WO2021018315A1 - 一种光学一致透明导电薄膜及其制备方法 - Google Patents

一种光学一致透明导电薄膜及其制备方法 Download PDF

Info

Publication number
WO2021018315A1
WO2021018315A1 PCT/CN2020/112487 CN2020112487W WO2021018315A1 WO 2021018315 A1 WO2021018315 A1 WO 2021018315A1 CN 2020112487 W CN2020112487 W CN 2020112487W WO 2021018315 A1 WO2021018315 A1 WO 2021018315A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
metal
nanoparticles
metal nanowire
Prior art date
Application number
PCT/CN2020/112487
Other languages
English (en)
French (fr)
Inventor
刘腾蛟
苏燕平
李鑫
胡源
Original Assignee
北京华纳高科科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华纳高科科技有限公司 filed Critical 北京华纳高科科技有限公司
Priority to US17/631,854 priority Critical patent/US12002602B2/en
Priority to JP2022506038A priority patent/JP7425180B2/ja
Publication of WO2021018315A1 publication Critical patent/WO2021018315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the invention relates to the technical field of transparent conductive films, in particular to an optically consistent transparent conductive film. It can be applied to the electronics industry, such as rigid or flexible touch screens, rigid or flexible displays, mobile phone antenna circuits, infrared optical imaging components, photoelectric sensors, electromagnetic shielding, smart windows, smart writing boards, solar cells, etc.
  • Transparent conductive film refers to a film that has both conductivity and high light transmittance in the visible light range. It is used in rigid or flexible touch screens, rigid or flexible displays, mobile phone antenna circuits, infrared optical imaging components, photoelectric sensors, and electromagnetic shielding. , Smart windows, smart writing boards, solar cells, etc. have broad application prospects.
  • ITO Indium tin oxide
  • the ITO film is prepared by magnetron sputtering process, which has good chemical and thermal stability, but it has the disadvantages of complicated processing, high cost, high square resistance, not easy to bend and deform, and fragile.
  • Metal nanowire transparent conductive film due to its excellent photoelectric properties, high flexibility, high strength, low price, simple preparation process, etc., has become a rare alternative material for ITO. Among them, nano silver wire transparent conductive film is particularly prominent .
  • the transparent conductive film of metal nanowires used in the touch field still has certain problems, such as obvious post-processing etch marks, poor light stability, easy corrosion of metal materials, short life span, and metal ion migration problems. These are all industries. Problems that need to be solved urgently within the country. Especially with the advent of foldable touch screens in 2019, the etch marks, lifespan, and bendability of flexible transparent conductive films have become the primary constraints for the large-scale promotion of foldable mobile phones.
  • the present invention provides an optically consistent and transparent conductive film, which aims to solve the problems of obvious etching marks, poor light stability, easy corrosion of metal materials and metal ion migration in the post-processing of metal nanowire conductive films to meet the needs of various back-end applications .
  • the method of the invention is simple and easy to implement, and the obtained film has excellent photoelectric properties and excellent light stability.
  • the present invention provides an optically consistent transparent conductive film, which includes at least the following parts or any combination thereof: a substrate, an optically consistent conductive layer, and a protective layer;
  • the substrate includes a rigid or/and flexible substrate
  • the optically consistent conductive layer includes at least a conductive area, the conductive area includes a conductive area composed of metal nanowires A and nanoparticles B, and the metal nanowires A form a mutually superimposed or cross-linked network in the conductive area At the same time, nanoparticles B are uniformly distributed in the conductive area, and the impact of nanoparticles B on the conductivity of the metal nanowire A is less than 50%; the optically consistent conductive layer includes a non-conductive area obtained by etching the metal nanowire A in the conductive area, so The non-conductive area includes nanoparticles B. The nanoparticles B are uniformly distributed in the non-conductive area, but the nanoparticles B do not form a continuous conductive path between each other in the non-conductive area;
  • the protective layer is located on the surface of the electric film of the optically consistent conductive layer; the protective layer contains a dendrimer with chelating function.
  • the protective layer contains dendrimers with chelating effect, which can capture metal ions and form chelate compounds to inhibit the migration of metal ions; optionally, the protective layer contains uniformly dispersed in the protective layer Nanoparticle B, the refractive index of the nanoparticle B and the metal nanowire A can be adapted;
  • the rigid substrate includes one of glass, PMMA organic glass, PC polycarbonate or acrylic;
  • the flexible substrate includes polyester, polyethylene, cycloolefin polymer, and colorless polyimide , Polypropylene or polyethylene.
  • the optically consistent transparent conductive film may include a functional layer, and the functional layer includes one of an anti-reflection layer, an anti-reflection layer, an anti-glare layer, an optical adaptation layer, an electrical adaptation layer, a hardened layer, or the like combination.
  • the vaporization temperature of the nanoparticle B is higher than that of the metal nanowire A; the corrosion rate of the metal nanowire A is greater than that of the nanoparticle B; the refractive index of the nanoparticle B and the metal nanowire A are suitable Match.
  • the difference between the optical transmittance, reflectance, haze, chromaticity and other parameters of the conductive area and the non-conductive area is less than 2%, forming optical consistency; preferably, the morphology of the nanoparticle B includes spherical, core-shell, and rod , Heterojunction or any combination thereof; the material of the nanoparticle B includes metal, alloy, oxide, semiconductor, conductor, insulator, or any combination thereof; the size of the nanoparticle B is less than ⁇ 200nm, and further preferably the size is ⁇ 20nm, and ⁇ 5nm; the nanoparticle B has the function of adjusting the chromaticity of the conductive film.
  • the structure of the metal nanowire A includes: one or more of core-shell nanowires, hollow nanowires and solid nanowires; the diameter of the metal nanowire A is 5-200nm, and the aspect ratio is ⁇ 100
  • the metal nanowires are preferably silver nanowires.
  • the composition of the protective layer comprises dendrimers with chelating function, and the dendrimers include dendrimers, carboxyl modified dendrimers, and hydroxyl modified dendrimers.
  • the dendrimers include dendrimers, carboxyl modified dendrimers, and hydroxyl modified dendrimers.
  • the antireflection layer includes a fluoropolymer, and the antireflection layer is located between the substrate and the conductive layer, or on the back of the substrate, or above the protective layer;
  • the composition of the anti-reflective layer includes a fluoropolymer or a perfluoropolymer, and the anti-reflective layer is located between the substrate and the conductive layer, or on the back of the substrate, or above the protective layer;
  • the components of the anti-glare layer include one or more of fluorine-based compounds, siloxane-based compounds, doped oxide nanomaterials or transparent organic polymers, and the anti-glare layer is located on the back of the substrate;
  • the optical matching layer is a metal layer or a ceramic layer formed by sputtering, evaporation or coating, and the composition of the optical matching layer includes metals, alloys, oxide nanomaterials and combinations thereof.
  • the optical matching layer is located between the conductive layer and the substrate;
  • the electrical adaptation layer is a planar conductive layer or an electrostatic layer, and the planar conductive layer or electrostatic layer includes one or more of PEDOT:PSS, transparent conductive metal oxide, graphene, carbon nanotubes, and carbon black.
  • the electrical adaptation layer is located above or below the protective layer.
  • the present invention provides a method for preparing an optically consistent transparent conductive film, which includes the following steps or a combination thereof:
  • the conductive area formed by S1 and the non-conductive area formed by S2 constitute an optically consistent conductive layer, and the conductive layer is coated with a protective layer formulation solution containing dendrimers, and the protective layer is formed after thermal curing or ultraviolet curing;
  • the conductive ink formulation includes 0.01-0.5% metal nanoparticle B, 0.01%-5% film former, 0.002-1% leveling agent, 0.05-5% metal nanowire A, and Contains 70-99% conductive ink solvent.
  • the composition of the protective layer formulation solution includes 0.001%-0.05% dendrimer, 0.07%-8% monomer, 0.05%-1.5% initiator, 0.1%-5% prepolymer, and the monomer includes One or more of HEA, TPGDA, HPA, DAA, TMPTA, TMPTA, EO-TMPTA, propylene oxide, EO-CHA, DPGDA, IBOA, PGDA, PDDA, TEGDA, HDDA and BDDA; the initiator Including one or more of ⁇ -hydroxyketone-based initiators, acylphosphine oxides and ketone-based initiators; the prepolymers include aliphatic urethane acrylate prepolymers, aromatic urethane acrylate prepolymers, One or more of polyurethane methacrylate, diallyl phthalate prepolymer, epoxy acrylate and epoxy methacrylate.
  • the composition of the protective layer formulation solution also includes 0.03%-5% cellulose acetate butyrate and 60%-99% of the protective layer formulation solution solvent, and the solvent in the protective layer formulation solution includes isopropyl One or more of alcohol, methanol, ethanol, n-propanol, diacetone alcohol, acetone and butyl acetate.
  • the composition of the protective layer formulation solution also includes 0.003%-0.3% complexing agent, 0.005%-0.4% stabilizer and 0.003%-0.5% antioxidant.
  • 0.003%-0.3% complexing agent 0.005%-0.4% stabilizer and 0.003%-0.5% antioxidant.
  • the complexing agent complexes metal ions to prevent their migration
  • the complexing agent includes: carboxyl complexing agent, 8-hydroxyquinoline, dithizone, 2,2'-bipyridine (bipy), One or more of o-phenanthroline (C12H8N2), potassium sodium tartrate, ammonium citrate, and inorganic complexing agent polyphosphate
  • the stabilizer can prevent metal crystal plasmon resonance, and the stabilizer includes BASF ultraviolet Absorbent C81, Chimassorb 944, Tinuvin 770DF, Tinuvin 900, Tinuvin 123, Tinuvin 326, Tinuvin 234, Tinuvin 765, Tinuvin 791FB, Tinuvin 384-2, Tinuvin 144, UV70 and UV90 at one or more of them
  • the oxidant can prevent free radicals from causing the conductive film to fail.
  • the antioxidant includes one or more of SONGNOX 4150, Irganox 1098, Irganox 1076, Irganox 1010
  • the S1 step further includes a first optimization treatment, which is applicable to any stage of this step, and the first optimization treatment includes: corona treatment or plasma treatment.
  • the S2 step further includes a second optimization process, which is applicable to any stage of this step;
  • the S3 step includes a second optimization process, which is applicable to all stages of this step;
  • the second optimization treatment includes: infrared radiation treatment, microwave radiation treatment, xenon lamp pulse treatment or photon sintering treatment.
  • the method further includes preparing a functional layer, placing the functional layer between the substrate and the conductive layer, or on the back of the substrate, or above the protective layer.
  • optically consistent transparent conductive film which is used in rigid or flexible touch screens, rigid or flexible displays, mobile phone antenna circuits, infrared optical imaging elements, photoelectric sensors, electromagnetic shielding, smart windows, smart handwriting Panel or ⁇ and solar cell applications.
  • the optically consistent transparent conductive film is composed of a conductive area and a non-conductive area.
  • the structure includes, but is not limited to, the structure where the X and Y sensing lines are located on the same conductive surface (such as Figure 16a)
  • the X and Y sensing lines are located in different conductive film structures ( Figure 16b) and the X and Y sensing lines are located on the upper and lower sides of the same conductive film ( Figure 16c).
  • 20 is the etched conductive area
  • 22 is the non-conductive area where the nanoparticles B are uniformly distributed after etching
  • 21 is the glue.
  • Figures 16a, 16b, and 16c are schematic diagrams showing the structure of evenly distributed nanoparticles B in the non-conductive area after the conductive layer is etched in the application of capacitive rigid or flexible touch screens; for comparison, Figures 17a and 17c are capacitive rigid or flexible In the application of the touch screen, after the conductive layer is etched, the non-conductive area does not have any residual schematic diagram, 23 is the non-conductive area, and the etch marks are obvious; in Figure 17b, the non-conductive area is filled with adhesive 21, 24 is filled and bonded Glue non-conductive area.
  • Figure 18 shows the top and side enlarged schematic diagrams of the structure where the X and Y sensing lines are on the same conductive surface (further description of the structure in Figures 16a and 17a), where 1 is the substrate , 27 is the Y-direction conductive area, the Y-direction conductive area is connected to each other through the unetched 25, 29 is the non-conductive area, 30 is the insulating layer, 26 is the X-direction conductive connection layer, 28 is the X-direction conductive area, to achieve X The jumper wire connection of the direction, in this way, the Y direction and the X direction each form a separate circuit to realize capacitive touch positioning.
  • the etching is laser etching, wet etching or yellow light etching, by adjusting the power of laser etching, etching speed and other parameters, or the etching bath circulation flow rate, etching bath temperature, cleaning bath spray volume of wet etching, Air knife frequency and flow rate and other parameters in the air-drying place, or adjust the yellow light etching exposure energy, exposure GAP value, exposure platform temperature and other parameters to determine the width of the etching line.
  • the nano silver wire A on the etching line is vaporized or corroded and remains disconnected
  • the nano-particles B form a non-conductive area, and the non-etched area includes nano-silver wires A and nano-particles B as conductive areas.
  • the optically consistent transparent conductive film provided by the present invention includes at least the following parts or any combination thereof:
  • Substrate rigid or/and flexible substrate with optical transparency or/and haze
  • the optically consistent conductive layer contains at least a conductive area composed of metal nanowires A and nanoparticles B, where the metal nanowires A form a superimposed or cross-linked network, and the nanoparticles B are evenly distributed in In the conductive area, the influence of nanoparticles B on the conductivity of the metal nanowire A is less than 50%; or the optically consistent conductive layer includes a non-conductive area etched in the conductive area, and the non-conductive area is composed of nanoparticles B.
