WO2021044509A1 - データ解析装置及び分析装置 - Google Patents

データ解析装置及び分析装置 Download PDF

Info

Publication number
WO2021044509A1
WO2021044509A1 PCT/JP2019/034544 JP2019034544W WO2021044509A1 WO 2021044509 A1 WO2021044509 A1 WO 2021044509A1 JP 2019034544 W JP2019034544 W JP 2019034544W WO 2021044509 A1 WO2021044509 A1 WO 2021044509A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
plot
detailed
image
data
Prior art date
Application number
PCT/JP2019/034544
Other languages
English (en)
French (fr)
Inventor
有里子 中木村
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/034544 priority Critical patent/WO2021044509A1/ja
Publication of WO2021044509A1 publication Critical patent/WO2021044509A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a data analysis device and an analysis device, and more particularly to a data analysis device and an analysis device that acquire information about the sample by principal component analysis based on the data collected by analyzing the sample.
  • the mass spectrometric imaging method is a method for investigating the distribution of a substance having a specific mass based on the result of mass spectrometry for each of a plurality of measurement points in a predetermined region on a sample such as a biological tissue section. It is being applied to search for drugs and biomarkers, and to investigate the causes of various diseases and diseases.
  • Mass Spectrometry A mass spectrometer for performing an imaging method is generally called an imaging mass spectrometer.
  • one measurement point 82 included in the two-dimensional range 81 set on the sample 80 is generally irradiated with an ionization probe such as a small-diameter laser beam, and the measurement point 82 is irradiated with the ionization probe.
  • the sample component existing at the measurement point is ionized, and the ion generated thereby or the ion secondarily generated from the ion by dissociation or the like is subjected to mass spectrometry.
  • the data acquired by the imaging mass spectrometer in this way is three-dimensional, in which information on the position of the measurement point is added to the two-dimensional data of the mass-to-charge ratio m / z-ion intensity obtained by mass spectrometry at one measurement point. It is data.
  • this three-dimensional data forms as many mass spectrometric image images showing the spatial distribution of ion intensity as the number of mass-to-charge ratio axial data points within the mass-to-charge ratio range in which mass spectrometry was performed. It is data, and it is a huge amount.
  • multivariate analysis is widely used to extract information having a remarkable spatial distribution and significant increase / decrease or difference in ionic strength from such a huge amount of data. ..
  • PCA Principal Component Analysis
  • Principal component analysis is often used not only in the field of mass spectrometric imaging but also in other imaging analyzes such as infrared spectroscopic imaging and Raman spectroscopic imaging.
  • principal component analysis is often used for difference analysis based on chromatogram data collected by a liquid chromatograph mass spectrometer or the like other than imaging analysis (see Non-Patent Document 2 and the like).
  • Principal component analysis usually calculates score values for several or more principal components, each indicating the degree of contribution to the principal component axis, and differs from each other in order to show this visually in an easy-to-understand manner.
  • a score plot is created in which the scores for these two principal components are plotted in a two-dimensional space with the two principal components as axes orthogonal to each other. Such a score plot is convenient for visually grasping the relationship between scores for different principal components, and for example, a plurality of samples can be grouped on the score plot.
  • the user when the user confirms the result of the principal component analysis on the screen of the display unit, the user combines the principal components, for example, the first principal component and the second principal component, and the first principal component. It is necessary to check the score plots in order while changing the settings of the component and the third principal component, ..., And determine, for example, whether or not a plurality of samples are divided into an appropriate number of groups. Such work is very laborious and inefficient. In addition, since it is difficult to compare score plots with different combinations of principal components, analysis results are likely to be overlooked or judgment errors are likely to occur.
  • the present invention has been made in view of these problems, and in a data analysis device and an analysis device that perform principal component analysis using the data collected by the analysis and perform the analysis while the user confirms the result.
  • the purpose is to improve the efficiency of confirmation work by the user and improve the accuracy of confirmation work.
  • the data analysis device which has been made to solve the above problems, is a data analysis device for an analysis device that performs principal component analysis using data collected by a predetermined analysis of a sample. Based on the results of principal component analysis, a representative image that reflects the score plots for all combinations of two principal components within a predetermined or user-specified range of principal components is created, and the multiple score plots are used.
  • a list screen display processing unit that creates a list screen that displays the corresponding representative images in a list and displays it on the display unit
  • An image selection instruction unit that allows a user to select one representative image on the list screen displayed on the display unit, and an image selection instruction unit.
  • the detailed result screen on which the detailed results of the principal component analysis for the combination of the two principal components corresponding to the selected representative image are arranged is displayed instead of the list screen.
  • the analyzer which has been made to solve the above problems, is an analyzer that executes a predetermined analysis on a sample and performs principal component analysis using the data collected by the analysis.
  • a representative image that reflects the score plots for all combinations of two principal components within a predetermined or user-specified range of principal components is created, and the multiple score plots are used.
  • a list screen display processing unit that creates a list screen that displays the corresponding representative images in a list and displays it on the display unit
  • An image selection instruction unit that allows a user to select one representative image on the list screen displayed on the display unit, and an image selection instruction unit.
  • the detailed result screen on which the detailed results of the principal component analysis for the combination of the two principal components corresponding to the selected representative image are arranged is displayed instead of the list screen.
  • the detailed result screen may include, for example, a score plot for a combination of two principal components and a loading plot, and further, factors corresponding to each plot on the loading plot in each of the two principal components. It is possible to include a graph (loading vector) showing each loading value, and further, it is possible to include a graph showing the contribution rate for each principal component.
  • the analyzer in the data analyzer according to the above aspect of the present invention and the analyzer according to the above aspect of the present invention are an analyzer that performs main component analysis using the collected data, the analysis method and the like can be used.
  • an intensity distribution image can be obtained for each parameter value in a certain parameter (mass charge ratio, wavelength, etc.) such as an imaging mass spectrometer, a Raman spectroscopic imaging device, or an infrared spectroscopic imaging device. It is especially effective for various analyzers.
  • the user can use the representative images of a plurality of score plots in the list screen displayed on the display unit by the list screen display processing unit to display the entire principal component analysis result.
  • the score plot of interest can be selected, and detailed results such as the loading plot and loading vector corresponding to the score plot of interest can be confirmed in detail.
  • the user can quickly and effortlessly find the score plots that deserve attention, and the user can confirm the results of the principal component analysis. It can proceed efficiently.
  • work mistakes such as oversight of significant score plots and judgment mistakes can be reduced, and the accuracy of confirmation work can be improved.
  • the block diagram of the main part of the imaging mass spectrometer which is one Embodiment of this invention.
  • the schematic diagram of the score plot list screen displayed by the imaging mass spectrometer of this embodiment.
  • the schematic diagram of the PCA detailed result screen displayed by the imaging mass spectrometer of this embodiment.
  • FIG. 1 is a block diagram of a main part of the imaging mass spectrometer of the present embodiment.
  • FIG. 2 is an explanatory diagram of a mass spectrometry operation in the imaging mass spectrometer of the present embodiment.
  • the imaging mass spectrometer of the present embodiment can perform mass spectrometry on a large number of measurement points in a two-dimensional region on a sample and acquire mass spectrum data for each measurement point.
  • a unit 1 a data processing unit 2 that stores and processes the data obtained by the imaging mass spectrometric unit 1, and an input unit 3 and a display unit 4 that are user interfaces are provided.
  • the imaging mass spectrometer 1 includes, for example, a matrix-assisted laser desorption / ionization ion trap time-of-flight mass spectrometer (MALDI-IT-TOFMS).
  • MALDI-IT-TOFMS matrix-assisted laser desorption / ionization ion trap time-of-flight mass spectrometer
