WO2021018049A1 - 无人飞行器的启动方法、无人飞行器及遥控装置 - Google Patents

无人飞行器的启动方法、无人飞行器及遥控装置 Download PDF

Info

Publication number
WO2021018049A1
WO2021018049A1 PCT/CN2020/104584 CN2020104584W WO2021018049A1 WO 2021018049 A1 WO2021018049 A1 WO 2021018049A1 CN 2020104584 W CN2020104584 W CN 2020104584W WO 2021018049 A1 WO2021018049 A1 WO 2021018049A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
unmanned aerial
aerial vehicle
access information
digital
Prior art date
Application number
PCT/CN2020/104584
Other languages
English (en)
French (fr)
Inventor
冯银华
张东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021018049A1 publication Critical patent/WO2021018049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle starting method, an unmanned aerial vehicle and a remote control device.
  • Unmanned aerial vehicles With the continuous development of unmanned aerial vehicle aerial photography technology, more and more consumer-grade unmanned aerial vehicles are also being developed. Unmanned aerial vehicles are gradually becoming more and more popular. There are many ways to control unmanned aerial vehicles, such as remote control, mobile phone, computer and other mobile terminals.
  • the related technology has at least the following problems: At present, before the user uses the mobile terminal to control the unmanned aerial vehicle, the user needs to manually trigger it, and long press the power button for 3-5 seconds to boot successfully. The process is not smart, complicated and the user experience is poor.
  • the embodiments of the present invention provide an unmanned aerial vehicle startup method, an unmanned aerial vehicle, and a remote control device that simplify the startup process of the unmanned aerial vehicle and improve the user experience.
  • an unmanned aerial vehicle startup method applied to an unmanned aerial vehicle the unmanned aerial vehicle is provided with a battery module, and the method includes:
  • the battery module When the battery module is normally connected to the unmanned aerial vehicle, send infrared access information to the remote control device communicatively connected with the unmanned aerial vehicle, so that the remote control device feeds back infrared control according to the infrared access information instruction;
  • the unmanned aerial vehicle is controlled to start.
  • the method when the battery module is normally connected to the UAV, before sending infrared access information to the remote control device, the method includes:
  • the working state it is determined whether the battery module has been normally connected to the UAV.
  • the determining whether the battery membrane group has been connected to the UAV according to the working state includes:
  • the working state includes a connection state and a power state
  • the sending infrared access information to the remote control device when the battery module is normally connected to the UAV includes:
  • the digital access information is modulated into the corresponding infrared access information, and the infrared access information is sent to the remote control device.
  • controlling the activation of the unmanned aerial vehicle according to the infrared control instruction includes:
  • a method for starting an unmanned aerial vehicle, applied to a remote control device comprising: receiving infrared access information;
  • the generating corresponding infrared control instructions according to the infrared access information includes:
  • the digital control instructions are modulated into corresponding infrared control instructions.
  • the generating digital prompt information according to the infrared access information includes:
  • the digital prompt information is generated.
  • the remote control device is provided with an image transmission module
  • the modulating the digital control instruction into a corresponding infrared control instruction includes:
  • the digital control command is modulated by the image transmission module into a corresponding infrared control command.
  • an unmanned aerial vehicle includes:
  • An arm connected to the fuselage
  • the power device is arranged on the arm and is used to provide power for the unmanned aerial vehicle to fly;
  • An infrared emitting device is arranged in the body and used to send infrared access information and receive infrared control instructions issued by the remote control device;
  • the group can be used to perform the above-described unmanned aerial vehicle activation method applied to the unmanned aerial vehicle.
  • a remote control device the remote control device includes:
  • An infrared receiving device arranged in the housing, for receiving infrared access information and sending infrared control instructions for controlling the unmanned aerial vehicle;
  • the group device can be used to execute the above-mentioned method for starting an unmanned aerial vehicle applied to a remote control device.
  • the method for starting an unmanned aerial vehicle can firstly generate corresponding infrared access information when the battery module is normally connected to the unmanned aerial vehicle, and then according to the The infrared control command fed back by the infrared access information controls the activation state of the UAV. Therefore, the user can use the remote control device to remotely turn on the unmanned aerial vehicle, which makes the booting process intelligent and improves the user experience.
  • Figure 1 is a schematic diagram of an application environment of an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for starting an unmanned aerial vehicle according to one embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for starting an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the flow of S21 in Figure 2;
  • FIG. 5 is a schematic diagram of the flow of S23 in Figure 2;
  • FIG. 6 is a schematic flowchart of a method for starting an unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the flow of S32 in Figure 6;
  • FIG. 8 is a schematic diagram of the flow of S321 in FIG. 7;
  • FIG. 9 is a structural block diagram of an unmanned aerial vehicle starting device provided by one of the embodiments of the present invention.
  • FIG. 10 is a structural block diagram of an unmanned aerial vehicle starting device provided by another embodiment of the present invention.
  • Figure 11 is a structural block diagram of an unmanned aerial vehicle provided by one of the embodiments of the present invention.
  • Fig. 12 is a structural block diagram of a remote control device provided by another embodiment of the present invention.
  • the embodiment of the present invention provides an unmanned aerial vehicle startup method, unmanned aerial vehicle and remote control device, wherein the unmanned aerial vehicle startup method applied to the unmanned aerial vehicle first obtains the connection of the battery module of the unmanned aerial vehicle. And then generate corresponding infrared access information according to the access information, and then control the activation state of the unmanned aerial vehicle according to the infrared control instruction fed back by the infrared access information. Therefore, the user can use the remote control device to remotely turn on the unmanned aerial vehicle, which makes the booting process intelligent and improves the user experience.
  • the following examples illustrate the application environment of the starting method of the unmanned aerial vehicle.
  • FIG. 1 is a schematic diagram of an application environment of an unmanned aerial vehicle startup method provided by an embodiment of the present invention; as shown in FIG. 1, the application scene includes an unmanned aerial vehicle 10, an infrared wireless network 20, a remote control device 30 and a user 40.
  • the user 40 can use the remote control device 30 to control the UAV 10 through the infrared wireless network.
  • the unmanned aerial vehicle 10 may be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an umbrella-wing unmanned aerial vehicle, a flapping-wing unmanned aerial vehicle, and a helicopter model.
  • the unmanned aerial vehicle 10 may have a corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more functional modules may be added to the unmanned aerial vehicle 10 to enable the unmanned aerial vehicle 10 to realize corresponding functions.
  • the UAV 10 is provided with an infrared emitting device and a battery module.
  • the battery module After the battery module is connected to the UAV 10, the battery module can provide power for the UAV 10.
  • the infrared emission device is used to send infrared access information and receive infrared control instructions issued by the remote control device. For example, when the remote control device issues an infrared control instruction, the infrared emission device receives the infrared control instruction, and then causes The UAV 10 controls the activation state of the UAV 10 according to the infrared control instruction. After the battery module is connected to the UAV 10, the infrared emitting device may send the infrared access information obtained from the access information of the battery module to the remote control device 30.
  • the unmanned aerial vehicle 10 includes at least one flight control module, which serves as the control core for the flight and data transmission of the unmanned aerial vehicle 10, and has the ability to monitor, calculate and manipulate the flight and mission of the unmanned aerial vehicle.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may be any type of smart device used to establish a communication connection with the UAV 10, such as a mobile phone, a tablet computer, a notebook computer, or other mobile control terminals.
  • the remote control device 30 is equipped with an infrared receiving device for receiving infrared access information and sending infrared control instructions for controlling the unmanned aerial vehicle.
  • the remote control device 30 may be used to receive infrared access information generated by the UAV 10 when the battery module is normally connected to the UAV.
  • the remote control device 30 can also send an infrared control command generated according to the control command of the user 40 to the UAV 10 to control the activation state of the UAV 10.
  • the remote control device 30 can also be equipped with an image transmission module for controlling positioning images, pan-tilt shooting images, and aiming images return.
  • the image transmission module can also modulate the binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may also be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks are examples of interactive devices.
  • the remote control device 30 may be equipped with a touch screen, through which the user 40 receives remote control instructions for the UAV 10.
  • the unmanned aerial vehicle 10 and the remote control device 30 can also be integrated with existing image visual processing technology to further provide more intelligent services.
  • the UAV 10 may collect images through a dual-lens camera, and the remote control device 30 may analyze the images, so as to realize the gesture control of the UAV 10 by the user 40.
  • Fig. 2 is an embodiment of a method for starting an unmanned aerial vehicle provided by an embodiment of the present invention. This method can be performed by the unmanned aerial vehicle in FIG. 1.
  • the method may include but is not limited to the following steps:
  • the battery module When the battery module is normally connected to the UAV, send infrared access information to a remote control device so that the remote control device feeds back an infrared control instruction according to the infrared access information, wherein the remote control
  • the device is in communication connection with the UAV.
  • the battery module is the power source of the unmanned aerial vehicle 10.
  • the battery module can supply power to the unmanned aerial vehicle 10 normally.
  • the digital access information is generated first, and then the digital access information is modulated into the corresponding infrared access information.
  • the digital access information may be pulse position modulation (PPM) mode, and the digital access information of the binary digital signal can be modulated into a pulse sequence with a preset frequency to generate the infrared access information.
  • PPM pulse position modulation
  • the remote control device and the UAV may be communicatively connected via a wireless network.