  • the conductive regions are evenly distributed, but the nanoparticles B in the non-conductive region do not form a continuous conductive path between each other; the vaporization temperature of the nanoparticles B is higher than that of the metal nanowire A; the corrosion rate of the metal nanowire A Greater than the corrosion rate of the nanoparticle B; the refractive index of the nanoparticle B and the metal nanowire A can be adapted or approached, so that the optical transmittance, reflectance, haze, chromaticity, etc. of the conductive area and the non-conductive area The parameter difference is less than 2%, forming optical consistency;
  • the protective layer is located on the optically consistent conductive layer.
  • the protective layer contains a dendrimer with chelating effect, which can capture metal ions and form a chelate compound to inhibit the migration of metal ions;
  • the protective layer contains Nanoparticle B, wherein the refractive index of the nanoparticle B and the metal nanowire A can be adapted or approached, reducing the chromaticity of the conductive area;
  • the functional layer is one or a combination of anti-reflection layer, anti-reflection layer, anti-glare layer, optical adaptation layer, electrical adaptation layer, and hardened layer.
  • a substrate refers to a material on which a metal nanowire is directly coated, or a base material on which a functional layer is coated before subsequent operations.
  • the substrate described herein is rigid or flexible.
  • Rigid substrates include (but are not limited to): glass, PMMA plexiglass, PC polycarbonate, acrylic resin, etc.
  • flexible substrates include (but are not limited to): polyester (such as polyethylene terephthalate (PET)) , Polynaphthalate and polycarbonate), polyethylene (such as polyvinyl chloride, polyvinylidene chloride, polyvinyl acetal, polyacrylate, etc.), cycloolefin polymer (COP), colorless Polyimide (CPI), polypropylene (PP), polyethylene (PE), etc.
  • Optically consistent conductive layer contains at least a conductive area composed of metal nanowires A and nanoparticles B, where the metal nanowires A form a superimposed or cross-linked network, and the nanoparticles B are evenly distributed in the conductive area , Nanoparticles B has less than 50% influence on the conductivity of metal nanowires A.
  • FIG. 13 shows the optically consistent conductive layer before etching. For comparison, FIG. 12 shows a microphotograph of the conductive layer without nanoparticles B.
  • the refractive index of the nanoparticle B and the metal nanowire A can be adapted, so that the conductive area composed of the metal nanowire A and the nanoparticle B and the non-conductive area composed of the non-connected nanoparticles B after etching have optical transmittance , Reflectance, haze, chromaticity and other parameters difference is less than 2%, forming optical consistency.
  • the optically consistent conductive layer structure includes etched non-conductive regions.
  • the vaporization temperature of nanoparticle B is higher than that of metal nanowire A, and the corrosion rate of metal nanowire A is greater than that of nanoparticle B. Therefore, by controlling appropriate etching conditions, metal nanowire A is etched while nanoparticle B is retained Thus, a non-conductive area is formed; the nanoparticles B are uniformly distributed in the non-conductive area, but the nanoparticles B do not form a continuous conductive path between each other in the non-conductive area.
  • a conductive layer composed of silver nanowires and gold nanoparticles.
  • the vaporization temperature of gold is 2807°C and the vaporization temperature of silver is 2212°C.
  • the vaporization temperature of gold and silver Due to the large difference between the vaporization temperature of gold and silver, the vaporization temperature of gold and silver is quite different. During processing, adjusting the appropriate laser energy can make only silver vaporized in a large amount, while gold nanoparticles are retained, and the non-conductive region formed thereby contains a large amount of gold nanoparticles.
  • the substrate is made of polymer materials
  • the conductive layer is made of metal materials.
  • optical parameters such as refractive index and extinction coefficient between metal materials and polymer materials. Direct exposure of the substrate material after etching will result in greater reflectivity. The difference, the etch marks can be observed by naked eyes.
  • the non-conductive area formed by etching can retain the nanoparticle B, thereby compensating for the difference in refractive index with the conductive area, thus eliminating the optical transmittance, reflectance, and reflectance of the non-conductive area and the conductive area. Differences in haze, chromaticity, etc. form optical consistency (as shown in Figure 7 and Figure 14).
  • nanoparticle B is spherical, core-shell, rod, heterojunction, or any combination thereof, as shown in Figure 4.
  • Its material is metal, alloy, semiconductor, conductor, metal oxide or a combination thereof, and its size is less than or equal to 200nm , The optimized size is less than or equal to 20nm.
  • the morphology of the core-shell usually brings about a great change in the extinction coefficient of nanomaterials, which has potential application value in the design of some important optical films.
  • the color of nanoparticles of different sizes will be greatly changed. For example, platinum and palladium nanoparticles will usually appear black at 10nm; while gold nanoparticles are usually around 10nm. It will appear purple-black; the addition of nanoparticles B can also be used to adjust the chromaticity of the optically consistent conductive layer.
  • Metal nanowire A its structure includes: core-shell, hollow, linear structure, its diameter ⁇ 200nm, aspect ratio ⁇ 100, is the conductive unit of the optically consistent conductive layer, the conductivity of the conductive layer is determined by the following aspects: The electrical conductivity of a single metal nanowire A, the density of the metal nanowire A in the conductive layer, and the connectivity between the metal nanowires A. When other conditions are constant, control the conductivity of each metal nanowire to control the conductivity of the conductive surface; under the same conductivity of a single metal nanowire A, the density of the metal nanowire A in the conductive layer is lower, and the nanowires A are mutually exclusive.
  • the overall surface resistance appears to be high or non-conductive; the conductivity of a single metal nanowire A and the distribution density of the metal nanowire A are constant, the metal nanowires A are poorly connected to each other, and the conductive surface is overall The resistance is high and even insulated.
  • the optical performance of the conductive layer is determined by the following factors: the diameter and aspect ratio of the metal nanowire A, and the uniformity of the metal nanowire A.
  • Figure 8 shows a microscopic view of the film surface with a low distribution density of metal nanowires. The distribution density of metal nanowires A in the conductive layer is low, and the surface resistance of the conductive layer is high.
  • Silver is a good conductor of electricity, with low resistivity, high conductivity, and simple preparation process.
  • the metal nanowire A is preferably nano silver wire.
  • Figure 15 shows a scanning electron micrograph of the nano silver wire.
  • the diameter of the nano silver wire is 25nm. about.
  • Dendrimer is dendritic polyamidoamine (PAMAM) or carboxyl modified dendritic polyamidoamine (PAMAM), namely PAMAM-COOH, or hydroxyl modified dendritic polyamidoamine (PAMAM). PAMAM-OH.
  • Dendrimer PAMAM or modified PAMAM contains a large number of chelating groups, which can capture metal ions produced by oxidation in the conductive layer to form chelate compounds and prevent metal ions from migrating. Taking the preferred nano silver wire as an example, the mechanism of silver ion migration can be seen as three steps: electrolysis, ion migration and electrodeposition. The silver migration mechanism is explained as follows:
  • the dendritic polymer PAMAM or modified PAMAM in the protective layer contains amine groups inside, and the lone pair of electron nitrogen atoms they provide can form a strong coordination complex with silver ions with empty orbitals to form a chelate to prevent silver Ion migration, the reaction formula is as follows:
  • the protective layer formula liquid contains monomers commonly used in the field: HEA, TPGDA, HPA, DAA, TMPTA, TMPTMA, EO-TMPTA, epoxy acrylate, EO-CHA, DPGDA, IBOA, PGDA, PDDA, TEGDA, HDDA, BDDA and its combination; the protective layer formulation solution contains initiators commonly used in the field, including: ⁇ -hydroxyketone initiators (BASF's IRGACURE 184, DAROCUR 1173, IRGACURE 125, IRGACURE 500, IRGACURE 2595, etc.), acyl phosphine oxide (BASF’s IRGACURE TPO, IRGACURE TPO-L, etc.) and ketone-based initiators.
  • ⁇ -hydroxyketone initiators BASF's IRGACURE 184, DAROCUR 1173, IRGACURE 125, IRGACURE 500, IRGACURE 2595, etc.
  • acyl phosphine oxide BA
  • the protective layer formulation solution contains prepolymers commonly used in the art: aliphatic urethane acrylate prepolymer, aromatic urethane acrylate prepolymer, polyurethane methacrylate, phthalic diene Propyl ester prepolymer, epoxy acrylate, epoxy methacrylate, etc.
  • the protective layer formula contains other complexing agents, including: amino-carboxy complexing agents (including aminotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA, etc.), 8-hydroxyquinoline, dithizone, 2,2'- Bipyridine (bipy), o-phenanthroline (C12H8N2), potassium sodium tartrate, ammonium citrate and inorganic complexing agent polyphosphate, etc.; the protective layer formula contains stability that can absorb ultraviolet rays and prevent plasma resonance of metal crystals Agents, including: benzophenone compounds, benzotriazole compounds, salicylic acid compounds, hindered amine compounds, substituted acrylonitrile compounds, etc.; the protective layer formula contains antioxidants, including: thio Dicarboxylic acid esters, hydroxylamine compounds, bisphenol monoacrylate compounds, etc.
  • amino-carboxy complexing agents including aminotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA, etc.), 8-hydroxyquino
  • the protective layer may also contain nanoparticles B.
  • the refractive index of the nanoparticles B and the metal nanowires A in the conductive layer can be adapted.
  • the nanoparticles B in the protective layer supplement the reduction of the refractive index of the non-conductive area after etching, and assist in forming optical Consistent transparent conductive film.
  • Nanoparticle B includes metal, semiconductor, conductor, metal oxide or a combination thereof, and its morphology structure is a core-shell structure, a heterojunction structure, an alloy or a combination thereof, its gasification temperature is higher than that of the metal nanowire A, and the corrosion rate is less than Corrosion rate of metal nanowire A.
  • the photocurable protective layer After coating the photocurable protective layer, it can enhance the various properties of the conductive film: the light transmittance is increased by more than 0.5%, the optical haze is reduced by more than 0.2%, the metal nanowires in the conductive layer are prevented from oxidation and metal ion migration, and the surface resistance value is not changed.
  • the electrical stability is increased by more than 5%, and the anti-aging (light stability, thermal stability, humidity stability) time of the conductive layer is at least 240h, the hardness of the conductive surface after coating is greater than 1H, the adhesion is greater than 5B, and the surface tension is greater than 28mN/m.
  • the substrate material makes the optically consistent transparent conductive film have certain optical and mechanical properties, and the introduction of the functional layer enhances the specific performance of the transparent conductive film.
  • the anti-reflection layer refers to a functional layer that can increase the light transmittance of the transparent conductive film in the visible light region. Its mechanism is to redistribute the transmitted light, reflected light and other directions, and increase the proportion of incident light as much as possible.
  • the antireflection layer can be located between the substrate and the conductive layer, or on the back of the substrate, or above the protective layer.
  • the anti-reflection layer refers to a functional layer that can reduce the reflection loss of visible light on the surface of the transparent conductive film.
  • the anti-reflection layer also has the effect of increasing the investment, so the anti-reflection layer can be located between the substrate and the conductive layer, or on the back of the substrate, or above the protective layer .
  • Anti-reflection layer materials are common materials in this field, such as fluoropolymers [1,2] , perfluoropolymers [3] and so on.
  • the anti-glare layer refers to a functional layer that increases diffuse reflection and reduces harmful reflection by forming a certain uneven structure on the surface.
  • the main functional components of the anti-glare layer include fluorine compounds, siloxane compounds [4] , and doped oxide nano Materials [5] , transparent organic polymers [6], etc.
  • the anti-glare layer also contributes to optical de-sharpening.
  • a base film with an anti-glare layer with a haze of 12.5-15% is used as a substrate, and after coating silver nanowires The haze increases slightly, and the total haze is only 13.5-15%.
  • the haze difference between the etched area and the non-etched area is extremely small, and the purpose of partial de-imaging can also be achieved, as shown in Figure 10.
  • 17 is a non-conductive area where nanoparticles B are uniformly distributed after etching the conductive layer of a base film with an anti-glare layer
  • 18 is a base film with an anti-glare layer.
  • the optical adaptation layer refers to a metal layer or ceramic layer formed by sputtering, evaporation, coating, etc., so that the substrate and the optically consistent conductive layer form refractive index compensation, and reduce the reflectivity of the conductive and non-conductive areas after etching Difference, reduce visual contrast.
  • the material of the optical matching layer includes metals, alloys, oxide nanomaterials and combinations thereof.
  • the optical matching layer is usually located between the conductive layer and the substrate, and its structure is shown in Figure 3.
  • the nanoparticle B described in the present invention can also be used alone as the optical adaptation layer 5, and its structure is shown in FIG. 11, and 19 is the nanoparticle optical adaptation layer.
  • the electrical adaptation layer is a planar conductive layer or an electrostatic layer.
  • the main materials of the electrical adaptation layer include conductive polymers (such as PEDOT:PSS), transparent conductive metal oxides, graphene, two-dimensional conductive materials, carbon nanotubes and their random combination.
  • the planar conductive layer is located above the protective layer, so that the electrode is transformed from mesh-shaped conductivity to full-surface conductivity. In some product applications that require full-surface conductivity, an electrical adaptation layer is needed, such as PDLC, electrochromic, etc.
  • the hardened layer refers to an additional surface protective layer that prevents scratches or wear and can increase the surface hardness.
  • Hard layer materials are crystalline materials, metal oxides, organic silicon, vinyl triethoxy silane (VTES), 3-mercaptopropyl triethoxy silane (MPTES), methacryloxy propyl Trimethoxysilane doped epoxy resin, etc. and combinations thereof.
  • the hardening layer is located on the back of the substrate and can be located between the conductive surface and the substrate or on the conductive layer at the same time.