  • a triple quadrupole mass spectrometer equipped with a MALDI ion source, a quadrupole-time-of-flight mass spectrometer, or the like may be used.
  • the ion source is not limited to the MALDI ion source, but is a laser desorption / ionization (LDI) ion source, a surface-assisted laser desorption / ionization (SALDI) ion source, and particles such as an ion beam and an electron beam instead of laser light. Ionization may be performed using a wire.
  • LLI laser desorption / ionization
  • SALDI surface-assisted laser desorption / ionization
  • particles such as an ion beam and an electron beam instead of laser light. Ionization may be performed using a wire.
  • the imaging mass spectrometer 1 performs mass spectrometry (normal mass spectrometry or normal mass spectrometry) on a plurality of measurement points 82 within the two-dimensional range 81 on the sample 80 placed on the sample table (not shown). MS / MS analysis) is executed sequentially. Then, for each measurement point, the data constituting the mass spectrum as shown in FIG. 2 can be acquired.
  • mass spectrometry normal mass spectrometry or normal mass spectrometry
  • the data processing unit 2 includes an MS imaging data storage unit 21, a data matrix creation unit 22, a principal component analysis execution unit 23, and an analysis result display processing unit 24 as functional blocks, and the analysis result display processing unit 24 is further subordinate. As functional blocks, a score plot list screen creation unit 25 and a detailed result screen creation unit 26 are included.
  • the data processing unit 2 is composed of a general-purpose computer such as a personal computer, and each functional block in the data processing unit 2 can be realized by executing the dedicated control / processing software installed in the computer. ..
  • the imaging mass spectrometer of the present embodiment it is possible to perform a difference analysis using principal component analysis based on a large amount of data obtained by performing imaging mass spectrometry on a plurality of samples.
  • a difference analysis using principal component analysis in the imaging mass spectrometer of the present embodiment will be described.
  • the plurality of samples may be different samples, or may be two-dimensional ranges of different positions on one sample such as one biological section, but here, as an example, the latter Consider the case.
  • FIG. 4 is a conceptual diagram of difference analysis based on a plurality of samples derived from one sample.
  • FIG. 3 is a schematic flowchart of a series of work flows from analysis to analysis in the imaging mass spectrometer of the present embodiment.
  • tissue B a plurality of two-dimensional ranges within the range occupied by a certain tissue A in one sample and a portion outside the structure A (here, “tissue B” for convenience) are used.
  • a plurality of two-dimensional ranges within the occupied range are used as samples.
  • a difference analysis was performed between the first sample group containing a plurality of samples a1, a2, ... Derived from tissue A and the second sample group containing a plurality of samples b1, b2, ... Derived from tissue B, and the difference was analyzed.
  • the main purpose of the analysis is to identify the mass-to-charge ratio values that characterize the differences, that is, the compounds.
  • the user Prior to performing the analysis on one sample, the user sets a two-dimensional range of the analysis target on the sample by performing a predetermined operation on the input unit 3. Also, set the mass spectrometry conditions. After that, when the user instructs to start the analysis, the imaging mass spectrometric unit 1 executes mass spectrometry in order for each measurement point set in the designated two-dimensional region, and mass spectrometric data corresponding to each measurement point. To get.
  • the acquired mass spectrum data is stored in the MS imaging data storage unit 21 in the data processing unit 2.
  • the mass spectrum data for one measurement point at this time is 1 of the ion intensity value of the mass-to-charge ratio interval determined by the resolution of the apparatus over a predetermined mass-to-charge ratio range (mass-to-charge ratio range set as MS analysis conditions). It is a dimensional data string.
  • imaging mass spectrometry is performed on all the samples (two-dimensional range on the sample) that are the targets of the difference analysis, and data is collected (step S1).
  • data obtained for different samples is stored in a separate data file for each sample.
  • the data matrix creation unit 22 executes the data matrix creation process based on the collected data (step S2).
  • the data matrix creation unit 22 creates a data matrix according to the data matrix creation conditions set by the user, but here, based on a preset list of mass-to-charge ratios, the data matrix is created from the mass spectrum at each measurement point. It is assumed that the intensity values corresponding to the mass-to-charge ratios in the list are acquired, and the value obtained by averaging the intensity values for each mass-to-charge ratio for the entire measurement points included in each sample is used as an element of the data matrix.
  • the data matrix creation unit 22 is listed in the mass-to-charge ratio list prepared in advance based on the mass spectrum data at each measurement point for one sample stored in the MS imaging data storage unit 21.
  • the signal intensity value within the predetermined mass-to-charge ratio allowable range is obtained, and the integrated value of the signal intensity value within the mass-to-charge ratio allowable range is calculated for each mass-to-charge ratio.
  • the signal intensity value (integrated value) for a specific mass-to-charge ratio is obtained for each measurement point, the average of the signal intensity values for each mass-to-charge ratio at all the measurement points included in one sample is calculated, and the sample is calculated.
  • the signal strength value corresponding to the specific mass-to-charge ratio corresponding to is obtained. The same processing is performed for each sample, and then all the signal strength data are arranged as shown in FIG. 5 to obtain a data matrix.
  • the principal component analysis execution unit 23 executes the principal component analysis based on the created data matrix (step S3).
  • the number of principal components can be determined in the process of the analysis, and the score value in each sample is calculated for each principal component.
  • the contribution ratio of each of the plurality of principal components is also calculated.
  • a loading value indicating the degree of contribution of each factor (parameter, in this case, mass-to-charge ratio value) to each principal component is calculated.
  • the analysis result display processing unit 24 displays the analysis result on the screen of the display unit 4 and presents it to the user (step S4). That is, in the analysis result display processing unit 24, the score plot list screen creation unit 25 creates score plots for all combinations of the two principal components based on the score values for each of the plurality of principal components, and is a representative of the score plots. Get an image.
  • the representative image a reduced image (thumbnail image) whose image size is smaller than that of the score plot displayed on the detailed result screen described later is used, but the representative image is not limited to this.
  • the score plot list screen 100 on which the thumbnail image of the score plot is arranged as shown in FIG. 6 is displayed on the screen of the display unit 4.
  • the score plot list screen 100 is provided with a score plot representative image display field 101, and thumbnail images 102 of all score plots are arranged side by side in the score plot representative image display field 101.
  • the range of the principal components is 1 to 4 (PC1 to PC4), and the total number of score plots for the combination of the two principal components is 6.
  • PC1 vs PC2 is a score plot with the first principal component (PC1) and the second principal component (PC2) as two axes. When the number of score plots is large, all images can be confirmed by operating the scroll bar at the right end of the score plot representative image display field 101.
  • the user can check all the score plots from a bird's-eye view on the score plot list screen 100. For example, the score in which the sample included in the first sample group and the sample included in the second sample group are separated best.
  • the plot can be grasped in a short time.
  • FIG. 8 is a diagram showing an example of a score plot list screen based on actual measurement data.
  • a sample included in the first sample group and a sample included in the second sample group sets a two-dimensional range
  • a different display color is specified for each sample group.
  • the plot corresponding to the sample included in each sample group is displayed in the indicated color. This allows the user to check at a glance the separability of samples contained in different sample groups on the score plot.
  • the notation indicating the principal component axis of each score plot for example, the contribution rate of the principal component is shown in parentheses after PC1. For example, the contribution rate of PC1 is 50.2%.
  • the user confirms the thumbnail image of the score plot, and for example, double-clicks an arbitrary position on the image with the pointing device (input unit 3) to select and instruct the score plot or the combination of the main components of interest.
  • the score plot list screen creation unit 25 receives this selection instruction, the detailed result screen creation unit 26 creates a detailed result screen 200 as shown in FIG. 7, which corresponds to the combination of the two indicated main components. Is displayed on the screen of the display unit 4 instead of the score plot list screen 100.
  • the detailed result screen can also be displayed by clicking the "detailed display" button 103 on the score plot list screen 100. In this case, the most basic combination of principal components (PC1 vs PC2) is automatically selected.