  • the wireless network may be a wireless communication network based on any type of data transmission principle and used to establish a data transmission channel between two nodes.
  • the UAV and the remote control device are in communication connection based on an infrared communication protocol.
  • the infrared communication protocol is a transmission technology based on infrared.
  • the infrared transmitting device of the UAV before receiving the infrared control instruction, the infrared transmitting device of the UAV first sends the infrared access information. Accordingly, the infrared transmitting device of the UAV can obtain the remote control device according to the infrared Infrared control commands for access information feedback.
  • the infrared control instruction is a control instruction of a digital signal modulated into the infrared control instruction through an infrared communication protocol.
  • the UAV 10 demodulates the infrared control instruction into a digital control instruction, and then the UAV 10 controls the infrared control instruction according to the digital control instruction.
  • the infrared control command is an infrared power-on command
  • the infrared transmitter device of the UAV 10 receives the infrared power-on command and sends the infrared power-on command to the flight control module of the UAV 10 Group
  • the flight control module demodulates the infrared boot command into a digital boot command of a binary digital signal
  • the UAV 10 controls the boot of the UAV 10 according to the digital boot command.
  • the flight control module can be used to modulate the digital control command into the infrared control command, and can also demodulate the infrared control command into a digital control command.
  • the flight control module also has the ability to monitor, calculate and manipulate the flight and mission of the UAV, including a set of equipment for controlling the launch and recovery of the UAV.
  • the embodiment of the present invention provides a method for starting an unmanned aerial vehicle.
  • the method first generates corresponding infrared access information when the battery module is normally connected to the unmanned aerial vehicle, and then according to the infrared connection Input the infrared control command of information feedback to control the start state of the UAV. Therefore, the user can use the remote control device to remotely turn on the unmanned aerial vehicle, which makes the booting process intelligent and improves the user experience.
  • the method further includes the following steps:
  • the working state of the UAV 10 can be monitored in real time, and the working state includes a connection state and a power state. For example, it is monitored in real time whether the battery module is connected to the UAV; whether the power of the battery module meets a preset power, and so on.
  • the battery module when the battery module is connected to the UAV, and the power of the battery module meets the preset power, it is determined that the battery module has been connected to the UAV.
  • S21 includes the following steps:
  • the digital access information of the binary digital signal is generated.
  • the digital signal refers to a signal in which the independent variable is discrete and the dependent variable is also discrete.
  • the independent variable of this signal is represented by an integer
  • the dependent variable is represented by one of the finite numbers.
  • the size of a digital signal is usually expressed by a finite binary number. For example, a binary number with a word length of 2 digits can represent 4 kinds of digital signals, which are 00, 01, 10, and 11; if the signal changes range Between -1 and 1, these 4 binary numbers can represent 4 digital ranges, namely [-1,-0.5), [-0.5,0), [0,0.5) and [0.5,1].
  • the digital signal uses two physical states to represent 0 and 1, its ability to resist the interference of the material itself and environmental interference is much stronger than that of the analog signal; in the signal processing of modern technology, the digital signal plays an increasingly important role
  • Large, almost complex signal processing is inseparable from digital signals; in other words, as long as the method of solving problems can be expressed in mathematical formulas, computers can be used to process digital signals that represent physical quantities.
  • S212 Modulate the digital access information into corresponding infrared access information.
  • the digital access information may be pulse position modulation (PPM) mode, and the digital access information of the binary digital signal can be modulated into a pulse sequence with a preset frequency to generate the infrared access information.
  • PPM pulse position modulation
  • the infrared data communication standard infrared communication protocol is an infrared-based transmission technology.
  • the infrared data communication standard includes two types of basic protocols and protocols for specific application fields. Similar to the TCP-IP protocol, it is a layered structure whose structure forms a stack.
  • S23 includes the following steps:
  • S231 Demodulate the infrared control command into a digital control command.
  • the infrared control instruction is analyzed; for example, the light pulse of the infrared control instruction is converted into an electrical signal, and then after processing such as amplification and filtering, it is sent to the image transmission module for demodulation and restored to Binary digital signal.
  • the infrared emitting tube includes pulse oscillator, driving tube, infrared emitting tube and other parts.
  • the pulse oscillator is composed of NE555 timer, resistor and capacitor to generate 38kHz-40KHz pulse sequence as carrier signal; infrared transmitting tube selects TSAL6238 produced by Vishay company to emit 950nm infrared beam.
  • FIG. 6 is a schematic flowchart of a method for starting an unmanned aerial vehicle provided by an embodiment of the present application. The method may be executed by the remote control device 30 in FIG. 1.
  • the method may include but is not limited to the following steps:
  • S31 Receive infrared access information.
  • the flight control module of the UAV adopts a pulse position modulation (PPM) method to modulate the infrared access information of the binary digital signal into a pulse sequence of a preset frequency to generate the infrared infrared access information .
  • PPM pulse position modulation
  • the infrared emitting device of the UAV 10 serves as the sending end of the infrared access information, driving the infrared emitting tube to send out in the form of light pulses.
  • the infrared receiving device of the remote control device 30 serves as an infrared receiving end, which can receive the infrared access information in the form of light pulses.
  • the infrared access information includes the access information of the battery module, which means that the working state of the battery module is normal, and the battery module is currently installed normally.
  • S32 Generate a corresponding infrared control instruction according to the infrared access information.
  • the image transmission module of the remote control device 30 analyzes the infrared access information; for example, the light pulse emitted by the infrared emission device is converted into an electrical signal, which is then amplified and filtered before being sent to The image transmission module demodulates and restores to a binary digital signal. According to the digital signal that is restored to the binary system, the user 40 is prompted to perform corresponding operation control. After receiving the control instruction of the user 40, the image transmission module of the remote control device 30 modulates the control instruction to generate a corresponding The infrared control instruction, for example, modulates the digital control instruction into a pulse sequence with a preset frequency to generate the infrared control instruction.
  • S33 Send the infrared control instruction to the unmanned aerial vehicle to control the activation state of the unmanned aerial vehicle.
  • the infrared receiving device of the remote control device sends the generated infrared control command based on the infrared data communication standard using an infrared emitting tube in the form of light pulses, so that the infrared emitting device of the UAV 10 receives
  • the infrared control command further controls the activation state of the UAV 10.
  • the infrared data communication standard infrared communication protocol is an infrared-based transmission technology.
  • the infrared data communication standard includes two types of basic protocols and protocols for specific application fields. Similar to the TCP-IP protocol, it is a layered structure whose structure forms a stack.
  • the infrared emitting tube includes pulse oscillator, driving tube, infrared emitting tube and other parts.
  • the pulse oscillator is composed of NE555 timer, resistor and capacitor to generate 38kHz-40KHz pulse sequence as carrier signal; infrared transmitting tube selects TSAL6238 produced by Vishay company to emit 950nm infrared beam.
  • S32 includes the following steps:
  • S321 Generate digital prompt information according to the infrared access information.
  • the image transmission module of the remote control device 30 analyzes the infrared access information; for example, it converts the light pulses emitted by the infrared receiving device into electrical signals, and then sends them to The image transmission module demodulates and restores to a binary digital signal. According to the restoration to the binary digital signal, a digital prompt message is generated.
  • the received infrared access information is parsed to obtain a message instruction of the corresponding digital signal, that is, a prompt box pops up on the display interface to prompt the user 40 that the battery module of the current aircraft has been installed normally, whether the aircraft needs to be turned on now, and then The user 40 operates the display interface according to his wishes.
  • a prompt box pops up on the display interface to prompt the user 40 that the battery module of the current aircraft has been installed normally, whether the aircraft needs to be turned on now, and then the user 40 operates the display interface according to his wishes, and obtains that the user 40 is in the display Digital control instructions on the interface. For example, the display interface displays “Do you need to turn on the aircraft now?” and the user 40 selects “Yes”, then the digital control instruction is to turn on the UAV 10.
  • S323 Modulate the digital control instruction into a corresponding infrared control instruction.
  • the digital control instruction needs to be modulated into a corresponding infrared control instruction before the digital control instruction is sent.
  • the digital control instruction is sent to the image transmission module; the digital control instruction is modulated by the image transmission module into a corresponding infrared control instruction.
  • the image transmission module of the UAV 10 uses pulse position modulation (PPM) to modulate a binary digital signal into a pulse sequence with a preset frequency and a duty cycle of 1/3.
  • PPM pulse position modulation
  • the range is 30khz-60khz.
  • the range of the preset frequency is 38khz-40khz.
  • S321 includes the following steps:
  • S3211 Demodulate the infrared access information into digital access information.
  • the light pulse emitted by the infrared receiving device is converted into an electrical signal, and then after amplifying, filtering, etc., it is sent to the image transmission module for demodulation and restored to a binary digital signal, thereby analyzing the corresponding digital access information.
  • S3212 Generate the digital prompt information according to the digital access information.
  • the prompt digital information is generated. For example, after parsing the received infrared access information to obtain the access information of the corresponding digital signal, a prompt box pops up on the display interface, and the prompt box contains the digital prompt information to remind the user 40 of the current aircraft The battery module has been installed normally, do you need to turn on the aircraft now, and then the user 40 operates the display interface according to his wishes.