  • the technical scheme of the present invention includes the following steps:
  • metal nanoparticles B 0.01-0.5%, high viscosity cellulose 0.01%-5%, leveling agent 0.002-1%, metal nanowire A 0.05-5%, and 70-99% conductive ink solvent Mix evenly to form metal nanowire conductive ink;
  • the S2 step includes a first optimization treatment, including: corona treatment and plasma treatment, and the first optimization treatment is applicable to any of this step stage;
  • the metal nanowire A is vaporized or corroded by laser etching or wet etching the conductive layer, while the nanoparticle B remains in the etching area to form a non-conductive area. Due to the refractive index compensation and optical compensation of the nanoparticle B, Make the non-conductive area and the conductive area form an optically consistent conductive layer;
  • steps S3 and S4 include second optimization processing, including: infrared radiation processing, microwave radiation processing, xenon lamp pulse processing, and photon sintering processing, and the second optimization processing is applicable to any stage of this step;
  • step S1 includes a first optimization treatment, including: corona treatment, plasma treatment, the first optimization treatment is applicable to any of this step Stage; S2, coating a protective layer formulation liquid containing dendrimer on the surface of the conductive layer, and forming a protective layer after thermal curing or ultraviolet curing.
  • a first optimization treatment including: corona treatment, plasma treatment, the first optimization treatment is applicable to any of this step Stage; S2, coating a protective layer formulation liquid containing dendrimer on the surface of the conductive layer, and forming a protective layer after thermal curing or ultraviolet curing.
  • the S2 step includes the second optimization treatment, including: infrared radiation treatment, microwave Radiation treatment, xenon lamp pulse treatment, photon sintering treatment, the second optimization treatment is applicable to any stage of this step; S3, coating a dense planar conductive layer on the surface of the protective layer to form a uniform composite transparent conductive film.
  • the dielectric constant of the planar conductive layer can be adapted to the dielectric constant of the metal nanowire conductive layer, and the planar conductive layer has strong corrosion resistance, including acids, alkalis, chlorides, H 2 S gas, and the like.
  • Another embodiment provides an optically consistent transparent conductive film with an optical matching layer.
  • S1 a metal layer or ceramic layer formed on the substrate by sputtering, evaporation, coating, etc.;
  • the S2 step includes
  • the first optimization treatment includes: corona treatment and plasma treatment, the first optimization treatment is applicable to any stage of this step;
  • S3 the metal nanowire A is vaporized or corroded by laser etching or wet etching the conductive layer, and Nanoparticle B remains in the etching area to form a non-conductive area.
  • steps S3 and S4 include second optimization processing, including infrared radiation processing, microwave radiation processing, xenon lamp pulse processing, and photon sintering processing.
  • the second optimization processing is applicable to any stage of this step.
  • the optical matching layer enables the substrate and the optically consistent conductive layer to form refractive index compensation, reduces the difference in reflectivity between the conductive area and the non-conductive area after etching, and reduces the visual contrast.
  • Nanoparticle B includes metal, semiconductor, conductor, metal oxide or a combination thereof, and its morphology structure is core-shell structure, heterojunction structure, alloy or combination thereof.
  • Figure 4 shows nanoparticle B Schematic diagram of the morphology and structure of, where 6 is the spherical nanoparticle B, 7 is the core of the core-shell nanoparticle B, 8 is the shell of the core-shell nanoparticle B, 9 is the cubic nanoparticle B, and 10 and 11 are respectively The two components of a heterojunction.
  • Nanoparticles B are uniformly distributed in the conductive area formed by the superposition or cross-linking of metal nanowires A. Since the influence of nanoparticle B on the conductivity of metal nanowire A is less than 50%, its own refractive index can offset the metal nanowire A’s Refractive index and therefore reduce the chromaticity of the optically consistent conductive layer.
  • nanoparticle B The vaporization temperature of nanoparticle B is higher than that of metal nanowire A, and the acid corrosion rate of metal nanowire A is greater than 10 times that of nanoparticle B.
  • the optically consistent conductive layer coating is post-treated by different etching methods. Particles B are uniformly distributed in the non-conductive area but do not form a continuous conductive path between each other. Nanoparticles B supplement the reflectivity of the non-conductive area, which is similar to the reflectivity produced by metal nanowires A and nanoparticles B in the conductive area, reducing optical Etch traces of consistent conductive film.
  • High viscosity cellulose as film forming agent such as ethyl cellulose (EC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose (HPC), etc.
  • Leveling agents such as BYK-301, BYK-310, BYK-321, BYK-331, BYK-333, BYK-345, BYK-346, BYK-388, Dow Corning DOW CORNING DC-57, DOW CORNING DC- 3.
  • the metal nanowire A has a diameter ⁇ 200nm and an aspect ratio ⁇ 100, and is preferably a silver nanowire.
  • the conductive ink solvent includes one or more of water, ethanol and isopropanol.
  • the first optimization treatment method includes: corona treatment, plasma treatment, etc., whose purpose is to change the surface tension of the coated substrate and improve the appearance of the coating.
  • the second optimization processing method includes infrared radiation processing, microwave radiation processing, xenon lamp pulse processing, photon sintering processing, etc., and its purpose is to weld the metal nanowires A through instantaneous high energy.
  • the protective layer is located on the surface of the optically consistent conductive layer.
  • the protective layer contains a dendrimer with chelating effect, which can capture the metal ions produced by the metal nanowire A due to oxidation to form a chelate
  • the dendrimer is dendritic polyamidoamine (PAMAM) or carboxyl modified dendrimer (PAMAM), or hydroxyl modified dendrimer (PAMAM).
  • the protective layer contains nanoparticles B, the refractive index of the nanoparticles B and the metal nanowire A in the conductive layer can be adapted, and the nanoparticles B in the protective layer supplement the refractive index of the non-conductive area after etching to assist in forming an optically consistent transparent conductive film.
  • Nanoparticle B includes metal, semiconductor, conductor, metal oxide or a combination thereof, and its morphology structure is a core-shell structure, a heterojunction structure, an alloy or a combination thereof, its gasification temperature is higher than that of the metal nanowire A, and the corrosion rate is less than Corrosion rate of metal nanowire A.
  • the protective layer formulation liquid contains monomers, functional additives and initiators commonly used in this field.
  • the protective layer formulation liquid contains prepolymers commonly used in the art.
  • the protective layer formulation solution contains other additives, including other complexing agents, ultraviolet absorbers, antioxidants, etc.
  • the present invention provides an optically consistent and transparent conductive film.
  • the conductive film innovatively uses a dual nano material system as a conductive layer, and adopts different physical and chemical properties of nano materials through design, so that the conductive film can be selectively retained in the subsequent circuitization process
  • a certain kind of nano material enables the conductive layer to adapt to optical parameters such as refractive index, haze, and reflectivity.
  • the embodiment of the present invention has low cost, simple process and easy implementation; the optically consistent conductive film obtained by the present invention has good photoelectric properties, and can solve the problem of obvious etching marks, poor light stability, and easy metal nanomaterials after the metal nanowire conductive film.
  • the problems of corrosion and metal ion migration meet the needs of different back-end applications. More importantly, this invention technologically proposed a dual-nanometer material system conductive film structure and orthogonal etching solution, which can be promoted and applied to more optoelectronic film structure designs in the field of printed electronics.
  • FIG. 1 is a schematic diagram of the structure of an optically uniform transparent conductive film that conducts the entire surface of the present invention
  • FIG. 2 is a schematic diagram of the structure of a full-page conductive composite transparent conductive film with a dense planar conductive layer of the present invention
  • FIG. 3 is a schematic diagram of the structure of an optically consistent transparent conductive film with an optical adaptation layer of the present invention
  • FIG. 4 is a schematic diagram of the structure of nanoparticles B added in the conductive ink and protective layer formulation solution of the present invention
  • FIG. 5 is a schematic diagram of the surface structure of an optically consistent and transparent conductive film on the whole surface of the metal nanowire A that is not welded by the nanoparticles B to the metal nanowires of the present invention
  • 6a and 6b are schematic diagrams of the surface structure of the optically consistent transparent conductive film of the nanoparticle B of the present invention before and after welding;
  • FIG. 7 is a schematic diagram of the nanoparticles B being uniformly distributed in the non-conductive area, and the metal nanowires A and the nanoparticles B are uniformly distributed in the conductive area after etching according to the present invention
  • FIG. 8 is a microscopic view of the surface of a film with a very low distribution density of metal nanowires according to the present invention.
  • 9a and 9b are schematic diagrams of the influence of the sputtering optical adaptation layer on the light reflectivity of the present invention.
  • FIG. 10 is a schematic diagram of the influence of the base film with an anti-glare layer on the light reflectivity of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the nanoparticle B of the present invention as an optical matching layer alone;
  • FIG. 12 is a microscopic view of the surface of a transparent conductive film that is conductive on the entire surface obtained by not containing nanoparticles B in the conductive ink of the present invention.
  • FIG. 13 is a microscopic view of the surface of the entire surface conductive transparent conductive film obtained by containing nanoparticles B in the conductive ink of the present invention.
  • Fig. 15 is a microscopic picture of a preferred silver nanowire of the metal nanowire A of the present invention.
  • 16a, 16b, and 16c are schematic diagrams showing the structure of the nanoparticles B uniformly distributed in the non-conductive area after the conductive layer is etched in the application of the capacitive rigid or flexible touch screen;
  • 17a and 17c are schematic diagrams showing that there is no residue in the non-conductive area after the conductive layer is etched in the application of the capacitive rigid or flexible touch screen;
  • Figure 17b shows a structure where the X and Y sensing lines are located in different conductive films in the application of capacitive rigid or flexible touch screens
  • Fig. 18 is an enlarged schematic plan view and side view of the structure where the X and Y sensing lines are located on the same conductive surface.
  • 1 is the substrate
  • 2 is the conductive layer of metal nanowires
  • 3 is the protective layer
  • 4 is the electrical adaptation layer
  • 5 is the optical adaptation layer
  • 6 is the spherical nanoparticle B
  • 7 is the core of the core-shell structured nanoparticle B.
  • S1 including 0.01% of nanoparticle B, 0.2% of high viscosity cellulose HPMC as a film forming agent, 0.01% of leveling agent DOW CORNING DC-57, 1% of metal nanowire A and 98.78% of solvent ( (Including water, ethanol and isopropanol) mixed uniformly to form conductive ink; S2, using slit coating method to coat conductive ink on the substrate to form a conductive layer; S3, will include 0.02% dendritic polymer polyamide Amine (PAMAM), 0.5% trimethylolpropane trimethacrylate (TMPTMA), 0.2% 1,6-hexanediol diacrylate (HDDA), 0.1% phenoxyethyl acrylate (PHEA) ), 0.15% UV absorber BASF Tinuvin 234, 0.09% cellulose acetate butyrate (CAB), 0.08% antioxidant Irganox 1098, 8% diacetone alcohol, 83.51% isopropanol, 7% ethanol
  • the structure of the optically consistent transparent conductive film includes a substrate 1, a metal nanowire conductive layer 2 and a protective layer 3.
  • the substrate may include one or more of an antireflection layer, an antireflection layer, an anti-glare layer, and a hardened layer, and may not include a functional layer.
  • Fig. 13 is a microscopic picture of the surface of an optically consistent transparent conductive film. Metal nanowires A and nanoparticles B are uniformly distributed on the conductive layer.
  • S1 including 0.01% of nanoparticle B, 0.2% of high viscosity cellulose CMC as film forming agent, 0.01% of leveling agent DOW CORNING DC-57, 1.5% of metal nanowire A and 98.28% of solvent (Including water, ethanol and isopropanol) are mixed uniformly to form conductive ink; S2, conductive ink is coated on the substrate by slit coating to form a conductive layer; S3, dendritic polymer containing 0.01% hydroxyl is changed Dendritic polyamidoamine (PAMAM-OH), 0.01% ammonia carboxyl complexing agent is ethylenediaminetetraacetic acid (EDTA), 0.8% trimethylolpropane triacrylate (TMPTA), 0.2% 1,6 -Hexanediol diacrylate (HDDA), 0.1% phenoxyethyl acrylate (PHEA), 0.15% UV absorber BASF Tinuvin 234, 0.3% cellulose acetate butyrate (CAB),
  • S1 including 0.5% of nanoparticle B, 0.8% of high viscosity cellulose HPMC as a film forming agent, 0.1% of leveling agent TEGO Glide 410, 1% of metal nanowire A and 97.6% of solvent (including water , Ethanol and isopropanol) are mixed uniformly to form conductive ink;
  • S2 conductive ink is coated on the substrate by slit coating to form a conductive layer, as shown in Figure 5, the metal nanowires A12 and the nanoparticles B13 are uniform Distributed on the surface of the substrate to form a planar conductive network;
  • S3 the conductive layer is subjected to infrared radiation treatment, microwave radiation treatment, xenon lamp pulse treatment, photon sintering treatment, and the post-processing parameters such as frequency, energy, and treatment time are adjusted to make Part of the nanoparticle B in the conductive layer melts and grows secondarily, acting as a medium to weld the metal nanowire A, as shown in Figure 6
  • S1 including 0.5% of nanoparticles B, 0.8% of high-viscosity cellulose HPMC as a film forming agent, 0.1% of leveling agent BYK-345, 1% of metal nanowires A and 97.6% of solvent (including water , Ethanol and isopropanol) are mixed uniformly to form a conductive ink;
  • S2 the conductive ink is coated on the substrate by slit coating to form a conductive layer;
  • S3 the conductive layer is laser-etched, and the metal nanowire A is vaporized or Corrosion, while the nanoparticles B remain in the etching area, forming a non-conductive area;
  • S4 will include 0.04% dendrimer hydroxy-modified polyamidoamine (PAMAM-OH), 0.5% trimethylolpropane trimethacrylic acid Ester (TMPTMA), 0.2% isobornyl acrylate (IBOA), 0.1% diethylene glycol diacrylate (PDDA) phthalate,
  • an optically consistent transparent conductive film is formed.
