WO2021018036A1 - 轨道数据的测量装置及方法、轨道巡检机器人 - Google Patents

轨道数据的测量装置及方法、轨道巡检机器人 Download PDF

Info

Publication number
WO2021018036A1
WO2021018036A1 PCT/CN2020/104458 CN2020104458W WO2021018036A1 WO 2021018036 A1 WO2021018036 A1 WO 2021018036A1 CN 2020104458 W CN2020104458 W CN 2020104458W WO 2021018036 A1 WO2021018036 A1 WO 2021018036A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
detection sensor
track
height
included angle
Prior art date
Application number
PCT/CN2020/104458
Other languages
English (en)
French (fr)
Inventor
秦宇
杨洪超
王亚洲
赵坚钧
Original Assignee
北京海益同展信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京海益同展信息科技有限公司 filed Critical 北京海益同展信息科技有限公司
Publication of WO2021018036A1 publication Critical patent/WO2021018036A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only

Definitions

  • the embodiments of the present application relate to the field of data measurement technology, and in particular, to a device and method for measuring orbit data, and an orbit inspection robot.
  • the heights of the two tracks are not identical.
  • Use the soft ruler to measure the distance between the two rails while passing the angle The ruler measures the angle between the soft ruler between the two tracks and the horizontal line.
  • the soft ruler between the two tracks and the horizontal line form a right triangle, and the distance between the two tracks is calculated by trigonometric functions.
  • the embodiments of the present application provide an orbit data measuring device and method, and an orbit patrol robot. By automatically measuring and processing data, the efficiency of data measurement is improved, and the accuracy of data measurement is improved.
  • a device for measuring track data includes a bracket, a processor, and a detection sensor assembly, the detection sensor assembly is located on the bracket, and the detection sensor assembly is connected to the processor;
  • the detection sensor assembly includes a first detection sensor and a second detection sensor, the first detection sensor is used to detect a first distance, the first distance is the distance between the first track and the first detection sensor, and the second detection sensor is used to detect The second distance, the second distance is the distance between the second track and the second detection sensor;
  • the processor is configured to calculate a third distance based on the first distance, the second distance, and the distance between the first detection sensor and the second detection sensor, where the third distance is the distance between the two tracks.
  • the track data measuring device provided in this application further includes a support frame, the support frame is connected to the support, the support is foldable, the first detection sensor and the second detection sensor are located below the support, and the second detection The sensor is located on the support frame.
  • the first detection sensor and the second detection sensor are laser sensors, and the laser beam emitted by the first detection sensor and the laser beam emitted by the second detection sensor are located at the same In a straight line.
  • the detection sensor assembly further includes a third detection sensor, the third detection sensor is used to detect the first included angle, the first included angle is when the bracket is placed opposite The angle between the bracket and the horizontal plane when on the two tracks;
  • the processor is used to calculate a fourth distance based on the first included angle and the third distance, where the fourth distance is the height difference between the surfaces of the two tracks.
  • the detection sensor assembly further includes a fourth detection sensor
  • each fourth detection sensor is located on the lifting mechanism to drive each fourth detection sensor to move in the vertical direction through the lifting mechanism.
  • the fourth detection sensor is used to detect the fifth distance, The fifth distance is the distance between the surface of the train station platform and the fourth detection sensor;
  • the processor is used to calculate the second height according to the first included angle, the fifth distance, and the first height, where the first height is the height of the fourth detection sensor that detects the surface of the train platform from the surface of the track, and the second height is the train The height of the platform from the surface of the track;
  • the processor is used to calculate a sixth distance based on the first included angle, the third distance, the fifth distance, and the first height.
  • the sixth distance is the distance between the side surface of the train platform and the center of the two opposite tracks.
  • the track data measuring device provided in this application further includes a first alarm device and a first controller.
  • the first alarm device and the first controller are located on the bracket, and the first controller and each The four detection sensors are connected with the first alarm device, and when the sixth distance is less than the first preset value, the first controller controls the first alarm device to issue an alarm prompt.
  • the number of fourth detection sensors is at least two, the fourth detection sensors are laser sensors, and the laser beams emitted by each fourth detection sensor are located in the same vertical position. In the plane, the angles between the fourth detection sensors and the horizontal plane are different.
  • the detection sensor assembly further includes a fifth detection sensor, the fifth detection sensor is used to detect the seventh distance, and the seventh distance is the fifth detection sensor and the train platform The distance between the canopies,
  • the processor is used to calculate an eighth distance based on the first included angle, the distance between the fifth detection sensor and the surface of the track, and the seventh distance, where the eighth distance is the distance between the rain awning and the surface of the track.
  • the device for measuring orbit data further includes a memory, a processor and a detection sensor assembly connected to the memory.
  • the fifth detection sensor and the fourth detection sensor are located on different sides of the bracket.
  • the fifth detection sensor is a radar
  • the radar scanning range is -135 mm to 135 mm.
  • the track data measurement device provided in this application further includes a second alarm device and a second controller, the second alarm device and the second controller are located on the bracket, the second controller and the fifth The detection sensor is connected to the second alarm device, and when the eighth distance is less than the second preset value, the second controller controls the second alarm device to issue an alarm prompt.
  • the present application provides a rail inspection robot, including the above-mentioned measurement device for orbit data, and a bracket, a processor, and a detection sensor assembly are located on the rail inspection robot;
  • the track inspection robot has at least two mutually parallel moving shafts, each moving shaft is located on the surface of the track and can move along the surface of the track, the moving shaft includes a first connecting shaft and a second connecting shaft connected to the first connecting shaft.
  • this application provides a method for measuring orbit data, using the above-mentioned orbit data measuring device, and the method includes:
  • the first distance is detected, and the first distance is the distance between the first track and the first detection sensor
  • the second distance is detected, and the second distance is the distance between the second track and the second detection sensor
  • the third distance is calculated based on the first distance, the second distance, and the distance between the first detection sensor and the second detection sensor, and the third distance is the distance between the two tracks.
  • the orbit data measurement device includes a third detection sensor
  • Methods also include:
  • the first included angle is the included angle between the bracket and the horizontal plane when the bracket is placed on two opposite rails;
  • the fourth distance is calculated according to the first included angle and the third distance, and the fourth distance is the height difference between the surfaces of the two tracks.
  • the device for measuring orbit data includes a lifting mechanism and a fourth detection sensor
  • Methods also include:
  • the second height is calculated according to the first angle, the fifth distance and the first height, where the first height is the height of the fourth detection sensor that detects the surface of the train platform from the surface of the track, and the second height is the distance between the train platform and the track The height of the surface;
  • the sixth distance is calculated according to the first included angle, the third distance, the fifth distance, and the first height.
  • the sixth distance is the distance between the side surface of the train station platform and the center of the two opposite tracks.
  • the orbit data measurement device includes a fifth detection sensor
  • Methods also include:
  • the seventh distance is detected.
  • the seventh distance is the distance between the fifth detection sensor and the canopy of the train station platform,
  • the eighth distance is calculated according to the first included angle, the distance between the fifth detection sensor and the surface of the track, and the seventh distance.
  • the eighth distance is the distance between the rain awning and the surface of the track.
  • the device and method for measuring track data, and the track inspection robot provided by the embodiments of the application.
  • the device for measuring track data is provided with a processor, a first detection sensor, and a second detection sensor.
  • the first detection sensor detects the first distance
  • the first The distance is the distance between the first track and the first detection sensor
  • the second detection sensor detects the second distance
  • the second distance is the distance between the second track and the second detection sensor.
  • the processor uses the first distance, The second distance and the distance between the first detection sensor and the second detection sensor calculate the distance between the two tracks, which improves the efficiency of data measurement and improves the accuracy of data measurement.
  • FIG. 1 is a schematic structural diagram of an orbit data measuring device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a bracket, a first detection sensor, a second detection sensor, and a third detection sensor in a track data measuring device provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of calculating the height difference between the surfaces of two tracks in a measuring device for track data provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a fourth detection sensor and a lifting mechanism in a track data measuring device provided by an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a fourth detection sensor, a fifth detection sensor, and a lifting mechanism in a track data measuring device provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of calculating the height of a train station platform and the distance between the side of the train station platform and the centers of two opposite tracks in a track data measuring device provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of calculating the distance between the fifth detection sensor and the rain canopy in a track data measuring device provided by an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a track inspection robot provided by an embodiment of the application.
  • FIG. 9 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • FIG. 10 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • FIG. 11 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • FIG. 12 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or a whole; it can be a mechanical connection It can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • connection and other terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or a whole; it can be a mechanical connection It can also be electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”, and “eighth” are only used for descriptive purposes, and cannot It is understood as indicating or implying the relative importance or implicitly indicating the quantity of the indicated technical features.
  • the features defined as “first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”, and “eighth” can be explicitly or implicitly specified. Inclusively includes one or more of this feature.
  • Fig. 1 is a schematic structural diagram of a device for measuring track data according to an embodiment of the application
  • Fig. 2 is a bracket, a first detection sensor, and a second detection sensor in a device for measuring track data provided by an embodiment of the application
  • a schematic diagram of the structure of the third detection sensor. 1 and 2 a device for measuring track data provided by an embodiment of the present application includes: a support 10, a processor 20, and a detection sensor assembly. The detection sensor assembly is located on the support 10, and the detection sensor assembly and the processor 20 connections.
  • the detection sensor assembly includes a first detection sensor 31 and a second detection sensor 32.
  • the first detection sensor 31 is used to detect a first distance H 1.
  • the first distance H 1 is the distance between the first track 40 and the first detection sensor 31.
  • Distance, the second detection sensor 32 is used to detect the second distance H 2
  • the second distance H 2 is the distance between the second track 40 and the second detection sensor 32;
  • the processor 20 is configured to calculate a third distance H 3 according to the first distance H 1 , the second distance H 2, and the distance between the first detection sensor 31 and the second detection sensor 32, and the third distance H 3 is two tracks 40 the distance between.