  • the detailed result screen 200 is provided with a result display column 201, and the result display column 201 includes a contribution ratio plot 202, a principal component designated area 203, a score plot 204, a loading plot 205, and two.
  • the loading vector 206 in one principal component is arranged.
  • a text box for designating two main components by numbers (“N” and “M” in FIG. 7) is arranged, and as described above, the detailed result screen is displayed from the score plot list screen 100.
  • the combination of the two principal components instructed to be selected is automatically entered in the text box. The user can then check the detailed results for any combination of principal components by changing the numbers in this text box as appropriate.
  • FIG. 9 is a diagram showing an example of a detailed result screen based on actual measurement data.
  • the contribution rate plot 202 is a graph showing the contribution rates of all the principal components calculated in the principal component analysis. For example, in this contribution rate plot 202, when the contribution rate of a specific main component is extremely high and the contribution rate of another main component is extremely low, only the specific main component needs to be considered.
  • the score plot 204 and the loading plot 205 are the score plot and the loading plot for the combination of the two principal components specified in the principal component designated area 203 at that time.
  • the first principal component and the first principal component are used. It is a score plot and a loading plot in combination with two principal components. As mentioned above, each plot in the score plot corresponds to a sample and each plot in the loading plot corresponds to a mass-to-charge ratio value.
  • the loading vector 206 is a graph showing the degree of contribution of each mass-to-charge ratio value to one principal component, and it can be said that the mass-to-charge ratio value showing a large loading value in the positive direction or the negative direction has a large contribution to the principal component. it can.
  • the user confirms the separation status of samples belonging to different sample groups on the score plot, and then contributes to the separation of the samples based on the loading plot and the ⁇ din vector, that is, the mass that characterizes the difference between the two sample groups.
  • the charge ratio value can be specified.
  • the score plot list screen 100 can be returned to, and if necessary, the score plot can be checked from a bird's-eye view.
  • the display format of the detailed result screen 200 can be changed as appropriate.
  • the score plot for all combinations of the two principal components can be checked from a bird's-eye view. After or comparing them with each other, it is possible to select a combination of principal components to be confirmed in detail and confirm the detailed result of the combination. As a result, the work of confirming the principal component analysis result can be efficiently performed, and the oversight, misunderstanding, judgment error, etc. of the result can be reduced, and the accuracy of the analysis can be improved.
  • the above embodiment is an imaging mass spectrometer, but recently, principal component analysis, which is a method of multivariate analysis, has come to be used for data analysis in various analyzers.
  • the present invention can be applied to various types of analyzers that perform principal component analysis based on the data collected by such analysis.
  • the present invention is useful for an analyzer that acquires wavelength spectra for each of a plurality of measurement points on a sample, such as a Raman spectroscopic imaging apparatus and an infrared spectroscopic imaging apparatus.
  • principal component analysis is also used for difference analysis of a plurality of samples in an analyzer other than imaging analysis such as a liquid chromatograph and a gas chromatograph, and the present invention is also useful for such an analyzer.
  • the data analysis device is a data analysis device for an analysis device that performs principal component analysis using data collected by a predetermined analysis of a sample. Based on the results of principal component analysis, a representative image that reflects the score plots for all combinations of two principal components within a predetermined or user-specified range of principal components is created, and the multiple score plots are used.
  • a list screen display processing unit that creates a list screen that displays the corresponding representative images in a list and displays it on the display unit
  • An image selection instruction unit that allows a user to select one representative image on the list screen displayed on the display unit, and an image selection instruction unit.
  • the detailed result screen on which the detailed results of the principal component analysis for the combination of the two principal components corresponding to the selected representative image are arranged is displayed instead of the list screen.
  • the analyzer is an analyzer that performs a predetermined analysis on a sample and performs principal component analysis using the data collected by the analysis. Based on the results of principal component analysis, a representative image that reflects the score plots for all combinations of two principal components within a predetermined or user-specified range of principal components is created, and the multiple score plots are used.
  • a list screen display processing unit that creates a list screen that displays the corresponding representative images in a list and displays it on the display unit, An image selection instruction unit that allows a user to select one representative image on the list screen displayed on the display unit, and an image selection instruction unit.
  • the detailed result screen on which the detailed results of the principal component analysis for the combination of the two principal components corresponding to the selected representative image are arranged is displayed instead of the list screen.
  • the user mainly uses the representative images of a plurality of score plots in the list screen displayed on the display unit by the list screen display processing unit. After confirming the entire component analysis result from a bird's-eye view, the score plot of interest can be selected, and detailed results such as the loading plot and loading vector corresponding to the score plot of interest can be confirmed in detail.
  • the score plot of interest can be selected, and detailed results such as the loading plot and loading vector corresponding to the score plot of interest can be confirmed in detail.
  • the user can quickly and effortlessly find a score plot that deserves attention, and the user can confirm the results of the principal component analysis. It can proceed efficiently.
  • work mistakes such as oversight of significant score plots and judgment mistakes can be reduced, and the accuracy of confirmation work can be improved.
  • the detailed results arranged on the detailed result screen can include a score plot and a loading plot for a combination of two principal components.
  • the detailed result arranged on the detailed result screen may include a score plot and a loading plot for the combination of the two principal components.
  • the user looks at the score plot displayed as the detailed result to confirm whether or not the selection is appropriate, and then makes a difference. It is possible to confirm the loading plot, which is important for finding the factors in analysis and the like.
  • the detailed results arranged on the detailed result screen are further loaded values for each factor corresponding to each plot on the loading plot for each of the two principal components.
  • the detailed result arranged on the detailed result screen further sets the loading value for each factor corresponding to each plot on the loading plot in each of the two principal components. It can include the indicated loading vector.
  • the user confirms the loading vector and causes factors that mainly contribute to each principal component, such as mass-to-charge ratio value and wavelength value.
  • factors that mainly contribute to each principal component such as mass-to-charge ratio value and wavelength value.
  • the compound and the like can be easily grasped.
  • the detailed results arranged on the detailed result screen may further include a graph showing the contribution rate for each principal component.
  • the detailed results arranged on the detailed result screen may further include a graph showing the contribution rate for each principal component.
  • the user can easily select the principal component that contributes to the difference in the sample or the like by checking the graph showing the contribution rate for each principal component. Can be grasped.
  • the representative image can be a reduced image smaller than the image size of the score plot displayed on the detailed result screen.
  • the representative image can be a reduced image smaller than the image size of the score plot displayed on the detailed result screen.
  • the image size of the representative image is small, a larger number of score plots should be displayed in a range that can be observed at a glance on the display screen. This improves the overall bird's-eye view of the score plot for different principal components.
  • the analysis device can be assumed to be an imaging mass spectrometer.
  • the predetermined analysis can be assumed to be imaging mass spectrometry.
  • the user can grasp the mass-to-charge ratio value that characterizes the difference of, for example, a sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明の一態様のデータ解析装置は、試料に対する所定の分析により収集されたデータを用いて主成分分析を実施する分析装置用のデータ解析装置において、主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部(4)に表示する一覧画面表示処理部(25)と、表示部に表示されている一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部(3,25)と、画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を一覧画面に代えて表示する詳細結果画面表示処理部(26)と、を備える。

