WO2021017354A1 - 一种对称式自平衡中心出液液下泵装置 - Google Patents

一种对称式自平衡中心出液液下泵装置 Download PDF

Info

Publication number
WO2021017354A1
WO2021017354A1 PCT/CN2019/123018 CN2019123018W WO2021017354A1 WO 2021017354 A1 WO2021017354 A1 WO 2021017354A1 CN 2019123018 W CN2019123018 W CN 2019123018W WO 2021017354 A1 WO2021017354 A1 WO 2021017354A1
Authority
WO
WIPO (PCT)
Prior art keywords
symmetrical
shell
flow
pump device
submerged pump
Prior art date
Application number
PCT/CN2019/123018
Other languages
English (en)
French (fr)
Inventor
郑鑫
王亚兵
王项羽
Original Assignee
烟台龙港泵业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台龙港泵业股份有限公司 filed Critical 烟台龙港泵业股份有限公司
Publication of WO2021017354A1 publication Critical patent/WO2021017354A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/007Details, component parts, or accessories especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • F04D29/2222Construction and assembly
    • F04D29/2227Construction and assembly for special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2294Rotors specially for centrifugal pumps with special measures for protection, e.g. against abrasion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals

Definitions

  • the invention relates to the technical field of mechanical engineering pumps, in particular to a symmetrical self-balancing center liquid discharge submerged pump device.
  • the existing submersible pumps generally have the following shortcomings: First, because the submersible pumps cannot use the center discharge method, the processing consumes more raw materials and the processing cost is higher. At the same time, the user needs to provide a larger installation space. The requirement for on-site installation space is too high; second, the one-side liquid discharge method is adopted, which will cause vibration due to the liquid flow during the transportation process, which can easily cause damage to the device; third, the traditional type of submersible pump has low hydraulic efficiency and cannot meet the needs of energy saving .
  • the technical problem to be solved by the present invention is to provide a symmetrical self-balancing center liquid submerged pump device in view of the above-mentioned shortcomings in the prior art.
  • the symmetrical self-balancing center liquid outlet submerged pump device has the characteristics of novel design, low cost and strong practicability.
  • a symmetrical self-balancing center liquid submerged pump device including a motor, a support, a support plate, a pump shaft, an intermediate flow sleeve, a symmetrical flow guide shell, a first stage impeller, an inlet section of the submerged pump, and an elbow
  • the outlet section; the motor is located on the top of the support and is fixedly connected with the support by bolts, the support is provided with an outlet section of the elbow, and the bottom of the support is fixed on the support plate
  • the bottom of the support plate is connected to the upper end of the intermediate flow sleeve, the lower end of the intermediate flow sleeve is provided with the symmetrical flow deflector shell, and the lower end of the symmetrical flow sleeve is connected to the
  • the inlet section of the submerged pump is connected, the cavity formed by the symmetrical guide shell and the inlet section of the submerged pump is provided with a first-stage impeller, one end of the pump shaft is connected with the drive shaft of the motor, and the
  • the symmetrical deflector shell includes an inlet end of the deflector shell, an outlet end of the deflector shell, and a plurality of guide vanes, and the plurality of guide vanes are arranged in a streamline shape to form a streamlined flow passage, which flows through the guide shell.
  • the medium passes through the streamline flow channel.
  • the resistance of an object when it moves in a fluid is caused by internal friction and vortex.
  • the resistance is mainly determined by internal friction.
  • the speed is higher, it is mainly determined by the vortex.
  • the faster the speed the greater the effect of the vortex.
  • the multiple guide vanes are arranged in a streamlined shape to form a streamlined flow channel, which reduces the frictional resistance in the medium conveying process, enables the medium to flow through the streamlined flow channel faster, and improves the working efficiency of the device.
  • the inner wall of the streamlined flow passage is provided with a sand-proof porcelain plating layer, and the thickness of the sand-proof porcelain plating layer is 0.05 to 0.10 mm.
  • the inlet end of the guide shell is bolted to the outlet end of the guide shell, and the symmetrical guide shell
  • the inlet end of the flow shell is bolted to the lower end of the intermediate flow sleeve
  • the outlet section end of the symmetric flow guide shell is bolted to the inlet end of the submersible pump
  • the inlet end of the symmetric flow guide shell is connected to the A secondary impeller is arranged at the middle position of the outlet end of the symmetrical guide shell, and the secondary impeller is fixed on the pump shaft.
  • the deflector shell adopts a symmetrical structure, the liquid force generated during the medium transportation is self-balanced, which reduces the vibration of the device and prolongs the service life of the device.
  • the intermediate flow sleeve includes an outer layer tube, an intermediate layer tube, and an inner layer tube, the inner layer tube forms an intermediate closed cavity, the pump shaft passes through the inner layer tube, and the middle layer tube A medium channel is formed between the tube and the outer layer tube, and the medium flowing out of the symmetrical flow guiding shell passes through this channel.
  • the inner tube forms an intermediate closed cavity through which the pump shaft passes to prevent the pump shaft from being corroded and worn by the medium.
  • a medium channel is formed between the middle layer tube and the outer layer tube to receive the medium flowing out of the diversion shell.
  • the intermediate flow sleeve is made of steel pipe and adopts a sleeve structure.
  • the sleeve type structure is suitable for the connection of various objects that bear the two-way force of tension and compression, and can be connected in all directions.
  • the outlet section of the elbow pipe includes a straight pipe and an elbow pipe, one end of the straight pipe is connected to the support plate, and the other end passes through the elbow pipe and is connected to the support;
  • the support plate is connected, and the other end passes through the outer wall of either side of the support.
  • the medium After the medium passes through multiple symmetrical deflector shells and secondary impellers, it enters the outer tube fluid channel of the intermediate flow sleeve, and finally converges to the elbow outlet section for discharge, forming a unique central liquid discharge method, saving equipment
  • the consumption of raw materials in the processing process reduces the processing cost, and at the same time reduces the size of the device space, and reduces the device's requirements for user installation space.
  • the impeller is made of stainless steel, and the surface is sprayed with an anti-corrosion and wear-resistant layer, and the anti-corrosion and wear-resistant layer is a ceramic anti-corrosion and wear-resistant material.
  • the wear of the impeller is related to the composition, particle size, concentration, shape, impact speed and other factors of the abrasive. If the wear resistance of the impeller can be improved, high hardness and good wear resistance materials can be used, which will not only bring difficulties to the impeller manufacturing process, but also And it is not reasonable from an economic point of view. Therefore, improving the surface quality of the impeller and spraying a wear-resistant layer on the surface of the impeller is an economical and reasonable solution.
  • Ceramic anti-corrosion and wear-resistant material is a non-metallic cementitious material. It is a powdery ceramic material made of acid- and alkali-resistant synthetic raw materials through strict process ratio and advanced inorganic polymerization technology.
  • the wear-resistant ceramic coating is a high-temperature resistant inorganic coating that can be used on the surface of iron, steel, aluminum, ceramics, and glass, and can withstand temperatures of up to 1500 degrees or higher. It also has thermal shock and wear resistance, and has good oil resistance. Performance and acid and alkali resistance.
  • the guide vane is an electroslag casting guide vane.
  • the function of the guide vane is to collect the liquid thrown out by the impeller, reduce the flow rate of the liquid, and convert part of the speed energy into pressure energy, and then evenly introduce it to the next stage or discharge it through a diffuser.
  • electroslag casting guide vanes undergo sequential crystallization and solidification, eliminating the inherent solidification defects of ordinary casting, especially for parts with strict requirements for flaw detection, and its overall performance is high.
  • the infrastructure structure of the produced parts is uniform, and the inclusions are dispersed, so it has good anti-cavitation and anti-wear properties. Due to the effect of electroslag refining, the overall impact performance of the produced parts and Fatigue performance has also been improved.
  • the symmetrical diversion shell is made of carbon steel, and the surface of the symmetrical diversion shell is treated by electrophoresis.
  • electrophoresis Under the action of an electric field, the electric particles move toward the opposite electrode, which is called electrophoresis (EP).
  • electrophoresis The technology that uses different moving speeds of charged particles in an electric field to achieve separation is called electrophoresis.
  • the symmetrical diversion shell is made of carbon steel, and the surface is treated with electrophoresis, so that it has excellent corrosion resistance, toughness, reliability and service life.
  • the invention has the following advantages: it has the advantages of simple structure, reliable design, and easy operation.
  • the traditional submersible pump is changed to a central liquid discharge mode, which saves the installation cost.
  • the consumption of raw materials in the processing process reduces the processing cost, and at the same time reduces the size of the device space and reduces the device's requirements for user installation space.
  • Due to the symmetrical structure of the guide shell the liquid force generated during the medium conveying process is self-balanced, reducing the vibration of the device and prolonging the service life of the device, and the guide vanes are arranged in a streamlined manner to reduce the medium conveying process
  • the frictional resistance in the device improves the working efficiency of the device.
  • Fig. 1 is a schematic structural diagram of a specific embodiment of the present invention.
  • Figure 2 is a schematic diagram of the symmetrical guide shell of the present invention.
  • Figure 3 is a schematic diagram of the intermediate overflow sleeve of the present invention.
  • Figure 4 is a schematic diagram of the outlet section of the elbow of the present invention.
  • a symmetrical self-balancing center liquid discharge submerged pump device which includes a motor 1, a support 2, a support plate 3, a pump shaft 4, an intermediate flow sleeve 5, a symmetrical guide shell 6, a first stage impeller 8, a liquid
  • the bottom of the support 2 is fixed on the top of the support plate 3, the bottom of the support plate 3 is connected to the upper end of the middle flow sleeve 5, and the lower end of the middle flow sleeve 5 is provided with
  • the symmetrical deflector shell 6, the lower end of the symmetrical deflector shell 6 is connected with the submersible pump inlet section 9, and the symmetrical deflector shell 6 and the submerged pump inlet section 9 form a cavity
  • a first-stage impeller 8 is provided, one end of the pump shaft 4 is connected
  • the symmetrical deflector shell 6 includes an inlet end 11 of the deflector shell, an outlet end 12 of the deflector shell, and a plurality of guide vanes, and the plurality of guide vanes are arranged in a streamlined manner to form a streamlined flow passage 13, and The medium passing through the deflector shell passes through the streamline flow passage 13.
  • the resistance of an object when it moves in a fluid is caused by internal friction and vortex.
  • the resistance is mainly determined by internal friction.
  • the speed is higher, it is mainly determined by the vortex.
  • the faster the speed the greater the effect of the vortex.
  • the multiple guide vanes are arranged in a streamlined shape to form a streamlined flow channel, which reduces the frictional resistance in the medium conveying process, enables the medium to flow through the streamlined flow channel faster, and improves the working efficiency of the device.
  • the inner wall of the streamlined flow channel 13 is provided with a sand-proof porcelain plating layer, and the thickness of the sand-proof porcelain plating layer is 0.05 to 0.10 mm.
  • a plurality of the symmetrical flow guide shells 6 are provided, and a plurality of the symmetrical flow guide shells 6 are connected together in series, and the inlet end 11 of the flow guide shell is connected with the outlet end 12 of the flow guide shell by bolts,
  • the inlet end 11 of the symmetrical flow guide shell is bolted to the lower end of the intermediate flow sleeve 5, and the outlet end 12 of the symmetrical flow guide shell is bolted to the inlet end 9 of the submerged pump.
  • a secondary impeller 7 is provided at an intermediate position between the inlet end 11 of the symmetrical flow guide shell and the outlet end 12 of the symmetrical flow guide shell, and the secondary impeller 7 is fixed on the pump shaft 4.
  • the liquid force generated during the medium transportation is self-balanced, which reduces the vibration of the device and prolongs the service life of the device.
  • the intermediate flow sleeve 5 includes an outer layer tube 14, an intermediate layer tube 15 and an inner layer tube 16.
  • the inner layer tube 16 forms an intermediate closed cavity, and the pump shaft 4 passes through the inner layer.
  • the layer tube 16 forms a medium channel between the middle layer tube 15 and the outer layer tube 14, and the medium flowing out of the symmetrical flow guiding shell 6 passes through this channel.
  • the inner tube forms an intermediate closed cavity through which the pump shaft passes to prevent the pump shaft from being corroded and worn by the medium.
  • a medium channel is formed between the middle layer tube and the outer layer tube to receive the medium flowing out of the diversion shell.
  • the intermediate flow sleeve 5 is made of steel pipe and adopts a sleeve structure.
  • the sleeve type structure is suitable for the connection of various objects that bear the two-way force of tension and compression, and can be connected in all directions.
  • the elbow pipe outlet section 10 includes a straight pipe 17 and an elbow pipe 18.
  • One end of the straight pipe 17 is connected to the support plate 3, and the other end passes through the elbow pipe 18 and is connected to the support 2
  • One end of the elbow 18 is connected to the support plate 3, and the other end passes through the outer wall of either side of the support 2.
  • the medium After the medium passes through multiple symmetrical deflector shells and secondary impellers, it enters the outer tube fluid channel of the intermediate flow sleeve, and finally converges to the elbow outlet section for discharge, forming a unique central liquid discharge method, saving equipment
  • the consumption of raw materials in the processing process reduces the processing cost, and at the same time reduces the size of the device space, and reduces the device's requirements for user installation space.
  • the impeller is made of stainless steel, and the surface is sprayed with an anti-corrosion and wear-resistant layer, and the anti-corrosion and wear-resistant layer is a ceramic anti-corrosion and wear-resistant material.
  • the wear of the impeller is related to the composition, particle size, concentration, shape, impact speed and other factors of the abrasive. If the wear resistance of the impeller can be improved, high hardness and good wear resistance materials can be used, which will not only bring difficulties to the impeller manufacturing process, but also And it is not reasonable from an economic point of view. Therefore, improving the surface quality of the impeller and spraying a wear-resistant layer on the surface of the impeller is an economical and reasonable solution.
  • Ceramic anti-corrosion and wear-resistant material is a non-metallic cementitious material. It is a powdered ceramic material made of acid- and alkali-resistant synthetic raw materials through strict process ratio and advanced inorganic polymerization technology.
  • the wear-resistant ceramic coating is a high-temperature resistant inorganic coating that can be used on the surface of iron, steel, aluminum, ceramics, and glass, and can withstand temperatures of up to 1500 degrees or higher. It also has thermal shock and wear resistance, and has good oil resistance. Performance and acid and alkali resistance.
  • the guide vane is an electroslag casting guide vane.
  • the function of the guide vane is to collect the liquid thrown out by the impeller, reduce the flow rate of the liquid, and convert part of the speed energy into pressure energy, and then evenly introduce it to the next stage or discharge it through a diffuser.
  • electroslag casting guide vanes undergo sequential crystallization and solidification, eliminating the inherent solidification defects of ordinary casting, especially for parts with strict requirements for flaw detection, and its overall performance is high.
  • the infrastructure structure of the produced parts is uniform, and the inclusions are dispersed, so it has good anti-cavitation and anti-wear properties. Due to the effect of electroslag refining, the overall impact performance of the produced parts and Fatigue performance has also been improved.
  • the symmetrical deflector shell 6 is made of carbon steel, and the surface of the symmetrical deflector shell 6 is treated by electrophoresis.
  • electrophoresis Under the action of an electric field, the electric particles move toward the opposite electrode, which is called electrophoresis (EP).
  • electrophoresis The technology that uses different moving speeds of charged particles in an electric field to achieve separation is called electrophoresis.
  • the symmetrical diversion shell is made of carbon steel, and the surface is treated with electrophoresis, so that it has excellent corrosion resistance, toughness, reliability and service life.
  • the working principle of the present invention is: when the submerged pump is working, the motor drives the pump shaft to rotate, and the pump shaft drives the impellers of various levels passing through to rotate to suck the medium into the device. After the medium passes through the first stage impeller, it enters the inside of the symmetrical guide shell and flows through the streamlined channel, reducing friction loss. At the same time, due to the symmetrical arrangement of the guide shell, the liquid force generated during the medium transportation is self-balanced, which reduces the vibration of the device and prolongs the service life of the device.
  • the medium After the medium passes through multiple symmetrical deflector shells and secondary impellers, it enters the outer tube fluid channel of the intermediate flow sleeve, and finally converges to the elbow outlet section for discharge, forming a unique central liquid discharge method, saving equipment
  • the consumption of raw materials in the processing process reduces the processing cost, and at the same time reduces the size of the device space, and reduces the device's requirements for user installation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种对称式自平衡中心出液液下泵装置,包括电机(1)、泵轴(4)、中间过流套筒(5)、对称式导流壳(6)、首级叶轮(8)、液下泵进口段(9);所述电机(1)位于支座(2)的顶部,所述中间过流套筒(5)的下端设置有所述对称式导流壳(6),所述对称式导流壳(6)下端与所述液下泵进口段(9)连接,所述对称式导流壳(6)与所述液下泵进口段(9)形成的腔体内设有首级叶轮(8)。通过设置对称式导流壳(6)结构,将传统的液下泵改为中心出液方式,节省了原材料,降低了成本,减小了装置空间尺寸,降低了装置对安装空间的要求,延长装置的使用寿命,提高了装置工作效率。

Description

一种对称式自平衡中心出液液下泵装置 技术领域
本发明涉及机械工程泵技术领域,具体涉及一种对称式自平衡中心出液液下泵装置。
背景技术
长轴立式液下泵作为石油化工行业的过程装置,已越来越受到关注。然而目前存在的液下泵普遍存在以下不足之处:其一,由于液下泵无法采用中心出液方式,加工所消耗原材料较多、加工成本较大,同时用户需提供较大的安装空间,对现场安装空间要求过高;其二,采用一侧出液方式,由于输送过程液体流动而产生振动,极易造成装置损坏;其三,传统型式液下泵水力效率较低,不能满足节能需要。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提出一种对称式自平衡中心出液液下泵装置。所述对称式自平衡中心出液液下泵装置具有设计新颖、造价低廉和实用性强的特点。
本发明解决其技术问题所采用的技术方案是:
一种对称式自平衡中心出液液下泵装置,包括电机、支座、支撑板、泵轴、中间过流套筒、对称式导流壳、首级叶轮、液下泵进口段、弯管出口段;所述电机位于所述支座的顶部,并且与所述支座螺栓固定连接,所述支座的内部设有弯管出口段,所述支座的底部固定在所述支撑板的顶部,所述支撑板的底部与所述中间过流套筒的上端连接,所述中间过流套筒的下端设置有所述对称式导流壳,所述对称式导流壳下端与所述液下泵进口段连接,所述对称式导流壳与所述液下泵进口段形成的腔体内设有首级叶轮,所述泵轴一 端与所述的电机的驱动轴连接,另一端沿轴向竖直向下延伸穿过所有构件中间,末端与所述首级叶轮固定连接,所述电机为所述泵轴提供动力源。
进一步地,所述对称式导流壳包括导流壳入口端、导流壳出口端和多片导叶,所述多片导叶呈流线型布置,形成流线型过流通道,流经导流壳的介质通过所述流线型过流通道。
物体在流体中运动时所受的阻力,是由内摩擦力和涡旋两个原因所造成的。在速度很小时,阻力的大小主要决定于内摩擦。在速度较大时主要决定于涡旋,速度越快,涡旋的作用越大。为了有效减小阻力,就要设法避免涡旋的形成。把物体做成流线形状,能够减小涡旋作用或避免涡旋的形成,因而大大地减低了流体对它的阻力。多片导叶呈流线型布置,形成流线型过流通道,减小了介质输送过程中的摩擦阻力,使介质能更快的流过流线型过流通道,提高了装置工作效率。
进一步地,所述流线型过流通道的内壁上设有防砂镀瓷层,所述防砂镀瓷层的厚度为0.05~0.10mm。
有效的提高了流线型过流通道的耐磨性和耐腐蚀性能,同时使得液体通过导流壳的流线型过流通道时阻力减小,大大提高工作效率,减少了能量损耗。
进一步地,所述对称式导流壳设置有多个,多个所述对称式导流壳串接在一起,所述导流壳入口端与导流壳出口端螺栓连接,所述对称式导流壳入口端与所述中间过流套筒的下端螺栓连接,所述对称式导流壳出口段端与所述液下泵进口端螺栓连接,所述对称式导流壳入口端与所述对称式导流壳出口端中间位置设置有次级叶轮,所述次级叶轮固定在所述泵轴上。
由于导流壳采用对称式结构,使介质输送过程中所产生的液体力自相平衡,降低了装置的振动,延长装置的使用寿命。
进一步地,所述中间过流套筒包括外层管、中间层管和内层管,所述内 层管形成中间密闭腔体,所述泵轴穿过所述内层管,所述中间层管与所述外层管之间形成介质通道,所述对称式导流壳流出的介质通过此通道。
内层管形成中间密闭腔体由泵轴穿过,防止泵轴被介质腐蚀、磨损。中间层管与外层管之间形成介质通道,承接由导流壳流出的介质。
进一步地,所述中间过流套筒材质为钢管,采用套筒式结构。
套筒式结构适用于承受拉、压双向作用力的各类物体的连接,可全方位连接。
进一步地,所述弯管出口段包括直管和弯管,所述直管一端与所述支撑板连接,另一端穿过所述弯管与所述支座连接;所述弯管一端与所述支撑板连接,另一端穿过所述支座任一侧的外壁。
介质经过多个对称式导流壳及次级叶轮后,进入中间过流套筒的外层管流体通道,最终汇集至弯管式出口段排出,形成独特的中心式出液方式,节省了装置在加工过程中的原材料消耗,降低了加工成本,同时减小了装置空间尺寸,降低了装置对用户安装空间的要求。
进一步地,所述叶轮材质为不锈钢,表面喷涂防腐耐磨层,所述防腐耐磨层为陶瓷防腐耐磨材料。
叶轮的磨损与磨料的成分、粒度、浓度、形状、冲击速度等因素有关,若提高叶轮的耐磨性可采用高硬度和耐磨性好的材料,这不仅会给叶轮制造工艺带来困难,而且从经济角度来看也不合理。因此提高叶轮的表面质量,再叶轮表面喷涂耐磨层是一种经济合理的解决办法。
陶瓷防腐耐磨材料是一种非金属胶凝材料,它是采用耐酸和耐碱的人工合成原料经严格的工艺配比和先进的无机聚合技术制成的一种粉状陶瓷材料。耐磨陶瓷涂料为耐高温无机涂料可以用在铁、钢、铝、陶瓷、玻璃表面,最高可以耐1500度甚至更高的温度,还还具有耐热冲击和耐磨的性能,具有良好的耐油性能和耐酸耐碱性。
进一步地,所述导叶为电渣熔铸导叶。
导叶的作用是把叶轮甩出来的液体收集起来,使液体的流速降低,把部分速度能转变为压力能后,再均匀地引入下一级或者经过扩散管排出。
电渣熔铸导叶与常规砂型铸造、锻造导叶相比,电渣熔铸按照顺序结晶进行凝固,消除普通铸造固有凝固缺陷,尤其对于探伤要求严格的部件,其整体性能高。而且由于电渣精炼和电动力双重作用,所生产部件的基建组织均匀,夹杂物分布弥散,因而具有良好的抗气蚀和抗磨损性能由于电渣精炼作用,所生产部件的整体的冲击性能和疲劳性能也得到了提高。
进一步地,所述对称式导流壳为碳钢材质,所述对称式导流壳的表面采用电泳处理。
电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis,EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。
对称式导流壳采用碳钢材质,并在其表面采用电泳处理,使得具有优良的防腐蚀性、韧性、可靠性及使用寿命。
本发明与现有技术相比具有以下优点:具有结构简单、设计可靠,操作简便的优点,通过设置对称式导流壳结构,将传统的液下泵改为中心出液方式,节省了装置在加工过程中的原材料消耗,降低了加工成本,同时减小了装置空间尺寸,降低了装置对用户安装空间的要求。由于导流壳采用对称式结构,使介质输送过程中所产生的液体力自相平衡,降低了装置的振动,延长装置的使用寿命,而且导叶采用流线式布置,减小了介质输送过程中的摩擦阻力,提高了装置工作效率。
附图说明
图1为本发明的一种具体实施方式的结构示意图;
图2为本发明的对称式导流壳示意图;
图3为本发明的中间过流套筒示意图;
图4为本发明的弯管出口段示意图;
附图标记说明:
1-电机,2-支座,3-支撑板,4-泵轴,5-中间过流套筒,6-对称式导流壳,7-次级叶轮,8-首级叶轮,9-液下泵进口段,10-弯管出口段,11-导流壳入口端,12-导流壳出口端,13-流线型过流通道,14-外层管,15-中间层管,16-内层管,17-直管,18-弯管。
具体实施方式
下面结合附图及实施例描述本发明具体实施方式:
需要说明的是,本说明书所附图中示意的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
一种对称式自平衡中心出液液下泵装置,包括电机1、支座2、支撑板3、泵轴4、中间过流套筒5、对称式导流壳6、首级叶轮8、液下泵进口段9、弯管出口段10;所述电机1位于所述支座2的顶部,并且与所述支座2螺栓固定连接,所述支座2的内部设有弯管出口段10,所述支座2的底部固定在所述支撑板3的顶部,所述支撑板3的底部与所述中间过流套筒5的上端连接,所述中间过流套筒5的下端设置有所述对称式导流壳6,所述对称式导流壳6下端与所述液下泵进口段9连接,所述对称式导流壳6与所述液下泵 进口段9形成的腔体内设有首级叶轮8,所述泵轴4一端与所述的电机1的驱动轴连接,另一端沿轴向竖直向下延伸穿过所有构件中间,末端与所述首级叶轮8固定连接,所述电机1为所述泵轴4提供动力源。
具体而言,所述对称式导流壳6包括导流壳入口端11、导流壳出口端12和多片导叶,所述多片导叶呈流线型布置,形成流线型过流通道13,流经导流壳的介质通过所述流线型过流通道13。
物体在流体中运动时所受的阻力,是由内摩擦力和涡旋两个原因所造成的。在速度很小时,阻力的大小主要决定于内摩擦。在速度较大时主要决定于涡旋,速度越快,涡旋的作用越大。为了有效减小阻力,就要设法避免涡旋的形成。把物体做成流线形状,能够减小涡旋作用或避免涡旋的形成,因而大大地减低了流体对它的阻力。多片导叶呈流线型布置,形成流线型过流通道,减小了介质输送过程中的摩擦阻力,使介质能更快的流过流线型过流通道,提高了装置工作效率。
具体而言,所述流线型过流通道13的内壁上设有防砂镀瓷层,所述防砂镀瓷层的厚度为0.05~0.10mm。
有效的提高了流线型过流通道的耐磨性和耐腐蚀性能,同时使得液体通过导流壳的流线型过流通道时阻力减小,大大提高工作效率,减少了能量损耗。
具体而言,所述对称式导流壳6设置有多个,多个所述对称式导流壳6串接在一起,所述导流壳入口端11与导流壳出口端12螺栓连接,所述对称式导流壳入口端11与所述中间过流套筒5的下端螺栓连接,所述对称式导流壳出口段端12与所述液下泵进口端9螺栓连接,所述对称式导流壳入口端11与所述对称式导流壳出口端12中间位置设置有次级叶轮7,所述次级叶轮7固定在所述泵轴4上。
由于导流壳采用对称式结构,使介质输送过程中所产生的液体力自相平 衡,降低了装置的振动,延长装置的使用寿命。
具体而言,所述中间过流套筒5包括外层管14、中间层管15和内层管16,所述内层管16形成中间密闭腔体,所述泵轴4穿过所述内层管16,所述中间层管15与所述外层管14之间形成介质通道,所述对称式导流壳6流出的介质通过此通道。
内层管形成中间密闭腔体由泵轴穿过,防止泵轴被介质腐蚀、磨损。中间层管与外层管之间形成介质通道,承接由导流壳流出的介质。
具体而言,所述中间过流套筒5材质为钢管,采用套筒式结构。
套筒式结构适用于承受拉、压双向作用力的各类物体的连接,可全方位连接。
具体而言,所述弯管出口段10包括直管17和弯管18,所述直管17一端与所述支撑板3连接,另一端穿过所述弯管18与所述支座2连接;所述弯管18一端与所述支撑板3连接,另一端穿过所述支座2任一侧的外壁。
介质经过多个对称式导流壳及次级叶轮后,进入中间过流套筒的外层管流体通道,最终汇集至弯管式出口段排出,形成独特的中心式出液方式,节省了装置在加工过程中的原材料消耗,降低了加工成本,同时减小了装置空间尺寸,降低了装置对用户安装空间的要求。
具体而言,所述叶轮材质为不锈钢,表面喷涂防腐耐磨层,所述防腐耐磨层为陶瓷防腐耐磨材料。
叶轮的磨损与磨料的成分、粒度、浓度、形状、冲击速度等因素有关,若提高叶轮的耐磨性可采用高硬度和耐磨性好的材料,这不仅会给叶轮制造工艺带来困难,而且从经济角度来看也不合理。因此提高叶轮的表面质量,再叶轮表面喷涂耐磨层是一种经济合理的解决办法。
陶瓷防腐耐磨材料是一种非金属胶凝材料,它是采用耐酸和耐碱的人工合成原料经严格的工艺配比和先进的无机聚合技术制成的一种粉状陶瓷材 料。耐磨陶瓷涂料为耐高温无机涂料可以用在铁、钢、铝、陶瓷、玻璃表面,最高可以耐1500度甚至更高的温度,还还具有耐热冲击和耐磨的性能,具有良好的耐油性能和耐酸耐碱性。
具体而言,所述导叶为电渣熔铸导叶。
导叶的作用是把叶轮甩出来的液体收集起来,使液体的流速降低,把部分速度能转变为压力能后,再均匀地引入下一级或者经过扩散管排出。
电渣熔铸导叶与常规砂型铸造、锻造导叶相比,电渣熔铸按照顺序结晶进行凝固,消除普通铸造固有凝固缺陷,尤其对于探伤要求严格的部件,其整体性能高。而且由于电渣精炼和电动力双重作用,所生产部件的基建组织均匀,夹杂物分布弥散,因而具有良好的抗气蚀和抗磨损性能由于电渣精炼作用,所生产部件的整体的冲击性能和疲劳性能也得到了提高。
具体而言,所述对称式导流壳6为碳钢材质,所述对称式导流壳6的表面采用电泳处理。
电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis,EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。
对称式导流壳采用碳钢材质,并在其表面采用电泳处理,使得具有优良的防腐蚀性、韧性、可靠性及使用寿命。
本发明的工作原理是:当液下泵工作时,电机带动泵轴转动,泵轴带动所穿过的各级叶轮转动,将介质吸入装置内。介质通过首级叶轮后进入对称式导流壳内部,流经流线型通道,减少了摩擦损失。同时由于导流壳对称式布置,使介质输送过程中所产生的液体力自相平衡,降低了装置的振动,延长装置的使用寿命。介质经过多个对称式导流壳及次级叶轮后,进入中间过流套筒的外层管流体通道,最终汇集至弯管式出口段排出,形成独特的中心式出液方式,节省了装置在加工过程中的原材料消耗,降低了加工成本,同 时减小了装置空间尺寸,降低了装置对用户安装空间的要求。
上面结合附图对本发明优选实施方式作了详细说明,但是本发明不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。
不脱离本发明的构思和范围可以做出许多其他改变和改型。应当理解,本发明不限于特定的实施方式,本发明的范围由所附权利要求限定。

Claims (10)

  1. 一种对称式自平衡中心出液液下泵装置,其特征在于:包括电机(1)、支座(2)、支撑板(3)、泵轴(4)、中间过流套筒(5)、对称式导流壳(6)、首级叶轮(8)、液下泵进口段(9)、弯管出口段(10);所述电机(1)位于所述支座(2)的顶部,并且与所述支座(2)螺栓固定连接,所述支座(2)的内部设有弯管出口段(10),所述支座(2)的底部固定在所述支撑板(3)的顶部,所述支撑板(3)的底部与所述中间过流套筒(5)的上端连接,所述中间过流套筒(5)的下端设置有所述对称式导流壳(6),所述对称式导流壳(6)下端与所述液下泵进口段(9)连接,所述对称式导流壳(6)与所述液下泵进口段(9)形成的腔体内设有首级叶轮(8),所述泵轴(4)一端与所述的电机(1)的驱动轴连接,另一端沿轴向竖直向下延伸穿过所有构件中间,末端与所述首级叶轮(8)固定连接,所述电机(1)为所述泵轴(4)提供动力源。
  2. 根据权利要求1所述的对称式自平衡中心出液液下泵装置,其特征在于:所述对称式导流壳(6)包括导流壳入口端(11)、导流壳出口端(12)和多片导叶,所述多片导叶呈流线型布置,形成流线型过流通道(13),流经导流壳的介质通过所述流线型过流通道(13)。
  3. 根据权利要求2所述的对称式自平衡中心出液液下泵装置,其特征在于:所述流线型过流通道(13)的内壁上设有防砂镀瓷层,所述防砂镀瓷层的厚度为0.05~0.10mm。
  4. 根据权利要求1或2所述的对称式自平衡中心出液液下泵装置,其特征在于:所述对称式导流壳(6)设置有多个,多个所述对称式导流壳(6)串接在一起,所述导流壳入口端(11)与导流壳出口端(12)螺栓连接,所述对称式导流壳入口端(11)与所述中间过流套筒(5)的下端螺栓连接,所述对称式导流壳出口段端(12)与所述液下泵进口端(9)螺栓连接,所述对称式导流壳入口端(11)与所述对称式导流壳出口端(12)中间位置设置有次级叶轮(7),所述次级叶轮(7)固定在所述泵轴(4)上。
  5. 根据权利要求4所述的对称式自平衡中心出液液下泵装置,其特征在于:所述中间过流套筒(5)包括外层管(14)、中间层管(15)和内层管(16),所述内层管(16)形成中间密闭腔体,所述泵轴(4)穿过所述内层管(16),所 述中间层管(15)与所述外层管(14)之间形成介质通道,所述对称式导流壳(6)流出的介质通过此通道。
  6. 根据权利要求5所述的对称式自平衡中心出液液下泵装置,其特征在于:所述中间过流套筒(5)材质为钢管,采用套筒式结构。
  7. 根据权利要求1所述的对称式自平衡中心出液液下泵装置,其特征在于:所述弯管出口段(10)包括直管(17)和弯管(18),所述直管(17)一端与所述支撑板(3)连接,另一端穿过所述弯管(18)与所述支座(2)连接;所述弯管(18)一端与所述支撑板(3)连接,另一端穿过所述支座(2)任一侧的外壁。
  8. 根据权利要求4所述的对称式自平衡中心出液液下泵装置,其特征在于:所述叶轮材质为不锈钢,表面喷涂防腐耐磨层,所述防腐耐磨层为陶瓷防腐耐磨材料。
  9. 根据权利要求2所述的对称式自平衡中心出液液下泵装置,其特征在于:所述导叶为电渣熔铸导叶。
  10. 根据权利要求1或2所述的对称式自平衡中心出液液下泵装置,其特征在于:所述对称式导流壳(6)为碳钢材质,所述对称式导流壳(6)的表面采用电泳处理。
PCT/CN2019/123018 2019-07-26 2019-12-04 一种对称式自平衡中心出液液下泵装置 WO2021017354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910681890.XA CN110285064A (zh) 2019-07-26 2019-07-26 一种对称式自平衡中心出液液下泵装置
CN201910681890.X 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021017354A1 true WO2021017354A1 (zh) 2021-02-04

Family

ID=68022682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123018 WO2021017354A1 (zh) 2019-07-26 2019-12-04 一种对称式自平衡中心出液液下泵装置

Country Status (2)

Country Link
CN (1) CN110285064A (zh)
WO (1) WO2021017354A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285064A (zh) * 2019-07-26 2019-09-27 烟台龙港泵业股份有限公司 一种对称式自平衡中心出液液下泵装置
CN117145807B (zh) * 2023-10-31 2024-02-06 石家庄森力克环保科技有限公司 一种便于拆卸组装运输的渣浆泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606540A (zh) * 2012-03-27 2012-07-25 上海阿波罗机械股份有限公司 一种用于核电站的厂用水泵
CN202646135U (zh) * 2012-06-26 2013-01-02 四川川工泵业有限公司 一种空间导叶体式双级液下泵的组合密封结构
CN204783697U (zh) * 2015-06-11 2015-11-18 湖南立佳机械制造有限公司 一种立式多级筒袋式小机凝结水泵
CN206929083U (zh) * 2017-04-01 2018-01-26 江苏飞跃机泵集团有限公司 一种自平衡叶轮结构
WO2019027545A1 (en) * 2017-08-01 2019-02-07 Baker Hughes, A Ge Company, Llc PERMANENT MAGNET PUMP
CN110285064A (zh) * 2019-07-26 2019-09-27 烟台龙港泵业股份有限公司 一种对称式自平衡中心出液液下泵装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606540A (zh) * 2012-03-27 2012-07-25 上海阿波罗机械股份有限公司 一种用于核电站的厂用水泵
CN202646135U (zh) * 2012-06-26 2013-01-02 四川川工泵业有限公司 一种空间导叶体式双级液下泵的组合密封结构
CN204783697U (zh) * 2015-06-11 2015-11-18 湖南立佳机械制造有限公司 一种立式多级筒袋式小机凝结水泵
CN206929083U (zh) * 2017-04-01 2018-01-26 江苏飞跃机泵集团有限公司 一种自平衡叶轮结构
WO2019027545A1 (en) * 2017-08-01 2019-02-07 Baker Hughes, A Ge Company, Llc PERMANENT MAGNET PUMP
CN110285064A (zh) * 2019-07-26 2019-09-27 烟台龙港泵业股份有限公司 一种对称式自平衡中心出液液下泵装置

Also Published As

Publication number Publication date
CN110285064A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021017354A1 (zh) 一种对称式自平衡中心出液液下泵装置
CN211082284U (zh) 一种对称式自平衡中心出液液下泵装置
CN210021832U (zh) 一种用于铜矿开采的药液混合度高的浮球控制装置
CN205349842U (zh) 一种复合陶瓷叶轮
CN206764583U (zh) 旋流发生装置及气体旋流发生器
CN213016814U (zh) 一种活体碳化硅内衬渣浆泵
CN203670219U (zh) 一种耐磨渣浆泵
CN203663827U (zh) 一种玻璃钢卧式氯化浸出釜
CN210207135U (zh) 一种多层石墨微片涂料添加剂多级研磨设备
CN209752710U (zh) 一种矿浆搅拌槽
CN203098395U (zh) 一种夹装式离心泵蜗壳
CN111140536A (zh) 半开式分流小流量高压离心风机叶轮
CN110743407A (zh) 一种射流自吸二硫化钼生产配料调浆装置
CN204253452U (zh) 高温高压耐磨泵
CN209084286U (zh) 循环泵进出口异径管道
CN207363834U (zh) 双头污水处理泵
CN202880184U (zh) 碱液储罐
CN203847406U (zh) 流体输送装置
CN213360443U (zh) 一种耐腐蚀耐磨渣浆泵
CN111893244B (zh) 一种用于钢包精炼的底吹微细氩气泡的透气砖
CN201763627U (zh) 沉淀池专用泵
CN205744477U (zh) 一种单壳陶瓷渣浆泵
CN214579382U (zh) 一种新型同心变径管件
CN218089683U (zh) 一种淬火炉冷却油槽搅拌装置
CN2741010Y (zh) 孔板流量计用耐磨耐腐蚀陶瓷孔板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940139

Country of ref document: EP

Kind code of ref document: A1