  • 14 is the non-conductive area where the etched nanoparticles B are uniformly distributed
  • 15 is the etched conductive area.
  • the metal nanowires A and nanoparticles B are evenly distributed in the non-etched area. That is, the conductive area, the nanoparticles B are uniformly distributed in the etching area, that is, the non-conductive area, and no conductive path is formed between each other, and the conductive area and the non-conductive area form an optically consistent transparent conductive film.
  • S1 including 0.5% of nanoparticles B, 0.8% of high-viscosity cellulose HPC as a film-forming agent, 0.05% of leveling agent BYK-345, 0.5% of metal nanowires A and 98.15% of solvent (including water , Ethanol and isopropanol) are mixed uniformly to form conductive ink;
  • Non-conductive area S6, will include 0.008% dendrimer polyamidoamine (PAMAM), 1% trimethylolpropane trimethacrylate (TMPTMA), 0.8% 1,6-hexanediol two Acrylate (HDDA), 0.3% isobornyl acrylate (IBOA), 0.3% UV absorber BASF Tinuvin 765, 2% cellulose acetate butyrate (CAB), 0.3% antioxidant Irganox 168, 8% Diacetone alcohol, 80.192% isopropanol, 7% ethanol, 0.1% initiator DAROCUR 1173 are mixed uniformly to form a protective layer formula liquid; S7, a protective liquid is coated on the surface of the conductive layer, and formed after thermal curing or UV curing The protective layer.
  • PAMAM dendrimer polyamidoamine
  • TMPTMA trimethylolpropane trimethacrylate
  • HDDA 1,6-hexanediol two Acrylate
  • IBOA iso
  • FIG. 9a and 9b it is a schematic diagram of the influence of sputtering optical adaptation layer on light reflectivity.
  • 16 is a non-conductive area where nanoparticles B are uniformly distributed after etching the conductive layer of the conductive film containing the optical adaptation layer.
  • the layer makes the substrate and the optically consistent conductive layer form a refractive index compensation, reduces the reflectivity difference between the conductive area and the non-conductive area after etching, and reduces the visual contrast.
  • S1 including 0.5% of nanoparticles B, 5% of high-viscosity cellulose HPMC as a film forming agent, 1% of leveling agent BYK-301, 0.5% of metal nanowire A and 93% of solvent (including water , Ethanol and isopropanol) are mixed uniformly to form conductive ink;
  • S2 conductive ink is coated on the substrate by slit coating to form a conductive layer;
  • S3, will include 0.02% dendritic polymer polyamidoamine ( PAMAM), 0.6% trimethylolpropane triacrylate (TMPTA), 0.1% 1,6-hexanediol diacrylate (HDDA), 0.2% UV absorber BASF Tinuvin 765, 0.15% acetate butyric acid Cellulose (CAB), 0.1% antioxidant Irganox 1098, 8% diacetone alcohol, 83.33% isopropanol, 7% ethanol, 0.5% initiator IRGACURE 184 are mixed uniformly to form a
  • Fig. 2, 4 is an electrical adaptation layer, which is a schematic structural diagram of a full-page conductive composite transparent conductive film with a dense planar conductive layer outside the protective layer.
  • the dielectric constant of the planar conductive layer can be adapted to the dielectric constant of the metal nanowire conductive layer, and the planar conductive layer has strong corrosion resistance, including acids, alkalis, chlorides, H 2 S gas, and the like. It can be used for electromagnetic shielding, smart windows, smart writing boards, etc.
  • S1 including 0.5% of nanoparticles B, 5% of high-viscosity cellulose HPMC as a film forming agent, 1% of leveling agent BYK-301, 0.5% of metal nanowire A and 93% of solvent (including water , Ethanol and isopropanol) are mixed uniformly to form conductive ink;
  • S2 conductive ink is coated on the substrate by slit coating to form a conductive layer;
  • S3, infrared radiation treatment, microwave radiation treatment, xenon lamp are performed on the conductive layer
  • Pulse treatment, photon sintering treatment by adjusting the post-processing parameters, such as frequency, energy, treatment time, to melt and re-grow part of the nanoparticles B in the conductive layer, acting as a medium, welding metal nanowire A;
  • S4 will include 0.04% dendritic polymer hydroxyl modified polyamide amine (PAMAM-OH), 1% tripropylene glycol diacrylate (TPGDA), 0.5% tri
  • the present invention can also have other embodiments.
  • the dendrimer in the protective layer can be carboxyl modified PAMAM or hydroxyl modified PAMAM.
  • other complexing agents can be added, prepolymers can be added, and monomers and antioxidants can be changed.
  • the type and amount of ultraviolet absorber; the coating process can be optimized by corona treatment, plasma treatment, etc.
  • the invention provides an optically consistent transparent conductive film and a design method thereof.
  • the method is simple and easy to implement, and the conditions are mild, which can solve the problems of obvious etching marks after the metal nano conductive film, the metal material is easily corroded and metal ion migration, and the conductive film With good uniformity and stability, it can meet the requirements of different back-end applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种光学一致透明导电薄膜及其制备方法,解决了金属纳米线(12)透明导电薄膜后刻蚀痕明显、光稳定性差、纳米材料易被腐蚀和金属离子迁移的问题。添加折射率可匹配且耐腐蚀性高的纳米颗粒(13)、附加光学补偿层、使用带有防眩层的基底等方式可解决金属纳米线(12)导电薄膜后处理刻蚀痕明显的问题;通过使用电学补偿层提供一种整版导电的透明导电薄膜,提高其耐腐蚀性;保护液中加入紫外稳定剂提高了导电膜的光稳定性;保护液中的抗氧化剂、树状高分子和络合剂解决了纳米材料易被腐蚀和金属离子迁移的问题。

Description

一种光学一致透明导电薄膜及其制备方法
相关申请的交叉参考
该申请要求2019年07月29日提交的中国专利申请号为201910689170.8的专利申请的优先权,该专利申请在此被完全引入作为参考。
技术领域
本发明涉及透明导电薄膜技术领域,具体地涉及一种光学一致透明导电薄膜。可应用于电子行业,如刚性或柔性触控屏、刚性或柔性显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板、太阳能电池等方面。
背景技术
透明导电薄膜是指既具有导电性,又在可见光范围内具有高透光率的薄膜,在刚性或柔性触控屏、刚性或柔性显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板、太阳能电池等方面具有广阔的应用前景。
氧化铟锡(ITO)是目前最普遍使用的材料,由于其禁带宽度大,只吸收紫外光,不吸收可见光,因此称之为“透明”。ITO薄膜采用磁控溅射工艺制备,具有良好的化学稳定性、热稳定性,但其具有加工制程复杂、成本高、方阻高、不易弯折变形、易碎易断等缺点。
近年来,随着多种触控产品的问世,柔性逐渐成为触控电子行业的发展趋势,透明导电薄膜是显示及触控所需关键材料。传统刚性触控产品所用ITO薄膜其ITO层易碎易断,缺乏柔韧性,无法做出可挠式面板,限制了ITO在柔性触控方面的应用,因此亟需寻找具有高绕曲性的透明导电薄膜,以满足柔性触控电子行业的需求。