Description

データ解析装置及び分析装置
 本発明はデータ解析装置及び分析装置に関し、さらに詳しくは、試料に対する分析を行うことで収集されたデータに基づく主成分分析によって、該試料に関する情報を取得するデータ解析装置及び分析装置に関する。
 質量分析イメージング法は、生体組織切片などの試料上の所定の領域内の複数の測定点に対しそれぞれ質量分析を行った結果に基づき、特定の質量を有する物質の分布を調べる手法であり、創薬やバイオマーカ探索、各種疾病・疾患の原因究明などへの応用が進められている。質量分析イメージング法を実施するための質量分析装置は、一般にイメージング質量分析装置と呼ばれている。
 イメージング質量分析装置では一般に、図2に示すように、試料80上に設定された2次元範囲81に含まれる一つの測定点82に対し、細径のレーザ光などのイオン化プローブを照射し、その測定点に存在する試料成分をイオン化して、それにより生成されたイオン又はそのイオンから解離等により2次的に生成されたイオンを質量分析する。そして、イオン化プローブの照射位置を試料上で2次元的に走査しながら同じ測定を繰り返すことにより、多数の測定点にそれぞれ対応する、所定の質量電荷比m/z範囲に亘るマススペクトルデータを順次収集する。
 このようにしてイメージング質量分析装置において取得されるデータは、一つの測定点における質量分析による質量電荷比m/z-イオン強度の2次元データに、さらに測定点の位置の情報を加えた3次元データである。換言すれば、この3次元データは、イオン強度の空間的な分布を示す質量分析イメージ画像を、質量分析が実施された質量電荷比範囲内の質量電荷比軸方向のデータ点の数だけ形成するデータであり、非常に膨大な量である。イメージング質量分析装置におけるデータ解析では、こうした膨大な量のデータの中から着目すべき空間分布や有意であるイオン強度の増減或いは差異などを有する情報を抽出するため多変量解析が広く利用されている。
 多変量解析には様々な手法があるが、イメージング質量分析装置では、特徴的なイオン強度分布を示す質量電荷比つまりは化合物を探索することなどを目的として、主成分分析(PCA:Principal Component Analysis)が広く利用されている(非特許文献1など参照)。また、質量分析イメージングの分野だけでなく、赤外分光イメージングやラマン分光イメージングなど、他のイメージング分析においても主成分分析はしばしば利用されている。さらには、イメージング分析以外の液体クロマトグラフ質量分析装置などにおいて収集されたクロマトグラムデータに基づく差異解析等のためにも、主成分分析はしばしば利用されている(非特許文献2など参照)。
特開2010-261882号公報
「ソフトウェア 豊富な統計解析機能と簡便な操作性 -Imaging MS Solution-」、[online]、株式会社島津製作所、[2019年7月8日検索]、インターネット<URL: https://www.an.shimadzu.co.jp/bio/imscope/soft.htm> 「多変量解析(主成分分析)を活用したクロマトデータ解析の基礎」、[online]、株式会社島津製作所、[2019年7月8日検索]、インターネット<URL: https://solutions.shimadzu.co.jp/solnavi/n/pdf/lc/techrep_lc_lcms/lc52.pdf>
 主成分分析では、通常、数個又はそれ以上の数の主成分に対してそれぞれその主成分軸に対する寄与の程度を示すスコア値が計算され、これを視覚的に分かり易く示すために、互いに異なる二つの主成分を互いに直交する軸とした2次元空間にそれら二つの主成分に対するスコアをプロットしたスコアプロットが作成される。こうしたスコアプロットは、異なる主成分に対するスコアの関係を視覚的に把握するのに都合が良く、例えばスコアプロット上で複数のサンプルをグループ分けすることができる。
 しかしながら、従来のイメージング質量分析装置では、ユーザが表示部の画面上で主成分分析の結果を確認する際に、ユーザが主成分の組み合わせ、例えば第1主成分と第2主成分、第1主成分と第3主成分、…、の設定を変更しながら順番にスコアプロットを確認し、例えば複数のサンプルが適宜の数のグループに分かれるか否か等を判断する作業を行う必要がある。こうした作業は非常に手間が掛かり効率が悪い。また、主成分の組み合わせが相違するスコアプロット同士の比較がしにくいので、解析結果の見落としや判断ミスを生じ易い。
 本発明はこうした課題に鑑みて成されたものであり、分析により収集したデータを用いて主成分分析を実行し、その結果をユーザが確認しながら解析を遂行するデータ解析装置及び分析装置において、ユーザによる確認作業の効率化、及び確認作業の正確性の改善をその目的としている。
 上記課題を解決するためになされた本発明の一態様に係るデータ解析装置は、試料に対する所定の分析により収集されたデータを用いて主成分分析を実施する分析装置用のデータ解析装置において、
 主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
 前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
 前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
 を備えるものである。
 また上記課題を解決するためになされた本発明の一態様に係る分析装置は、試料に対して所定の分析を実行し、該分析により収集されたデータを用いて主成分分析を実施する分析装置において、
 主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
 前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
 前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
 を備えるものである。
 上記詳細結果画面には例えば、二つの主成分の組み合わせについてのスコアプロット、及び、ローディングプロットを含むものとすることができ、さらに、その二つの主成分それぞれにおける、ローディングプロット上の各プロットに対応する因子毎のローディング値を示すグラフ(ローディングベクトル)を含むものとすることができ、さらにまた主成分毎の寄与率を示すグラフなどを含むものとすることができる。
 また本発明の上記態様に係るデータ解析装置における分析装置、及び本発明の上記態様に係る分析装置は、収集したデータを用いて主成分分析を行う分析装置であれば、その分析の手法等に制約はないが、典型的には、イメージング質量分析装置、ラマン分光イメージング装置、赤外分光イメージング装置など、或るパラメータ(質量電荷比、波長など)におけるパラメータ値毎に強度分布画像が得られるような分析装置に特に有効である。