  • the embodiments of the present application provide a starting device 70 for an unmanned aerial vehicle.
  • the starting device 70 of the unmanned aerial vehicle includes: a first infrared information sending module 71, a first infrared information receiving module 72 and a flight control module 73.
  • the first infrared information sending module 71 is configured to generate corresponding infrared access information when the battery module is normally connected to the UAV.
  • the first infrared information sending module 71 is also used to send the infrared access information.
  • the first infrared information receiving module 72 is configured to receive infrared control instructions fed back according to the infrared access information.
  • the flight control module 73 is configured to obtain an infrared control command fed back according to the infrared access information
  • the battery module is normally connected to the UAV, corresponding infrared access information is generated, and then the infrared control instructions fed back by the infrared access information are controlled to Describe the startup state of the UAV. Therefore, the user can use the remote control device to remotely turn on the unmanned aerial vehicle, which makes the booting process intelligent and improves the user experience.
  • the starting device of the UAV further includes a monitoring module 74 and a judgment module 75,
  • the monitoring module 74 is used to monitor the working status of the battery module.
  • the judgment module 75 is configured to determine whether the battery module has been normally connected to the UAV according to the working status.
  • the working state includes a connection state and a power state;
  • the determining module 75 is specifically configured to determine that the battery module has been connected to the UAV when the battery module is connected to the UAV and the power of the battery module meets the preset power. .
  • the first infrared information sending module 71 includes a digital access information generating unit and a modulation unit.
  • the digital access information generating unit is used to generate digital access information when the battery module is normally connected to the UAV.
  • the modulation unit is used to modulate the digital access information into the corresponding infrared access information.
  • the flight control module 73 includes a demodulation unit and a control unit.
  • the demodulation unit is used to demodulate the infrared control command into a digital control command.
  • the control unit is used for controlling the activation of the unmanned aerial vehicle according to the digital control instruction.
  • the embodiments of the present application provide a starting device 80 for an unmanned aerial vehicle, which is applied to the remote control device 30.
  • the starting device 80 of the UAV includes: a second infrared information receiving module 81, a second infrared information sending module 82 and an image information transmission module 83.
  • the second infrared information receiving module 81 is used to receive infrared access information.
  • the second infrared information sending module 82 is configured to send the infrared control instruction to the UAV to control the activation of the UAV.
  • the image information transmission module 83 is configured to generate corresponding infrared control instructions according to the infrared access information.
  • the image transmission module includes a digital prompt information generation unit, a digital control instruction acquisition unit, and an instruction modulation unit;
  • the digital prompt information generating unit is used to generate digital prompt information according to the infrared access information.
  • the digital prompt information generating unit is specifically configured to demodulate the infrared access information into digital access information; and generate the digital prompt information according to the digital access information.
  • the digital control instruction acquiring unit is used to acquire the digital control instruction obtained according to the digital prompt information.
  • the instruction modulation unit is used to modulate the digital control instruction into a corresponding infrared control instruction.
  • the instruction modulation unit is specifically configured to send the digital control instruction to the image information transmission module; the digital control instruction is modulated by the image information transmission module into a corresponding infrared control instruction.
  • FIG. 11 is a schematic structural diagram of an unmanned aerial vehicle 10 provided by an embodiment of the present application.
  • the unmanned aerial vehicle 10 can be any type of unmanned vehicle and can execute the unmanned aerial vehicle startup method provided in the above corresponding method embodiments. , Or, run the unmanned aerial vehicle starting device 70 provided by the above corresponding device embodiment.
  • the unmanned aerial vehicle includes: a fuselage, an arm, a power unit, an infrared transmitter, a flight control module 110, a memory 120, and a communication module 130.
  • the arm is connected to the fuselage;
  • the power device is provided on the arm for providing flight power to the unmanned aerial vehicle;
  • the infrared emitting device is provided in the fuselage for Send infrared access information and receive infrared control instructions from the remote control device;
  • the flight control module has the ability to monitor, calculate and manipulate the flight and mission of the drone, and includes a set of equipment for controlling the launch and recovery of the drone.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the flight control module 110, the memory 120, and the communication module 130 establish a communication connection between any two through a bus.
  • the flight control module 110 can be of any type and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as the program corresponding to the unmanned aerial vehicle startup method in the embodiment of the present invention Instructions/modules (for example, the first infrared information sending module 71, the first infrared information receiving module 72, the flight control module 73, the monitoring module 74, and the judgment module 75 shown in FIG. 9).
  • the flight control module 110 executes various functional applications and data processing of the starting device 70 of the unmanned aerial vehicle by running the non-transitory software programs, instructions and modules stored in the memory 120, that is, the implementation of any of the above method embodiments How to start an unmanned aerial vehicle.
  • the memory 120 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the starter 70 of the unmanned aerial vehicle. Wait.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 120 may optionally include a memory remotely provided with respect to the flight control module 110, and these remote memories may be connected to the UAV 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 120 stores instructions that can be executed by the at least one flight control module 110; the at least one flight control module 110 is used to execute the instructions, so as to realize the activation of the unmanned aerial vehicle in any of the foregoing method embodiments
  • the method for example, executes the above-described method steps 21, 22, 23, etc., to realize the functions of the modules 71-75 in FIG. 9.
  • the communication module 130 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 130 may be any type of wireless or wired communication module 130, including but not limited to a WiFi module or a Bluetooth module.
  • FIG. 12 is a schematic structural diagram of a remote control device 30 provided by an embodiment of the present application, which can execute the unmanned aerial vehicle startup method provided by the above corresponding method embodiment, or run the unmanned aerial vehicle provided by the above corresponding device embodiment Start the device.
  • the remote control device includes a housing, an infrared receiver, an image transmission module 310, a memory 320, and a communication module 330.
  • the infrared receiving device is arranged in the housing, and is used for receiving infrared access information and sending infrared control instructions for controlling the unmanned aerial vehicle.
  • the image transmission module is used to control the positioning picture, the PTZ shooting picture and the aiming picture return.
  • the image transmission module can also modulate the binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the image transmission module 310, the memory 320, and the communication module 330 establish a communication connection between any two through a bus.
  • the image transmission module 310 can be of any type and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 320 can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as the program corresponding to the unmanned aerial vehicle startup method in the embodiment of the present invention Instructions/modules (for example, the second infrared information receiving module 81, the second infrared information sending module 82, and the image information transmission module 83 shown in FIG. 10).
  • the image transmission module 310 executes various functional applications and data processing of the starting device 80 of the UAV by running the non-transitory software programs, instructions, and modules stored in the memory 320, that is, the implementation of any of the above method embodiments How to start an unmanned aerial vehicle.
  • the memory 320 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the starter 80 of the unmanned aerial vehicle. Wait.
  • the memory 320 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 320 may optionally include storage remotely provided with respect to the image transmission module 310, and these remote storages may be connected to the UAV 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 320 stores instructions that can be executed by the at least one image transmission module 310; the at least one image transmission module 310 is used to execute the instructions to realize the activation of the unmanned aerial vehicle in any of the foregoing method embodiments
  • the method for example, executes the method steps 31, 32, 33, etc. described above, to realize the functions of the modules 81-83 in FIG. 12.
  • the communication module 330 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 330 may be any type of wireless or wired communication module 330, including but not limited to a Wi-Fi module or a Bluetooth module.
  • the embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are controlled by one or more flight controllers.
  • the execution of the module 110 for example, executed by one of the flight control modules 110 in FIG. 9, can make the above-mentioned one or more flight control modules 110 execute the unmanned aerial vehicle startup method in any of the above-mentioned method embodiments, for example, execute the above The described method steps 21, 22, 23, etc. realize the functions of the modules 71-75 in FIG. 9.
  • the embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are transmitted by one or more images.
  • the module 310 is executed, for example, executed by one of the image transmission modules 310 in FIG. 10, so that the one or more image transmission modules 310 can execute the unmanned aerial vehicle activation method in any of the above method embodiments, for example, execute the above The described method steps 31, 32, 33, etc. realize the functions of the modules 81-83 in FIG. 10.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the procedures of the embodiments of the foregoing methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above-mentioned products can execute the unmanned aerial vehicle startup method provided by the embodiment of the present invention, and have the corresponding functional modules and beneficial effects for executing the unmanned aerial vehicle startup method.
  • the method for starting the unmanned aerial vehicle provided in the embodiment of the present invention please refer to the method for starting the unmanned aerial vehicle provided in the embodiment of the present invention.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

