WO2021017114A1 - 一种环状化合物及其用途和电子器件 - Google Patents

一种环状化合物及其用途和电子器件 Download PDF

Info

Publication number
WO2021017114A1
WO2021017114A1 PCT/CN2019/105878 CN2019105878W WO2021017114A1 WO 2021017114 A1 WO2021017114 A1 WO 2021017114A1 CN 2019105878 W CN2019105878 W CN 2019105878W WO 2021017114 A1 WO2021017114 A1 WO 2021017114A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
ring
cyclic compound
compound
Prior art date
Application number
PCT/CN2019/105878
Other languages
English (en)
French (fr)
Inventor
魏定纬
蔡烨
丁欢达
谢坤山
陈志宽
Original Assignee
宁波卢米蓝新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波卢米蓝新材料有限公司 filed Critical 宁波卢米蓝新材料有限公司
Publication of WO2021017114A1 publication Critical patent/WO2021017114A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/35Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms, or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes

Definitions

  • the invention relates to the field of display technology, in particular to a cyclic compound and its use and electronic devices.
  • organic electroluminescent devices Compared with inorganic electroluminescence, organic electroluminescent devices (OLED) have high brightness, fast response, wide viewing angle, simple process, high color purity, full color display from blue to red light, flexibility, etc. The advantages are favored by many scientific workers and have a wide range of application prospects in the field of display and lighting.
  • Today's OLED devices include one or more of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer, with suitable electrodes.
  • the above-mentioned layers are composed of the following materials: Hole injection materials, hole transport materials, luminescent materials, electron transport materials, and electron injection materials; for OLED devices, the injection and transport of charges is the first step to convert electrical energy into light, and this process turns on the device Voltage, luminous efficiency, and lifetime all play a vital role.
  • Increasing the concentration and mobility of carriers can effectively increase the efficiency of charge injection and transfer, thereby reducing the turn-on voltage of the device, and improving the luminous efficiency and luminous lifetime.
  • adding a P-doped material to the hole transport material can effectively increase the concentration of holes, thereby increasing the efficiency of hole transport.
  • the P-doped materials currently used commercially have low LUMO energy levels, which can match the HOMO energy levels of common hole transport materials (such as NPB), they have the following shortcomings: 1. The synthesis and purification of materials is difficult. The stability is poor. When it is applied to organic electro-induced devices, the device has a short lifespan and therefore the price is high; 2. Some commercially used materials can easily diffuse into adjacent functional layers to cause luminescence quenching; 3. Current Commercially used P-doped materials are easy to contaminate the evaporation system, cause cross-contamination, reduce the luminous efficiency of the device, and it is difficult to guarantee the repeatability and thermal stability of the device.
  • the purpose of the present invention is to overcome the problem of poor thermal stability of the P-doped material added to the hole transport material in the prior art, and limited improvement in the luminous efficiency and device life of the organic electroluminescent device.
  • the present invention adopts the following technical solutions:
  • n 1-4
  • m 1-4
  • a 1 and A 2 are the same or different, and are independently selected from CN, halogen, CF 3 , substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 1 -C 30 alkyl, substituted Or unsubstituted C 2 -C 30 alkenyl, substituted or unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 3 -C 30 cycloalkenyl, substituted or unsubstituted C 3 -C 30 heterocycle, Or A 1 and A 2 are connected to each other to form a ring B, the ring B is selected from substituted or unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 3 -C 30 cycloalkenyl, substituted Or an unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 3
  • X 1 is independently selected from O, S, C(CN) 2 , C(CF 3 ) 2 , C(CN)(CF 3 ), NCN,
  • Y 1 is independently selected from C, SO,
  • R 1 is independently selected from hydrogen, halogen, cyano, nitro, trifluoromethyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 3 -C 30 heterocycle, substituted or Unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 1 -C 30 alkoxy,
  • Ar 1 is independently selected from C(R 18 )C(R 19 ), substituted or unsubstituted C 6 -C 30 arylene, substituted or unsubstituted C 3 -C 30 heterocyclic ring,
  • R 18 and R 19 are each independently selected from CN and CF 3 ,
  • the heteroatom in the substituted or unsubstituted C 3 -C 30 heterocycle or heterocycle includes at least one N, B, O, P, S, or Si.
  • a 1 and A 2 are independently selected from CN, CF 3 , substituted or unsubstituted C 6 -C 30 aryl groups, substituted or unsubstituted C 3 -C 30 heterocycles,
  • a 1 and A 2 are connected to each other to form a ring B, which is selected from a substituted or unsubstituted C 6 -C 30 aryl group, and a substituted or unsubstituted C 3 -C 30 heterocyclic ring.