 本発明の上記態様に係るデータ解析装置及び分析装置によれば、ユーザは一覧画面表示処理部により表示部に表示される一覧画面中の、複数のスコアプロットの代表画像で主成分分析結果全体を俯瞰的に確認したうえで、着目するスコアプロットを選択し、その着目するスコアプロットに対応するローディングプロットやローディングベクトルなどの詳細結果を子細に確認することができる。これにより、主成分数が多いためにスコアプロットの数が多い場合であっても、ユーザは着目に値するスコアプロットを迅速に且つ手間無く見つけることができ、ユーザによる主成分分析結果の確認作業を効率的に進めることができる。また、有意なスコアプロットの見落とし等の作業ミスや判断ミスを軽減することができ、確認作業の正確性を高めることができる。
本発明の一実施形態であるイメージング質量分析装置の要部の構成図。 本実施形態のイメージング質量分析装置における質量分析動作の説明図。 本実施形態のイメージング質量分析装置における分析作業の手順の概略フローチャート。 本実施形態のイメージング質量分析装置における主成分分析を用いた差異解析の一例の概念図。 本実施形態のイメージング質量分析装置において作成されるデータ行列の一例を示す図。 本実施形態のイメージング質量分析装置で表示されるスコアプロット一覧画面の概略図。 本実施形態のイメージング質量分析装置で表示されるPCA詳細結果画面の概略図。 実測データに基づくスコアプロット一覧画面の一例を示す図。 実測データに基づくPCA詳細結果画面の一例を示す図。
 以下、本発明に係るデータ解析装置を用いた分析装置の一実施形態であるイメージング質量分析装置について、添付図面を参照して説明する。
 図1は、本実施形態のイメージング質量分析装置の要部の構成図である。図2は、本実施形態のイメージング質量分析装置における質量分析動作の説明図である。
 本実施形態のイメージング質量分析装置は、試料上の2次元領域内の多数の測定点に対してそれぞれ質量分析を実行して測定点毎にマススペクトルデータを取得することが可能であるイメージング質量分析部1と、イメージング質量分析部1により得られたデータを保存して処理するデータ処理部2と、ユーザインターフェイスである入力部3及び表示部4と、を備える。
 イメージング質量分析部1は例えば、マトリクス支援レーザ脱離イオン化イオントラップ飛行時間型質量分析装置(MALDI-IT-TOFMS)を含む。MALDI-IT-TOFMSの代わりに、MALDIイオン源を備えたトリプル四重極型質量分析装置、四重極-飛行時間型質量分析装置などでもよい。また、イオン源はMALDIイオン源に限らず、レーザ脱離イオン化(LDI)イオン源、表面支援レーザ脱離イオン化(SALDI)イオン源、さらには、レーザ光ではなく、イオンビーム、電子ビームなどの粒子線を用いてイオン化を行うものでもよい。
 イメージング質量分析部1では、図2に示すように、試料台(図示せず)に載置された試料80上の2次元範囲81内の複数の測定点82に対する質量分析(通常の質量分析又はMS/MS分析)を順次実行する。そして、各測定点に対し、それぞれ図2に示すようなマススペクトルを構成するデータを取得することができる。
 データ処理部2は、機能ブロックとして、MSイメージングデータ格納部21、データ行列作成部22、主成分分析実行部23、分析結果表示処理部24、を含み、分析結果表示処理部24はさらに下位の機能ブロックとして、スコアプロット一覧画面作成部25と詳細結果画面作成部26を含む。
 通常、データ処理部2はパーソナルコンピュータ等の汎用コンピュータにより構成され、該コンピュータにインストールされた専用の制御・処理ソフトウェアを実行することで、データ処理部2における各機能ブロックを具現化することができる。
 本実施形態のイメージング質量分析装置では、複数のサンプルに対しイメージング質量分析を実行することで得られた大量のデータに基づいて、主成分分析を利用した差異解析を実行することができる。次に、本実施形態のイメージング質量分析装置における、主成分分析を利用した差異解析の一例を説明する。
 上記複数のサンプルとは、それぞれ異なる試料である場合もあるし、例えば一枚の生体切片などの一つの試料上の互いに異なる位置の2次元範囲である場合もあるが、ここでは一例として後者の場合を考える。図4は、一つの試料に由来する複数のサンプルに基づく差異解析の概念図である。図3は、本実施形態のイメージング質量分析装置における分析から解析までの一連の作業の流れの概略フローチャートである。
 図4に示すように、ここでは、一つの試料における或る組織Aが占める範囲内の複数の2次元範囲、及び、上記組織A外である部分(ここでは便宜上「組織B」とする)が占める範囲内の複数の2次元範囲を、それぞれサンプルとする。組織A由来の複数のサンプルa1、a2、…が含まれる第1サンプル群と、組織B由来の複数のサンプルb1、b2、…が含まれる第2サンプル群との間の差異解析を行い、その差異を特徴付ける質量電荷比値つまりは化合物を特定するのが、解析の主目的である。
 まず各サンプルに対するイメージング質量分析を実行する。一つのサンプルに対する分析を実施するのに先立って、ユーザは入力部3で所定の操作を行うことにより、試料上での分析対象の2次元範囲を設定する。また、質量分析条件を設定する。そのあとユーザが分析開始を指示すると、イメージング質量分析部1は、指定された2次元領域内に設定されている各測定点について順番に質量分析を実行し、各測定点に対応するマススペクトルデータを取得する。取得されたマススペクトルデータは、データ処理部2においてMSイメージングデータ格納部21に格納される。このときの一つの測定点に対するマススペクトルデータは、所定の質量電荷比範囲(MS分析条件として設定された質量電荷比範囲)に亘り、装置の分解能で決まる質量電荷比間隔のイオン強度値の1次元的なデータ列である。
 同様にして、差異解析の対象である全てのサンプル(試料上の2次元範囲)に対しイメージング質量分析を実行し、データを収集する(ステップS1)。通常、異なるサンプルについて得られたデータは、サンプル毎にそれぞれ別のデータファイルに格納される。
 全てのサンプルに対する分析が終了すると、データ行列作成部22は、収集されたデータに基づくデータ行列作成処理を実行する(ステップS2)。データ行列作成部22は、ユーザにより設定されたデータ行列作成条件に従ってデータ行列を作成するが、ここでは、事前に設定されている質量電荷比のリストに基づいて、各測定点におけるマススペクトルからそのリスト中の質量電荷比に対応する強度値をそれぞれ取得し、各サンプルに含まれる測定点全体で質量電荷比毎にそれら強度値を平均した値をデータ行列の要素として用いるものとする。
 即ち、データ行列作成部22は、MSイメージングデータ格納部21に格納されている一つのサンプルについての各測定点におけるマススペクトルデータに基づき、予め用意されている質量電荷比リストに挙げられている複数の特定の質量電荷比それぞれについて、所定の質量電荷比許容幅に入る信号強度値を求め、その質量電荷比毎に質量電荷比許容幅内の信号強度値の積算値を計算する。測定点毎に特定の質量電荷比に対する信号強度値(積算値)を求めたならば、一つのサンプルに含まれる全ての測定点における信号強度値の質量電荷比毎の平均を計算し、そのサンプルに対応する特定の質量電荷比に対応する信号強度値を求める。各サンプルについて同様の処理を行い、そのあと、全ての信号強度データを図5に示すように整理することでデータ行列を得る。