无人飞行器(10)的启动方法、无人飞行器(10)及遥控装置(30),无人飞行器(10)设置有电池模组,应用于无人飞行器(10)的无人飞行器(10)的启动方法包括:当电池模组正常接入无人飞行器(10)时,向遥控装置(30)发送红外接入信息,以使遥控装置(30)根据红外接入信息反馈红外控制指令,遥控装置(30)与无人飞行器(10)通信连接(S21);接收红外控制指令(S22);根据红外控制指令,控制无人飞行器(10)的启动(S23)。通过首先当电池模组正常接入无人飞行器(10)时,生成相应的红外接入信息,然后根据红外接入信息反馈的红外控制指令,控制无人飞行器(10)的启动状态。用户(40)使用遥控装置(30)远程开启无人飞行器(10),使开机过程智能化,提高了用户(40)的体验。

Description

无人飞行器的启动方法、无人飞行器及遥控装置
本申请要求于2019年7月26日提交中国专利局、申请号为201910682353.7、申请名称为“无人飞行器的启动方法、无人飞行器及遥控装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人飞行器技术领域,尤其涉及一种无人飞行器的启动方法、无人飞行器及遥控装置。
背景技术
随着无人飞行器航拍技术的不断发展,越来越多的消费级无人飞行器也正在生产研制。无人飞行器也逐步日趋普及。操控无人飞行器的方式很较多,比如通过遥控器、手机、电脑等移动终端操控。
在实现本发明的过程中,发明人发现相关技术至少存在以下问题:目前用户在使用移动终端操控无人飞行器前,需要用户手动触发,长按开机按键3-5秒钟方能开机成功,开机过程不智能,较繁锁,用户体验较差。
发明内容
为了解决上述技术问题,本发明实施例提供一种简化无人飞行器的开机过程,提高用户体验的无人飞行器的启动方法、无人飞行器及遥控装置。
为解决上述技术问题,本发明实施例提供以下技术方案:一种无人飞行器的启动方法,应用于无人飞行器,所述无人飞行器设置有电池模组,所述方法包括:
当所述电池模组正常接入所述无人飞行器时,向与所述无人飞行器通信连接的遥控装置发送红外接入信息,以使所述遥控装置根据所述红外接入信息反馈红外控制指令;
接收所述红外控制指令;
根据所述红外控制指令,控制所述无人飞行器的启动。
可选地,所述当所述电池模组正常接入所述无人飞行器时,向遥控装置发送红外接入信息之前,包括:
监测所述电池模组的工作状态;
根据所述工作状态,确定所述电池模组是否已正常接入所述无人飞行器。
可选地,所述根据所述工作状态,确定所述电池膜组是否已接入所述无人飞行器,包括:
所述工作状态包括连接状态和电量状态;
当所述电池模组连接至所述无人飞行器,且所述电池模组的电量满足预设电量,则确定所述电池模组已接入所述无人飞行器。
可选地,所述当所述电池模组正常接入所述无人飞行器时,向遥控装置发送红外接入信息,包括:
当所述电池模组正常接入所述无人飞行器时,生成数字接入信息;
将所述数字接入信息调制成相应的所述红外接入信息,并向所述遥控装置发送所述红外接入信息。
可选地,所述根据所述红外控制指令,控制所述无人飞行器的启动,包括:
将所述红外控制指令解调成数字控制指令;
根据所述数字控制指令,控制所述无人飞行器的启动。
为解决上述技术问题,本发明实施例提供以下技术方案:一种无人飞行器的启动方法,应用于遥控装置,所述方法包括:接收红外接入信息;
根据所述红外接入信息,生成相应的红外控制指令;
发送所述红外控制指令至所述无人飞行器,以控制所述无人飞行器的启动。
可选地,所述根据所述红外接入信息,生成相应的红外控制指令,包括:
根据所述红外接入信息,生成数字提示信息;
获取根据所述数字提示信息得到的数字控制指令;
将所述数字控制指令调制成相应的红外控制指令。
可选地,所述根据所述红外接入信息,生成数字提示信息,包括:
将所述红外接入信息解调成数字接入信息;
根据所述数字接入信息,生成所述数字提示信息。
可选地,所述遥控装置设置有图传模组;
所述将所述数字控制指令调制成相应的红外控制指令,包括:
将所述数字控制指令发送至所述图传模组;
所述数字控制指令由所述图传模组调制成相应的红外控制指令。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人飞行器。所述无人飞行器包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
红外发射装置,设于所述机身内,用于发送红外接入信息并接收遥控装置发出的红外控制指令;
飞控模组;以及
与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行以上所述的应用于无人飞行器的无人飞行器的启动方法。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种遥控装置,所述遥控装置包括:
壳体;
红外接收装置,设于所述壳体内,用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令;
图传模组;以及
与所述图传模组通信连接的存储器;其中,所述存储器存储有可被所述图传模组执行的指令,所述指令被所述图传模组执行,以使所述图传模组器能够用于执行以上所述的应用于遥控装置的无人飞行器的启动方法。
与现有技术相比较,本发明实施例的提供无人飞行器的启动方法可以通过首先当所述电池模组正常接入所述无人飞行器时,生成相应的红外接入信息,然后根据所述红外接入信息反馈的红外控制指令,控制所述无人飞行器的启动状态。因此用户可使用遥控装置远程开启无人飞行器,使开机过程智能化,提高了用户体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明其中一实施例提供的无人飞行器的启动方法的流程示意图;
图3为本发明另一实施例提供的无人飞行器的启动方法的流程示意图;
图4是图2中S21的流程示意图;
图5是图2中S23的流程示意图;
图6为本发明又一实施例提供的无人飞行器的启动方法的流程示意图;
图7是图6中S32的流程示意图;
图8是图7中S321的流程示意图;
图9为本发明其中一实施例提供的无人飞行器的启动装置的结构框图;
图10为本发明另一实施例提供的无人飞行器的启动装置的结构框图;
图11为本发明其中一实施例提供的无人飞行器的结构框图;
图12为本发明另一实施例提供的遥控装置的结构框图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定 的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种无人飞行器的启动方法、无人飞行器及遥控装置,其中,应用于无人飞行器的无人飞行器的启动方法通过首先获取所述无人飞行器的电池模组的接入信息,然后根据所述接入信息,生成相应的红外接入信息,进而根据所述红外接入信息反馈的红外控制指令,控制所述无人飞行器的启动状态。因此用户可使用遥控装置远程开启无人飞行器,使开机过程智能化,提高了用户体验。
以下举例说明所述无人飞行器的启动方法的应用环境。
图1是本发明实施例提供的无人飞行器的启动方法的应用环境的示意图;如图1所示,所述应用场景包括无人飞行器10、红外无线网路20、遥控装置30及用户40。用户40可利用遥控装置30通过所述红外无线网络控制无人飞行器10。
无人飞行器10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人飞行器、固定翼无人飞行器、伞翼无人飞行器、扑翼无人飞行器以及直升机模型等。
该无人飞行器10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器10上还可以添加有一种或者多种功能模块,令无人飞行器10能够实现相应的功能。
例如,在本实施例中,该无人飞行器10设置有红外发射装置和电池模组。
当所述电池模组接入所述无人飞行器10后,所述电池模组可为所述无人飞行器10提供电源。
所述红外发射装置用于发送红外接入信息并接收遥控装置发出的红外控制指令,例如,当所述遥控装置发出红外控制指令时,所述红外发射装置接收到所述红外控制指令,进而使所述无人飞行器10根据所述红外控制指令控制所述无人飞行器10的启动状态。当所述电池模组接入所述无人飞行器10后,所述红外发射装置可将根据由电池模组的接入信息得到的红外接入信息,发送至所述遥控装置30。