  • substituted or unsubstituted C 6 -C 30 aryl group is selected from the following structures:
  • the substituted or unsubstituted C 6 -C 30 arylene group is selected from the following structures:
  • the substituted or unsubstituted C 3 -C 30 heterocyclic ring is selected from the following structures:
  • the substituted or unsubstituted C 3 -C 30 heterocyclic ring is selected from the following structures:
  • R 10 -R 16 and R 20 -R 44 are each independently selected from hydrogen, cyano, nitro, halogen, trifluoromethyl, C(CN)C(CN) 2 , or at least one adjacent group to each other Connect to form a saturated or unsaturated ring.
  • the B ring is selected from the following structures:
  • R 2 -R 9 are each independently selected from hydrogen, halogen, trifluoromethyl, nitro, cyano, C(CN)C(CN) 2 , and at least one adjacent group is connected to each other to form saturated or unsaturated ring,
  • X 2 -X 3 are oxygen.
  • substituted or unsubstituted C 3 -C 30 heterocyclic ring is selected from the following structures:
  • the sub-hetero R ring 34 of 29C 3 -C 30 in which R is substituted for 31 or R is not substituted for 0 is selected from 3 to 3 and 32 structures:
  • the B ring is selected from the following structures:
  • substituted or unsubstituted C 1 -C 30 alkyl groups are each independently selected from perfluoromethyl, perfluoroethyl, perfluoropropyl, and the substituted or unsubstituted C 2 -C 30
  • the alkenyl groups are each independently selected from perfluorovinyl, perfluoropropenyl, perfluoroisopropenyl, and/or,
  • the ring B is selected from substituted or unsubstituted heteroaryl groups, and/or,
  • heteroatom in the substituted or unsubstituted C 3 -C 30 heterocycle or heterocycle is N, and/or,
  • the halogen is fluorine, and/or,
  • the cyclic compound does not contain hydrogen atoms.
  • the present invention also provides an application of the aforementioned cyclic compound as an organic electroluminescent material.
  • the present invention also provides electronic devices comprising at least one of the above-mentioned cyclic compounds.
  • the electronic devices include organic electroluminescence devices, organic field effect transistors, organic thin film transistors, organic light-emitting transistors, organic integrated circuits, and organic solar cells. , Organic field quenching device, light-emitting electrochemical cell, organic laser diode or organic photoreceptor.
  • the present invention also provides a display device including the above-mentioned electronic device.
  • the present invention also provides a lighting device including the above-mentioned electronic device.
  • the cyclic compound provided by the present invention consists of n Formed with m Ar 1 , where The connection position with Ar 1 is not fixed, n is 1-4, m is 1-4, which at least includes the compound represented by formula 001-011, which takes the ring as the core and provides free radicals; Group, while ensuring intramolecular conjugation, there is a certain angle between molecules, so that there is no interaction between molecules, which effectively ensures that the cyclic compound has good thermal stability and has a matching LUMO with the adjacent layer Energy level, as the p-doped material in the hole transport layer is applied to the OLED device, it can promote the generation of holes, so that the electrons and holes are more effectively recombined in the OLED device to form excitons.
  • the resulting OLED device has Lower driving voltage, higher carrier incorporation rate, luminous efficiency, and longer device life.
  • the introduction of strong electron withdrawing groups can ensure a deeper LUMO energy level and a better matching LUMO with adjacent layers energy level.
  • the cyclic compound provided by the present invention further, the cyclic compound does not contain a hydrogen atom, and the single bond and the double bond are alternately arranged in the structural formula of the cyclic compound, which is used as the doping material in the hole transport layer When applied to OLED devices, the current efficiency of the device is higher and the lifetime is longer.
  • Example 1 is a comparison diagram of the theoretical calculation results of the HOMO energy level, the LUMO energy level, and the single-triplet energy range Eg of the compound represented by C4 provided in Example 5 of the present invention.
  • Alkyl A saturated hydrocarbon group is a hydrocarbon group with one less hydrogen atom in the alkyl molecule, including branched and straight chain. For example: methyl, ethyl, propyl, isopropyl, etc.
  • Alkenyl A hydrocarbon group formed by omitting one or a few hydrogen atoms in the olefin molecule, including branched and straight chain. For example, vinyl, propenyl, isopropyl, etc.
  • Aryl any functional group or substituent derived from a simple aromatic ring in which one atom is connected to the main ring.
  • Arylene Any functional group or substituent derived from a simple aromatic ring in which two atoms are connected to the main ring.
  • Heterocycle In addition to carbon atoms, there are other atoms that make up the ring. One atom is connected to the main ring.