金属纳米线透明导电薄膜,由于其优异的光电性能、高绕曲性、强度高、价格低廉、制备工艺简单等优点,成为ITO不可多得的替代材料,其中以纳米银线透明导电薄膜尤为突出。然而金属纳米线透明导电薄膜用于触控领域,仍然存在一定的问题,如后处理刻蚀痕明显、光稳定性差、金属材料易被腐蚀、寿命短、金属离子迁移问题等,这些均是行业内亟需解决的难题。尤其随着2019年可折叠触控屏的问世,柔性透明导电薄膜的刻蚀痕、寿命、可弯折性成为折叠手机大规模推广的首要制约因素。
发明内容
本发明提供了一种光学一致透明导电薄膜,目的在于解决金属纳米线导电薄膜后处理刻蚀痕明显、光稳定性差、金属材料易被腐蚀和金属离子迁移问题,以满足多种后端应用需求。本发明方法简单,易于执行,得到的薄膜具有优异的光电性能和优异的光稳定性。
本发明提供一种光学一致透明导电薄膜,至少包含以下几部分或其任意组合:衬底、光 学一致导电层、保护层;
其中,衬底:所述衬底包括刚性或/和柔性的衬底;
光学一致导电层:所述光学一致导电层至少包括导电区域,所述导电区域包括金属纳米线A和纳米颗粒B构成的导电区域,金属纳米线A在该导电区域形成相互叠加或交联的网络,同时纳米颗粒B均匀分布在导电区域,纳米颗粒B对金属纳米线A的导电性影响小于50%;所述光学一致导电层包括在导电区域蚀刻金属纳米线A后得到的非导电区域,所述非导电区域包括纳米颗粒B,纳米颗粒B在非导电区域均匀分布,但在该非导电区域纳米颗粒B相互之间并不形成连续的导电通路;
保护层:所述保护层位于光学一致导电层电薄膜表面;所述保护层中包含具有螯合作用的树状高分子(Dendrimer)。
作为优选,所述保护层中包含具有螯合作用的树状高分子,可捕捉金属离子,形成螯合物以抑制金属离子迁移;可选地,所述保护层包含均匀分散于保护层中的纳米颗粒B,所述纳米颗粒B与所述金属纳米线A的折射率可适配;
作为优选,所述刚性衬底包括玻璃、PMMA有机玻璃、PC聚碳酸酯或丙烯酸树中的一种;所述柔性衬底包括聚酯、聚乙烯、环烯烃聚合物、无色聚酰亚胺、聚丙烯或聚乙烯中的一种。
作为优选,所述光学一致透明导电薄膜可包括功能层,所述功能层包括增透层、减反层、防眩层、光学适配层、电学适配层、硬化层中的一种或其组合。
作为优选,所述纳米颗粒B其气化温度高于金属纳米线A;所述金属纳米线A其腐蚀速率大于纳米颗粒B的腐蚀速率;所述纳米颗粒B与金属纳米线A的折射率适配。使得导电区域和非导电区域的光学透射率、反射率、雾度、色度等参数差异小于2%,形成光学一致性;作为优选,所述纳米颗粒B的形貌包括球状、核壳、棒、异质结或其任意组合;所述纳米颗粒B的材质包括金属、合金、氧化物、半导体、导体、绝缘体或其任意组合;所述纳米颗粒B的尺寸小于≤200nm,进一步优先为尺寸≤20nm,且≥5nm;所述纳米颗粒B具有调节导电膜色度的作用。
作为优选,所述金属纳米线A的结构包括:核壳纳米线、空心纳米线和实心纳米线中的一种或几种;所述金属纳米线A的直径5-200nm,长径比≥100;所述金属纳米线优选为纳米银线。
作为优选,所述的保护层的成分包含具有螯合作用的树枝状高分子,所述树枝状高分子包括树枝状聚酰胺胺、羧基改性的树枝状聚酰胺胺、和羟基改性树枝状聚酰胺胺中的一种或几种。
作为优选,所述增透层的成分包括含氟聚合物,所述增透层位于衬底与导电层中间,或衬底背面,或保护层上方;
所述减反层的成分包括含氟聚合物或全氟聚合物,所述减反层位于衬底与导电层中间, 或衬底背面,或保护层上方;
所述防眩层的成分包括氟系化合物、硅氧烷系化合物、掺杂氧化物纳米材料或透明有机高分子中的一种或几种,所述防眩层位于衬底背面;
所述光学适配层通过溅射、蒸镀或涂布方式形成的金属层或陶瓷层,所述光学适配层的成分包括金属、合金、氧化物纳米材料及其组合。光学适配层位于导电层与衬底之间;
所述电学适配层为面状导电层或静电层,所述面状导电层或静电层包括PEDOT:PSS、透明导电金属氧化物、石墨烯、碳纳米管和碳黑中的一种或几种,所述电学适配层位于保护层上方或下方。本发明提供一种光学一致透明导电薄膜的制备方法,包括以下步骤或其组合:
S1,在衬底上涂布导电油墨形成导电区域,所述导电油墨包括纳米颗粒B和金属纳米线A;
S2,在S1形成的导电区域处蚀刻,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域;
S3,S1形成的导电区域和S2形成的非导电区域,构成光学一致导电层,在导电层上涂布含有树状高分子的保护层配方液,热固化或紫外固化后形成保护层;
作为优选,所述导电油墨配方中包括0.01-0.5%的金属纳米颗粒B、0.01%-5%的成膜剂、0.002-1%的流平剂、0.05-5%的金属纳米线A,以及包括70-99%的导电油墨溶剂。
作为优选,保护层配方液的成分包括0.001%-0.05%树枝状高分子、0.07%-8%单体、0.05%-1.5%引发剂、0.1%-5%预聚物,所述单体包括HEA、TPGDA、HPA、DAA、TMPTA、TMPTMA、EO-TMPTA、环氧丙烯酯、EO-CHA、DPGDA、IBOA、PGDA、PDDA、TEGDA、HDDA和BDDA中的一种或几种;所述引发剂包括α-羟酮基引发剂、酰基膦氧化物和酮基引发剂中的一种或几种;所述预聚物包括脂肪族聚氨酯丙烯酸酯预聚物、芳香族聚氨酯丙烯酸酯预聚物、聚氨酯甲基丙烯酸酯、邻苯二甲酸二烯丙酯预聚物、环氧丙烯酸酯和环氧甲基丙烯酸酯中的一种或几种。
作为优选,所述保护层配方液的成分中还包括0.03%-5%的醋酸丁酸纤维素和60%-99%的保护层配方液溶剂,所述保护层配方液中的溶剂包括异丙醇、甲醇、乙醇、正丙醇、二丙酮醇、丙酮和醋酸丁酯中的一种或几种。
作为优选,为防止金属离子迁移导致导电区域失效,所述保护层配方液的成分中还包括0.003%-0.3%络合剂、0.005%-0.4%稳定剂和0.003%-0.5%抗氧化剂中的一种或几种,
其中,所述络合剂络合金属离子,防止其迁移,所述络合剂包括:氨羧络合剂、8-羟基喹啉、双硫腙、2,2'-联吡啶(bipy)、邻菲咯啉(C12H8N2)、酒石酸钾钠、柠檬酸铵和无机络合剂多磷酸盐中的一种或几种;所述稳定剂可防止金属晶体等离子体共振,所述稳定剂包括BASF紫外线吸收剂C81、Chimassorb 944、Tinuvin 770DF、Tinuvin 900、Tinuvin 123、Tinuvin 326、Tinuvin 234、Tinuvin 765、Tinuvin 791FB、Tinuvin 384-2、Tinuvin 144、UV70和UV90中的一种或几种;所述抗氧化剂能防止自由基导致导电膜失效,所述抗氧化剂包括 SONGNOX 4150、Irganox 1098、Irganox 1076、Irganox 1010和Irganox168中的一种或几种。
作为优选,所述S1步骤还包括第一优化处理,所述第一优化处理适用于该步骤的任意阶段,所述第一优化处理包括:电晕处理或等离子体处理。
作为优选,所述S2步骤还包括第二优化处理,所述第二优化处理适用于该步骤的任意阶段;S3步骤包括第二优化处理,所述第二优化处理适用于该步骤的所有阶段;所述第二优化处理包括:红外辐射处理、微波辐射处理、氙灯脉冲处理或光子烧结处理。
作为优选,所述方法中还包括制备功能层,将功能层置于衬底与导电层中间,或者衬底背面,或者保护层上方。
一种所述光学一致透明导电薄膜的应用,所述应用为,在刚性或柔性触控屏、刚性或柔性显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板或\和太阳能电池等方面的应用。
例如,在电容式刚性或柔性触控屏的应用中,所述光学一致透明导电薄膜由导电区域和非导电区域构成,结构包括但不限于X、Y传感线路位于同一导电面的结构(如图16a)、X、Y传感线路分别位于不同导电膜的结构(如图16b)和X、Y传感线路位于同一导电膜上下两面的结构(如图16c),20为蚀刻后的导电区域,22为蚀刻后的均匀分布纳米颗粒B的非导电区域,21为贴合胶。图16a、16b和16c为电容式刚性或柔性触控屏的应用中,导电层蚀刻后,纳米颗粒B在非导电区域均匀分布的结构示意图;作为对比,图17a、17c为电容式刚性或柔性触控屏的应用中,导电层蚀刻后,非导电区域无任何残留的示意图,23为非导电区域,刻蚀痕表现明显;图17b中非导电区域填充贴合胶21,24为填充贴合胶的非导电区域。以菱形蚀刻图案为例,图18所示为所述X、Y传感线路位于同一导电面的结构俯视和侧视放大示意图(图16a和17a所述结构的进一步描述),其中1为衬底,27为Y方向导电区域,Y方向导电区域通过未被蚀刻的25相互连接,29为非导电区域,30为绝缘层,26为X方向的导电连接层,28为X方向导电区域,实现X方向的跳线连接,如此,Y方向和X方向各形成独自电路,实现电容式触控定位。
作为优选,所述蚀刻为激光蚀刻、湿法蚀刻或黄光蚀刻,通过调节激光蚀刻的功率、蚀刻速度等参数,或者湿法蚀刻的腐蚀槽循环流量、腐蚀槽温度、清洗槽喷淋量、风干处风刀频率及流量等参数,或者调节黄光蚀刻曝光能量、曝光GAP值、曝光平台温度等参数,确定蚀刻线路宽度,蚀刻线路上的纳米银线A气化或腐蚀并保留互不连通的纳米颗粒B,形成非导电区域,未蚀刻区域作为导电区域包括纳米银线A和纳米颗粒B。进一步解释,本发明提供的光学一致透明导电薄膜至少包含以下几部分或其任意组合:
a)衬底:刚性或/和柔性的具有光学透明度或/和雾度的基材;
b)光学一致导电层:光学一致导电层至少包含由金属纳米线A和纳米颗粒B构成的导电区域,金属纳米线A在该区域形成相互叠加或交联的网络,同时纳米颗粒B均匀分布在导电区域,纳米颗粒B对金属纳米线A的导电性影响小于50%;或者光学一致导电层包含 在导电区域蚀刻得到的非导电区域,该非导电区域由纳米颗粒B构成,纳米颗粒B在非导电区域均匀分布,但在该非导电区域纳米颗粒B相互之间并不形成连续的导电通路;所述纳米颗粒B其气化温度高于金属纳米线A;所述金属纳米线A其腐蚀速率大于纳米颗粒B的腐蚀速率;所述纳米颗粒B与金属纳米线A的折射率可适配或折射率接近,使得导电区域和非导电区域的光学透射率、反射率、雾度、色度等参数差异小于2%,形成光学一致性;
c)保护层:保护层位于光学一致导电层之上,保护层中包含具有螯合作用的树状高分子(Dendrimer),可捕捉金属离子,形成螯合物以抑制金属离子迁移;保护层包含纳米颗粒B,其中纳米颗粒B与所述金属纳米线A的折射率可适配或折射率接近,降低导电区域的色度;
d)功能层:功能层为增透层、减反层、防眩层、光学适配层、电学适配层、硬化层中的一种或其组合。
衬底:衬底是指在其上直接涂布金属纳米线的材料,或者在其上涂覆功能层后再进行后续操作的基底材料,本文所述衬底是刚性或柔性的。刚性衬底包括(但不限于):玻璃、PMMA有机玻璃、PC聚碳酸酯、丙烯酸树等;柔性衬底包括(但不限于):聚酯(例如聚对苯二甲酸乙二酯(PET)、聚萘二甲酸酯和聚碳酸酯)、聚乙烯(例如聚氯乙烯、聚偏二氯乙烯、聚乙烯醇缩乙醛、聚丙烯酸酯等)、环烯烃聚合物(COP)、无色聚酰亚胺(CPI)、聚丙烯(PP)、聚乙烯(PE)等。
光学一致导电层:光学一致导电层至少包含由金属纳米线A和纳米颗粒B构成的导电区域,金属纳米线A在该区域形成相互叠加或交联的网络,同时纳米颗粒B均匀分布在导电区域,纳米颗粒B对金属纳米线A的导电性影响小于50%,图13所示为刻蚀前的光学一致导电层,作为对比,图12所示为不含纳米颗粒B的导电层微观照片。纳米颗粒B与金属纳米线A的折射率可适配,使得蚀刻后由金属纳米线A和纳米颗粒B构成的导电区域和由互不连通的纳米颗粒B构成的非导电区域,其光学透射率、反射率、雾度、色度等参数差异小于2%,形成光学一致性。
光学一致导电层结构包含蚀刻得到的非导电区域。纳米颗粒B其气化温度高于金属纳米线A,金属纳米线A其腐蚀速率大于纳米颗粒B的腐蚀速率,因此,通过控制合适的蚀刻条件,金属纳米线A被蚀刻,纳米颗粒B被保留从而形成非导电区域;纳米颗粒B在非导电区域均匀分布,但在该非导电区域纳米颗粒B相互之间并不形成连续的导电通路。例如:纳米银线和金纳米颗粒组成的导电层,金的气化温度为2807℃,银的气化温度为2212℃,由于金和银的气化温度存在较大差异,在经过激光刻蚀处理时,调节适当激光能量能够使得只有银被大量气化,而金纳米颗粒被保留,由此形成的非导电区域含有大量的金纳米颗粒。而通常衬底是由高分子材料构成,而导电层是金属材料,金属材料和高分子材料在折射率和消光系数等光学参数差异巨大,蚀刻后直接暴露衬底材料会产生较大的反射率差异,通过肉眼即可观测到刻蚀痕。而通过引入纳米颗粒B,可使得蚀刻形成的非导电区域能够将纳米颗 粒B保留,由此补偿与导电区域的折射率差异,因此可消除非导电区域与导电区域的光学透射率、反射率、雾度、色度等差异,形成光学一致性(如图7和图14所示)。
纳米颗粒B形貌为球状、核壳、棒、异质结或其任意组合,如图4所示,其材质为金属、合金、半导体、导体、金属氧化物或其组合,其尺寸小于等于200nm,优化的其尺寸小于等于20nm。核壳的形貌通常会带来纳米材料消光系数的极大改变,在一些重要的光学薄膜设计中有潜在的应用价值。另外,由于纳米颗粒的尺寸效应,不同尺寸纳米颗粒的颜色将有极大改变,例如:铂、钯的纳米颗粒,通常在10nm时,将会呈现黑色;而金的纳米颗粒通常在10nm左右时将会呈现紫黑色;纳米颗粒B的添加也可用于调节光学一致导电层的色度。
金属纳米线A,其结构包括:核壳、空心、线状结构,其直径≤200nm,长径比≥100,是光学一致导电层的导电单元,导电层的电导率由以下几个方面决定:单根金属纳米线A的电导率、导电层中金属纳米线A的密度和金属纳米线A互相之间的连通性。其他条件一定时,控制每根金属纳米线的电导率调控导电面的导电性能;相同单根金属纳米线A电导率条件下,导电层中的金属纳米线A密度较低,纳米线A互相之间形不成导电通路,整体面电阻表现为较高或不导电;单根金属纳米线A电导率及金属纳米线A的分布密度一定,金属纳米线A之间互相连通不佳,导电面整体的电阻表现偏高甚至绝缘。导电层的光学性能由以下几个因素决定:金属纳米线A的直径和长径比、金属纳米线A的均匀性。图8所示为金属纳米线分布密度很低的薄膜表面微观图,金属纳米线A在导电层分布密度低,导电层的面电阻很高。金属纳米线A的直径越细,长径比越大,则其光学透过率越高,雾度越低;在实际的制备过程中,金属纳米线A在导电层中极易团聚甚至并线,导致导电层光学透过率降低,雾度和色度增加。银是电的良导体,其电阻率低,导电性高,制备工艺简单,金属纳米线A优选为纳米银线,图15所示为纳米银线的扫描电镜照片,其纳米银线直径为25nm左右。