 次に主成分分析実行部23は、作成されたデータ行列に基づいて主成分分析を実行する(ステップS3)。周知のように、主成分分析ではその分析の過程で主成分数を決めることができ、主成分毎に各サンプルにおけるスコア値が算出される。また、複数の主成分それぞれの寄与率も算出される。また、各主成分に対する個々の因子(パラメータ、ここでは質量電荷比値)の寄与度合いを示すローディング値が算出される。
 主成分分析の演算処理が終了すると、分析結果表示処理部24はその分析結果を表示部4の画面上に表示しユーザに提示する(ステップS4)。
 即ち、分析結果表示処理部24においてスコアプロット一覧画面作成部25は、複数の主成分それぞれに対するスコア値に基づいて、全ての二つの主成分の組み合わせに対するスコアプロットを作成し、そのスコアプロットの代表画像を得る。ここでは、代表画像として、後述する詳細結果画面上に表示するスコアプロットに比べて画像サイズが小さい縮小画像(サムネイル画像)を用いるが、代表画像はこれに限らない。そして、図6に示すような、スコアプロットのサムネイル画像が配置されたスコアプロット一覧画面100を表示部4の画面上に表示する。
 図6に示すように、スコアプロット一覧画面100には、スコアプロット代表画像表示欄101が設けられ、そのスコアプロット代表画像表示欄101中に全てのスコアプロットのサムネイル画像102が並べて配置される。図6の例では、主成分の範囲は1~4(PC1~PC4)であり、二つの主成分の組み合わせに対するスコアプロットの総数は6である。「PC1 vs PC2」は第1主成分(PC1)と第2主成分(PC2)を二軸とするスコアプロットである。スコアプロットの数が多い場合には、スコアプロット代表画像表示欄101の右端のスクロールバーを操作することで全画像を確認することができる。
 なお、図6の例では、スコアプロット代表画像表示欄101中に横に3個のサムネイル画像が並んでいるが、この数は表示設定により適宜変更できるようにしてもよい。また、表示形式自体も適宜変更できるようにしてもよい。
 ユーザはこのスコアプロット一覧画面100で全てのスコアプロットを俯瞰的に確認することができ、例えば第1サンプル群に含まれるサンプルと第2サンプル群に含まれるサンプルとの分離が最も良好であるスコアプロットを短時間で把握することができる。
 図8は、実測データに基づくスコアプロット一覧画面の一例を示す図である。この図では分かりにくいが、ユーザが、第1サンプル群に含まれるサンプルと第2サンプル群に含まれるサンプルとを指示する(2次元範囲を設定する)際にサンプル群毎に異なる表示色を指示しておくと、スコアプロット上で各サンプル群に含まれるサンプルに対応するプロットは指示された色で表示される。これにより、ユーザは、異なるサンプル群に含まれるサンプル同士のスコアプロット上での分離性を一目で確認することができる。なお、各スコアプロットの主成分軸を示す表記、例えばPC1のあとの括弧内には、その主成分の寄与率が示される。例えばPC1の寄与率は50.2%である。
 ユーザはスコアプロットのサムネイル画像を確認して、例えば該画像上の任意の位置をポインティングデバイス(入力部3)でダブルクリック操作することで、着目するスコアプロット又は主成分の組み合わせを選択指示する。スコアプロット一覧画面作成部25がこの選択指示を受け付けると、詳細結果画面作成部26は指示された二つの主成分の組み合わせに対応する、図7に示すような詳細結果画面200を作成し、これをスコアプロット一覧画面100に代えて表示部4の画面上に表示する。なお、スコアプロット一覧画面100上の「詳細表示」ボタン103をクリック操作することによっても、詳細結果画面を表示させることができる。この場合には、最も基本的な主成分の組み合わせ(PC1 vs PC2)が自動的に選択される。
 図7に示すように、詳細結果画面200には結果表示欄201が設けられ、結果表示欄201には、寄与率プロット202、主成分指定領域203、スコアプロット204、ローディングプロット205、及び、二つの主成分におけるローディングベクトル206が配置されている。主成分指定領域203には、二つの主成分を数字(図7では「N」及び「M」)で指定するためのテキストボックスが配置され、上述したようにスコアプロット一覧画面100から詳細結果画面200に遷移した場合には、選択指示された二つの主成分の組み合わせがテキストボックスに自動的に入力される。そのあと、ユーザはこのテキストボックス中の数字を適宜変更することで、任意の主成分の組み合わせについての詳細結果を確認することができる。
 図9は、実測データに基づく詳細結果画面の一例を示す図である。
 寄与率プロット202は、主成分分析において算出された全ての主成分の寄与率を示すグラフである。例えばこの寄与率プロット202で、特定の主成分の寄与率が極めて高く、他の主成分の寄与率が極めて低い場合には、その特定の主成分のみを考慮すればよい。スコアプロット204及びローディングプロット205は、そのときに主成分指定領域203において指定されている二つの主成分の組み合わせについてのスコアプロット及びローディングプロットであり、図9の例では、第1主成分と第2主成分との組み合わせにおけるスコアプロット及びローディングプロットである。上述したように、スコアプロット中の各プロットはサンプルに対応し、ローディングプロット中の各プロットは質量電荷比値に対応している。
 ローディングベクトル206は一つの主成分に対する各質量電荷比値の寄与の度合いを示すグラフであり、正方向又は負方向に大きなローディング値を示す質量電荷比値はその主成分に対する寄与が大きいということができる。ユーザは、スコアプロットで異なるサンプル群に属するサンプルの分離状況を確認したうえで、ローディングプロット及びρディンベクトルに基づいてサンプルの分離に寄与している、即ち、二つのサンプル群の差異を特徴付ける質量電荷比値を特定することができる。
 なお、詳細結果画面200上の「一覧へ戻る」ボタン207をクリック操作することで、スコアプロット一覧画面100に戻ることができ、必要に応じて、スコアプロットを俯瞰的に確認することができる。
 もちろん、スコアプロット一覧画面100と同様に、詳細結果画面200の表示形式も適宜に変更することができる。
 以上のように、本実施形態のイメージング質量分析装置では、主成分分析により算出された主成分の数が多い場合であっても、全ての二つの主成分の組み合わせに対するスコアプロットの俯瞰的に確認したり或いはそれらの互いに比較したりしたうえで、詳細に確認すべき主成分の組み合わせを選択し、その組み合わせにおける詳細結果を確認することができる。それにより、主成分分析結果の確認の作業を効率良く行うことができるとともに、結果の見逃しや見誤り、判断ミス等が減少し、解析の正確性を向上させることができる。