  • the heteroatom can be one kind of atom or multiple different atoms; the ring can be three-membered or four-membered Ring, five-membered ring, six-membered ring, etc.; the ring can also be a single ring, spiro ring or condensed ring; heterocycles also include saturated and partially unsaturated aliphatic heterocycles and aromatic heterocycles. For example: ethylene oxide, ethylene sulfide, caprolactam, furan, thiophene, pyridine, quinoline, pyrimidine, tetrahydropyran, etc.
  • Heterocyclic ring In addition to carbon atoms, there are other atoms that make up the ring. Two of the atoms are connected to the main ring.
  • the heteroatom can be one type of atom or multiple different atoms; the ring can be a three-membered ring, Four-membered ring, five-membered ring, six-membered ring, etc.; the ring can also be a single ring, spiro ring or condensed ring; heterocyclic ring also includes saturated and partially unsaturated aliphatic heterocyclic ring and aromatic heterocyclic ring.
  • Main ring The main ring of the present invention is formed by m (Ar 1 ) atoms and n (C) atoms.
  • Alkoxy a group in which an alkyl group is directly connected to an oxygen atom, such as methoxy, ethoxy, and propoxy.
  • Cycloalkyl saturated cyclic carbon chain, such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, etc.
  • Cycloalkenyl unsaturated cyclic carbon chain, such as cyclopropene, cyclobutene, cyclobutadiene, cyclopentene, cyclohexene, etc.
  • Fully conjugated structure single bond and double bond alternately arranged structure.
  • connection bond Represents the connection bond; " ⁇ " represents the connection site on ring B, where the carbon atom connected to A 1 and A 2 is the carbon atom at " ⁇ "; Indicates the connection site, where The two carbon atoms are the two carbon atoms connected to Ar 1 in the structural formula shown in formula 001-011.
  • This embodiment provides a cyclic compound having the structure represented by the following formula C1:
  • the preparation method of the compound represented by formula C1 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C2:
  • the preparation method of the compound represented by formula C2 specifically includes the following steps:
  • This embodiment provides an intermediate compound, the synthesis path of which is as follows:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C3:
  • the preparation method of the compound represented by formula C3 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C4:
  • the preparation method of the compound represented by formula C4 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C5:
  • the preparation method of the compound represented by formula C5 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C6:
  • the preparation method of the compound represented by formula C6 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C7:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C8:
  • the preparation method of the compound represented by formula C8 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C9:
  • the preparation method of the compound represented by formula C9 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C10:
  • the preparation method of the compound represented by formula C10 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C11:
  • the preparation method of the compound represented by formula C11 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C12:
  • the preparation method of the compound represented by formula C12 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C13:
  • the preparation method of the compound represented by formula C13 specifically includes the following steps:
  • This embodiment provides a cyclic compound having the structure represented by the following formula C14:
  • the preparation method of the compound represented by formula C14 specifically includes the following steps:
  • This embodiment provides an organic electroluminescent device, which includes an anode (ITO)/hole transport layer (HTL)/organic light emitting layer (EML)/electron transport layer (ETL)/electron injection layer stacked in order from bottom to top (EIL)/Cathode (Al).
  • ITO anode
  • HTL hole transport layer
  • EML organic light emitting layer
  • ETL electron transport layer
  • Al electroluminescent device
  • the hole transport layer (HTL) material is formed by co-doping the compound shown by NPB and the compound shown by C1, and the mass ratio of NPB and C1 doping is 100:5;
  • 1,4-bis(2,2-diphenylvinyl)benzene is selected as the material of the organic light-emitting layer (EML);
  • the electron transport layer (ETL) material is selected from the compound TPBI with the following structure:
  • Electron injection layer (EIL) material is LiF
  • the preparation of the above organic electroluminescent device includes the following steps:
  • the transparent glass substrate coated with the transparent conductive film of ITO is sequentially ultrasonically treated in an aqueous cleaning agent (the composition and concentration of the aqueous cleaning agent: glycol solvent ⁇ 10wt%, triethanolamine ⁇ 1wt%). Rinse in ionized water, ultrasonically remove oil in a mixed solvent of acetone and ethanol (volume ratio 1:1), bake in a clean environment until the water is completely removed, and finally clean with ultraviolet light and ozone;
  • an aqueous cleaning agent the composition and concentration of the aqueous cleaning agent: glycol solvent ⁇ 10wt%, triethanolamine ⁇ 1wt%.