保护层:树枝状高分子(Dendrimer)为树枝状聚酰胺胺(PAMAM)或羧基改性的树枝状聚酰胺胺(PAMAM)即PAMAM-COOH,或羟基改性树枝状聚酰胺胺(PAMAM)即PAMAM-OH。树枝状高分子PAMAM或改性的PAMAM中含有大量的螯合基团,可以捕捉导电层中因氧化而产生的金属离子,形成螯合物,防止金属离子迁移。以优选的纳米银线为例,银离子迁移从机理上可以被看成三步:电解、离子迁移和电沉积,银迁移机制解释如下:
a)潮湿环境中,水分子在外加电场下电解:
H 2O→H ++OH -                 (1)
b)银在电场及氢氧根离子的作用下,离解产生银离子:
Ag→Ag +                      (2)
c)银离子从高电位向低电位迁移,与OH -银离子在高低电位相连的边界上相遇:
Ag ++OH -→AgOH↓             (3)
d)AgOH不稳定,分解成黑色Ag 2O沉淀:
2AgOH→Ag 2O+H 2O             (4)
保护层中的树枝状高分子PAMAM或改性的PAMAM内部含有胺基,它们提供的孤对电子氮原子可以与有空轨道的银离子发生强的配位络合,形成螯合物,防止银离子迁移,其反应式如下:
nAg ++PAMAM→nAg +/PAMAM     (5)
保护层配方液中包含本领域通用的单体:HEA、TPGDA、HPA、DAA、TMPTA、TMPTMA、EO-TMPTA、环氧丙烯酯、EO-CHA、DPGDA、IBOA、PGDA、PDDA、TEGDA、HDDA、BDDA及其组合;保护层配方液中包含本领域通用的引发剂,包括:α-羟酮基引发剂(巴斯夫的IRGACURE 184、DAROCUR 1173、IRGACURE 125、IRGACURE 500、IRGACURE 2595等)、酰基膦氧化物(巴斯夫的IRGACURE TPO、IRGACURE TPO-L等)及酮基引发剂等。
在其他实施方案中,保护层配方液中包含本领域通用的预聚物:脂肪族聚氨酯丙烯酸酯预聚物、芳香族聚氨酯丙烯酸酯预聚物、聚氨酯甲基丙烯酸酯、邻苯二甲酸二烯丙酯预聚物、环氧丙烯酸酯、环氧甲基丙烯酸酯等。
保护层配方中包含其它络合剂,包括:氨羧络合剂(包括氨基三乙酸即NTA、乙二胺四乙酸即EDTA等)、8-羟基喹啉、双硫腙、2,2'-联吡啶(bipy)、邻菲咯啉(C12H8N2)、酒石酸钾钠、柠檬酸铵及无机络合剂多磷酸盐等;所述保护层配方中包含可吸收紫外线并防止金属晶体等离子体共振的稳定剂,包括:二苯甲酮类化合物、苯并三唑类化合物、水杨酸类化合物、受阻胺类化合物、取代丙烯腈类化合物等;所述保护层配方中包含抗氧化剂,包括:硫代二羧酸脂类、羟胺类化合物、双酚单丙烯酸酯类化合物等。
保护层同样可以包含纳米颗粒B,纳米颗粒B与导电层中金属纳米线A的折射率可适配,保护层中纳米颗粒B补充蚀刻后的非导电区域的折射率的减小,辅助形成光学一致透明导电薄膜。纳米颗粒B包括金属、半导体、导体、金属氧化物或其组合,其形貌结构为核壳结构、异质结结构、合金或其组合,其气化温度高于金属纳米线A,腐蚀速率小于金属纳米线A的腐蚀速率。
涂覆光固化保护层后可增强导电膜的多种性能:透光率增加大于0.5%、光学雾度降低大于0.2%、阻止导电层金属纳米线氧化和金属离子迁移、不改变表面电阻值、电学稳定性增加大于5%、使导电层抗老化(光稳定、热稳定、湿度稳定)时间至少240h,涂布后导电面硬度大于1H,附着力大于5B,表面张力>28mN/m。
功能层:如上所述,衬底材料使光学一致透明导电薄膜具有一定的光学和力学性能,引入功能层增强透明导电薄膜的特定性能。
增透层是指可增加透明导电薄膜在可见光区域透光率的功能层,其作用机理是使透射光与反射光及其他方向的光重新分配,尽可能增加入射光比例。增透层可位于衬底与导电层中 间,或衬底背面,或保护层上方。
减反层是指可减少可见光在透明导电薄膜表面反射损耗的功能层,减反层同时具有增投作用,因此减反层可位于衬底与导电层中间,或衬底背面,或保护层上方。减反层材料是本领域通用材料,如含氟聚合物 [1,2]、全氟聚合物 [3]等。
防眩层是指通过在表面形成一定凹凸结构以增加漫反射,减少有害反射的功能层,防眩层的主要功能成分包括氟系化合物、硅氧烷系化合物 [4]、掺杂氧化物纳米材料 [5]、透明有机高分子 [6]等。在一些实施方式中,防眩层同样有助于光学消影,例如本发明实施例中采用雾度为12.5-15%的带有防眩层的基膜作为衬底,涂布银纳米线后雾度增加微小,总雾度仅为13.5-15%,再经过进一步刻蚀处理后,刻蚀区域和非刻蚀区域的雾度差异极小,同样可以达到部分消影的目的,如图10所示,17为带有防眩层的基膜导电层蚀刻后的纳米颗粒B均匀分布的非导电区域,18为带有防眩层的基膜。
光学适配层是指通过溅射、蒸镀、涂布等方式形成的金属层或陶瓷层,使衬底和光学一致导电层形成折射率补偿,减少蚀刻后导电区域和非导电区域的反射率差值,减少视觉反差。光学适配层材料包含金属、合金、氧化物纳米材料及其组合。光学适配层通常位于导电层与衬底之间,其结构图如图3所示。在本发明中所述的纳米颗粒B同样可以单独作为光学适配层5,其结构如图11所示,19为纳米颗粒光学适配层。
电学适配层为面状导电层或静电层,电学适配层的主要材料包括导电高分子(如PEDOT:PSS)、透明导电金属氧化物、石墨烯、二维导电材料、碳纳米管及其任意组合。面状导电层位于保护层上方,使得电极由网状导电转化为整面导电。在一些需要整面导电的产品应用中,电学适配层是需要的,例如PDLC、电致变色等。
硬化层是指防止刮伤或磨损,可增加表面硬度的附加表面保护层。加硬层材料为晶体材料、金属氧化物、有机硅、乙烯基三乙氧基硅烷(VTES)、3-硫醇基丙基三乙氧基硅烷(MPTES)、甲基丙烯酰氧基丙基三甲氧基硅烷掺杂环氧树脂等及其组合。硬化层位于衬底背面,并可同时位于导电面与衬底之间,或导电层之上。
本发明的技术方案包括以下步骤:
S1,将包含金属纳米颗粒B 0.01-0.5%、高粘度纤维素0.01%-5%、流平剂0.002-1%、金属纳米线A 0.05-5%,以及包括70-99%的导电油墨溶剂混合均匀,形成金属纳米线导电油墨;
S2,在衬底上涂布上述导电油墨,形成导电层;可选的,S2步骤包括第一优化处理,包括:电晕处理、等离子体处理,所述第一优化处理适用于该步骤的任意阶段;
S3,通过激光蚀刻或湿法蚀刻导电层,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域,由于纳米颗粒B的折射率补偿作用、光学补偿作用,使得非导电区域和导电区域构成光学一致导电层;
S4,在导电层或光学一致导电层上涂布含有树状高分子的保护液,热固化或紫外固化 后形成保护层。可选的,S3、S4步骤包括第二优化处理,包括:红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,所述第二优化处理适用于该步骤的任意阶段;
另一种实施方案提供一种整版导电薄膜。S1,在衬底上涂布金属纳米线导电油墨,形成导电层;可选的,S1步骤包括第一优化处理,包括:电晕处理、等离子体处理,第一优化处理适用于该步骤的任意阶段;S2,在导电层表面涂布含有树状高分子的保护层配方液,热固化或紫外固化后形成保护层,可选的,S2步骤包括第二优化处理,包括:红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,所述第二优化处理适用于该步骤的任意阶段;S3,在保护层表面涂覆致密面状导电层,形成的均匀复合透明导电薄膜。所述面状导电层其介电常数与金属纳米线导电层介电常数可适配,所述面状导电层具有强耐腐蚀性,包括酸、碱、氯化物、H 2S气体等。
另一种实施方案提供一种带有光学适配层的光学一致透明导电薄膜。S1,采用溅射、蒸镀、涂布等方式在衬底上形成的金属层或陶瓷层;S2,在衬底上涂布金属纳米线导电油墨,形成导电层;可选的,S2步骤包括第一优化处理,包括:电晕处理、等离子体处理,第一优化处理适用于该步骤的任意阶段;S3,通过激光蚀刻或湿法蚀刻导电层,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域,由于纳米颗粒B的折射率补偿作用、光学补偿作用,使得非导电区域和导电区域构成光学一致导电层;S4,在导电层或光学一致导电层上涂布含有树状高分子的保护液,热固化或紫外固化后形成保护层。可选的,S3、S4步骤包括第二优化处理,包括:红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,所述第二优化处理适用于该步骤的任意阶段。所述光学适配层使衬底和光学一致导电层形成折射率补偿,减少蚀刻后导电区域和非导电区域的反射率差值,减少视觉反差。
金属纳米线导电油墨:纳米颗粒B包括金属、半导体、导体、金属氧化物或其组合,其形貌结构为核壳结构、异质结结构、合金或其组合,图4所示为纳米颗粒B的形貌结构示意图,其中,6为球状纳米颗粒B,7为核壳结构纳米颗粒B的核,8为核壳结构纳米颗粒B的壳,9为立方状纳米颗粒B,10和11分别是异质结的两个组成部分。采用红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理等方式,选用合适的强度和处理时间,使纳米颗粒B熔融并二次生长,充当媒介,焊接金属纳米线A。纳米颗粒B均匀分布在金属纳米线A相互叠加或交联而形成的导电区域,由于纳米颗粒B对金属纳米线A的导电性影响小于50%,其本身的折射率可以抵消金属纳米线A的折射率,并因此降低光学一致导电层的色度。纳米颗粒B气化温度高于金属纳米线A,并且金属纳米线A其酸腐蚀速率大于纳米颗粒B酸腐蚀速率的10倍,采用不同的蚀刻方式对光学一致导电层涂层进行后处理,纳米颗粒B均匀分布在非导电区域但相互之间不形成连续的导电通路,纳米颗粒B补充非导电区域的反射率,与导电区域金属纳米线A和纳米颗粒B产生的反射率相近,减小光学一致导电膜的刻蚀痕迹。
高粘度纤维素作为成膜剂,如乙基纤维素(EC)、羟乙基纤维素(HEC)、甲基纤维素(MC)、羧甲基纤维素(CMC)、羟丙基甲基纤维素(HPMC)、羟丙基纤维素(HPC)等。流平剂如毕克化学BYK-301、BYK-310、BYK-321、BYK-331、BYK-333、BYK-345、BYK-346、BYK-388,道康宁DOW CORNING DC-57、DOW CORNING DC-3,迪高TEGO Glide 410、TEGO Glide 450、TEGO Flow 370等。可适当加入其它助剂,调节油墨成膜性能,其它助剂包括消泡剂、润湿剂、附着力促进剂、粘结剂等。金属纳米线A其直径≤200nm,长径比≥100,优选为银纳米线。导电油墨溶剂包括水、乙醇和异丙醇中的一种或几种。
第一优化处理方式包括:电晕处理、等离子体处理等,其目的在于改变涂布基底表面张力,改善涂布表观性能。第二优化处理方式包括红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理等方式,其目的在于通过瞬时高能使得金属纳米线A之间焊接。
保护层配方液:保护层位于光学一致导电层电薄膜表面,保护层中包含具有螯合作用的树状高分子(Dendrimer),可捕捉金属纳米线A因氧化产生的金属离子,形成螯合物以抑制金属离子迁移,树枝状高分子为树枝状聚酰胺胺(PAMAM)或羧基改性的树枝状聚酰胺胺(PAMAM),或羟基改性树枝状聚酰胺胺(PAMAM)。保护层包含纳米颗粒B,纳米颗粒B与导电层中金属纳米线A的折射率可适配,保护层中纳米颗粒B补充蚀刻后的非导电区域折射率,辅助形成光学一致透明导电薄膜。纳米颗粒B包括金属、半导体、导体、金属氧化物或其组合,其形貌结构为核壳结构、异质结结构、合金或其组合,其气化温度高于金属纳米线A,腐蚀速率小于金属纳米线A的腐蚀速率。
保护层配方液中包含本领域通用的单体、功能性助剂和引发剂。
在其他实施方案中,保护层配方液中包含本领域通用的预聚物。
保护层配方液中包含其他添加剂,包括其它络合剂、紫外线吸收剂、抗氧化剂等。
本发明提供一种光学一致透明导电薄膜,该导电薄膜创新采用双纳米材料体系作为导电层,通过设计采用纳米材料不同的物化性能,使得导电薄膜在后续电路化的过程中,能够选择性的保留某一种纳米材料,使得导电层达到折射率、雾度、反射率等光学参数的适配。
本发明实施方案成本低、工艺简单易于实施;由该发明所得到光学一致导电薄膜,具有良好的光电性能,可解决金属纳米线导电薄膜后处理刻蚀痕明显、光稳定性差、金属纳米材料易被腐蚀和金属离子迁移的问题,满足不同的后端应用需求。更为重要的是,该发明开创性提出了一种双纳米材料体系导电薄膜结构和正交蚀刻解决方案,在印刷电子领域能够被推广应用于更多的光电薄膜结构设计。
参考文献
[1]Vasilopoulou M,Douvas AM,Palilis LC,Bayiati P,Alexandropoulos D,Stathopoulos NA,et al.,Highly transparent partially fluorinated methacrylate polymers for optical waveguides[J].Microelectronic Engineering 2009,86:1142-1145.
[2]Teng H,Liu W,Koike Y,Okamoto Y,Alternating copolymerization of  bis(hexafluoroisopropyl)fumarate with styrene and vinyl pentafluorobenzoate:Transparent and low refractive index polymers[J].Journal of Polymer Science Part A:Polymer Chemistry 2011,49:2834-2838.
[3]Fluorinated Surfaces,Coatings,and Films,Copyright,Foreword[J].2001,787:i-iii.
[4]南野浩正,福西隆志,小岛健敬,上田浩一.防眩型涂料组合物、防眩膜及其制造方法[P].CN101246224A.
[5]豆帆,朱洪维,车红卫,窦锦浩.一种纳米涂膜材料及其制备方法[P].CN1298906A.
[6]扳井彰,山原基裕.防眩光膜及其制造方法,偏振部件及应用改偏振部件的显示设备,和内部漫射膜[P].CN 1414401A.