 上記実施形態はイメージング質量分析装置であるが、最近では、様々な分析装置においてデータの解析に多変量解析の一手法である主成分分析が利用されるようになってきている。本発明はこのような、分析により収集されたデータに基づいて主成分分析を実行する様々な種類の分析装置に適用することができる。典型的には、ラマン分光イメージング装置、赤外分光イメージング装置など、試料上の複数の測定点それぞれについて波長スペクトルを取得する分析装置に本発明は有用である。また、液体クロマトグラフやガスクロマトグラフ等のイメージング分析以外の分析装置でも、複数のサンプルの差異分析などに主成分分析が利用されており、こうした分析装置にも本発明は有用である。
 また、上記実施形態は本発明の一例であり、本発明の趣旨の範囲で適宜に変更、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。
 [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明の一態様によるデータ解析装置は、試料に対する所定の分析により収集されたデータを用いて主成分分析を実施する分析装置用のデータ解析装置において、
 主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
 前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
 前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
 を備えるものである。
 (第7項)本発明の一態様による分析装置は、試料に対して所定の分析を実行し、該分析により収集されたデータを用いて主成分分析を実施する分析装置において、
 主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
 前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
 前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
 を備えるものである。
 第1項に記載のデータ解析装置及び第7項に記載の分析装置によれば、ユーザは一覧画面表示処理部により表示部に表示される一覧画面中の、複数のスコアプロットの代表画像で主成分分析結果全体を俯瞰的に確認したうえで、着目するスコアプロットを選択し、その着目するスコアプロットに対応するローディングプロットやローディングベクトルなどの詳細結果を子細に確認することができる。これにより、主成分数が多いためにスコアプロットの数が多い場合であっても、ユーザは着目に値するスコアプロットを迅速に且つ手間無く見つけることができ、ユーザによる主成分分析結果の確認作業を効率的に進めることができる。また、有意なスコアプロットの見落とし等の作業ミスや判断ミスを軽減することができ、確認作業の正確性を高めることができる。
 (第2項)第1項に記載のデータ解析装置において、前記詳細結果画面に配置される詳細結果は、二つの主成分の組み合わせについてのスコアプロット及びローディングプロットを含むものとすることができる。
 (第8項)また第7項に記載の分析装置において、前記詳細結果画面に配置される詳細結果は、二つの主成分の組み合わせについてのスコアプロット及びローディングプロットを含むものとすることができる。
 第2項に記載のデータ解析装置及び第7項に記載の分析装置によれば、ユーザは詳細結果として表示されるスコアプロットを見てその選択が適切であったか否かを確認したうえで、差異分析等において要因を見つけるために重要なローディングプロットを確認することができる。
 (第3項)第2項に記載のデータ解析装置において、前記詳細結果画面に配置される詳細結果はさらに、二つの主成分それぞれにおける、ローディングプロット上の各プロットに対応する因子毎のローディング値を示すローディングベクトルを含むものとすることができる。
 (第9項)第8項に記載の分析装置において、前記詳細結果画面に配置される詳細結果はさらに、二つの主成分それぞれにおける、ローディングプロット上の各プロットに対応する因子毎のローディング値を示すローディングベクトルを含むものとすることができる。
 第3項に記載のデータ解析装置及び第9項に記載の分析装置によれば、ユーザはローディングベクトルを確認することで、各主成分に主として寄与する因子、例えば質量電荷比値や波長値、或いは化合物などを容易に把握することができる。
 (第4項)第3項に記載のデータ解析装置において、前記詳細結果画面に配置される詳細結果はさらに、主成分毎の寄与率を示すグラフを含むものとすることができる。
 (第10項)第9項に記載の分析装置において、前記詳細結果画面に配置される詳細結果はさらに、主成分毎の寄与率を示すグラフを含むものとすることができる。
 第4項に記載のデータ解析装置及び第10項に記載の分析装置によれば、ユーザは主成分毎の寄与率を示すグラフを確認することで、サンプル等の差異に寄与する主成分を容易に把握することができる。
 (第5項)第2項に記載のデータ解析装置において、前記代表画像は、前記詳細結果画面に表示されるスコアプロットの画像サイズよりも小さい縮小画像であるものとすることができる。
 (第11項)第8項に記載の分析装置において、前記代表画像は、前記詳細結果画面に表示されるスコアプロットの画像サイズよりも小さい縮小画像であるものとすることができる。
 第5項に記載のデータ解析装置及び第11項に記載の分析装置によれば、代表画像の画像サイズが小さいので表示画面上により多くの数のスコアプロットを一目で観察できる範囲に表示することができ、異なる主成分に対するスコアプロット全体の俯瞰性が向上する。
 (第6項)第1項に記載のデータ解析装置において、前記分析装置はイメージング質量分析装置であるものとすることができる。
 (第12項)第7項に記載の分析装置において、前記所定の分析はイメージング質量分析であるものとすることができる。
 第6項に記載のデータ解析装置及び第12項に記載の分析装置によれば、ユーザは例えばサンプル等の差異を特徴付ける質量電荷比値を把握することができる。
1…イメージング質量分析部
2…データ処理部
 21…MSイメージングデータ格納部
 22…データ行列作成部
 23…主成分分析実行部
 24…分析結果表示処理部
 25…スコアプロット一覧画面作成部
 26…詳細結果画面作成部
3…入力部
4…表示部
100…スコアプロット一覧画面
 101…スコアプロット代表画像表示欄
 102…スコアプロットのサムネイル画像
 103…「詳細表示」ボタン
200…詳細結果画面
 201…結果表示欄
 202…寄与率プロット
 203…主成分指定領域
 204…スコアプロット
 205…ローディングプロット
 206…ローディングベクトル
 207…「一覧へ戻る」ボタン