无人飞行器10上包含至少一个飞控模组,作为无人飞行器10飞行和数据 传输等的控制核心,具有对无人机飞行和任务进行监控、运算和操纵的能力,在本实施例中,所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。遥控装置30可以是任何类型,用以与无人飞行器10建立通信连接的智能装置,例如手机、平板电脑、笔记本电脑或者其他移动操控终端等。
该遥控装置30装配有红外接收装置,所述红外接收装置用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令。例如,所述遥控装置30可用于接收所述无人飞行器10当所述电池模组正常接入所述无人飞行器时生成的红外接入信息。所述遥控装置30同时可根据用户40的控制指令生成的红外控制指令发送至所述无人飞行器10,以控制所述无人飞行器10的启动状态。该遥控装置30还可以装配有用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组。在本实施例中,所述图传模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
该遥控装置30还可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,遥控装置30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人飞行器10的遥控指令。
在一些实施例中,无人飞行器10与遥控装置30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人飞行器10可以通过双光相机采集图像的方式,由遥控装置30对图像进行解析,从而实现用户40对于无人飞行器10的手势控制。
图2为本发明实施例提供的一种无人飞行器的启动方法的实施例。该方法可以由图1中的无人飞行器执行。
具体地,请参阅图2,该方法可以包括但不限于如下步骤:
S21、当所述电池模组正常接入所述无人飞行器时,向遥控装置发送红外接入信息,以使所述遥控装置根据所述红外接入信息反馈红外控制指令,其中,所述遥控装置与所述无人飞行器通信连接。具体地,所述电池模组是无人飞行器10的动力来源,当所述电池模组正常接入所述无人飞行器10时,即所述电池模组可为所述无人飞行器10正常供电时,首先生成数字接入信息,进而将所述数字接入信息调制成相应的所述红外接入信息。
具体地,可将所述数字接入信息采用脉位调制(PPM)方式,将二进制数字信号的数字接入信息调制成预设频率的脉冲序列,以生成所述红外接入信息。
具体地,所述遥控装置与所述无人飞行器可通过无线网络通信连接。所述无线网络可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络。在本实施例中,所述无人飞行器和所述遥控装置基于红外通信协议进行通信连接。所述红外通信协议是一种基于红外线的传输技 术。
S22、接收所述红外控制指令。
具体地,在接收所述红外控制指令之前,首先所述无人飞行器的红外发射装置发送所述红外接入信息,相应地,所述无人飞行器的红外发射装置可获取遥控装置根据所述红外接入信息反馈的红外控制指令。其中,所述红外控制指令是由数字信号的控制指令通过红外通信协议调制为所述红外控制指令。
S23、根据所述红外控制指令,控制所述无人飞行器的启动状态。
具体地,所述无人飞行器10的接收到所述红外控制指令后,将所述红外控制指令解调成数字控制指令,进而所述无人飞行器10根据所述数字控制指令,控制所述无人飞行器10的启动状态。
举例说明,所述红外控制指令为红外开机指令,所述无人飞行器10的红外发射装置接收到所述红外开机指令,并将红外开机指令发送到所述无人飞行器10的所述飞控模组,所述飞控模组将所述红外开机指令解调成二进制数字信号的数字开机指令,进而所述无人飞行器10根据所述数字开机指令,控制所述无人飞行器10的开启。其中,所述飞控模组可用于将所述数字控制指令调制成所述红外控制指令,也可将所述红外控制指令解调成数字控制指令。
此外所述飞控模组还具有对无人机飞行和任务进行监控、运算和操纵的能力,包含对无人机发射和回收控制的一组设备。
本发明实施例提供了一种无人飞行器的启动方法,所述方法通过首先当所述电池模组正常接入所述无人飞行器时,生成相应的红外接入信息,然后根据所述红外接入信息反馈的红外控制指令,控制所述无人飞行器的启动状态。因此用户可使用遥控装置远程开启无人飞行器,使开机过程智能化,提高了用户体验。
为了更好的获取所述无人飞行器的电池模组的接入信息,在一些实施例中,请参阅图3,所述方法还包括如下步骤:
S24、监测所述电池模组的工作状态。
具体地,所述无人飞行器10的可实时监测工作状态,所述工作状态包括连接状态和电量状态。例如实时监测所述电池模组是否连接至所述无人飞行器;所述电池模组的电量是否满足预设电量等等。
S25、根据所述工作状态,确定所述电池模组是否已正常接入所述无人飞行器。
具体地,当所述电池模组连接至所述无人飞行器,且所述电池模组的电量满足预设电量,则确定所述电池模组已接入所述无人飞行器。
为了更好的当所述电池模组正常接入所述无人飞行器时,生成相应的红外接入信息,在一些实施例中,请参阅图4,S21包括如下步骤:
S211:当所述电池模组正常接入所述无人飞行器时,生成数字接入信息。
具体地,当所述电池模组连接至所述无人飞行器,且所述电池模组的电量满足预设电量,生成二进制数字信号的数字接入信息。
其中,所述数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示,例如,字长为2位的二进制数可表示4种大小的数字信号,它们是00、01、10和11;若信号的变化范围在-1~1,则这4个二进制数可表示4段数字范围,即[-1,-0.5)、[-0.5,0)、[0,0.5)和[0.5,1]。
由于数字信号是用两种物理状态来表示0和1的,故其抵抗材料本身干扰和环境干扰的能力都比模拟信号强很多;在现代技术的信号处理中,数字信号发挥的作用越来越大,几乎复杂的信号处理都离不开数字信号;或者说,只要能把解决问题的方法用数学公式表示,就能用计算机来处理代表物理量的数字信号。
S212:将所述数字接入信息调制成相应的所述红外接入信息。
具体地,可将所述数字接入信息采用脉位调制(PPM)方式,将二进制数字信号的数字接入信息调制成预设频率的脉冲序列,以生成所述红外接入信息。
具体地,所述红外数据通讯标准红外通信协议是一种基于红外线的传输技术。作为无线局域网的传输方式,红外线方式的最大优点是不受无线电干扰,且它的使用不受国家无线管理委员会的限制。所述红外数据通讯标准包括基本协议和特定应用领域的协议两类。类似于TCP-IP协议,它是一个层式结构,其结构形成一个栈。
为了更好的据所述红外控制指令,控制所述无人飞行器的启动,在一些实施例中,请参阅图5,S23包括如下步骤:
S231:将所述红外控制指令解调成数字控制指令。
具体地,对所述红外控制指令进行解析;例如,将所述红外控制指令的所述光脉冲转换成电信号,再经过放大、滤波等处理后送给图传模组进行解调,还原为二进制数字信号。
其中,所述红外发射管包括脉冲振荡器、驱动管、红外发射管等部分。其中脉冲振荡器由NE555定时器、电阻和电容组成,用以产生38kHz-40KHz的脉冲序列作为载波信号;红外发射管选用Vishay公司生产的TSAL6238,用来向外发射950nm的红外光束。
S232:根据所述数字控制指令,控制所述无人飞行器的启动。
图6是本申请实施例提供的一种无人飞行器的启动方法的流程示意图,该方法可以由图1中的遥控装置30执行。
具体地,请参阅图6,该方法可以包括但不限于如下步骤:
S31:接收红外接入信息。
具体地,首先所述无人飞行器的飞控模组采用脉位调制(PPM)方式,将二进制数字信号的红外接入信息调制成预设频率的脉冲序列,以生成所述红外红外接入信息。然后所述无人飞行器10的红外发射装置作为红外接入信息的发送端,驱动红外发射管以光脉冲的形式发送出去。
所述遥控装置30的红外接收装置作为红外接收端,能够接收到的光脉冲形式的所述红外接入信息。
具体地,所述红外接入信息包括所述电池模组的接入信息,即表示所述电池模组的工作状态为正常,当前所述电池模组已安装正常。
S32:根据所述红外接入信息,生成相应的红外控制指令。
具体地,所述遥控装置30的图传模组对所述红外接入信息进行解析;例如,将红外发射装置发射的所述光脉冲转换成电信号,再经过放大、滤波等处理后送给图传模组进行解调,还原为二进制数字信号。根据还原为所述为二进制的数字信号,提示用户40进行相应的操作控制,接收所述用户40的控制指令之后,所述遥控装置30的图传模组对所述控制指令进行调制生成相应的红外控制指令,例如,将数字控制指令调制成预设频率的脉冲序列,以生成所述红外控制指令。