附图说明
附图中相同的标号代表相同或相似的组件,为了便于理解,附图中多数组件被无限放大,附图中的具体形状与实际组件的形状信息毫无关联,只为便于识别和说明。显然,本领域技术人员在不付出任何创造性劳动的基础上,可根据这些附图获得其他附图。
图1为本发明整面导电的光学一致透明导电薄膜的结构示意图;
图2为本发明具有致密面状导电层的整版导电的复合透明导电薄膜的结构示意图;
图3为本发明具有光学适配层的光学一致透明导电薄膜的结构示意图;
图4为本发明导电油墨及保护层配方液中添加的纳米颗粒B的结构示意图;
图5为本发明未经纳米颗粒B焊接金属纳米线A的整面导电的光学一致透明导电薄膜表面结构示意图;
图6a和6b为本发明纳米颗粒B焊接前后光学一致透明导电薄膜表面结构示意图;
图7为本发明蚀刻后纳米颗粒B均匀分布于非导电区域,金属纳米线A和纳米颗粒B均匀分布于导电区域的示意图;
图8为本发明金属纳米线分布密度很低的薄膜表面微观图;
图9a和9b为本发明溅射光学适配层对光线反射率影响示意图;
图10为本发明带有防眩层的基膜对光线反射率影响示意图;
图11为本发明纳米颗粒B单独作为光学适配层的结构示意图;
图12为本发明导电油墨中不包含纳米颗粒B得到的整面导电的透明导电薄膜表面微观图;
图13为本发明导电油墨中包含纳米颗粒B得到的整面导电的透明导电薄膜表面微观图;
图14为本发明蚀刻后纳米颗粒B均匀分布于非导电区域,金属纳米线A和纳米颗粒B均匀分布于导电区域的透明导电薄膜表面微观图片;
图15为本发明金属纳米线A优选的纳米银线微观图片;
图16a、16b和16c所示为电容式刚性或柔性触控屏的应用中,导电层蚀刻后,纳米颗粒B在非导电区域均匀分布的结构示意图;
图17a、17c所示为电容式刚性或柔性触控屏的应用中,导电层蚀刻后,非导电区域无任何残留的示意图;
图17b所示为电容式刚性或柔性触控屏的应用中,X、Y传感线路分别位于不同导电膜的结构;
图18所示为所述X、Y传感线路位于同一导电面的结构俯视和侧视放大示意图。
附图标记:
1为衬底,2为金属纳米线导电层,3为保护层,4为电学适配层,5为光学适配层,6为球状纳米颗粒B,7为核壳结构纳米颗粒B的核,8为核壳结构纳米颗粒B的壳,9为立方状纳米颗粒B,10和11分别是异质结的两个组成部分,12为金属纳米线A,13是纳米颗粒B,14为蚀刻后的纳米颗粒B均匀分布的非导电区域,15为蚀刻后的导电区域,16为包含光学适配层的导电膜导电层蚀刻后的纳米颗粒B均匀分布的非导电区域,17为带有防眩层的基膜导电层蚀刻后的纳米颗粒B均匀分布的非导电区域,18为带有防眩层的基膜,19为纳米颗粒光学适配层,20为导电层蚀刻后的导电区域,21为贴合胶,22为均匀分布纳米颗粒B的非导电区域,23为无任何残留的非导电区域,24填充贴合胶的非导电区域,25为Y方向未被蚀刻的区域,26为X方向的导电连接层,27为Y方向导电区域,28为X方向导电区域,29为非导电区域,30为绝缘层。
具体实施方式
下面列举本发明实施例如下,本领域技术人员应该清楚,所列举的实施例仅仅是本发明一部分实施例,不应视为对本发明的具体限制。
实施例1
S1,将包括0.01%的纳米颗粒B、0.2%的高粘度纤维素HPMC作为成膜剂、0.01%的流平剂DOW CORNING DC-57、1%的金属纳米线A和包括98.78%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S3,将包括0.02%的树枝状高分子聚酰胺胺(PAMAM)、0.5%三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)、0.2%的1,6-己二醇二丙烯酸酯(HDDA)、0.1%的苯氧基乙基丙烯酸酯(PHEA)、0.15%的紫外吸收剂BASF Tinuvin 234、0.09%的醋酸丁酸纤维素(CAB)、0.08%的抗氧化剂Irganox 1098、8%的二丙酮醇、83.51%的异丙醇、7%的乙醇、0.3%的光引发剂DAROCUR 1173及0.05%的IRGACURE2595混合均匀,形成保护层配方液体;S4,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。最终形成光学一致透明导电薄膜如图1和图13所示。如图1所示,光学一致透明导电薄膜的结构包括衬底1、金属纳米线导电 层2和保护层3。可选的,衬底可包含增透层、减反层、防眩层、硬化层中的一层或多层,可不包含功能层。图13为光学一致透明导电薄膜表面的微观图片,金属纳米线A和纳米颗粒B均匀分布于导电层。
实施例2
S1,将包括0.01%的纳米颗粒B、0.2%的高粘度纤维素CMC作为成膜剂、0.01%的流平剂DOW CORNING DC-57、1.5%的金属纳米线A和包括98.28%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S3,将包括0.01%的树枝状高分子羟基改性树枝状聚酰胺胺(PAMAM-OH)、0.01%的氨羧络合剂是乙二胺四乙酸(EDTA),0.8%三羟甲基丙烷三丙烯酸酯(TMPTA)、0.2%的1,6-己二醇二丙烯酸酯(HDDA)、0.1%的苯氧基乙基丙烯酸酯(PHEA)、0.15%的紫外吸收剂BASF Tinuvin 234、0.3%的醋酸丁酸纤维素(CAB)、0.08%的抗氧化剂Irganox 1010、8%的二丙酮醇、83%的异丙醇、7%的乙醇、0.3%的引发剂DAROCUR 1173及0.05%的IRGACURE 2595混合均匀,形成保护层配方液体;S4,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。最终形成光学一致透明导电薄膜如图1和图13所示。
实施例3
S1,将包括0.5%的纳米颗粒B、0.8%的高粘度纤维素HPMC作为成膜剂、0.1%的流平剂TEGO Glide 410、1%的金属纳米线A和包括97.6%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层,如图5所示,金属纳米线A12和纳米颗粒B13均匀分布于衬底表面,形成面状导电网络;S3,对导电层进行红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,通过调节后处理的参数,如频率、能量、处理时间,使导电层中的部分纳米颗粒B熔融并二次生长,充当媒介,焊接金属纳米线A,如图6a和6b所示,如图6a所示,纳米颗粒B焊接前,金属纳米线A和纳米颗粒B均匀分布于导电层;如图6b所示,在一定的条件下,纳米颗粒B通过熔融并二次生长,焊接相近或直接搭接的金属纳米线A;S4,将包括0.005%的树枝状高分子聚酰胺胺(PAMAM)、1%乙氧基化三羟甲基丙烷三丙烯酸酯(EO-TMPTA)、0.5%的丙烯酸异冰片酯(IBOA)、0.2%的苯氧基乙基丙烯酸酯(PHEA)、0.12%的紫外吸收剂BASF Tinuvin 144、0.09%的醋酸丁酸纤维素(CAB)、0.1%的抗氧化剂SONGNOX 4150、8%的二丙酮醇、82.585%的异丙醇、7%的乙醇、0.4%的引发剂IRGACURE 184混合均匀,形成保护层配方液体;S5,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。最终形成光学一致透明导电薄膜。
实施例4
S1,将包括0.5%的纳米颗粒B、0.8%的高粘度纤维素HPMC作为成膜剂、0.1%的流平剂BYK-345、1%的金属纳米线A和包括97.6%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S3,激光蚀 刻导电层,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域;S4,将包括0.04%的树枝状高分子羟基改性聚酰胺胺(PAMAM-OH)、0.5%三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)、0.2%的丙烯酸异冰片酯(IBOA)、0.1%的邻苯二甲酸二乙二醇二丙烯酸酯(PDDA)、0.005%的紫外吸收剂Tinuvin 123、0.5%的醋酸丁酸纤维素(CAB)、0.005%的抗氧化剂Irganox 1076、10%的二丙酮醇、83.35%的异丙醇、5%的乙醇、0.3%的引发剂IRGACURE 2595混合均匀,形成保护层配方液体;S5,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。最终形成光学一致透明导电薄膜。如图7和图14所示,14为蚀刻后的纳米颗粒B均匀分布的非导电区域,15为蚀刻后的导电区域,蚀刻后,金属纳米线A和纳米颗粒B均匀分布于非蚀刻区域,即导电区域,纳米颗粒B均匀分布于蚀刻区域,即非导电区域,并且相互之间不形成导电通路,导电区域和非导电区域形成光学一致透明导电薄膜。
实施例5
S1,将包括0.5%的纳米颗粒B、0.8%的高粘度纤维素HPC作为成膜剂、0.05%的流平剂BYK-345、0.5%的金属纳米线A和包括98.15%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用溅射的方式,在衬底上溅射一层金属层或陶瓷层,形成光学适配层;S3,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S4,对导电层进行红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,通过调节后处理的参数,如频率、能量、处理时间,使导电层中的部分纳米颗粒B熔融并二次生长,充当媒介,焊接金属纳米线A;S5,激光蚀刻导电层,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域;S6,将包括0.008%的树枝状高分子聚酰胺胺(PAMAM)、1%三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)、0.8%的1,6-己二醇二丙烯酸酯(HDDA)、0.3%的丙烯酸异冰片酯(IBOA)、0.3%的紫外吸收剂BASF Tinuvin 765、2%的醋酸丁酸纤维素(CAB)、0.3%的抗氧化剂Irganox 168、8%的二丙酮醇、80.192%的异丙醇、7%的乙醇、0.1%的引发剂DAROCUR 1173混合均匀,形成保护层配方液体;S7,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。最终形成光学一致透明导电薄膜。如图9a和9b所示,为溅射光学适配层对光线反射率影响示意图,16为包含光学适配层的导电膜导电层蚀刻后的纳米颗粒B均匀分布的非导电区域,光学适配层使衬底和光学一致导电层形成折射率补偿,减少蚀刻后导电区域和非导电区域的反射率差值,减少视觉反差。
实施例6
S1,将包括0.5%的纳米颗粒B、5%的高粘度纤维素HPMC作为成膜剂、1%的流平剂BYK-301、0.5%的金属纳米线A和包括93%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S3,将包括0.02%的树枝状高分子聚酰胺胺(PAMAM)、0.6%三羟甲基丙烷三丙烯酸酯(TMPTA)、0.1%的1,6-己二醇二丙烯酸酯(HDDA)、0.2%的紫外吸收剂BASF Tinuvin 765、0.15%的醋酸丁 酸纤维素(CAB)、0.1%的抗氧化剂Irganox 1098、8%的二丙酮醇、83.33%的异丙醇、7%的乙醇、0.5%的引发剂IRGACURE 184混合均匀,形成保护层配方液体;S4,在导电层表面涂布保护液,热固化或紫外固化后形成保护层;S5,在保护层表面涂覆致密面状导电层,形成的整版导电的复合透明导电薄膜。
如图2所示,4为电学适配层,为保护层外具有致密面状导电层的整版导电的复合透明导电薄膜的结构示意图。面状导电层其介电常数与金属纳米线导电层介电常数可适配,所述面状导电层具有强耐腐蚀性,包括酸、碱、氯化物、H 2S气体等。可用于电磁屏蔽、智能窗、智能手写板的等方面。
实施例7
S1,将包括0.5%的纳米颗粒B、5%的高粘度纤维素HPMC作为成膜剂、1%的流平剂BYK-301、0.5%的金属纳米线A和包括93%的溶剂(包括水、乙醇和异丙醇)混合均匀,形成导电油墨;S2,采用狭缝涂布方式在衬底上涂布导电油墨,形成导电层;S3,对导电层进行红外辐射处理、微波辐射处理、氙灯脉冲处理、光子烧结处理,通过调节后处理的参数,如频率、能量、处理时间,使导电层中的部分纳米颗粒B熔融并二次生长,充当媒介,焊接金属纳米线A;S4,将包括0.04%的树枝状高分子羟基改性聚酰胺胺(PAMAM-OH)、1%二缩三丙二醇二丙烯酸酯(TPGDA)、0.5%三羟甲基丙烷三甲基丙烯酸酯(TMPTMA)、0.3%的苯氧基乙基丙烯酸酯(PHEA)、0.5%的紫外吸收剂BASF Tinuvin 791FB、0.1%的醋酸丁酸纤维素(CAB)、0.1%的抗氧化剂Irganox 1076、8%的二丙酮醇、84.17%的异丙醇、5%的乙醇、0.2%的引发剂IRGACURE 184及0.09%的IRGACURE 2595混合均匀,形成保护层配方液体;S5,在导电层表面涂布保护液,热固化或紫外固化后形成保护层。S6,在保护层表面涂覆致密面状导电层,形成的整版导电的复合透明导电薄膜,如图2所示,为保护层外具有致密面状导电层的整版导电的复合透明导电薄膜的结构示意图。
本发明还可具有其他实施例,保护层中的树状高分子可以为羧基改性的PAMAM或羟基改性的PAMAM,同时可以添加其他络合剂,添加预聚物,改变单体、抗氧化剂、紫外吸收剂的种类和添加量;涂布过程中可以采用电晕处理、等离子体处理等方式进行优化。
本发明提出的一种光学一致透明导电薄膜及其设计方法,方法简单易行,条件温和,可解决金属纳米导电薄膜后处理刻蚀痕明显、金属材料易被腐蚀和金属离子迁移问题,导电膜均匀性好,稳定性佳,可以满足不同的后端应用要求。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (12)

  1. 一种光学一致透明导电薄膜,其特征在于,所述光学一致透明导电薄膜包括:衬底、光学一致导电层、保护层;
    其中,所述衬底包括刚性或/和柔性的衬底;
    所述光学一致导电层包括导电区域,所述导电区域包括金属纳米线A和纳米颗粒B,金属纳米线A在导电区域形成相互叠加或交联的网络,所述纳米颗粒B的作用是焊接金属纳米线A;所述纳米颗粒B均匀分布在导电区域,纳米颗粒B对金属纳米线A的导电性影响小于50%;所述光学一致导电层包括在导电区域蚀刻金属纳米线A后得到的非导电区域,所述非导电区域包括纳米颗粒B,纳米颗粒B在非导电区域均匀分布,在非导电区域纳米颗粒B相互之间不形成连续的导电通路;所述纳米颗粒B其气化温度高于金属纳米线A;所述金属纳米线A其腐蚀速率大于纳米颗粒B的腐蚀速率;所述纳米颗粒B与金属纳米线A的折射率适配;
    所述保护层位于光学一致导电层薄膜表面,不改变表面电阻值;所述保护层中包含具有螯合作用的树状高分子,所述树状高分子具有捕捉金属离子形成螯合物以抑制金属离子迁移的作用;所述保护层还包括分散于保护层中的纳米颗粒B,所述纳米颗粒B具有降低导电区域的色度的作用。
  2. 根据权利要求1所述光学一致透明导电薄膜,其特征在于,所述刚性衬底包括玻璃、PMMA有机玻璃、PC聚碳酸酯或丙烯酸树中的一种;所述柔性衬底包括聚酯、聚乙烯、环烯烃聚合物、无色聚酰亚胺、聚丙烯或聚乙烯中的一种。
  3. 根据权利要求1所述光学一致透明导电薄膜,其特征在于,所述保护层的成分包含具有螯合作用的树枝状高分子,所述树枝状高分子包括树枝状聚酰胺胺、羧基改性的树枝状聚酰胺胺和羟基改性树枝状聚酰胺胺中的一种或几种。
  4. 根据权利要求1所述光学一致透明导电薄膜,其特征在于,光学一致透明导电薄膜还包括功能层,所述功能层包括增透层、减反层、防眩层、光学适配层、电学适配层和硬化层中的一种或其任意组合。
  5. 根据权利要求4所述光学一致透明导电薄膜,其特征在于,所述增透层的成分包括含氟聚合物,所述增透层位于衬底与导电层中间,或衬底背面,或保护层上方;
    所述减反层的成分包括含氟聚合物或全氟聚合物,所述减反层位于衬底与导电层中间,或衬底背面,或保护层上方;
    所述防眩层的成分包括氟系化合物、硅氧烷系化合物、掺杂氧化物纳米材料或透明有机高分子中的一种或几种,所述防眩层位于衬底背面;
    所述光学适配层通过溅射、蒸镀或涂布方式形成的金属层或陶瓷层,所述光学适配层的成分包括金属、合金、氧化物纳米材料及其组合,光学适配层位于导电层与衬底之间;
    所述电学适配层为面状导电层或静电层,所述面状导电层或静电层包括PEDOT:PSS、 透明导电金属氧化物、石墨烯、碳纳米管和碳黑中的一种或几种,所述电学适配层位于保护层上方或下方。