  • both the first detection sensor 31 and the second detection sensor 32 are installed on the bracket 10, and the distance between the first detection sensor 31 and the second detection sensor 32 is fixed.
  • the first detection sensor 31 is opposed to the upper side of the inner side wall of the first rail 40 to detect the first distance H 1 ;
  • the second detection sensor 32 is opposite to the second rail 40
  • the upper part of the inner side wall is opposite to detect the second distance H 2
  • the third distance H 3 is the sum of the first distance H 1 , the second distance H 2 and the distance between the first detection sensor 31 and the second detection sensor 32.
  • the detection accuracy of the third distance H 3 is required to be within 0.5 mm. Therefore, in this embodiment, by providing the first detection sensor 31 and the second detection sensor 32, the first detection sensor 31 and the second detection sensor 32 are close to the inner side wall of the rail 40, so as to reduce the first detection sensor 31 and the second detection sensor. 2. Detect the measurement error of the sensor 32.
  • the processor 20, the first detection sensor 31 and the second detection sensor 32 are provided.
  • the first detection sensor 31 detects the first distance H 1
  • the first distance H 1 is the first distance H 1.
  • the distance between the first track 40 and the first detection sensor 31, the second detection sensor 32 detects the second distance H 2
  • the second distance H 2 is the distance between the second track 40 and the second detection sensor 32
  • the processor 20 calculates the distance between the two tracks 40 according to the first distance H 1 , the second distance H 2 and the distance between the first detection sensor 31 and the second detection sensor 32, which improves the efficiency of data measurement and improves the data Accuracy of measurement.
  • the distance between the rails 40 is about 1400mm.
  • the bracket 10 When the bracket 10 is placed on the rail 40, the length of the bracket 10 needs to be greater than the distance between the rails 40.
  • the rail data measuring device provided by the embodiment of the application is inconvenient to carry and transport. Therefore, in some embodiments, it further includes a support frame 50 connected to the support frame 10, the support frame 10 is foldable, the first detection sensor 31 and the second detection sensor 32 are located under the support 10, and the second detection sensor 32 is located Support frame 50 on.
  • the bracket 10 can be divided into two parts that are hinged to each other, and either part is rotated at the hinge to make the bracket 10 foldable.
  • Other foldable structures can also be used, which is not limited in this embodiment.
  • the support frame 50 may be a right-angled triangle. One right angle of the support frame 50 is in a horizontal state and its side extends toward the rail 40 and is close to the track 40.
  • the second detection sensor 32 is connected to the support frame 50 on the right-angle side close to the rail 40 through the support frame. 50 firmly supports the second detection sensor 32.
  • the support frame 50 can rotate along the support 10 so that the support frame 50 is in a vertical state, and the support frame 50 is fixed by a fixing member or a fixed structure. When the second detection sensor 32 is in a non-working state, the support frame 50 is prevented from occupying space. At the same time, the support 10 can be folded, so that it is convenient to transport and carry the track data measuring device provided in the embodiment of the present application.
  • the first detection sensor 31 and the second detection sensor 32 are laser sensors. Specifically, the first detection sensor 31 and the second detection sensor 32 are short-range laser sensors. , The laser beam emitted by the first detection sensor 31 and the laser beam emitted by the second detection sensor 32 are located on the same straight line. In other words, the first detection sensor 31 and the second detection sensor 32 are arranged side by side, so that it is convenient to measure the distance between the first detection sensor 31 and the second detection sensor 32. In order to facilitate installation, the first detection sensor 31 and the second detection sensor 32 can also be staggered, and the distance between the first detection sensor 31 and the second detection sensor 32 side by side is calculated by trigonometric function.
  • FIG. 3 is a schematic diagram of calculating the height difference between the surfaces of two tracks in a measuring device for track data provided by an embodiment of the application. 1 to 3, the key data of the track 40 also includes the height difference between the surfaces of the two tracks 40, and further, the track data measuring device provided in the embodiment of the present application, the detection sensor assembly also includes a third detection sensor 33.
  • the third detection sensor 33 is used to detect the first included angle ⁇ , which is the included angle between the bracket 40 and the horizontal plane when the bracket 10 is placed on two opposite rails 40;
  • the processor 20 is configured to calculate a fourth distance H 4 according to the first included angle ⁇ and the third distance H 3 , and the fourth distance H 4 is the height difference between the surfaces of the two rails 40.
  • the third detection sensor 33 is an angle sensor.
  • the angle sensor measures when the bracket 10 is placed on the two opposite rails 40.
  • the fourth distance H 4 is calculated by formula (1);
  • H 4 is the fourth distance, that is, the height difference between the surfaces of the two tracks
  • H 3 is the third distance, that is, the distance between the two tracks 40.
  • is the first included angle, that is, the included angle between the support 40 and the horizontal plane when the support 10 is placed on two opposite rails 40.
  • FIG. 4 is a schematic structural diagram of a fourth detection sensor and a lifting mechanism in a track data measuring device provided by an embodiment of this application
  • FIG. 5 is a fourth detection in a track data measuring device provided by an embodiment of the application The structure diagram of the sensor, the fifth detection sensor and the lifting mechanism
  • FIG. 6 is a track data measuring device provided by an embodiment of the application for calculating the height of the train platform and the center of the two rails opposite to the side of the train platform. Schematic diagram of the distance between.
  • the detection sensor assembly further includes a fourth detection sensor 34;
  • the bracket 10 has a lifting mechanism 11, and each fourth detection sensor 34 is located on the lifting mechanism 11 to drive each fourth detection sensor 34 to move in the vertical direction through the lifting mechanism 11, and the fourth detection sensor 34 is used to detect the fifth distance H 5.
  • the fifth distance H 5 is the distance between the surface of the train platform 60 and the fourth detection sensor 34;
  • the processor 20 is configured to calculate the second height G 2 according to the first included angle ⁇ , the fifth distance H 5 and the first height G 1 , where the first height G 1 is a fourth detection sensor that detects the surface of the train platform 60 34 is the height from the surface of the track 40, and the second height G 2 is the height of the train station platform 60 from the surface of the track 40;
  • the processor 20 is configured to calculate a sixth distance H 6 according to the first included angle ⁇ , the third distance H 3 , the fifth distance H 5 and the first height G 1.
  • the sixth distance H 6 is the side of the train platform 60 and the opposite The distance between the centers of the two tracks 40.
  • the lifting mechanism 11 is connected to the processor 20.
  • the lifting mechanism 11 may include a servo motor and a slider connected to the servo motor.
  • a sliding rail is provided on the bracket 10, and the sliding rail is arranged in a vertical direction.
  • the fourth detection sensor 34 is arranged on the sliding block, the servo motor drives the slide to slide along the slide rail, so that the fourth detection sensor 34 moves up and down in the vertical direction.
  • the servo motor can accurately control the number of rotations to determine the fourth detection sensor 34 along the slide rail.
  • the sliding distance is combined with the fixed height between the lifting mechanism 11 installed on the bracket 10 and the surface of the rail 40, and the processor 20 can calculate the first height G 1 .
  • the distance between the lifting mechanism 11 in the initial state (the middle position of the lifting mechanism 11) and the surface of the rail 40 is fixed, and the lifting mechanism 11 is set in the initial state (the middle position of the lifting mechanism 11).
  • the distance between the surface of the track 40 is A
  • the servo motor rotates forward to drive the fourth detection sensor 34 to move upward
  • the fourth detection sensor 34 moves upward to detect the surface of the train platform 60.
  • G 1 is A and the fourth detection
  • the servo motor reverses to drive the fourth detection sensor 34 to move downward
  • the fourth detection sensor 34 moves downward to detect the surface of the train platform 60.
  • G 1 is A and the fourth The difference in the distance the sensor 34 slides along the slide rail is detected.
  • the lifting mechanism 11 may be a hydraulic cylinder.
  • the base of the hydraulic cylinder is connected to the support 10, and the piston rod of the hydraulic cylinder is connected with a fourth detection sensor 34.
  • the piston rod of the hydraulic cylinder drives the fourth detection sensor 34 to move vertically.
  • the direction moves up and down, wherein the fourth detection sensor 34 faces the train platform 60, and the fourth detection sensor 34 is perpendicular to the vertical direction.
  • the lifting mechanism 11 is a linear motor.
  • the structure of the lifting mechanism 11 is not limited, and the existing lifting mechanism 11 that can move the fourth detection sensor 34 up and down in the vertical direction may be used.
  • a distance sensor can be provided to determine the moving distance of the piston rod of the hydraulic cylinder or the moving distance of the linear motor, so as to determine the sliding distance of the fourth detection sensor 34 along the sliding rail.
  • the second height G2 is calculated by formula (2),
  • is the first included angle, that is, the included angle between the support 40 and the horizontal plane when the support 10 is placed on two opposite rails 40.
  • H 5 is the fifth distance, that is, the distance between the surface of the train platform 60 and the fourth detection sensor 34.
  • G 1 is the first height, that is, the height of the lifting mechanism 11 from the surface of the rail 40 when the fourth detection sensor 34 detects the surface of the train platform 60.
  • G 2 is the second height, that is, the height from the surface of the train platform 60 to the surface of the rail 40.
  • is the first included angle, that is, the included angle between the support 40 and the horizontal plane when the support 10 is placed on two opposite rails 40.
  • H 5 is the fifth distance, that is, the distance between the surface of the train platform 60 and the fourth detection sensor 34.
  • G 1 is the first height, that is, the height of the fourth detection sensor 34 that detects the surface of the train platform 60 from the surface of the rail 40.
  • H 3 is the third distance, that is, the distance between the two tracks 40.
  • H 6 is the sixth distance, that is, the distance between the side of the train platform 60 and the centers of the two opposite rails 40.
  • the track data measuring device provided by the embodiment of the application further includes a first alarm device (not shown in the figure) and a first controller (not shown in the figure), the first alarm device and the first controller Located on the support 10, the first controller and each fourth detection sensor 34 are connected to the first alarm device.
  • the first controller controls the first alarm device to issue an alarm prompt.
  • the sixth distance H 6 is less than the first preset value, it means that it is difficult for the train to pass through the train platform 60 normally or it is difficult to open the train door after the train stops. For example, there is a foreign object on the side of the train platform 60, and an alarm is issued to remind the track Maintenance personnel perform troubleshooting.
  • the alarm prompt can be sound/light alarm prompt through a separate alarm, or it can be displayed on the display screen.
  • the height of the train platform 60 is different.
  • the number of fourth detection sensors 34 is at least two.
  • the fourth detection sensor 34 is a laser sensor.
  • the fourth detection sensor 34 is a remote laser sensor.
  • the laser beams emitted by the fourth detection sensors 34 are located in the same vertical plane, and the angles between the fourth detection sensors 34 and the horizontal plane are different.
  • the angular interval between the fourth detection sensors 34 may be the same or different. When each fourth detection sensor 34 is installed, it is sufficient to record each fourth detection sensor 34. This embodiment is not limited here. .
  • the lifting mechanism 11 performs a relatively small movement, and the fourth detection sensor 34 that is closer to the train platform 60 can detect the surface of the train platform 60 in time and shorten the fourth The detection sensor 34 measures the time on the surface of the train platform 60.
  • the included angle between the fourth detection sensor 34 and the horizontal plane is the second included angle ⁇ . As the position of the fourth detection sensor 34 is different, the value of the second included angle ⁇ is also different.
  • is the second included angle, that is, the included angle between the fourth detection sensor 34 that detects the surface of the train platform 60 and the horizontal plane.
  • the second height H 6 is calculated by formula (5),
  • is the second included angle, that is, the included angle between the fourth detection sensor 34 that detects the surface of the train platform 60 and the horizontal plane.