S33:发送所述红外控制指令至无人飞行器,以控制所述无人飞行器的启动状态。
具体地,所述遥控装置的红外接收装置将所述生成的红外控制指令基于红外数据通讯标准利用红外发射管以光脉冲的形式发送出去,以使所述无人飞行器10的红外发射装置接收所述红外控制指令,进而控制所述无人飞行器10的启动状态。
具体地,所述红外数据通讯标准红外通信协议是一种基于红外线的传输技术。作为无线局域网的传输方式,红外线方式的最大优点是不受无线电干扰,且它的使用不受国家无线管理委员会的限制。所述红外数据通讯标准包括基本协议和特定应用领域的协议两类。类似于TCP-IP协议,它是一个层式结构,其结构形成一个栈。
其中,所述红外发射管包括脉冲振荡器、驱动管、红外发射管等部分。其中脉冲振荡器由NE555定时器、电阻和电容组成,用以产生38kHz-40KHz的脉冲序列作为载波信号;红外发射管选用Vishay公司生产的TSAL6238,用来向外发射950nm的红外光束。
为了更好的根据所述红外接入信息,生成相应的红外控制指令,在一些实施例中,请参阅图7,S32包括如下步骤:
S321:根据所述红外接入信息,生成数字提示信息。
具体地,所述遥控装置30的图传模组对所述红外接入信息进行解析;例如,将红外接收装置发射的所述光脉冲转换成电信号,再经过放大、滤波等处理后送给图传模组进行解调,还原为二进制数字信号。根据还原为所述为二进制数字信号,生成数字提示信息。例如,将所述接收到红外接入信息进行解析出对应的数字信号的消息指令,即在显示界面上弹出提示框提示用户40当前飞行器的电池模组已安装正常,是否现在需要开启飞行器,然后用户40的根据意愿操作所述显示界面。
S322:获取根据所述数字提示信息得到的数字控制指令。
具体地,当在显示界面上弹出提示框提示用户40当前飞行器的电池模组已安装正常,是否现在需要开启飞行器,然后用户40的根据意愿操作所述显示界面后,获取用户40在所述显示界面上的数字控制指令。例如,显示界面显示“是否现在需要开启飞行器”,用户40选择“是”,则所述数字控制指令为开启无人飞行器10。
S323:将所述数字控制指令调制成相应的红外控制指令。
具体地,由于需要通过红外数据通讯标准将所述控制发送至所述无人飞行器10,所述在发送所述数字控制指令之前,需要将所述数字控制指令,调制成相应的红外控制指令。
具体地,将所述数字控制指令发送至所述图传模组;所述数字控制指令由所述图传模组调制成相应的红外控制指令。
具体地,所述无人飞行器10的图传模组采用脉位调制(PPM)方式,将二进制数字信号调制成预设频率和占空比为1/3的脉冲序列,所述预设频率的范围为30khz-60khz。优选地,所述预设频率的范围为38khz-40khz。
为了更好的根据所述红外接入信息,生成提示信息。在一些实施例中,请参阅图8,S321包括以下步骤:
S3211:将所述红外接入信息解调成数字接入信息。
具体地,将红外接收装置发射的所述光脉冲转换成电信号,再经过放大、滤波等处理后送给图传模组进行解调,还原为二进制数字信号,从而解析出对应的数字接入信息。
S3212:根据所述数字接入信息,生成所述数字提示信息。
具体地,根据还原为所述为二进制数字信号的数字接入信息,生成提示数字信息。例如,将所述接收到红外接入信息进行解析出对应的数字信号的接入信息之后,在显示界面上弹出提示框,所述提示框中包含所述数字提示信息,以提示用户40当前飞行器的电池模组已安装正常,是否现在需要开启飞行器,然后用户40的根据意愿操作所述显示界面。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种无人飞行器的启动装置70。请参阅图9,该无人飞行器的启动装置70包括:第一红外信息发送模块71、第一红外信息接收模块72以及飞控模块73。
所述第一红外信息发送模块71用于当所述电池模组正常接入所述无人飞行器时,生成相应的红外接入信息。所述第一红外信息发送模块71还用于发送所述红外接入信息。
所述第一红外信息接收模块72用于接收根据所述红外接入信息反馈的红外控制指令。
所述飞控模块73用于获取根据所述红外接入信息反馈的红外控制指令;
因此,在本实施例中,通过首先当所述电池模组正常接入所述无人飞行器时,生成相应的红外接入信息,然后根据所述红外接入信息反馈的红外控制指令,控制所述无人飞行器的启动状态。因此用户可使用遥控装置远程开启无人飞行器,使开机过程智能化,提高了用户体验。
在一些实施例中,所述无人飞行器的启动装置还包括监测模块74和判断模块75,
所述监测模块74用于监测所述电池模组的工作状态。
所述判断模块75用于根据所述工作状态,确定所述电池模组是否已正常接入所述无人飞行器。其中,所述工作状态包括连接状态和电量状态;
所述判断模块75具体用于当所述电池模组连接至所述无人飞行器,且所述电池模组的电量满足预设电量,则确定所述电池模组已接入所述无人飞行器。
其中,所述第一红外信息发送模块71包括数字接入信息生成单元和调制单元。
所述数字接入信息生成单元用于当所述电池模组正常接入所述无人飞行器时,生成数字接入信息。
所述调制单元用于将所述数字接入信息调制成相应的所述红外接入信息。
其中,所述飞控模块73包括解调单元和控制单元。
所述解调单元用于将所述红外控制指令解调成数字控制指令。
所述控制单元用于根据所述数字控制指令,控制所述无人飞行器的启动。
作为本申请实施例的另一方面,本申请实施例提供一种无人飞行器的启动装置80,应用于遥控装置30。请参阅图10,该无人飞行器的启动装置80包括:第二红外信息接收模块81、第二红外信息发送模块82及图像信息传输模块83。
所述第二红外信息接收模块81用于接收红外接入信息。
所述第二红外信息发送模块82用于发送所述红外控制指令至所述无人飞行器,以控制所述无人飞行器的启动。
所述图像信息传输模块83用于根据所述红外接入信息,生成相应的红外控制指令。
其中,所述图传模组包括数字提示信息生成单元、数字控制指令获取单元和指令调制单元;
所述数字提示信息生成单元用于根据所述红外接入信息,生成数字提示信息。所述数字提示信息生成单元具体用于将所述红外接入信息解调成数字接入信息;根据所述数字接入信息,生成所述数字提示信息。
所述数字控制指令获取单元用于获取根据所述数字提示信息得到的数字控制指令。
所述指令调制单元用于将所述数字控制指令调制成相应的红外控制指令。 所述指令调制单元具体用于将所述数字控制指令发送至所述图像信息传输模块;所述数字控制指令由所述图像信息传输模块调制成相应的红外控制指令。
图11是本申请实施例提供的一种无人飞行器10的结构示意图,该无人飞行器10可以是任意类型的无人载具,能够执行上述相应的方法实施例提供的无人飞行器的启动方法,或者,运行上述相应的装置实施例提供的无人飞行器的启动装置70。所述无人飞行器包括:机身、机臂、动力装置、红外发射装置、飞控模组110、存储器120及通信模块130。
所述机臂与所述机身相连;所述动力装置设于所述机臂,用于给所述无人飞行器提供飞行的动力;所述红外发射装置设于所述机身内,用于发送红外接入信息并接收遥控装置发出的红外控制指令;
所述飞控模组具有对无人机飞行和任务进行监控、运算和操纵的能力,包含对无人机发射和回收控制的一组设备。所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
所述飞控模组110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
飞控模组110可以为任何类型,具备一个或者多个处理核心的飞控模组110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的无人飞行器的启动方法对应的程序指令/模块(例如,附图9所示的第一红外信息发送模块71、第一红外信息接收模块72、飞控模块73、监测模块74以及判断模块75)。飞控模组110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行无人飞行器的启动装置70的各种功能应用以及数据处理,即实现上述任一方法实施例中无人飞行器的启动方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据无人飞行器的启动装置70的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于飞控模组110远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个飞控模组110执行的指令;所述至少一个飞控模组110用于执行所述指令,以实现上述任意方法实施例中无人飞行器的启动方法,例如,执行以上描述的方法步骤21、22、23等等,实现图9中的模块71-75的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。