Claims (12)

  1.  試料に対する所定の分析により収集されたデータを用いて主成分分析を実施する分析装置用のデータ解析装置において、
     主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
     前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
     前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
     を備えるデータ解析装置。
  2.  前記詳細結果画面に配置される詳細結果は、二つの主成分の組み合わせについてのスコアプロット及びローディングプロットを含む、請求項1に記載のデータ解析装置。
  3.  前記詳細結果画面に配置される詳細結果はさらに、二つの主成分それぞれにおける、ローディングプロット上の各プロットに対応する因子毎のローディング値を示すローディングベクトルを含む、請求項2に記載のデータ解析装置。
  4.  前記詳細結果画面に配置される詳細結果はさらに、主成分毎の寄与率を示すグラフを含む、請求項3に記載のデータ解析装置。
  5.  前記代表画像は、前記詳細結果画面に表示されるスコアプロットの画像サイズよりも小さい縮小画像である、請求項2に記載のデータ解析装置。
  6.  前記分析装置はイメージング質量分析装置である、請求項1に記載のデータ解析装置。
  7.  試料に対して所定の分析を実行し、該分析により収集されたデータを用いて主成分分析を実施する分析装置において、
     主成分分析の結果に基づいて、所定の又はユーザにより指定された主成分の範囲で、全ての二つの主成分の組み合わせについてのスコアプロットを反映した代表画像を作成し、その複数のスコアプロットに対応する代表画像を一覧で表示する一覧画面を作成して表示部に表示する一覧画面表示処理部と、
     前記表示部に表示されている前記一覧画面上で、ユーザに一つの代表画像を選択させる画像選択指示部と、
     前記画像選択指示部による選択を受けて、その選択された代表画像に対応する二つの主成分の組み合わせについての主成分分析の詳細結果が配置された詳細結果画面を前記一覧画面に代えて表示する詳細結果画面表示処理部と、
     を備える分析装置。
  8.  前記詳細結果画面に配置される詳細結果は、二つの主成分の組み合わせについてのスコアプロット及びローディングプロットを含む、請求項7に記載の分析装置。
  9.  前記詳細結果画面に配置される詳細結果はさらに、二つの主成分それぞれにおける、ローディングプロット上の各プロットに対応する因子毎のローディング値を示すローディングベクトルを含む、請求項8に記載の分析装置。
  10.  前記詳細結果画面に配置される詳細結果はさらに、主成分毎の寄与率を示すグラフを含む、請求項9に記載の分析装置。
  11.  前記代表画像は、前記詳細結果画面に表示されるスコアプロットの画像サイズよりも小さい縮小画像である、請求項8に記載の分析装置。
  12.  前記所定の分析はイメージング質量分析である、請求項7に記載の分析装置。
PCT/JP2019/034544 2019-09-03 2019-09-03 データ解析装置及び分析装置 WO2021044509A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034544 WO2021044509A1 (ja) 2019-09-03 2019-09-03 データ解析装置及び分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034544 WO2021044509A1 (ja) 2019-09-03 2019-09-03 データ解析装置及び分析装置

Publications (1)

Publication Number Publication Date
WO2021044509A1 true WO2021044509A1 (ja) 2021-03-11

Family

ID=74852332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034544 WO2021044509A1 (ja) 2019-09-03 2019-09-03 データ解析装置及び分析装置

Country Status (1)

Country Link
WO (1) WO2021044509A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013821A1 (en) * 2004-05-20 2008-01-17 Macgregor John F Method For Controlling The Appearance Of Products And Process Performance By Image Analysis
JP2009025268A (ja) * 2007-07-24 2009-02-05 Shimadzu Corp 質量分析装置
JP2013138121A (ja) * 2011-12-28 2013-07-11 Hitachi High-Technologies Corp 半導体製造装置
JP2017032470A (ja) * 2015-08-05 2017-02-09 株式会社島津製作所 多変量解析結果表示装置
US20170045495A1 (en) * 2013-11-28 2017-02-16 Commonwealth Scientific And Industrial Research Organisation Methods of detecting plasmodium infection
WO2019150575A1 (ja) * 2018-02-05 2019-08-08 株式会社島津製作所 イメージング質量分析データ解析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013821A1 (en) * 2004-05-20 2008-01-17 Macgregor John F Method For Controlling The Appearance Of Products And Process Performance By Image Analysis
JP2009025268A (ja) * 2007-07-24 2009-02-05 Shimadzu Corp 質量分析装置
JP2013138121A (ja) * 2011-12-28 2013-07-11 Hitachi High-Technologies Corp 半導体製造装置
US20170045495A1 (en) * 2013-11-28 2017-02-16 Commonwealth Scientific And Industrial Research Organisation Methods of detecting plasmodium infection
JP2017032470A (ja) * 2015-08-05 2017-02-09 株式会社島津製作所 多変量解析結果表示装置
WO2019150575A1 (ja) * 2018-02-05 2019-08-08 株式会社島津製作所 イメージング質量分析データ解析装置

Similar Documents

Publication Publication Date Title
JP5293809B2 (ja) 質量分析データ処理方法及び装置
JP5811023B2 (ja) クロマトグラフ質量分析用データ処理装置
JP4983451B2 (ja) クロマトグラフ質量分析データ処理装置
JP5821767B2 (ja) クロマトグラフタンデム四重極型質量分析装置
JP7063342B2 (ja) 質量分析装置及び質量分析装置における質量較正方法
JP6597909B2 (ja) 質量分析データ処理装置
JP6065983B2 (ja) クロマトグラフ質量分析用データ処理装置
US10818485B2 (en) Multidimensional mass spectrometry data processing device
WO2018037569A1 (ja) イメージング質量分析データ処理装置及び方法
WO2018207228A1 (ja) クロマトグラフ質量分析データ処理装置及びクロマトグラフ質量分析データ処理用プログラム
WO2012004855A1 (ja) 分析データ処理方法及び装置
WO2013104004A1 (en) Comprehensive interference treatment for icp-ms analysis
WO2018008149A1 (ja) クロマトグラフ質量分析用データ処理装置
JPWO2020194582A1 (ja) クロマトグラフ質量分析装置
JP4984617B2 (ja) 質量分析データ解析方法
JP6439878B2 (ja) 分析データ解析装置及び分析データ解析用プログラム
US10147590B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
WO2021044509A1 (ja) データ解析装置及び分析装置
JP5860833B2 (ja) 質量分析データ処理方法及び装置
JP2018040655A (ja) 質量分析用データ処理装置
WO2021049011A1 (ja) 分析装置
JP2019148455A5 (ja)
US10453227B2 (en) Mass spectrometry data processing apparatus
WO2017158770A1 (ja) 質量分析装置
Alton et al. Scaled Kendrick Mass Defect Analysis for Improved Visualization of Atmospheric Mass Spectral Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP