に分析終了までの所要時間が延びることになるものの、元々分析によるデータの取得には長い時間が掛かるため、分析作業は夜間、休日などに自動的に行われていることが多い。そのため、データ行列作成のための時間が加算されることで分析終了までの所要時間が延びても、多くの場合、ユーザにとっては大きな問題とはならず、多変量解析に直ぐに取りかかれるという利点のほうが遥かに大きい。
 また、上述したデータ行列は任意の又は特定の質量電荷比に対する全測定点のイオン強度データを抽出するのが容易なデータ配列であるため、特定の質量電荷比における質量分析イメージング画像を形成するのに好適である。そのため、本発明の上記態様に係るイメージング質量分析装置によれば、データ取得完了後に迅速に質量分析イメージング画像を表示することも可能になる。
本発明の一実施形態であるイメージング質量分析装置の要部の構成図。 本実施形態のイメージング質量分析装置における質量分析動作の説明図。 本実施形態のイメージング質量分析装置における分析から多変量解析までの一連の作業の流れの説明図。 データ行列の概念を示す図。 本実施形態のイメージング質量分析装置における条件設定画面の一例を示す図。 図5に示した条件設定画面においてデータ行列作成条件を変更した状態の図。 データ行列作成条件としてターゲットリストを選択した場合におけるターゲットリスト設定画面の一例を示す図。
 以下、本発明に係るイメージング質量分析装置の一実施形態について、添付図面を参照して説明する。
 図1は、本実施形態のイメージング質量分析装置の要部の構成図である。また、図2は、本実施形態のイメージング質量分析装置における質量分析動作の説明図である。
 本実施形態のイメージング質量分析装置は、試料上の2次元領域内の多数の測定点に対してそれぞれ質量分析を実行して測定点毎にマススペクトルデータを取得することが可能であるイメージング質量分析部1と、イメージング質量分析部1に含まれる各部の動作を制御する制御部3と、イメージング質量分析部1により得られたデータを保存して処理するデータ処理部4と、ユーザインターフェイスである入力部5及び表示部6と、を備える。
 イメージング質量分析部1は、MS/MS分析(又はnが2以上であるMSn分析)が可能である質量分析装置、例えばMALDIイオン化イオントラップ飛行時間型質量分析装置(MALDI-IT-TOFMS)を含む。MALDI-IT-TOFMSの代わりに、MALDIイオン源を備えたトリプル四重極型質量分析装置、四重極-飛行時間型質量分析装置などでもよい。また、イオン源はMALDIイオン源に限らず、LDIイオン源、SALDIイオン源、さらには、レーザ光ではなく、イオンビーム、電子ビームなどの粒子線を用いてイオン化を行うものでもよい。
 イメージング質量分析部1では、図2に示すように、試料台(図示せず)に載置された試料80上の2次元領域81内の複数の測定点82に対する質量分析(通常の質量分析又はMS/MS分析)を順次実行する。そして、各測定点に対し、それぞれ図2に示すようなマススペクトルを構成するデータを取得することができる。
 制御部3は、機能ブロックとして、分析制御部31と、分析条件記憶部32と、分析条件設定部33とを含み、分析条件設定部33はさらに下位の機能ブロックとして、データ行列作成条件設定部34を含む。データ処理部4は、機能ブロックとして、MSイメージングデータ格納部41、データ行列作成部42、行列データ格納部43、多変量解析実行部44、イメージング画像作成部45、及び表示処理部46、を含む。
 通常、制御部3及びデータ処理部4はパーソナルコンピュータ等の汎用コンピュータ2により構成され、該コンピュータにインストールされた専用の制御・処理ソフトウェアを実行することで、制御部3及びデータ処理部4における各機能ブロックを具現化することができる。
 本実施形態のイメージング質量分析装置では、試料に対するイメージング質量分析を実行することで得られた大量のデータに基づいた多変量解析を実行することができる。次に、こうしたデータの収集から多変量解析の結果を出力するまでの一連の処理及び作業について説明する。図3は、本実施形態のイメージング質量分析装置における分析から多変量解析までの一連の作業の流れの説明図である。
 まず試料に対する分析を実施するのに先立って、ユーザが入力部5で所定の操作を行うと、これを受けて分析条件設定部33は、所定の様式の分析条件設定画面を表示部6に表示する。図5は分析条件設定画面100の一例である。
 図5に示すように、分析条件設定画面100には、設定対象試料選択領域101、レーザ照射条件設定領域102、MS分析条件設定領域103、及び、データ保存条件設定領域104、が配置されている。レーザ照射条件設定領域102及びMS分析条件設定領域103は、イメージング質量分析部1において分析を実行する際の分析条件、具体的には、レーザ照射条件設定領域102はMALDIイオン源でのイオン化の際の条件、MS分析条件設定領域103はイオン源以外の分析条件を設定するための領域である。これに対し、データ保存条件設定領域104は、イメージング質量分析部1で収集されたマススペクトルデータを保存する条件を設定するための領域であり、ここに、データ行列作成条件の設定領域が含まれている。
 レーザ照射条件設定領域102で設定可能な条件は、一つの測定点当たりの照射回数、そのレーザ照射の繰り返しの周波数、レーザ照射径、及び、レーザ強度、である。MS分析条件設定領域103で設定可能な条件は、測定対象のイオンの極性、イベント種別(通常の質量分析とMS/MS分析との選択)、測定範囲(測定対象の質量電荷比範囲)、及び、検出器電圧、であり、イベント種別でMS/MS分析が選択されている場合にはさらに、プリカーサイオンの質量電荷比値、前段の四重極マスフィルタ(Q1)での分解能、コリジョンエネルギ(CE)などの設定が可能である。
 データ保存条件設定領域104には、データ保存先のファイル名を指定するためのデータファイル名ボックス105と、データ行列作成条件を選択するためのドロップダウンボックス106とが配置され、データ行列作成条件設定部34の制御の下で、このドロップダウンボックス106において、データ行列作成条件として予め用意された複数の選択肢の中から一つを選択できるようになっている。
 データ行列は、図4に示すように、一方向(この例では水平方向)に質量電荷比値(m/z値)を、他の方向(この例では垂直方向)に2次元領域内での測定点の位置情報を配置し、或る測定点における或る質量電荷比値についてのイオン強度データを、各行列の要素としたものである。データ行列作成条件は、この行列の水平方向のm/z値の決め方を示すものである。ここで、データ行列作成条件の具体的な内容について述べる。
 本実施形態のイメージング質量分析装置では、データ行列作成条件として、図5に示されている「最大強度スペクトルのセントロイド」と図6に示されている「ターゲットリスト」の二つが選択肢として用意されている。
 「最大強度スペクトルのセントロイド」では、次のようにしてデータ行列のm/z値を決める。まず、全ての測定点におけるマススペクトルからm/z値毎に最大のイオン強度データを探索し、その最大イオン強度データをm/z軸に沿って並べた最大強度スペクトルを作成する。次に、最大強度スペクトルにおいて所定のピーク検出条件に従ってピークを検出し、検出したピーク毎にセントロイド処理を行ってピークの重心位置を算出する。そして、検出された全てのピークの重心位置に対応するm/z値をデータ行列のm/z値、つまりは図4中のm/z値とする。なお、このとき、得られたデータ行列のm/z値リストから、例えばMALDI用のマトリクス由来のm/z値などの、そのm/z値が既知であり且つ明らかに解析に不要である情報を除去する機能を有していてもよい。
 一方、「ターゲットリスト」では、ユーザにより設定されたターゲットリストに挙げられているm/z値をそのままデータ行列のm/z値、つまりは図4中のm/z値とする。図6に示したように、ユーザがドロップダウンボックス106で「ターゲットリスト」を選択すると、その右端部にリスト設定用のボタンが現れる。このボタンをクリック操作すると、データ行列作成条件設定部34は、図7に示すようなターゲットリスト設定画面200を別画面で表示する。ユーザはターゲットリスト201中に測定対象である化合物名とそれに対応するm/z値を入力する。また、インポートの機能を利用して、別途作成してある化合物リストなどから、化合物名、m/z値などの情報をターゲットリスト201に読み込むこともできる。ターゲットリスト201が完成したならば、「OK」ボタン202をクリック操作することで、ターゲットリスト201を確定させる。
 上述したようなデータ行列作成条件の選択肢以外に、次のような選択肢を加えてもよい。
 ・「平均強度スペクトルのセントロイド」:このデータ行列作成条件では、上記「最大強度スペクトルのセントロイド」における最大強度スペクトルに代えて、平均スペクトルつまりは全ての測定点におけるマススペクトルを平均したマススペクトルを用いればよい。
 ・「全ての質量電荷比値」:このデータ行列作成条件では、m/z方向のデータのダウンサイジングを行わず、質量分析で得られた全てのm/z値におけるイオン強度データをデータ行列に用いる。
 ・「特定の質量電荷比範囲内の質量電荷比値」:このデータ行列作成条件では、ユーザに特定のm/z範囲を設定させ、その範囲に含まれる全てのm/z値におけるイオン強度データをデータ行列に用いる。
 ・「特定の質量電荷比間隔でダウンサンプリング」:このデータ行列作成条件では、ユーザに特定のm/z間隔を設定させ、そのm/z間隔毎のm/z値におけるイオン強度データをデータ行列に用いる。
 ユーザは、表示された分析条件設定画面上で、レーザ照射条件、MS分析条件、及びデータ保存条件における各項目を適宜に設定する。データ行列作成条件については、上述したようなドロップダウンボックス106での選択、及びターゲットリストの設定により、その設定を行うことができる(ステップS1)。なお、データファイル名ボックス105には、分析により収集されたマススペクトルデータやデータ行列作成後のデータを保存したい適宜のファイル名を設定すればよい。上述したように分析条件を設定したうえでユーザが所定の操作を実行すると、分析条件設定部33はデータ行列作成条件を含む分析条件を分析条件記憶部32に記憶する。
 そのあと、ユーザが所定の操作により分析実行開始を指示すると(ステップS2)、分析制御部31は分析条件記憶部32に記憶されている分析条件に従ってイメージング質量分析を実施するようにイメージング質量分析部1を制御する。これにより、イメージング質量分析部1は、試料80上の2次元領域81内に設定されている各測定点について順番に質量分析を実行し、各測定点に対応するマススペクトルデータを取得する(ステップS3)。
 取得されたデータは、データ処理部4においてMSイメージングデータ格納部41に格納される。このときの一つの測定点に対するマススペクトルデータは、図2中に一例として示すように、所定の質量電荷比範囲(MS分析条件として設定された質量電荷比範囲)に亘り、装置の分解能で決まる質量電荷比間隔のイオン強度値の1次元的なデータ列である。また、MSイメージングデータ格納部41でのデータの保存先のファイルは、先にデータファイル名ボックス105に設定されたファイル名が付されたファイルである。
 2次元領域81内の全ての測定点82について質量分析が終了し、その全てのマススペクトルデータがMSイメージングデータ格納部41に格納されると、イメージング質量分析部1での分析動作自体は終了である。この分析終了を受けて、データ行列作成部42は引き続き、収集されたマススペクトルデータに基づくデータ行列作成処理を開始する(ステップS4)。データ行列作成部42は、分析の実行前に分析条件設定画面100上で設定されたデータ行列作成条件に従って、データ行列を作成する。
 具体的には、データ行列作成条件として「最大強度スペクトルのセントロイド」が設定されている場合には、データ行列作成部42は、まずMSイメージングデータ格納部41に格納されている全ての測定点に対するマススペクトルデータに基づいて、質量電荷比値毎に最大のイオン強度を探索する。そして、質量電荷比値毎の最大イオン強度値を用いて最大強度スペクトルを作成する。次に、この最大強度スペクトルにおいてピーク検出を行い、検出されたピーク毎にセントロイド処理、つまりはピークの重心の位置を求める。最大強度スペクトルにおいて検出されたピークの数が100個であれば、互いに異なる100個の質量電荷比値が求まる。この質量電荷比値がデータ行列におけるm/z値として採用され、各測定点におけるマススペクトルデータからそのm/z値におけるイオン強度データを抽出する。そして、その抽出したイオン強度データを用いて図4に示すようなデータ行列を作成する。
 一方、データ行列作成条件として「ターゲットリスト」が設定されている場合、データ行列作成部42は、指定されたターゲットリストに挙げられている質量電荷比値、例えば図7に示したターゲットリストであればm/z 126.32、m/z 158.45という二つのm/z値をデータ行列におけるm/z値として採用する。そして、各測定点におけるマススペクトルデータから上記m/z値におけるイオン強度データを抽出し、その抽出したイオン強度データを用いて図4に示すようなデータ行列を作成する。
 データ行列作成部42は、上述したように作成したデータ行列を行列データ格納部43に格納する(ステップS5)。なお、ここでは説明の都合上、MSイメージングデータ格納部41と行列データ格納部43とを分けたが、実際には、データ保存条件で設定されたデータファイル名を有する一つのファイルにそれら全てのデータを格納すればよい。
 ユーザにより分析実行の開始が指示されたあと、試料に対する分析が実行され、それにより取得されたデータに基づくデータ行列が作成されて行列データ格納部43に格納されるまでの一連の処理は、人手を要さず且つ連続的に行われる。したがって、ここでは、分析によるデータ取得とデータ行列作成とは実質的に一体である。
 試料に対する分析の所要時間は、試料上の2次元領域の広さ、空間分解能(測定点の間隔)などによって異なるが、一般的には数時間以上掛かる。一方、データ行列の作成に要する時間は、データ行列作成条件や測定点数などに依存し数時間程度になる場合もあるから、データ行列作成までを一体的に行うと、ユーザにとってはその分だけ分析終了までの時間が延びることになる。しかしながら、イメージング質量分析装置による分析の作業は、夜間や休日など、無人の状態で実行されることが多く、ユーザ(分析担当者)が分析終了まで待機している状況ではない。そのため、上述したように分析終了までの時間が延びることは、ユーザにとってあまり大きな問題とならない。
 分析の終了後(直後又は後日等)、収集されたデータに基づいた多変量解析を行いたい場合、ユーザは入力部5で所定の操作を行い、解析対象のデータファイル等を指定したうえで解析実行を指示する(ステップS6)。多変量解析の手法は様々であり、イメージング質量分析では、例えば主成分分析、階層的クラスタ解析、部分的最小二乗回帰などを用いることができる。
 従来の装置であれば、この時点からまずデータ行列の作成が開始されるが、本実施形態のイメージング質量分析装置では、既にデータ行列は作成済みである。そのため、解析開始の指示を受けた多変量解析実行部44は、行列データ格納部43から多変量解析に必要なデータを読み出し、該データを用いて直ぐに多変量解析処理を実行する(ステップS7)。そして、多変量解析が終了したならば、その解析結果を表示処理部46を通して表示部6に出力し表示する(ステップS8)。
 多変量解析に要する時間は、解析対象のデータ量や多変量解析手法の種類等によって異なるが、いずれにしても、データ行列の作成を行わない分だけ、つまりは場合によっては数時間程度短くなる。多変量解析を行う場合、ユーザが多変量解析の途中経過を確認して不適切な解析であることが判明した場合には解析を中断する、或いはパラメータを変更する等の作業を行うことがよくある。そのため、多変量解析の実行中にもユーザが立ち会っていることが多いが、データ行列の作成が完了するまで待つとなると、精神的なストレスが大きく作業効率も低下しがちである。それに対し、本実施形態のイメージング質量分析装置では、データ行列作成のための待ち時間がないので、直ぐに目的の多変量解析を行うことができ、待つことのストレスが軽減され、作業効率も向上する。
 また、分析に引き続いてデータ行列を作成しておくことは、質量分析イメージング画像を表示するうえでも利点がある。
 図2に示したような通常のデータ形式でデータが保存されている場合、測定点毎に質量電荷比値-イオン強度のデータ配列から目的の質量電荷比に対応するデータを探索してイメージング画像を構成する必要がある。そのため、質量電荷比方向、及び、位置方向のデータが増えるほど、イメージング画像の作成及び表示に時間が掛かる。それに対し、本実施形態のイメージング質量分析装置では、図4に示したようにデータ行列の状態にデータが整理されているため、イメージング画像作成部45は、目的の質量電荷比が指定されると、それに対応する全ての測定点のイオン強度データを速やかに行列データ格納部43から読み出してイメージング画像を構成する。それにより、ユーザにより指定された質量電荷比における質量分析イメージング画像を迅速に表示することができる。
 上記説明では、分析により全てのデータの収集が完了したのに引き続いてデータ行列作成処理が実施されていたが、データ行列作成条件によっては、全てのデータが揃わなくてもデータ行列の作成を開始することができる。具体的には、最大強度スペクトルや平均強度スペクトルなど、全ての測定点におけるマススペクトルデータを用いた処理を最初に実施する必要がないデータ行列作成条件であれば、全ての測定点についての分析が終了する前であってもデータ行列の作成を開始することができる。その場合には、分析の途中からデータ行列の作成を開始してもよい。それにより、データ行列が完成するまでの所要時間を短縮することができる。
 また、図3においてステップS1の処理は省略することができる。即ち、ユーザがデータ行列作成条件やそのほかの分析条件を設定せずに、予め分析条件記憶部32に記憶されている分析条件に従って分析を実行したりデータ行列作成を実行したりする構成を採ることもできる。また、データ行列作成条件以外の分析条件は分析前にユーザが設定し、データ行列作成条件は予め分析条件記憶部32に記憶されているようにしてもよい。
 また、上記実施形態は本発明の一例であり、本発明の趣旨の範囲で適宜に変更、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。
 例えば、データ行列作成条件をユーザが設定する際の様式やそのデータ行列作成条件自体は適宜に変更可能である。また、イメージング質量分析部1は図2に示したように試料上の測定点に対し直接レーザ光等のイオン化プローブを照射して質量分析を行うものに限らず、試料上の各測定点からそれぞれ採取した試料微細片をサンプルプレート上に載せる又は貼り付けることにより調製したサンプルを用い、各測定点に対応するサンプルにイオン化プローブを照射して質量分析を行いマススペクトルデータを収集するものであってもよい。いずれにしても、試料上の各測定点に対応するマススペクトルデータを収集できるものであればよい。
 [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明の一態様によるイメージング質量分析装置は、
 試料上の2次元領域内に設定された複数の測定点に対しそれぞれ質量分析を実行し、該測定点毎に所定の質量電荷比範囲に亘るマススペクトルデータを収集する分析実行部と、
 前記分析実行部での分析により得られるマススペクトルデータに基づくデータ行列作成の際のデータ行列作成条件を記憶しておく条件記憶部と、
 前記分析実行部による分析の実行途中から、又は該分析が終了したのに引き続いて、前記条件記憶部に記憶されているデータ行列作成条件に従って、その時点で既に収集されているマススペクトルデータに基づいてデータ行列を作成するデータ行列作成部と、
 を備えるものである。
 第1項に記載のイメージング質量分析装置によれば、ユーザが多変量解析を実施しようとする際に既にデータ行列が出来上がっているため、従来は必要であったデータ行列作成の作業を省いて直ぐに多変量解析を行うことができる。それにより、多変量解析を行う際のユーザの時間待ちのストレスを軽減し、作業効率を改善することができる。また、作成されるデータ行列は任意の又は特定の質量電荷比に対する全測定点のイオン強度データを抽出するのが容易なデータ配列であるため、特定の質量電荷比における質量分析イメージング画像を形成するのに好適である。そのため、第1項に記載のイメージング質量分析装置によれば、データ取得完了後に迅速に質量分析イメージング画像を表示することも可能になる。
 (第2項)第1項に記載のイメージング質量分析装置は、前記データ行列作成部で作成されたデータ行列を用いた多変量解析を行う多変量解析処理部、をさらに備えるものとすることができる。
 第2項に記載のイメージング質量分析装置によれば、例えばデータ行列の作成に引き続いて該データ行列を用いた多変量解析を行うことができる。
 (第3項)第1項に記載のイメージング質量分析装置において、前記分析実行部による分析の実行に先立って前記データ行列作成条件をユーザに設定させ、該設定されたデータ行列作成条件を前記条件記憶部に記憶させる条件設定部、をさらに備えるものとすることができる。
 第3項に記載のイメージング質量分析装置によれば、分析の目的やデータ行列の用途等に応じて、ユーザが任意の又は所望のデータ行列作成条件を設定することができる。
 (第4項)第3項に記載のイメージング質量分析装置において、前記条件設定部は、前記分析実行部による分析の際の分析条件とともに、前記データ行列作成条件をユーザに設定させるものとすることができる。
 第4項に記載のイメージング質量分析装置によれば、分析条件とデータ行列作成条件とを合わせて設定することができるので、ユーザの手間を軽減することができる。
 (第5項)第1項に記載のイメージング質量分析装置において、前記データ行列作成部は、前記条件記憶部に記憶されているデータ行列作成条件に応じて、データ行列の作成処理の開始時点を、前記分析実行部による分析の実行途中と、該分析の終了直後とで切り替えるものとすることができる。
 第5項に記載のイメージング質量分析装置によれば、分析の実行途中にデータ行列の作成処理を開始することで、データ行列が完成するまでの所要時間を短縮することができる場合がある。
 (第6項)第1項に記載のイメージング質量分析装置において、前記データ行列作成条件は、ターゲット物質のリストに掲載されている質量電荷比を対象としてデータ行列を作成するものとすることができる。
 第6項に記載のイメージング質量分析装置によれば、観測したい化合物が決まっている場合に、その化合物のみを対象とするデータ行列を迅速に作成することができる。
 (第7項)第1項に記載のイメージング質量分析装置において、前記データ行列作成条件は、収集された全てのマススペクトルデータに基づいて算出される平均マススペクトル又は最大強度マススペクトルにおけるピークに対応する質量電荷比を対象としてデータ行列を作成するものとすることができる。
 第7項に記載のイメージング質量分析装置によれば、既知、未知を含めて、試料に含まれる様々な化合物について検出漏れをできるだけ少なくしつつ、それら化合物を対象とするデータ行列を効率良く作成することができる。
1…イメージング質量分析部
2…汎用コンピュータ
3…制御部
 31…分析制御部
 32…分析条件記憶部
 33…分析条件設定部
 34…データ行列作成条件設定部
4…データ処理部
 41…MSイメージングデータ格納部
 42…データ行列作成部
 43…行列データ格納部
 44…多変量解析実行部
 45…イメージング画像作成部
 46…表示処理部
5…入力部
6…表示部
80…試料
81…2次元領域
82…測定点
100…分析条件設定画面
101…設定対象試料選択領域
102…レーザ照射条件設定領域
103…MS分析条件設定領域
104…データ保存条件設定領域

Claims (7)

  1.  試料上の2次元領域内に設定された複数の測定点に対しそれぞれ質量分析を実行し、該測定点毎に所定の質量電荷比範囲に亘るマススペクトルデータを収集する分析実行部と、
     前記分析実行部での分析により得られるマススペクトルデータに基づくデータ行列作成の際のデータ行列作成条件を記憶しておく条件記憶部と、
     前記分析実行部による分析の実行途中から、又は該分析が終了したのに引き続いて、前記条件記憶部に記憶されているデータ行列作成条件に従って、その時点で既に収集されているマススペクトルデータに基づいてデータ行列を作成するデータ行列作成部と、
     を備えるイメージング質量分析装置。
  2.  前記データ行列作成部で作成されたデータ行列を用いた多変量解析を行う多変量解析処理部、をさらに備える、請求項1に記載のイメージング質量分析装置。
  3.  前記分析実行部による分析の実行に先立って前記データ行列作成条件をユーザに設定させ、該設定されたデータ行列作成条件を前記条件記憶部に記憶させる条件設定部、をさらに備える、請求項1に記載のイメージング質量分析装置。
  4.  前記条件設定部は、前記分析実行部による分析の際の分析条件とともに、前記データ行列作成条件をユーザに設定させるものである、請求項3に記載のイメージング質量分析装置。
  5.  前記データ行列作成部は、前記条件記憶部に記憶されているデータ行列作成条件に応じて、データ行列の作成処理の開始時点を、前記分析実行部による分析の実行途中と、該分析の終了直後とで切り替える、請求項1に記載のイメージング質量分析装置。
  6.  前記データ行列作成条件は、ターゲット物質のリストに掲載されている質量電荷比を対象としてデータ行列を作成することである、請求項1に記載のイメージング質量分析装置。
  7.  前記データ行列作成条件は、収集された全てのマススペクトルデータに基づいて算出される平均マススペクトル又は最大強度マススペクトルにおけるピークに対応する質量電荷比を対象としてデータ行列を作成することである、請求項1に記載のイメージング質量分析装置。
PCT/JP2019/030129 2019-08-01 2019-08-01 イメージング質量分析装置 WO2021019752A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/628,969 US20220262611A1 (en) 2019-08-01 2019-08-01 Imaging mass spectrometer
JP2021536565A JP7248126B2 (ja) 2019-08-01 2019-08-01 イメージング質量分析装置
CN201980098410.5A CN114096839A (zh) 2019-08-01 2019-08-01 成像质量分析装置
PCT/JP2019/030129 WO2021019752A1 (ja) 2019-08-01 2019-08-01 イメージング質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030129 WO2021019752A1 (ja) 2019-08-01 2019-08-01 イメージング質量分析装置

Publications (1)

Publication Number Publication Date
WO2021019752A1 true WO2021019752A1 (ja) 2021-02-04

Family

ID=74228634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030129 WO2021019752A1 (ja) 2019-08-01 2019-08-01 イメージング質量分析装置

Country Status (4)

Country Link
US (1) US20220262611A1 (ja)
JP (1) JP7248126B2 (ja)
CN (1) CN114096839A (ja)
WO (1) WO2021019752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032181A1 (ja) * 2021-09-06 2023-03-09 株式会社島津製作所 質量分析データ解析方法及びイメージング質量分析装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215043A (ja) * 2013-04-22 2014-11-17 株式会社島津製作所 イメージング質量分析データ処理方法及びイメージング質量分析装置
JP2015500466A (ja) * 2011-12-02 2015-01-05 ビオメリュー・インコーポレイテッド 質量分析法により微生物を特定するための方法
WO2016103312A1 (ja) * 2014-12-22 2016-06-30 株式会社島津製作所 分析データ処理方法及び装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110845B1 (en) * 2008-04-16 2011-10-05 Casimir Bamberger An imaging mass spectrometry method and its application in a device
JP6569805B2 (ja) * 2016-05-10 2019-09-04 株式会社島津製作所 イメージング質量分析装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500466A (ja) * 2011-12-02 2015-01-05 ビオメリュー・インコーポレイテッド 質量分析法により微生物を特定するための方法
JP2014215043A (ja) * 2013-04-22 2014-11-17 株式会社島津製作所 イメージング質量分析データ処理方法及びイメージング質量分析装置
WO2016103312A1 (ja) * 2014-12-22 2016-06-30 株式会社島津製作所 分析データ処理方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032181A1 (ja) * 2021-09-06 2023-03-09 株式会社島津製作所 質量分析データ解析方法及びイメージング質量分析装置

Also Published As

Publication number Publication date
JPWO2021019752A1 (ja) 2021-02-04
JP7248126B2 (ja) 2023-03-29
CN114096839A (zh) 2022-02-25
US20220262611A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP6699735B2 (ja) イメージング質量分析装置
JP5206790B2 (ja) 質量分析装置
JP6569805B2 (ja) イメージング質量分析装置
JP5348029B2 (ja) 質量分析データ処理方法及び装置
JP6597909B2 (ja) 質量分析データ処理装置
DE102010019590A1 (de) Datenabhängiges Erfassungssystem für die Massenspektrometrie und Verfahren für dessen Anwendung
WO2018037569A1 (ja) イメージング質量分析データ処理装置及び方法
JP2009014424A (ja) クロマトグラフ質量分析装置
WO2019150576A1 (ja) 質量分析装置及び質量分析装置における質量較正方法
JP6897797B2 (ja) 質量分析データ取得方法
JP2022179596A (ja) Idaのための前駆体イオン選択における付加物およびその他の悪化因子の物理的単離
WO2021019752A1 (ja) イメージング質量分析装置
JP6698668B2 (ja) 断片化エネルギーを切り替えながらの幅広い四重極rf窓の高速スキャニング
JP6569800B2 (ja) 質量分析データ解析装置及び質量分析データ解析用プログラム
US10147590B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
JP7215591B2 (ja) イメージング質量分析装置
JP7279853B2 (ja) レーザー脱離イオン化質量分析装置及びレーザーパワー調整方法
JP7413775B2 (ja) イメージング分析データ処理方法及び装置
JPWO2019150554A1 (ja) イメージング質量分析用データ処理装置
WO2021049011A1 (ja) 分析装置
JPWO2019229898A1 (ja) イメージング質量分析データ処理装置
WO2016098247A1 (ja) 分析装置
WO2021044509A1 (ja) データ解析装置及び分析装置
JP7420031B2 (ja) Maldi質量分析装置及びmaldi質量分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939862

Country of ref document: EP

Kind code of ref document: A1