图12是本申请实施例提供的一种遥控装置30的结构示意图,能够执行上述相应的方法实施例提供的无人飞行器的启动方法,或者,运行上述相应的装置实施例提供的无人飞行器的启动装置。所述遥控装置包括壳体、红外接收装置、图传模组310、存储器320以及通信模块330。
所述红外接收装置设于所述壳体内,用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令。
所述图传模组用于用于控制定位画面、云台拍摄画面及瞄准画面回传。在本实施例中,所述图传模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
所述图传模组310、存储器320以及通信模块330之间通过总线的方式,建立任意两者之间的通信连接。
图传模组310可以为任何类型,具备一个或者多个处理核心的图传模组310。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器320作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的无人飞行器的启动方法对应的程序指令/模块(例如,附图10所示的第二红外信息接收模块81、第二红外信息发送模块82及图像信息传输模块83)。图传模组310通过运行存储在存储器320中的非暂态软件程序、指令以及模块,从而执行无人飞行器的启动装置80的各种功能应用以及数据处理,即实现上述任一方法实施例中无人飞行器的启动方法。
存储器320可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据无人飞行器的启动装置80的使用所创建的数据等。此外,存储器320可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器320可选包括相对于图传模组310远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器320存储有可被所述至少一个图传模组310执行的指令;所述至少一个图传模组310用于执行所述指令,以实现上述任意方法实施例中无人飞行器的启动方法,例如,执行以上描述的方法步骤31、32、33等等,实现图12中的模块81-83的功能。
通信模块330是用于建立通信连接,提供物理信道的功能模块。通信模块330以是任何类型的无线或者有线通信模块330,包括但不限于Wi Fi模块或者 蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个飞控模组110执行,例如,被图9中的一个飞控模组110执行,可使得上述一个或多个飞控模组110执行上述任意方法实施例中无人飞行器的启动方法,例如,执行以上描述的方法步骤21、22、23等等,实现图9中的模块71-75的功能。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个图传模组310执行,例如,被图10中的一个图传模组310执行,可使得上述一个或多个图传模组310执行上述任意方法实施例中无人飞行器的启动方法,例如,执行以上描述的方法步骤31、32、33等等,实现图10中的模块81-83的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的无人飞行器的启动方法,具备执行无人飞行器的启动方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的无人飞行器的启动方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处 理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种无人飞行器的启动方法,应用于无人飞行器,所述无人飞行器设置有电池模组,其特征在于,包括:
    当所述电池模组正常接入所述无人飞行器时,向与所述无人飞行器通信连接的遥控装置发送红外接入信息,以使所述遥控装置根据所述红外接入信息反馈红外控制指令;
    接收所述红外控制指令;
    根据所述红外控制指令,控制所述无人飞行器的启动。
  2. 根据权利要求1所述的方法,其特征在于,所述当所述电池模组正常接入所述无人飞行器时,向遥控装置发送红外接入信息之前,包括:
    监测所述电池模组的工作状态;
    根据所述工作状态,确定所述电池模组是否已正常接入所述无人飞行器。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述工作状态,确定所述电池膜组是否已接入所述无人飞行器,包括:
    所述工作状态包括连接状态和电量状态;
    当所述电池模组连接至所述无人飞行器,且所述电池模组的电量满足预设电量,则确定所述电池模组已接入所述无人飞行器。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述当所述电池模组正常接入所述无人飞行器时,向遥控装置发送红外接入信息,包括:
    当所述电池模组正常接入所述无人飞行器时,生成数字接入信息;
    将所述数字接入信息调制成相应的所述红外接入信息,并向所述遥控装置发送所述红外接入信息。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述红外控制指令,控制所述无人飞行器的启动,包括:
    将所述红外控制指令解调成数字控制指令;
    根据所述数字控制指令,控制所述无人飞行器的启动。
  6. 一种无人飞行器的启动方法,应用于遥控装置,其特征在于,包括:
    接收红外接入信息;
    根据所述红外接入信息,生成相应的红外控制指令;
    发送所述红外控制指令至所述无人飞行器,以控制所述无人飞行器的启动。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述红外接入信息,生成相应的红外控制指令,包括:
    根据所述红外接入信息,生成数字提示信息;
    获取根据所述数字提示信息得到的数字控制指令;
    将所述数字控制指令调制成相应的红外控制指令。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述红外接入信 息,生成数字提示信息,包括:
    将所述红外接入信息解调成数字接入信息;
    根据所述数字接入信息,生成所述数字提示信息。
  9. 根据权利要求8所述的方法,其特征在于,
    所述遥控装置设置有图传模组;
    所述将所述数字控制指令调制成相应的红外控制指令,包括:
    将所述数字控制指令发送至所述图传模组;
    所述数字控制指令由所述图传模组调制成相应的红外控制指令。
  10. 一种无人飞行器,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
    红外发射装置,设于所述机身内,用于发送红外接入信息并接收遥控装置发出的红外控制指令;
    飞控模组;以及
    与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行如权利要求1-5中任一项所述的无人飞行器的启动方法。
  11. 一种遥控装置,其特征在于,包括:
    壳体;
    红外接收装置,设于所述壳体内,用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令;
    图传模组;以及
    与所述图传模组通信连接的存储器;其中,所述存储器存储有可被所述图传模组执行的指令,所述指令被所述图传模组执行,以使所述图传模组器能够用于执行如权利要求6-9中任一项所述的无人飞行器的启动方法。
PCT/CN2020/104584 2019-07-26 2020-07-24 无人飞行器的启动方法、无人飞行器及遥控装置 WO2021018049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910682353.7 2019-07-26
CN201910682353.7A CN110362114A (zh) 2019-07-26 2019-07-26 无人飞行器的启动方法、无人飞行器及遥控装置