  • FIG. 7 is a schematic diagram of calculating the distance between the fifth detection sensor and the rain canopy in a track data measuring device provided by an embodiment of the application.
  • the height of the rain awning 70 of the train platform 60 is also one of the key data for railway maintenance.
  • the detection sensor assembly further includes a fifth detection sensor 35, the fifth detection sensor 35 is used to detect the seventh distance H 7 , and the seventh distance H 7 is the fifth detection sensor 35 and the distance between the rain shed 70 of the train station 60,
  • the processor 20 is configured to calculate the eighth distance H 8 according to the first included angle ⁇ , the distance between the fifth detection sensor 35 and the surface of the track 40 and the seventh distance H 7 , and the eighth distance H 8 is the canopy 70 and the track The distance between the surfaces of 40.
  • the eighth distance H 8 is calculated by formula (6).
  • is the first included angle, that is, the included angle between the support 40 and the horizontal plane when the support 10 is placed on two opposite rails 40.
  • H 7 is the seventh distance, that is, the distance between the fifth detection sensor 35 and the rain shed 70 of the train platform 60.
  • B is the distance between the fifth detection sensor 35 and the surface of the rail 40, and B can also be referred to as the installation distance of the fifth detection sensor 35, that is, the distance between the fifth detection sensor 35 and the bottom of the bracket 10.
  • the rain awning 70 of the train platform 60 is usually arc-shaped, and multiple locations need to be detected to determine whether the train can pass safely.
  • the fifth detection sensor 35 is a radar, and the scanning range of the radar is -135 ⁇ 135 ⁇ .
  • the fifth detection sensor 35 detects multiple data within its scanning range, thereby obtaining the distances between the multiple canopy 70 and the surface of the track 40, that is, multiple eighth distances H 8 , according to the surface of the canopy 70 and the track 40 The minimum distance between the two to confirm whether the train can pass safely.
  • the track data measuring device provided in the embodiment of the present application further includes a second alarm device (not shown in the figure) and a second controller (not shown in the figure), the second alarm device and the second control
  • the second controller and the fifth detection sensor 35 are connected to the second alarm device.
  • the eighth distance H 8 is less than the second preset value
  • the second controller controls the second alarm device to issue an alarm prompt.
  • the eighth distance H 8 is less than the second preset value, it indicates that the train is difficult to pass normally, for example, there is a foreign object on the lower surface of the rain awning 70. At this time, an alarm is issued to remind the track maintenance personnel to troubleshoot.
  • the second controller and the first controller may be the same controller or different controllers. Among them, the alarm prompt can be sound/light alarm prompt through a separate alarm, or it can be displayed on the display screen.
  • the fifth detection sensor 35 and the fourth detection sensor 34 are located on different sides of the bracket 10. In this way, the detection results of the fifth detection sensor 35 and the fourth detection sensor 34 are not mutually affected.
  • the device for measuring track data provided in the embodiment of the present application further includes a memory (not shown in the figure), and the processor 20 and the detection sensor assembly are connected to the memory.
  • the memory is used to store the detection data of the detection sensor assembly, the first included angle ⁇ , the second included angle ⁇ , the first distance H 1 , the first distance H 2 , the fifth distance H 5 and the seventh distance H 7 .
  • each third preset threshold is the height of a different train platform 60 from the surface of the track 40
  • each fourth preset Let the thresholds be the distances between the sides of different train platforms 60 and the center of the rail 40, respectively.
  • the second height G 2 calculated by the processor 20 is greater than or less than the third preset threshold, it indicates that the calculated value of the second height G 2 is incorrect.
  • the memory removes the second height G 2 Data whose calculation result is greater than or less than the third preset threshold.
  • the sixth distance H 6 calculated by the processor 20 is greater than or less than the first preset threshold, it indicates that the calculated value of the sixth distance H 6 is incorrect.
  • the train platform There may be foreign objects on the side surface of 60, and the memory excludes data whose calculation result of the sixth distance H 6 is greater than or less than the first preset threshold.
  • the track data measuring device can measure five items of data.
  • the five items of data are the distance between the two tracks 40, the height difference between the surfaces of the two tracks 40, and the distance between the train station 60 and the track 40.
  • the five data items can be stored separately after measurement.
  • the five data items are dependent on each other. Among them, the distance between the two rails 40 and the height difference between the surfaces of the two rails 40, and the first included angle ⁇ of the intermediate parameter in measuring the height difference between the surfaces of the two rails 40 , Is the measurement basis for the remaining data. Compared with the prior art using different departments to manually measure the above five data items, the measurement time is shortened and the measurement accuracy is improved.
  • FIG. 8 is a schematic structural diagram of a track inspection robot provided by an embodiment of the application.
  • an embodiment of the present application also provides a track inspection robot, including the track data measurement device provided in the above embodiment, wherein the support 10, the processor 20 and the detection sensor assembly are located on the track inspection robot .
  • the track inspection robot has at least two mutually parallel moving shafts 80.
  • Each moving shaft 80 is located on the surface of the track 40 and can move along the surface of the track 40.
  • the moving shaft 80 includes a first connecting shaft and a first connecting shaft connected to the first connecting shaft. Two connecting shaft.
  • the track inspection robot may also include measuring devices such as temperature sensors.
  • the orbital inspection robot may also include common functional devices and structures in the orbital inspection robot such as power supplies, motors, and controllers. Repeat.
  • the first connecting shaft and the second connecting shaft are detachably connected, and the rail inspection robot is arranged on the side of the first connecting shaft or the second connecting shaft.
  • FIG. 9 is a flowchart of a method for measuring orbit data provided by an embodiment of the application. As shown in FIG. 9, an embodiment of the present application also provides a method for measuring orbital data, using the orbital data measuring device provided in the foregoing embodiment, wherein the specific structure, function, and working principle of the orbital data measuring device have been It has been described in detail in the foregoing embodiment, and will not be repeated here.
  • step S101 and step S102 there is no sequence between step S101 and step S102, and step S102 may be executed first, and then step S101 may be executed, or step S101 and step S102 may be executed simultaneously.
  • the first detection sensor 31 is controlled by the third controller to detect the first distance H 1
  • the second detection sensor 32 is controlled by the third controller to detect the second distance H 2
  • the first detection sensor 31 detects the first distance H 1
  • the analog signal of the second distance H 2 detected by the second detection sensor 32 is collected by the third controller, and the first detection sensor 31 detects the analog signal of the first distance H 1 and the second detection sensor 32
  • the analog signal detecting the second distance H 2 is transmitted to the processor 20, and the processor 20 calculates the third distance based on the first distance H 1 , the second distance H 2 and the distance between the first detection sensor 31 and the second detection sensor 32
  • the distance H 3 and the third distance H 3 are the distance between the two tracks 30.
  • the process of calculating the third distance H 3 by the processor 20 has been described in detail in the foregoing device embodiment, and will not be repeated in this embodiment.
  • the third controller may be STM32 as the controller.
  • FIG. 10 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • the device for measuring orbit data includes a third detection sensor 33; the method for measuring orbit data provided in an embodiment of the present application further includes;
  • S202 Calculate a fourth distance H 4 according to the first included angle ⁇ and the third distance H 3 , where the fourth distance H 4 is the height difference between the surfaces of the two rails 40.
  • the first angle ⁇ is detected by the third detecting sensor 33
  • the third detecting sensor 33 is controlled by the third controller to detect the first angle ⁇
  • the first angle ⁇ detected by the third detecting sensor 33 is detected by the third control.
  • the 485 serial port of the device collects and transmits to the processor 20, and the processor 20 calculates the fourth distance H 4 according to the first included angle ⁇ and the third distance H 3.
  • the fourth distance H 4 is the height difference between the surfaces of the two rails 40. The process of calculating the fourth distance H 4 by the processor 20 has been described in detail in the foregoing device embodiment, and will not be repeated here in this embodiment.
  • FIG. 11 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • the device for measuring track data includes a lifting mechanism 11 and a fourth detection sensor 34; the method for measuring track data provided in an embodiment of the present application further includes;
  • the fourth detection sensor 34 moves the fourth detection sensor 34 by the lifting mechanism 11 to detect the fifth distance H 5
  • the fifth distance H 5 is the distance between the surface of the train station 60 and the fourth detection sensor 34.
  • the sixth distance H 6 is the side of the train station 60 and the two opposite tracks The distance between the centers of 40.
  • step S302 there is no sequence between step S302 and step S303, and step S303 may be executed first, and then step S302 may be executed, or step S302 and step S303 may be executed simultaneously.
  • the number of fourth detection sensors 34 is at least two, and each fourth detection sensor 34 is fixed on the lifting mechanism 11 at different angles and can move in the vertical direction.
  • Each fourth detection sensor 34 is used to detect a train platform. The height value of the surface of 60 from the surface of the track 40, and the distance between the side of the train platform 60 and the center of the two tracks 40.
  • At least two fourth detection sensors 34 are provided to cover different detection intervals. Within the range, the detection time can also be reduced by detecting the fourth detection sensor 34 at the same time.
  • the fourth detection sensor 34 is an analog sensor, and the detection data of the fourth detection sensor 34 is collected by a single-chip microcomputer, which is connected to the third controller.
  • FIG. 12 is a flowchart of a method for measuring orbit data provided by an embodiment of the application.
  • the device for measuring orbit data includes a fifth detection sensor 35; the method for measuring orbit data provided in an embodiment of the present application further includes;
  • the fifth detection sensor 35 may be a radar, and optionally, the fifth detection sensor 35 is a Pepperl+Fuchs radar sensor.
  • the radar scans the surrounding environment, draws an outline of the environment, recognizes the position of the rain canopy 70, the height of the train station platform 60, etc., and calculates the distance between the fifth detection sensor 35 and the rain shelter 70 of the train station platform 60.
  • the radar is controlled by the fourth controller and transmits large amounts of data through TCP/IP communication.
  • the fourth controller is an X86 microprocessor, and the fourth controller is connected to the single-chip microcomputer.
  • the controller 20 first angle ⁇ , the distance between the surface of the fifth detection sensor 35 and the rail 40 and the seventh eighth calculated distance from H 7 H 8, H 8 eighth distance is the canopy rail 40 and 70 The distance between the surfaces.
  • the process of calculating the eighth distance H 8 by the controller 20 is described in detail in the above-mentioned device embodiment, and will not be repeated in this embodiment.
  • the plurality of devices and a third predetermined threshold value a first predetermined threshold value may be transmitted to the fourth controller, when the second processor 20 calculates the height G of 2 larger or smaller than a third predetermined threshold value, indicating The calculated value of the second height G 2 is incorrect. At this time, there may be foreign objects on the surface of the train platform 60.
  • the fourth controller removes the data whose calculation result of the second height G 2 is greater than or less than the third preset threshold in the memory.
  • the sixth distance H 6 calculated by the device 20 is greater than or less than the first preset threshold, indicating that the calculated value of the sixth distance H 6 is incorrect. At this time, there may be foreign objects on the side of the train platform 60.
  • the fourth controller removes the sixth distance from the memory. Data whose calculation result of distance H 6 is greater than or less than the first preset threshold.

Abstract

一种轨道数据的测量装置,包括:支架(10)、处理器(20)和检测传感器组件,检测传感器组件位于支架(10)上,检测传感器组件与处理器(20)连接;检测传感器组件包括第一检测传感器(31)和第二检测传感器(32),第一检测传感器(31)用于检测第一距离(H 1),第二检测传感器(32)用于检测第二距离(H 2),处理器(20)用于根据第一距离(H 1)、第二距离(H 2)和第一检测传感器(31)与第二检测传感器(32)之间的距离计算第三距离(H 3),第三距离(H 3)为两个轨道之间(40)的距离。还公开了轨道数据测量方法、轨道巡检机器人。通过自动测量数据和处理数据,提高数据测量的效率,且提高数据测量的准确性。

Description

轨道数据的测量装置及方法、轨道巡检机器人
本申请要求于2019年07月29日提交中国专利局,申请号为201910689651.9,申请名称为“轨道数据的测量装置及方法、轨道巡检机器人”的中国申请专利申请的优先权,其与本申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及数据测量技术领域,尤其涉及一种轨道数据的测量装置及方法、轨道巡检机器人。
背景技术
随着铁路技术的不断发展,铁路里程逐年增加,铁路维护工作成为保证铁路畅通的重要工作之一。铁路维护工作中,需要测量两个轨道之间的距离等一些关键数据。
在实际中,两个轨道高度不一致。测量两个轨道之间的距离时,将软尺的一端放置在一个轨道的表面,软尺的另一端放置在另一个轨道的表面,通过软尺测量两个轨道之间的距离,同时通过角度尺测量位于两个轨道之间的软尺与水平线时间的夹角,通过两个轨道之间的软尺与水平线构成一个直角三角形,通过三角函数计算两个轨道之间的距离。
但是,人工测量数据的效率低,且测量的数据不准确。
发明内容
本申请实施例提供一种轨道数据的测量装置及方法、轨道巡检机器人,通过自动测量数据和处理数据,提高数据测量的效率,且提高数据测量的准确性。
第一方面,本申请提供的一种轨道数据的测量装置,包括:支架、处理器和检测传感器组件,检测传感器组件位于支架上,检测传感器组件与处理器连接;
检测传感器组件包括第一检测传感器和第二检测传感器,第一检测传感器用于检测第一距离,第一距离为第一个轨道与第一检测传感器之间的距离,第二检测传感器用于检测第二距离,第二距离为第二个轨道与第二检测传感器之间的距离;
处理器用于根据第一距离、第二距离和第一检测传感器与第二检测传感器之间的距离计算第三距离,第三距离为两个轨道之间的距离。
作为一种可选的方式,本申请提供的轨道数据的测量装置,还包括支撑架,支撑架与支架连接,支架可折叠,第一检测传感器和第二检测传感器位于支架的下方,第二检测传感器位于支撑架上。
作为一种可选的方式,本申请提供的轨道数据的测量装置,第一检测传感器和第二检测传感器为激光传感器,第一检测传感器发出的激光束和第二检测传感器发出的激光束位于同一条直线上。
作为一种可选的方式,本申请提供的轨道数据的测量装置,检测传感器组件还包括第三检测传感器,第三检测传感器用于检测第一夹角,第一夹角为当支架放置在相对的两个轨道上时,支架与水平面之间的夹角;
处理器用于根据第一夹角和第三距离计算第四距离,第四距离为两个轨道的表面的高度差。
作为一种可选的方式,本申请提供的轨道数据的测量装置,检测传感器组件还包括第四检测传感器;
支架上具有升降机构,升降机构与处理器连接,各第四检测传感器位于升降机构上,以通过升降机构驱动各第四检测传感器沿竖直方向移动,第四检测传感器用于检测第五距离,第五距离为列车站台的表面与第四检测传感器之间的距离;
处理器用于根据第一夹角、第五距离和第一高度计算第二高度,其中,第一高度为检测到列车站台的表面的第四检测传感器距轨道的表面的高度,第二高度为列车站台距轨道的表面的高度;
处理器用于根据第一夹角、第三距离、第五距离和第一高度计算第六距离,第六距离为列车站台的侧面与相对的两个轨道的中心之间的距离。
作为一种可选的方式,本申请提供的轨道数据的测量装置,还包括第一报警装置和第一控制器,第一报警装置和第一控制器位于支架上,第一控制 器和各第四检测传感器与第一报警装置连接,当第六距离小于第一预设值时,第一控制器控制第一报警装置发出报警提示。
作为一种可选的方式,本申请提供的轨道数据的测量装置,第四检测传感器的数量为至少两个,第四检测传感器为激光传感器,各第四检测传感器发出的激光束位于同一竖直平面内,各第四检测传感器与水平面的夹角不同。
作为一种可选的方式,本申请提供的轨道数据的测量装置,检测传感器组件还包括第五检测传感器,第五检测传感器用于检测第七距离,第七距离为第五检测传感器与列车站台的雨棚之间的距离,
处理器用于根据第一夹角、第五检测传感器与轨道的表面之间的距离和第七距离计算第八距离,第八距离为雨棚与轨道的表面之间的距离。
作为一种可选的方式,本申请提供的轨道数据的测量装置,还包括存储器,处理器和检测传感器组件与存储器连接。
作为一种可选的方式,本申请提供的轨道数据的测量装置,第五检测传感器与第四检测传感器位于支架的不同侧面。
作为一种可选的方式,本申请提供的轨道数据的测量装置,第五检测传感器为雷达,雷达扫描范围为-135゜~135゜。
作为一种可选的方式,本申请提供的轨道数据的测量装置,还包括第二报警装置和第二控制器,第二报警装置和第二控制器位于支架上,第二控制器和第五检测传感器与第二报警装置连接,当第八距离小于第二预设值时,第二控制器控制第二报警装置发出报警提示。
第二方面,本申请提供了一种轨道巡检机器人,包括上述的轨道数据的测量装置,支架、处理器和检测传感器组件位于轨道巡检机器人上;
轨道巡检机器人具有至少两个相互平行的运动轴,各运动轴位于轨道的表面且可沿轨道的表面移动,运动轴包括第一连接轴和与第一连接轴连接的第二连接轴。
第三方面,本申请提供了一种轨道数据的测量方法,采用上述的轨道数据的测量装置,方法包括:
检测第一距离,第一距离为第一个轨道与第一检测传感器之间的距离;
检测第二距离,第二距离为第二个轨道与第二检测传感器之间的距离;
根据第一距离、第二距离和第一检测传感器与第二检测传感器之间的距 离计算第三距离,第三距离为两个轨道之间的距离。
作为一种可选的方式,本申请提供的轨道数据的测量方法,轨道数据的测量装置包括第三检测传感器;
方法还包括:
检测第一夹角,第一夹角为当支架放置在相对的两个轨道上时,支架与水平面之间的夹角;
根据第一夹角和第三距离计算第四距离,第四距离为两个轨道的表面的高度差。
作为一种可选的方式,本申请提供的轨道数据的测量方法,轨道数据的测量装置包括升降机构和第四检测传感器;
方法还包括:
通过升降机构移动第四检测传感器,以检测第五距离,第五距离为列车站台的表面与第四检测传感器之间的距离;
根据第一夹角、第五距离和第一高度计算第二高度,其中,第一高度为检测到列车站台的表面的第四检测传感器距轨道的表面的高度,第二高度为列车站台距轨道的表面的高度;
根据第一夹角、第三距离、第五距离和第一高度计算第六距离,第六距离为列车站台的侧面与相对的两个轨道的中心之间的距离。
作为一种可选的方式,本申请提供的轨道数据的测量方法,轨道数据的测量装置包括第五检测传感器;
方法还包括:
检测第七距离,第七距离为第五检测传感器与列车站台的雨棚之间的距离,
根据第一夹角、第五检测传感器与轨道的表面之间的距离和第七距离计算第八距离,第八距离为雨棚与轨道的表面之间的距离。
本申请实施例提供的轨道数据的测量装置及方法、轨道巡检机器人,轨道数据的测量装置通过设置处理器、第一检测传感器和第二检测传感器,第一检测传感器检测第一距离,第一距离为第一个轨道与第一检测传感器之间的距离,第二检测传感器检测第二距离,第二距离为第二个轨道与第二检测传感器之间的距离,处理器根据第一距离、第二距离和第一检测传感器与第 二检测传感器之间的距离计算两个轨道之间的距离,提高了数据测量的效率,且提高了数据测量的准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的一种轨道数据的测量装置的结构示意图;
图2为本申请一实施例提供的一种轨道数据的测量装置中支架、第一检测传感器、第二检测传感器和第三检测传感器的结构示意图;
图3为本申请一实施例提供的一种轨道数据的测量装置中计算两个轨道的表面的高度差的示意图;
图4为本申请一实施例提供的一种轨道数据的测量装置中第四检测传感器和升降机构的结构示意图;
图5为本申请一实施例提供的一种轨道数据的测量装置中第四检测传感器、第五检测传感器和升降机构的结构示意图;
图6为本申请一实施例提供的一种轨道数据的测量装置中计算列车站台的高度和列车站台的侧面与相对的两个轨道的中心之间的距离的示意图;
图7为本申请一实施例提供的一种轨道数据的测量装置中计算第五检测传感器与雨棚之间的距离的示意图;
图8为本申请一实施例提供的一种轨道巡检机器人的结构示意图;
图9为本申请一实施例提供的一种轨道数据的测量方法的流程图;
图10为本申请一实施例提供的一种轨道数据的测量方法的流程图;
图11为本申请一实施例提供的一种轨道数据的测量方法的流程图;
图12为本申请一实施例提供的一种轨道数据的测量方法的流程图。
附图标记说明
10-支架;11-升降机构;20-处理器;31-第一检测传感器;32-第二检测传感器;33-第三检测传感器;34-第四检测传感器;35-第五检测传感器;40-轨道;50-支撑架;60-列车站台;70-雨棚;80-运动轴;
α-第一夹角;β-第二夹角;H 1-第一距离;H 2-第一距离;H 3-第三距离;H 4-第四距离;H 5-第五距离;H 6-第六距离;H 7-第七距离;H 8-第八距离;G 1-第一高度;G 2-第二高度。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请说明书的描述中,需要理解的是,术语“表面”、“侧面”、“下方”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请说明书的描述中,除非另有明确的规定和限定,术语“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
此外,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”、“第八”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”、“第八”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是多个,例如两个,三个,四个等,除非另有明确具体的限定。
下面,通过具体实施例对本申请的技术方案进行详细说明。
需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1为本申请一实施例提供的一种轨道数据的测量装置的结构示意图;图2为本申请一实施例提供的一种轨道数据的测量装置中支架、第一检测传感器、第二检测传感器和第三检测传感器的结构示意图。参见图1和图2所示,本申请实施例提供的一种轨道数据的测量装置,包括:支架10、处理器20和检测传感器组件,检测传感器组件位于支架10上,检测传感器组件与处理器20连接。
检测传感器组件包括第一检测传感器31和第二检测传感器32,第一检测传感器31用于检测第一距离H 1,第一距离H 1为第一个轨道40与第一检测传感器31之间的距离,第二检测传感器32用于检测第二距离H 2,第二距离H 2为第二个轨道40与第二检测传感器32之间的距离;
处理器20用于根据第一距离H 1、第二距离H 2和第一检测传感器31与第二检测传感器32之间的距离计算第三距离H 3,第三距离H 3为两个轨道40之间的距离。
具体的,将第一检测传感器31和第二检测传感器32均安装在支架10上,第一检测传感器31和第二检测传感器32之间的距离固定。当支架10放置在两个轨道40上时,第一检测传感器31与第一个轨道40的内侧壁的上方相对,以检测第一距离H 1;第二检测传感器32与第二个轨道40的内侧壁的上方相对,以检测第二距离H 2,第三距离H 3为第一距离H 1、第二距离H 2和第一检测传感器31与第二检测传感器32之间的距离之和。
在实际测量中,第三距离H 3的检测精度要求在0.5mm以内。因此,在本实施例中,通过设置第一检测传感器31和第二检测传感器32,第一检测传感器31和第二检测传感器32靠近轨道40的内侧壁,以减小第一检测传感器31和第二检测传感器32的测量误差。
本申请实施例提供的轨道数据的测量装置,通过设置处理器20、第一检测传感器31和第二检测传感器32,第一检测传感器31检测第一距离H 1,第 一距离H 1为第一个轨道40与第一检测传感器31之间的距离,第二检测传感器32检测第二距离H 2,第二距离H 2为第二个轨道40与第二检测传感器32之间的距离,处理器20根据第一距离H 1、第二距离H 2和第一检测传感器31与第二检测传感器32之间的距离计算两个轨道40之间的距离,提高了数据测量的效率,且提高了数据测量的准确性。
轨道40之间的距离为1400mm左右,当支架10放置在轨道40上时,支架10长度需大于轨道40之间的距离,这样,导致本申请实施例提供的轨道数据的测量装置不方便携带和运输。因此,在一些实施例中,还包括支撑架50,支撑架50与支架10连接,支架10可折叠,第一检测传感器31和第二检测传感器32位于支架10的下方,第二检测传感器32位于支撑架50上。
在具体实现时,可将支架10分为相互铰接的两部分,在铰接处转动任一部分,以使支架10可折叠,也可采用其它可折叠的结构,本实施例在此不做限定。支撑架50可以为直角三角形,支撑架50的一个直角处于水平的状态且边朝向轨道40延伸,并靠近轨道40,第二检测传感器32连接在支撑架50靠近轨道40的直角边,通过支撑架50稳固支撑第二检测传感器32。支撑架50可沿支架10转动,使支撑架50处于竖直的状态,并通过固定件或者固定结构固定支撑架50,在第二检测传感器32处于非工作状态时,避免支撑架50占据空间,同时支架10可折叠,这样,方便运输和携带本申请实施例提供的轨道数据的测量装置。
可选的,本申请实施例提供的轨道数据的测量装置,第一检测传感器31和第二检测传感器32为激光传感器,具体的,第一检测传感器31和第二检测传感器32为近距离激光传感器,第一检测传感器31发出的激光束和第二检测传感器32发出的激光束位于同一条直线上。也就是说,第一检测传感器31和第二检测传感器32并排设置,这样,便于测量第一检测传感器31和第二检测传感器32之间的距离。为了便于安装,第一检测传感器31和第二检测传感器32也可以错开设置,通过三角函数计算第一检测传感器31和第二检测传感器32并排之间的距离。
图3为本申请一实施例提供的一种轨道数据的测量装置中计算两个轨道的表面的高度差的示意图。参见图1至图3所示,轨道40的关键数据还包括两个轨道40的表面的高度差,进一步的,本申请实施例提供的轨道数据的测 量装置,检测传感器组件还包括第三检测传感器33,第三检测传感器33用于检测第一夹角α,第一夹角α为当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角;
处理器20用于根据第一夹角α和第三距离H 3计算第四距离H 4,第四距离H 4为两个轨道40的表面的高度差。
具体的,第三检测传感器33为角度传感器。当支架10放置在相对的两个轨道40上时,由于两个轨道40的表面存在的高度差,使支架10相对于水平面倾斜,通过角度传感器测量当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角,通过公式(一)计算第四距离H 4
H 4=H 3×sinα     公式(一)
公式(一)中,H 4为第四距离,即为两个轨道的表面的高度差;
H 3为第三距离,即为两个轨道40之间的距离。
α为第一夹角,即当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角。
图4为本申请一实施例提供的一种轨道数据的测量装置中第四检测传感器和升降机构的结构示意图;图5为本申请一实施例提供的一种轨道数据的测量装置中第四检测传感器、第五检测传感器和升降机构的结构示意图;图6为本申请一实施例提供的一种轨道数据的测量装置中计算列车站台的高度和列车站台的侧面与相对的两个轨道的中心之间的距离的示意图。参见图4至图5所示,本申请实施例提供的轨道数据的测量装置,检测传感器组件还包括第四检测传感器34;
支架10上具有升降机构11,各第四检测传感器34位于升降机构11上,以通过升降机构11驱动各第四检测传感器34沿竖直方向移动,第四检测传感器34用于检测第五距离H 5,第五距离H 5为列车站台60的表面与第四检测传感器34之间的距离;
处理器20用于根据第一夹角α、第五距离H 5和第一高度G 1计算第二高度G 2,其中,第一高度G 1为检测到列车站台60的表面的第四检测传感器34距轨道40的表面的高度,第二高度G 2为列车站台60的距轨道40的表面的高度;
处理器20用于根据第一夹角α、第三距离H 3、第五距离H 5和第一高度 G 1计算第六距离H 6,第六距离H 6为列车站台60的侧面与相对的两个轨道40的中心之间的距离。
具体的,升降机构11与处理器20连接,升降机构11可以为包括伺服电机和与伺服电机连接的滑块,在支架10上设置滑轨,且滑轨沿竖直方向设置,第四检测传感器34设置在滑块上,伺服电机驱动滑动沿滑轨滑动,以使第四检测传感器34沿竖直方向上下移动,伺服电机可以精确地控制旋转圈数,从而确定第四检测传感器34沿滑轨滑动的距离,结合升降机构11安装在支架10上与轨道40的表面之间的固定高度,处理器20即可计算出第一高度G 1
示例性的,升降机构11在初始状态下(升降机构11升降的中间位置)的距离轨道40的表面之间的距离固定,设升降机构11在初始状态下(升降机构11升降的中间位置)的距离轨道40的表面之间的距离为A,伺服电机正转驱动第四检测传感器34向上移动,第四检测传感器34向上移动检测到列车站台60的表面,此时G 1为A与第四检测传感器34沿滑轨滑动的距离之和,伺服电机反转驱动第四检测传感器34向下移动,第四检测传感器34向下移动检测到列车站台60的表面,此时G 1为A与第四检测传感器34沿滑轨滑动的距离之差。
升降机构11可以为液压缸,液压缸的底座与支架10连接,液压缸的活塞杆上连接第四检测传感器34,当液压缸工作时,液压缸的活塞杆驱动第四检测传感器34沿竖直方向上下移动,其中,第四检测传感器34朝向列车站台60,且第四检测传感器34与竖直方向垂直。或者升降机构11为直线电机,在本实施例中对升降机构11的结构不进行限定,采用现有的可使第四检测传感器34沿竖直方向上下移动的升降机构11即可。为了确定第一高度G 1,可以在设置距离传感器,以确定液压缸的活塞杆的移动距离,或者直线电机的移动距离,从而确定第四检测传感器34沿滑轨滑动的距离。
其中,通过公式(二)计算第二高度G2,
G 2=sinα×H 5+cosα×G 1      公式(二)
公式(二)中,α为第一夹角,即当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角。
H 5为第五距离,即列车站台60的表面与第四检测传感器34之间的距离。
G 1为第一高度,即当第四检测传感器34检测到列车站台60的表面时, 升降机构11距轨道40的表面的高度。
G 2为第二高度,即列车站台60的表面距轨道40的表面的高度。
公式(二)中,α通过第三检测传感器33检测,H 5通过第四检测传感器34检测,
其中,通过公式(三)计算第二高度H 6
H 6=cosα×H 5-sinα×G 1+H 3÷2      公式(三)
公式(三)中,α为第一夹角,即当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角。
H 5为第五距离,即列车站台60的表面与第四检测传感器34之间的距离。
G 1为第一高度,即检测到列车站台60的表面的第四检测传感器34距轨道40的表面的高度。
H 3为第三距离,即两个轨道40的之间的距离。
H 6为第六距离,即列车站台60的侧面与相对的两个轨道40的中心之间的距离。
测量第六距离H 6,即列车站台60的侧面与相对的两个轨道40的中心之间的距离,为了避免列车难以正常通过列车站台60或者在列车停靠后难以打开列车车门。进一步的,本申请实施例提供的轨道数据的测量装置,还包括第一报警装置(图中未示出)和第一控制器(图中未示出),第一报警装置和第一控制器位于支架10上,第一控制器和各第四检测传感器34与第一报警装置连接,当第六距离H 6小于第一预设值时,第一控制器控制第一报警装置发出报警提示。当第六距离H 6小于第一预设值时,表示列车难以正常通过列车站台60或者在列车停靠后难以打开列车车门,例如列车站台60的侧面具有异物,此时发出报警提示,以提示轨道检修人员进行故障处理。
其中,报警提示可以通过单独的报警器进行声/光报警提示,也可以由显示屏幕进行显示。
在实际中,列车站台60的高度不同,为了适应不同高度的列车站台60,且缩短测量时间,本申请实施例提供的轨道数据的测量装置,第四检测传感器34的数量为至少两个,第四检测传感器34为激光传感器,具体的,第四检测传感器34为远距离激光传感器。各第四检测传感器34发出的激光束位于同一竖直平面内,各第四检测传感器34与水平面的夹角不同。
具体的,各第四检测传感器34之间的角度间隔可以相同,也可以不同,在安装各第四检测传感器34时,记录各第四检测传感器34即可,本实施例在此不做限定2。通过设置至少两个第四检测传感器34,这样,升降机构11进行较小的移动,与列车站台60距离较近的第四检测传感器34即可及时的检测到列车站台60的表面,缩短第四检测传感器34测量列车站台60的表面的时间。
其中,第四检测传感器34与水平面的夹角为第二夹角β,随着第四检测传感器34的位置不同,第二夹角β的数值也不同。
当第四检测传感器34与水平面之间具有夹角时,通过公式(四)计算第二高度G2,
G 2=sin(α+β)×H 5+cosα×G 1      公式(四)
公式(二)中对α、H 5和G 1的含义进行了详细说明,此处不在赘述。
公式(四)中,β为第二夹角,即检测到列车站台60的表面的第四检测传感器34与水平面的夹角。
当第四检测传感器34与水平面之间具有夹角时,通过公式(五)计算第二高度H 6
H 6=cos(α+β)×H 5-sinα×G 1+H 3÷2      公式(五)
公式(三)中对α、H 5、G 1和H 3的含义进行了详细说明,此处不在赘述。公式(五)中,β为第二夹角,即检测到列车站台60的表面的第四检测传感器34与水平面的夹角。
图7为本申请一实施例提供的一种轨道数据的测量装置中计算第五检测传感器与雨棚之间的距离的示意图。参见图1和图7所示,列车站台60的雨棚70的高度也为铁路维护的关键数据之一。进一步的,本申请实施例提供的轨道数据的测量装置,检测传感器组件还包括第五检测传感器35,第五检测传感器35用于检测第七距离H 7,第七距离H 7为第五检测传感器35与列车站台60的雨棚70之间的距离,
处理器20用于根据第一夹角α、第五检测传感器35与轨道40的表面之间的距离和第七距离H 7计算第八距离H 8,第八距离H 8为雨棚70与轨道40的表面之间的距离。
其中,通过公式(六)计算第八距离H 8
H 8=cosα×B+H 7     公式(六)
公式(六)中,α为第一夹角,即当支架10放置在相对的两个轨道40上时,支架40与水平面之间的夹角。
H 7为第七距离,即第五检测传感器35与列车站台60的雨棚70之间的距离。
B为第五检测传感器35与轨道40的表面之间的距离,B也可称为第五检测传感器35的安装距离,即第五检测传感器35与支架10底部之间的距离。
需要说明的是,结合图1至图7,上述公式(一)至公式(六)为靠近列车站台60的轨道40的高度大于远离列车站台60的轨道40的高度情况进行描述,此时设定第一夹角α为正值。当靠近列车站台60的轨道40的高度小于远离列车站台60的轨道40的高度,此时第一夹角α为负值。
列车站台60的雨棚70通常为弧形,需要检测多个位置,以确定列车是否能安全通过。进一步的,本申请实施例提供的轨道数据的测量装置,第五检测传感器35为雷达,雷达扫描范围为-135゜~135゜。
第五检测传感器35在其扫描范围内检测多个数据,从而获得多个雨棚70与轨道40的表面之间的距离,即多个第八距离H 8,根据雨棚70与轨道40的表面之间的最小距离,确认列车是否能安全通过。
可选的,本申请实施例提供的轨道数据的测量装置,还包括第二报警装置(图中未示出)和第二控制器(图中未示出),第二报警装置和第二控制器位于支架10上,第二控制器和第五检测传感器35与第二报警装置连接,当第八距离H 8小于第二预设值时,第二控制器控制第二报警装置发出报警提示。
具体的,当第八距离H 8小于第二预设值时,表示列车难以正常通过,例如雨棚70的下表面具有异物,此时发出报警提示,以提示轨道检修人员进行故障处理。第二控制器和第一控制器可以为同一个控制器,也可以为不同的控制器。其中,报警提示可以通过单独的报警器进行声/光报警提示,也可以由显示屏幕进行显示。
可选的,本申请实施例提供的轨道数据的测量装置,第五检测传感器35与第四检测传感器34位于支架10的不同侧面。这样,不会相互影响第五检测传感器35与第四检测传感器34的检测结果。
可选的,本申请实施例提供的轨道数据的测量装置,还包括存储器(图中未示出),处理器20和检测传感器组件与存储器连接。
具体的,存储器用于存储检测传感器组件的检测数据,第一夹角α、第二夹角β、第一距离H 1、第一距离H 2、第五距离H 5和第七距离H 7
以及处理器20的计算数据,第三距离H 3、第四距离H 4、第六距离H 6、第八距离H 8、第一高度G 1和第二高度G 2
具体的,在处理器20中具有多个第三预设阈值和第一预设阈值,各第三预设阈值分别为不同的列车站台60的表面距轨道40的表面的高度,各第四预设阈值分别为不同的列车站台60的侧面与轨道40的中心之间的距离。当处理器20计算的第二高度G 2大于或者小于第三预设阈值,表明第二高度G 2的计算值有误,此时列车站台60的表面可能有异物,存储器剔除第二高度G 2计算结果大于的或者小于第三预设阈值的数据,当处理器20计算的第六距离H 6大于或者小于第一预设阈值,表明第六距离H 6的计算值有误,此时列车站台60的侧面可能有异物,存储器剔除第六距离H 6计算结果大于的或者小于第一预设阈值的数据。
本申请实施例提供的轨道数据的测量装置,能测量五项数据,该五项数据分别为两个轨道40之间的距离,两个轨道40的表面的高度差,列车站台60的距轨道40的表面的高度,列车站台60的侧面与相对的两个轨道40的中心之间的距离,雨棚70与轨道40的表面之间的距离。该五项数据测量后可分别存储。五项数据是互相依附的,其中,两个轨道40之间的距离和两个轨道40的表面的高度差,以及在测量两个轨道40的表面的高度差中的中间参数第一夹角α,为其余数据的测量依据。相对于现有技术中通过不同的部门分别人工测量上述五项数据,缩短了测量时间,提高了测量精度。
图8为本申请一实施例提供的一种轨道巡检机器人的结构示意图。参见图8所示,本申请实施例还提供了一种轨道巡检机器人,包括上述实施例提供的轨道数据的测量装置,其中,支架10、处理器20和检测传感器组件位于轨道巡检机器人上。
轨道巡检机器人具有至少两个相互平行的运动轴80,各运动轴80位于轨道40的表面且可沿轨道40的表面移动,运动轴80包括第一连接轴和与第 一连接轴连接的第二连接轴。
其中,轨道数据的测量装置的具体结构、功能以及工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
此外,轨道巡检机器人中还可以包括有温度传感器等测量器件。
可以理解的是,为了执行轨道巡检机器人所需的各类任务,轨道巡检机器人还可以包括有电源、电机、以及控制器等轨道巡检机器人中的常用功能器件和结构,此处不再赘述。
为了便于运输轨道巡检机器人,第一连接轴和第二连接轴可拆卸连接,轨道巡检机器人设置在第一连接轴侧或第二连接轴侧。
下述为本申请方法实施例,可以用于执行本申请方法实施例。对于本申请方法实施例中未披露的细节,请参照本申请装置的实施例。
图9为本申请一实施例提供的一种轨道数据的测量方法的流程图。参见图9所示,本申请实施例还提供的一种轨道数据的测量方法,采用上述实施例提供的轨道数据的测量装置,其中,轨道数据的测量装置的具体结构、功能以及工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
本申请实施例提供的一种轨道数据的测量方法包括:
S101、检测第一距离H 1,第一距离H 1为第一个轨道40与第一检测传感器31之间的距离。
S102、检测第二距离H 2,第二距离H 2为第二个轨道40与第二检测传感器32之间的距离。
S103、根据第一距离H 1、第二距离H 2和第一检测传感器31与第二检测传感器32之间的距离计算第三距离H 3,第三距离H 3为两个轨道30之间的距离。
需要说明的,步骤S101和步骤S102没有先后顺序,也可以先执行步骤S102,后执行步骤S101,或者步骤S101和步骤S102同时执行。
具体的,通过第三控制器控制第一检测传感器31检测第一距离H 1,通过第三控制器控制第二检测传感器32检测第二距离H 2,第一检测传感器31检测第一距离H 1的模拟量信号和第二检测传感器32检测第二距离H 2的模拟量信号通过第三控制器采集,并将第一检测传感器31检测第一距离H 1的模 拟量信号和第二检测传感器32检测第二距离H 2的模拟量信号传送至处理器20,处理器20根据第一距离H 1、第二距离H 2和第一检测传感器31与第二检测传感器32之间的距离计算第三距离H 3,第三距离H 3为两个轨道30之间的距离。其中,处理器20计算第三距离H 3的过程在上述装置实施例中进行了详细说明,本实施例在此不再赘述。
其中,第三控制器可以为STM32为控制器。
图10为本申请一实施例提供的一种轨道数据的测量方法的流程图。参见图10所示,可选的,轨道数据的测量装置包括第三检测传感器33;本申请实施例提供的一种轨道数据的测量方法还包括;
S201、检测第一夹角α,第一夹角α-为当支10架放置在相对的两个轨道40上时,支架10与水平面之间的夹角。
S202、根据第一夹角α和第三距离H 3计算第四距离H 4,第四距离H 4为两个轨道40的表面的高度差。
具体的,第一夹角α通过第三检测传感器33检测,通过第三控制器控制第三检测传感器33检测第一夹角α,第三检测传感器33检测的第一夹角α通过第三控制器的485串口采集并传送至处理器20,处理器20根据第一夹角α和第三距离H 3计算第四距离H 4,第四距离H 4为两个轨道40的表面的高度差。其中,处理器20计算第四距离H 4的过程在上述装置实施例中进行了详细说明,本实施例在此不再赘述。
图11为本申请一实施例提供的一种轨道数据的测量方法的流程图。参见图11所示,可选的,轨道数据的测量装置包括升降机构11和第四检测传感器34;本申请实施例提供的一种轨道数据的测量方法还包括;
S301、通过升降机构11移动第四检测传感器34,以检测第五距离H 5,第五距离H 5为列车站台60的表面与第四检测传感器34之间的距离.
S302、根据第一夹角α、第五距离H 5和第一高度G 1计算第二高度G 2,其中,第一高度G 1为检测到列车站台60的表面的第四检测传感器34距轨道40的表面的高度,第二高度G 2为列车站台60距轨道40的表面的高度。
S303、根据第一夹角α、第三距离H 3、第五距离H 5和第一高度G 1计算 第六距离H 6,第六距离H 6为列车站台60的侧面与相对的两个轨道40的中心之间的距离。
需要说明的,步骤S302和步骤S303没有先后顺序,也可以先执行步骤S303,后执行步骤S302,或者步骤S302和步骤S303同时执行。
具体的,第四检测传感器34的数量为至少两个,各第四检测传感器34分不同的角度固定在升降机构11上且可沿竖直方向移动,各第四检测传感器34用来检测列车站台60的表面距离轨道40的表面的高度值、列车站台60的侧面距离两个轨道40的中心之间的距离,设置至少两个第四检测传感器34是为了覆盖不同的检测区间,在允许的检测范围内也可以各第四检测传感器34同时检测缩减检测时间,第四检测传感器34为模拟量传感器,第四检测传感器34的检测数据由单片机采集,单片机与第三控制器连接。
其中,处理器20计算第二高度G 2和第六距离H 6的过程在上述装置实施例中进行了详细说明,本实施例在此不再赘述。
图12为本申请一实施例提供的一种轨道数据的测量方法的流程图。参见图12所示,轨道数据的测量装置包括第五检测传感器35;本申请实施例提供的一种轨道数据的测量方法还包括;
S401、检测第七距离H 7,第七距离H 7为第五检测传感器35与列车站台60的雨棚70之间的距离。
S402、根据第一夹角α、第五检测传感器35与轨道40的表面之间的距离和第七距离H 7计算第八距离H 8,第八距离H 8为雨棚70与轨道40的表面之间的距离。
具体的,第五检测传感器35可以为雷达,可选的,第五检测传感器35为倍加福雷达传感器。雷达会扫描周围环境,绘出环境轮廓,识别出雨棚70的位置、列车站台60的高度等,计算出第五检测传感器35与列车站台60的雨棚70之间的距离。雷达由第四控制器控制,通过TCP/IP通信传输大量数据。可选的,第四控制器为X86微处理器,第四控制器与单片机连接。控制器20根据第一夹角α、第五检测传感器35与轨道40的表面之间的距离和第七距离H 7计算第八距离H 8,第八距离H 8为雨棚70与轨道40的表面之间的距离。其中,控制器20计算第八距离H 8的过程在上述装置实施例中进行了 详细说明,本实施例在此不再赘述。
具体的,上述装置中的多个第三预设阈值和第一预设阈值可以传输至第四控制器中,当处理器20计算的第二高度G 2大于或者小于第三预设阈值,表明第二高度G 2的计算值有误,此时列车站台60的表面可能有异物,第四控制器剔除存储器中第二高度G 2计算结果大于的或者小于第三预设阈值的数据,当处理器20计算的第六距离H 6大于或者小于第一预设阈值,表明第六距离H 6的计算值有误,此时列车站台60的侧面可能有异物,第四控制器剔除存储器中第六距离H 6计算结果大于的或者小于第一预设阈值的数据。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种轨道数据的测量装置,包括:支架、处理器和检测传感器组件,所述检测传感器组件位于所述支架上,所述检测传感器组件与所述处理器连接;
    所述检测传感器组件包括第一检测传感器和第二检测传感器,所述第一检测传感器用于检测第一距离,所述第一距离为第一个所述轨道与所述第一检测传感器之间的距离,所述第二检测传感器用于检测第二距离,所述第二距离为第二个所述轨道与所述第二检测传感器之间的距离;
    所述处理器用于根据所述第一距离、所述第二距离和所述第一检测传感器与所述第二检测传感器之间的距离计算第三距离,所述第三距离为两个所述轨道之间的距离。
  2. 根据权利要求1所述的轨道数据的测量装置,还包括支撑架,所述支撑架与所述支架连接,所述支架可折叠,所述第一检测传感器和所述第二检测传感器位于所述支架的下方,所述第二检测传感器位于所述支撑架上。
  3. 根据权利要求2所述的轨道数据的测量装置,所述第一检测传感器和所述第二检测传感器为激光传感器,所述第一检测传感器发出的激光束和所述第二检测传感器发出的激光束位于同一条直线上。
  4. 根据权利要求1所述的轨道数据的测量装置,所述检测传感器组件还包括第三检测传感器,所述第三检测传感器用于检测第一夹角,所述第一夹角为当所述支架放置在相对的两个所述轨道上时,所述支架与水平面之间的夹角;
    所述处理器用于根据所述第一夹角和所述第三距离计算第四距离,所述第四距离为两个所述轨道的表面的高度差。
  5. 根据权利要求4所述的轨道数据的测量装置,所述检测传感器组件还包括第四检测传感器;
    所述支架上具有升降机构,所述升降机构与所述处理器连接,各所述第四检测传感器位于所述升降机构上,以通过所述升降机构驱动各所述第四检测传感器沿竖直方向移动,所述第四检测传感器用于检测第五距离,所述第五距离为列车站台的表面与所述第四检测传感器之间的距离;
    所述处理器用于根据所述第一夹角、所述第五距离和第一高度计算第二 高度,其中,所述第一高度为检测到所述列车站台的表面的所述第四检测传感器距所述轨道的表面的高度,所述第二高度为所述列车站台距所述轨道的表面的高度;
    所述处理器用于根据所述第一夹角、所述第三距离、所述第五距离和所述第一高度计算第六距离,所述第六距离为所述列车站台的侧面与相对的两个所述轨道的中心之间的距离。
  6. 根据权利要求5所述的轨道数据的测量装置,还包括第一报警装置和第一控制器,所述第一报警装置和所述第一控制器位于所述支架上,所述第一控制器和各所述第四检测传感器与所述第一报警装置连接,当所述第六距离小于第一预设值时,所述第一控制器控制所述第一报警装置发出报警提示。
  7. 根据权利要求5所述的轨道数据的测量装置,所述第四检测传感器的数量为至少两个,所述第四检测传感器为激光传感器,各所述第四检测传感器发出的激光束位于同一竖直平面内,各所述第四检测传感器与所述水平面的夹角不同。
  8. 根据权利要求5所述的轨道数据的测量装置,所述检测传感器组件还包括第五检测传感器,所述第五检测传感器用于检测第七距离,所述第七距离为所述第五检测传感器与所述列车站台的雨棚之间的距离,
    所述处理器用于根据所述第一夹角、所述第五检测传感器与所述轨道的表面之间的距离和所述第七距离计算第八距离,所述第八距离为所述雨棚与所述轨道的表面之间的距离。
  9. 根据权利要求8所述的轨道数据的测量装置,还包括存储器,所述处理器和所述检测传感器组件与所述存储器连接。
  10. 根据权利要求8所述的轨道数据的测量装置,所述第五检测传感器与所述第四检测传感器位于所述支架的不同侧面。
  11. 根据权利要求8所述的轨道数据的测量装置,所述第五检测传感器为雷达,所述雷达扫描范围为-135゜~135゜。
  12. 根据权利要求8所述的轨道数据的测量装置,还包括第二报警装置和第二控制器,所述第二报警装置和所述第二控制器位于所述支架上,所述第二控制器和所述第五检测传感器与所述第二报警装置连接,当所述第八距离小于第二预设值时,所述第二控制器控制所述第二报警装置发出报警提示。
  13. 一种轨道巡检机器人,包括权利要求1至12任一项所述的轨道数据的测量装置,所述支架、所述处理器和所述检测传感器组件位于所述轨道巡检机器人上;
    所述轨道巡检机器人具有至少两个相互平行的运动轴,各所述运动轴位于所述轨道的表面且可沿所述轨道的表面移动,所述运动轴包括第一连接轴和与所述第一连接轴连接的第二连接轴。
  14. 一种轨道数据的测量方法,采用权利要求1至12任一项所述的轨道数据的测量装置,所述方法包括:
    检测第一距离,所述第一距离为第一个所述轨道与所述第一检测传感器之间的距离;
    检测第二距离,所述第二距离为第二个所述轨道与所述第二检测传感器之间的距离;
    根据所述第一距离、所述第二距离和所述第一检测传感器与所述第二检测传感器之间的距离计算第三距离,所述第三距离为两个所述轨道之间的距离。
  15. 根据权利要求14所述的轨道数据的测量方法,所述轨道数据的测量装置包括第三检测传感器;
    所述方法还包括:
    检测第一夹角,所述第一夹角为当所述支架放置在相对的两个所述轨道上时,所述支架与水平面之间的夹角;
    根据所述第一夹角和所述第三距离计算第四距离,所述第四距离为两个所述轨道的表面的高度差。
  16. 根据权利要求15所述的轨道数据的测量方法,所述轨道数据的测量装置包括升降机构和第四检测传感器;
    所述方法还包括:
    通过升降机构移动第四检测传感器,以检测第五距离,所述第五距离为列车站台的表面与第四检测传感器之间的距离;
    根据所述第一夹角、所述第五距离和第一高度计算第二高度,其中,所述第一高度为检测到所述列车站台的表面的所述第四检测传感器距所述轨道的表面的高度,所述第二高度为所述列车站台距所述轨道的表面的高度;
    根据所述第一夹角、所述第三距离、所述第五距离和所述第一高度计算第六距离,所述第六距离为所述列车站台的侧面与相对的两个所述轨道的中心之间的距离。
  17. 根据权利要求15所述的轨道数据的测量方法,所述轨道数据的测量装置包括第五检测传感器;
    所述方法还包括:
    检测第七距离,所述第七距离为第五检测传感器与列车站台的雨棚之间的距离,
    根据所述第一夹角、所述第五检测传感器与所述轨道的表面之间的距离和所述第七距离计算第八距离,所述第八距离为所述雨棚与所述轨道的表面之间的距离。
PCT/CN2020/104458 2019-07-29 2020-07-24 轨道数据的测量装置及方法、轨道巡检机器人 WO2021018036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910689651.9 2019-07-29
CN201910689651.9A CN112304232A (zh) 2019-07-29 2019-07-29 轨道数据的测量装置及方法、轨道巡检机器人

Publications (1)

Publication Number Publication Date
WO2021018036A1 true WO2021018036A1 (zh) 2021-02-04

Family

ID=74230196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104458 WO2021018036A1 (zh) 2019-07-29 2020-07-24 轨道数据的测量装置及方法、轨道巡检机器人

Country Status (2)

Country Link
CN (1) CN112304232A (zh)
WO (1) WO2021018036A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149339A (zh) * 2023-04-21 2023-05-23 武汉奋进智能机器有限公司 轨道设备的行走纠偏方法、设备、介质及轨道设备系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210276527A1 (en) * 2020-03-03 2021-09-09 Pennsy Digital Inc. System, method and devices for automating inspection of brake system on a railway vehicle or train

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181430A (en) * 1975-03-05 1980-01-01 Japanese National Railways Method and apparatus for optical method of measuring rail displacement
US5199176A (en) * 1990-11-12 1993-04-06 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Apparatus for the non-contact measurement of a track gage
US20040095135A1 (en) * 2002-07-23 2004-05-20 Boris Nejikovsky Electromagnetic gage sensing system and method for railroad track inspection
CN1499011A (zh) * 2002-10-29 2004-05-26 ��������������·��е��ҵ�ɷ����޹� 无接触式测量轨道横断面或轨距的方法
CN101825441A (zh) * 2010-05-14 2010-09-08 南京大学 一种光电铁路轨距-站台间距测量方法
CN203079561U (zh) * 2013-01-18 2013-07-24 新疆维吾尔自治区特种设备检验研究院 起重机轨距偏差量自动监测装置
CN105222719A (zh) * 2015-10-13 2016-01-06 南昌铁路局南昌房建生活段 一种非接触式的铁路站台限界激光测距方法
CN205919789U (zh) * 2016-06-16 2017-02-01 李龙 一种站台限界测试架
CN106835868A (zh) * 2017-03-06 2017-06-13 华东交通大学 一种基于激光测距的高精度铁路限界测量方法
CN108413885A (zh) * 2018-03-29 2018-08-17 吴立滨 一种车站站台限界测量装置及测量方法
CN109211184A (zh) * 2017-06-29 2019-01-15 齐亚军 一种站台限界测量方法
CN109269431A (zh) * 2018-10-19 2019-01-25 大连达发科技有限公司 一种起重机轨道检测装置
CN109781019A (zh) * 2019-03-05 2019-05-21 安徽工业大学 一种轨距测量装置及测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758835A (zh) * 2008-12-23 2010-06-30 中国铁道科学研究院基础设施检测研究所 构架式轨距和轨向测量装置
CN103115581B (zh) * 2013-01-23 2015-11-25 爱佩仪中测(成都)精密仪器有限公司 多功能轨道测量系统及方法
CN205589249U (zh) * 2016-03-23 2016-09-21 中国矿业大学 轨道检测小车

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181430A (en) * 1975-03-05 1980-01-01 Japanese National Railways Method and apparatus for optical method of measuring rail displacement
US5199176A (en) * 1990-11-12 1993-04-06 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Apparatus for the non-contact measurement of a track gage
US20040095135A1 (en) * 2002-07-23 2004-05-20 Boris Nejikovsky Electromagnetic gage sensing system and method for railroad track inspection
CN1499011A (zh) * 2002-10-29 2004-05-26 ��������������·��е��ҵ�ɷ����޹� 无接触式测量轨道横断面或轨距的方法
CN101825441A (zh) * 2010-05-14 2010-09-08 南京大学 一种光电铁路轨距-站台间距测量方法
CN203079561U (zh) * 2013-01-18 2013-07-24 新疆维吾尔自治区特种设备检验研究院 起重机轨距偏差量自动监测装置
CN105222719A (zh) * 2015-10-13 2016-01-06 南昌铁路局南昌房建生活段 一种非接触式的铁路站台限界激光测距方法
CN205919789U (zh) * 2016-06-16 2017-02-01 李龙 一种站台限界测试架
CN106835868A (zh) * 2017-03-06 2017-06-13 华东交通大学 一种基于激光测距的高精度铁路限界测量方法
CN109211184A (zh) * 2017-06-29 2019-01-15 齐亚军 一种站台限界测量方法
CN108413885A (zh) * 2018-03-29 2018-08-17 吴立滨 一种车站站台限界测量装置及测量方法
CN109269431A (zh) * 2018-10-19 2019-01-25 大连达发科技有限公司 一种起重机轨道检测装置
CN109781019A (zh) * 2019-03-05 2019-05-21 安徽工业大学 一种轨距测量装置及测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149339A (zh) * 2023-04-21 2023-05-23 武汉奋进智能机器有限公司 轨道设备的行走纠偏方法、设备、介质及轨道设备系统

Also Published As

Publication number Publication date
CN112304232A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US7428781B2 (en) Method and apparatus for performing overhead crane rail alignment surveys
US11787573B2 (en) Method for inspecting and/or manipulating a beam using an unmanned aerial vehicle and unmanned aerial vehicle suitable therefor
EP3508845B1 (en) Automated inspection of spar web in hollow monolithic structure
WO2021018036A1 (zh) 轨道数据的测量装置及方法、轨道巡检机器人
JP5954241B2 (ja) 金属板用自走式検査装置および検査方法
JP6051751B2 (ja) 金属板の位置および姿勢検出方法および装置、ならびに金属板の検査方法
CN110193837A (zh) 轨道巡检机器人
WO2020171090A1 (ja) 金属板用自走式検査装置及び検査方法、並びに金属板の製造方法
CN111238379A (zh) 施工测量设备
JP2019158793A (ja) ひび割れ調査装置
CN111522345A (zh) 一种登机桥对接舱门的轮位控制方法
RU116862U1 (ru) Устройство для определения пространственных параметров объектов инфраструктуры железной дороги
CN115371732A (zh) 一种电梯井道高精度测量与数据处理方法
CN111307041A (zh) 建筑测量方法
KR101529238B1 (ko) 콘테이너선 셀가이드 정도 측정 시스템
CN201951492U (zh) 铁路运输超限检测仪
CN111688939A (zh) 工程测量用无人机
CN111307040A (zh) 施工测量设备
JP5501877B2 (ja) 可動式ホーム柵測定装置及び測定方法
CN211477014U (zh) 施工测量设备
CN112595229B (zh) 一种测量材料体积的监控装置
JP3424335B2 (ja) 構造物の3次元計測装置
CN216577832U (zh) 一种空中轨道箱梁检测机器人
JPH0656711U (ja) 鉄道線路の建築限界測定装置
JP3395380B2 (ja) 構造物の3次元計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846247

Country of ref document: EP

Kind code of ref document: A1