  6. 根据权利要求1所述光学一致透明导电薄膜,其特征在于,所述纳米颗粒B的形貌包括球状、核壳、棒、异质结或其任意组合;所述纳米颗粒B的材质包括金属、合金、氧化物、半导体、导体、绝缘体或其任意组合;所述纳米颗粒B的尺寸≤200nm;所述金属纳米线A的结构包括:核壳纳米线、空心纳米线和实心纳米线中的一种或几种;所述金属纳米线A的直径为5-200nm,长径比≥100。
  7. 一种权利要求1-6任一所述光学一致透明导电薄膜的制备方法,包括以下步骤或其组合:
    S1,在衬底上涂布导电油墨形成导电区域,所述导电油墨包括纳米颗粒B和金属纳米线A;
    S2,在S1形成的导电区域处蚀刻,将金属纳米线A气化或腐蚀,而纳米颗粒B保留于蚀刻处,形成非导电区域;
    S3,S1形成的导电区域和S2形成的非导电区域,构成光学一致导电层,导电层上涂布含有树状高分子的保护层配方液,热固化或紫外固化后形成保护层。
  8. 根据权利要求要求7所述制备方法,其特征在于,所述导电油墨配方中包括0.01-0.5%的金属纳米颗粒B、0.01%-5%的成膜剂、0.002-1%的流平剂、0.05-5%的金属纳米线A,以及包括70-99%的导电油墨溶剂。
  9. 根据权利要求7所述制备方法,其特征在于,保护层配方液的成分包括0.001%-0.05%树枝状高分子、0.07%-8%单体、0.05%-1.5%引发剂、0.1%-5%预聚物,所述单体包括HEA、TPGDA、HPA、DAA、TMPTA、TMPTMA、EO-TMPTA、环氧丙烯酯、EO-CHA、DPGDA、IBOA、PGDA、PDDA、TEGDA、HDDA和BDDA中的一种或几种;所述引发剂包括α-羟酮基引发剂、酰基膦氧化物和酮基引发剂中的一种或几种;所述预聚物包括脂肪族聚氨酯丙烯酸酯预聚物、芳香族聚氨酯丙烯酸酯预聚物、聚氨酯甲基丙烯酸酯、邻苯二甲酸二烯丙酯预聚物、环氧丙烯酸酯和环氧甲基丙烯酸酯中的一种或几种。
  10. 根据权利要求9所述制备方法,其特征在于,所述保护层配方液的成分中还包含0.003%-0.3%络合剂、0.005%-0.4%稳定剂和0.003%-0.5%抗氧化剂中的一种或几种;
    其中,所述络合剂络合金属离子,所述络合剂包括:氨羧络合剂、8-羟基喹啉、双硫腙、2,2'-联吡啶(bipy)、邻菲咯啉(C12H8N2)、酒石酸钾钠、柠檬酸铵和无机络合剂多磷酸盐中的一种或几种;所述稳定剂包括BASF紫外线吸收剂C81、Chimassorb 944、Tinuvin 770DF、Tinuvin 900、Tinuvin 123、Tinuvin 326、Tinuvin 234、Tinuvin 765、Tinuvin 791FB、Tinuvin 384-2、Tinuvin 144、UV70和UV90中的一种或几种;所述抗氧化剂包括SONGNOX 4150、Irganox 1098、Irganox 1076、Irganox 1010和Irganox 168中的一种或几种。
  11. 根据权利要求7所述制备方法,其特征在于,所述S1步骤还包括第一优化处理, 所述第一优化处理适用于该步骤的任意阶段,所述第一优化处理包括:电晕处理和等离子体处理;所述S2步骤还包括第二优化处理,所述第二优化处理适用于该步骤的任意阶段;S3步骤包括第二优化处理,所述第二优化处理适用于该步骤的所有阶段;所述第二优化处理包括:红外辐射处理、微波辐射处理、氙灯脉冲处理和光子烧结处理。
  12. 权利要求1-6任一所述光学一致透明导电薄膜的应用,其特征在于,所述应用为,在刚性或柔性触控屏、刚性或柔性显示器、手机天线电路、红外光学成像元件、光电传感器、电磁屏蔽、智能窗、智能手写板或\和太阳能电池方面的应用。
PCT/CN2020/112487 2019-07-29 2020-08-31 一种光学一致透明导电薄膜及其制备方法 WO2021018315A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/631,854 US12002602B2 (en) 2019-07-29 2020-08-31 Optically consistent transparent conductive film and preparation method thereof
JP2022506038A JP7425180B2 (ja) 2019-07-29 2020-08-31 光学的整合性を有する透明導電薄膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910689170.8A CN110415865B (zh) 2019-07-29 2019-07-29 一种光学一致透明导电薄膜及其制备方法
CN201910689170.8 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021018315A1 true WO2021018315A1 (zh) 2021-02-04

Family

ID=68363759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112487 WO2021018315A1 (zh) 2019-07-29 2020-08-31 一种光学一致透明导电薄膜及其制备方法

Country Status (4)

Country Link
US (1) US12002602B2 (zh)
JP (1) JP7425180B2 (zh)
CN (1) CN110415865B (zh)
WO (1) WO2021018315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230350098A1 (en) * 2022-04-28 2023-11-02 Tpk Advanced Solutions Inc. Optical stack structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110415865B (zh) 2019-07-29 2020-07-03 北京华纳高科科技有限公司 一种光学一致透明导电薄膜及其制备方法
CN111710475B (zh) * 2020-06-30 2020-12-29 暨南大学 一种消影的图案化透明导电电极制备方法
CN112110652B (zh) * 2020-08-14 2022-12-02 江西沃格光电股份有限公司 防眩玻璃的制造方法及防眩玻璃
CN112904637A (zh) * 2021-02-01 2021-06-04 义乌清越光电科技有限公司 一种电致变色显示器及其制备方法
CN114974664A (zh) * 2021-02-22 2022-08-30 天材创新材料科技(厦门)有限公司 光学一致透明导体及其制造方法
TWI790610B (zh) * 2021-05-10 2023-01-21 大陸商天材創新材料科技(廈門)有限公司 透明隔熱薄膜
US11524484B1 (en) 2021-06-15 2022-12-13 Cambrios Film Solutions Corporation Transparent heat-insulating film
CN113409992B (zh) * 2021-06-18 2022-08-05 江苏纳美达光电科技有限公司 一种柔性复合导电膜及其制备方法和应用
CN113488287A (zh) * 2021-07-22 2021-10-08 苏州诺菲纳米科技有限公司 一种降低纳米银线导电膜蚀刻痕的方法
CN113667187B (zh) * 2021-08-13 2022-08-05 广州中达新材料科技有限公司 一种光反射材料及其制备方法和应用
US12081689B2 (en) * 2022-09-15 2024-09-03 Apple Inc. Shielding of optical element from external electrical aggression
CN115521702B (zh) * 2022-09-23 2023-10-17 湖南纳昇电子科技有限公司 一种可增透、高硬度的pedot:pss电子涂层及其制备方法和应用
CN117393654B (zh) * 2023-12-06 2024-04-09 浙江晶科能源有限公司 光伏电池制备方法和光伏电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094033A (ja) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc 透明導電材料その製造方法及びそれを用いた透明導電素子
CN102655031A (zh) * 2011-03-01 2012-09-05 新科实业有限公司 用于光电子器件的透明导电膜
CN103460304A (zh) * 2011-12-19 2013-12-18 松下电器产业株式会社 透明导电膜、带有透明导电膜的基材及其制备方法
CN104145313A (zh) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 带有融合金属纳米线的透明导电电极、它们的结构设计及其制造方法
CN104299681A (zh) * 2014-09-29 2015-01-21 上海科慧太阳能技术有限公司 一种复合透明导电薄膜及其制备方法
KR101631854B1 (ko) * 2015-09-09 2016-06-20 인천대학교 산학협력단 나노 와이어 및 그 제조방법
CN110415865A (zh) * 2019-07-29 2019-11-05 北京华纳高科科技有限公司 一种光学一致透明导电薄膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137223C (zh) 2000-11-24 2004-02-04 佳隆(烟台)实业有限公司 一种纳米涂膜材料及其制备方法
JP4059710B2 (ja) 2001-10-23 2008-03-12 シャープ株式会社 防眩性フィルム及び偏光素子及び表示装置の製造方法
JP4517230B2 (ja) 2004-08-31 2010-08-04 三菱マテリアル株式会社 金属微粒子含有組成物、およびその用途
JP2008197320A (ja) 2007-02-13 2008-08-28 Nippon Paint Co Ltd 防眩性コーティング組成物、防眩フィルムおよびその製造方法
JP2013522814A (ja) * 2010-02-24 2013-06-13 カンブリオス テクノロジーズ コーポレイション ナノワイヤベースの透明導体およびそれをパターン形成するための方法
JP4968414B2 (ja) * 2010-07-05 2012-07-04 Dic株式会社 透明導電層付き基体及びその製造方法、並びにタッチパネル用透明導電膜積層体、タッチパネル
US9318230B2 (en) 2013-05-31 2016-04-19 Basf Corporation Nanostructure dispersions and transparent conductors
US9761349B2 (en) 2013-07-08 2017-09-12 Toyobo Co., Ltd. Electrically conductive paste
JP2015040316A (ja) 2013-08-20 2015-03-02 デクセリアルズ株式会社 ナノ粒子担持金属ナノワイヤー、分散液、透明導電膜及びその製造方法、並びに、タッチパネル
CN105224116A (zh) * 2014-06-12 2016-01-06 宸鸿科技(厦门)有限公司 一种触控面板
KR102225511B1 (ko) * 2014-08-26 2021-03-08 삼성전자주식회사 수성 조성물, 이를 이용한 전도성 박막 제조 방법과 이로부터 제조된 전도성 박막, 및 이를 포함하는 전자 소자
CN105786242A (zh) * 2016-02-02 2016-07-20 广州聚达光电有限公司 一种柔性触控屏传感薄膜及其制备方法
CN109346211B (zh) * 2018-08-29 2020-12-11 汉思高电子科技(义乌)有限公司 一种复合结构透明导电膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094033A (ja) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc 透明導電材料その製造方法及びそれを用いた透明導電素子
CN102655031A (zh) * 2011-03-01 2012-09-05 新科实业有限公司 用于光电子器件的透明导电膜
CN103460304A (zh) * 2011-12-19 2013-12-18 松下电器产业株式会社 透明导电膜、带有透明导电膜的基材及其制备方法
CN104145313A (zh) * 2013-04-05 2014-11-12 苏州诺菲纳米科技有限公司 带有融合金属纳米线的透明导电电极、它们的结构设计及其制造方法
CN104299681A (zh) * 2014-09-29 2015-01-21 上海科慧太阳能技术有限公司 一种复合透明导电薄膜及其制备方法
KR101631854B1 (ko) * 2015-09-09 2016-06-20 인천대학교 산학협력단 나노 와이어 및 그 제조방법
CN110415865A (zh) * 2019-07-29 2019-11-05 北京华纳高科科技有限公司 一种光学一致透明导电薄膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230350098A1 (en) * 2022-04-28 2023-11-02 Tpk Advanced Solutions Inc. Optical stack structure
US12032119B2 (en) * 2022-04-28 2024-07-09 Tpk Advanced Solutions Inc. Optical stack structure

Also Published As

Publication number Publication date
JP7425180B2 (ja) 2024-01-30
CN110415865B (zh) 2020-07-03
US12002602B2 (en) 2024-06-04
JP2023530378A (ja) 2023-07-18
US20220285044A1 (en) 2022-09-08
CN110415865A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2021018315A1 (zh) 一种光学一致透明导电薄膜及其制备方法
US11328834B2 (en) Nanowires-based transparent conductors
TWI496171B (zh) 導電膜及其製造方法
TWI504701B (zh) 導電性構件、其製造方法、組成物、觸控面板及太陽電池
EP1947702B1 (en) Method of fabricating nanowire based transparent conductors
CN106575541A (zh) 用于形成具有稠合网络的透明导电膜的金属纳米线油墨
WO2011119707A9 (en) Etch patterning of transparent conductors with metal nanowires
KR20140042798A (ko) 도전성 부재, 그 제조 방법, 터치 패널 및 태양 전지
SG183399A1 (en) Nanowire-based transparent conductors and methods of patterning same
JP2012003900A (ja) 導電膜及びその製造方法、並びにタッチパネル及び集積型太陽電池
KR101272713B1 (ko) 2층 구조의 하이브리드 투명 전극 및 그 제조 방법
CN114334273A (zh) 金属纳米线复合薄膜及其制备方法
JP2013149393A (ja) 透明導電部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848193

Country of ref document: EP

Kind code of ref document: A1