Publications (1)

Publication Number Publication Date
WO2021018049A1 true WO2021018049A1 (zh) 2021-02-04

Family

ID=68222442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104584 WO2021018049A1 (zh) 2019-07-26 2020-07-24 无人飞行器的启动方法、无人飞行器及遥控装置

Country Status (2)

Country Link
CN (1) CN110362114A (zh)
WO (1) WO2021018049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110362114A (zh) * 2019-07-26 2019-10-22 深圳市道通智能航空技术有限公司 无人飞行器的启动方法、无人飞行器及遥控装置
CN110673644A (zh) * 2019-11-05 2020-01-10 深圳市道通智能航空技术有限公司 无人飞行器的控制方法、无人飞行器及遥控装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453449B2 (ja) * 2004-06-09 2010-04-21 株式会社デンソー 車載通信モジュールおよび車載機
CN107074377A (zh) * 2016-12-29 2017-08-18 深圳市大疆创新科技有限公司 一种控制方法、装置、设备及无人机
CN108873916A (zh) * 2017-05-11 2018-11-23 圣速医疗器械江苏有限公司 一种智能平衡飞行器的飞行控制方法
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
CN109819001A (zh) * 2017-11-22 2019-05-28 深圳市科比特航空科技有限公司 一种无人机通信方法、无人机及无人机的通信装置
CN110362114A (zh) * 2019-07-26 2019-10-22 深圳市道通智能航空技术有限公司 无人飞行器的启动方法、无人飞行器及遥控装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297884C (zh) * 2003-10-09 2007-01-31 联想(北京)有限公司 智能控制家电的电脑系统
CN202852577U (zh) * 2012-08-14 2013-04-03 西北工业大学 一种多功能可遥控台灯
CN204017385U (zh) * 2014-07-15 2014-12-17 袁从文 一种遥控器
CN106334322B (zh) * 2015-07-16 2019-12-27 深圳曼塔智能科技有限公司 飞行器及其电源管理系统
KR20170055789A (ko) * 2015-11-12 2017-05-22 한서대학교 산학협력단 무인 비행체 제어 장치
CN105836128B (zh) * 2016-03-23 2017-12-22 唐家斌 一种无人机动力电池快速预热系统及工作方法
CN106327854A (zh) * 2016-09-22 2017-01-11 北京奇虎科技有限公司 无人机系统及无人机用红外遥控设备
CN106774358A (zh) * 2016-11-17 2017-05-31 广州极飞科技有限公司 无人机用智能电池及其控制方法、装置及无人机
CN206400353U (zh) * 2016-12-29 2017-08-11 重庆零度智控智能科技有限公司 无人机通断电装置及无人机
CN106972569A (zh) * 2017-04-13 2017-07-21 江苏唯天智能无人机研发有限公司 智能电池终端、智能电源终端及其匹配检测方法
CN207450273U (zh) * 2017-10-31 2018-06-05 深圳市华之翼科技有限公司 一种无人机飞行防撞装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453449B2 (ja) * 2004-06-09 2010-04-21 株式会社デンソー 車載通信モジュールおよび車載機
CN107074377A (zh) * 2016-12-29 2017-08-18 深圳市大疆创新科技有限公司 一种控制方法、装置、设备及无人机
CN108873916A (zh) * 2017-05-11 2018-11-23 圣速医疗器械江苏有限公司 一种智能平衡飞行器的飞行控制方法
CN109819001A (zh) * 2017-11-22 2019-05-28 深圳市科比特航空科技有限公司 一种无人机通信方法、无人机及无人机的通信装置
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备
CN110362114A (zh) * 2019-07-26 2019-10-22 深圳市道通智能航空技术有限公司 无人飞行器的启动方法、无人飞行器及遥控装置

Also Published As

Publication number Publication date
CN110362114A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
US11566915B2 (en) Method, device and system for processing a flight task
CN205384512U (zh) 一种多功能无人机及无人机控制系统
CN105929838B (zh) 一种飞行器的飞行控制方法和移动终端以及飞行控制端
WO2021018049A1 (zh) 无人飞行器的启动方法、无人飞行器及遥控装置
CN104238551A (zh) 智能显示遥控器和飞行控制系统
KR101808773B1 (ko) 목표 기능의 시작 방법, 장치, 시스템, 프로그램 및 기록매체
US20170054713A1 (en) Method and device for guiding an operation and electronic apparatus
WO2018228386A1 (zh) 信息传输的方法及无人机、非暂态计算机可读存储介质、计算机程序产品和电子设备
WO2020143678A1 (zh) 一种飞行日志上传方法、装置及移动终端、无人机
WO2021088699A1 (zh) 无人飞行器的控制方法、无人飞行器及遥控装置
EP3425904A1 (en) Remote control for image processing, unmanned flight system, and image processing method for unmanned aerial vehicle
WO2021088684A1 (zh) 全向避障方法及无人飞行器
WO2020011087A1 (zh) 无人机系统日志的存储方法及无人机图传系统
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
WO2020154959A1 (zh) 多负载图传方法、控制系统、控制终端、无人机和服务器
WO2021088683A1 (zh) 电池自放电周期调整方法及无人飞行器
WO2018141170A1 (zh) 无人机认证方法及装置
CN107197136B (zh) 实现无人机机载相机图像美化、视频剪辑的控制方法
CN108965689A (zh) 无人机拍摄方法及装置、无人机和地面控制装置
CN106331365B (zh) 一种飞行器对战的方法、相关设备以及系统
WO2021135823A1 (zh) 飞行控制方法及装置、无人机
WO2014180208A1 (zh) 处理方法及设备、控制设备及工作方法、控制方法及系统
WO2023193611A1 (zh) 无人飞行器及其控制方法、装置、系统
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
CN209149566U (zh) 基于安卓系统的无人机遥控器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846446

Country of ref document: EP

Kind code of ref document: A1