  • the HTL layer is composed of NPB and C1. Formed by doping, the mass ratio of NPB and C1 doping is 100:5.
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C2 , The mass ratio of NPB and C2 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C3 , The mass ratio of NPB and C3 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C4 , The mass ratio of NPB and C4 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C5 , The mass ratio of NPB and C5 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C6 , The mass ratio of NPB and C6 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C7 , The mass ratio of NPB and C7 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C8 , The mass ratio of NPB and C8 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C9 , The mass ratio of NPB and C9 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C10 , The mass ratio of NPB and C10 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C11 , The mass ratio of NPB and C11 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C12 , The mass ratio of NPB and C12 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C13 , The mass ratio of NPB and C13 doping is 100:5.
  • HTL hole transport layer
  • This embodiment provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in embodiment 16 is that the hole transport layer (HTL) material is formed by co-doping the compound represented by NPB and the compound represented by C14 , The mass ratio of NPB and C14 doping is 100:5.
  • HTL hole transport layer
  • This comparative example provides an organic electroluminescent device.
  • the only difference from the organic electroluminescent device provided in Example 16 is that the hole transport layer (HTL) material is co-doped with the compound shown in NPB and the compound shown in NDP-9
  • the mass ratio of NPB and NDP-9 doping is 100:5.
  • thermogravimetric analyzer (TGA) is used to test the thermal decomposition temperature of the patented material.
  • the test range is from room temperature to 600°C, the heating rate is 10°C/min, and the temperature at which weight loss is 5% under nitrogen atmosphere is defined as the decomposition temperature.
  • An electrochemical workstation is used to test the LUMO energy level of the patented material by cyclic voltammetry (CV), using platinum wire (Pt) as the counter electrode and silver/silver chloride (Ag/AgCl) as the reference electrode.
  • CV cyclic voltammetry
  • Pt platinum wire
  • Ag/AgCl silver/silver chloride
  • the test was performed in a dichloromethane electrolyte containing 0.1M tetrabutylammonium hexafluorophosphate at a scan rate of 100mV/s, and the potential was calibrated with ferrocene.
  • the absolute energy level in the state is -4.8eV:
  • the results in Table 1 show that the cyclic compound provided by the present invention has a high thermal decomposition temperature, which can ensure that the material maintains excellent thermal stability in the device, so that it is not easy to decompose and deteriorate during the device preparation process; and the present invention provides The low LUMO energy level of the cyclic compound can promote the hole transport layer to generate holes more effectively, increase the carrier incorporation rate, reduce the operating voltage of the device and improve its luminous efficiency.
  • the current, voltage, brightness, luminescence spectrum and other characteristics of the device are tested simultaneously with the PR 650 spectral scanning luminance meter and Keithley K 2400 digital source meter system.
  • the life test of the device is to test the T95 life of the device at a current density of 20mA/cm 2 (life test The instrument was purchased from Foster Scientific Instruments Co., Ltd.).
  • the inventors discovered during the research that when the cyclic compound structure provided by the present invention does not contain hydrogen atoms and is a fully conjugated structure (single bond and double bond alternately arranged), it is used as a hole When the dopant material in the transport layer is applied to the OLED device, the current efficiency of the device is higher and the lifetime is longer.
  • the structure of the cyclic compound provided by the present invention contains active hydrogen (hydrogen atoms), hydrogen bonds are easily generated between the molecules, which is not conducive to the improvement of the current efficiency of the device and the extension of the life; when the structure of the cyclic compound provided by the present invention is not Fully conjugated structure.
  • the compound represented by C9 of the present invention contains active hydrogen, and the compound represented by C10 cannot completely realize the alternating arrangement of single and double bonds due to the existence of S atom in the compound represented by C10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种环状化合物及其用途和电子器件。环状化合物至少包括式001-011所示化合物,该环状化合物具有良好的热稳定性,且与相邻层具有可匹配的LUMO能级,将其作为空穴传输层中的p掺杂材料应用到OLED器件中,能促进空穴产生,使电子与空穴在OLED器件中更有效地再结合形成激子,所得OLED器件具有更低的驱动电压、更高的载流子结合率以及发光效率。

Description

一种环状化合物及其用途和电子器件
交叉引用
本申请要求在2019年08月01日提交中国专利局、申请号为201910707975.0、发明名称为“一种环状化合物及其用途和电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种环状化合物及其用途和电子器件。
背景技术
有机电致发光器件(OLED)相比无机电致发光而言,具有亮度高、响应快、视角宽、工艺简单、颜色纯度高、可实现由蓝光到红光区的全彩色显示、可柔性等优点,受到众多科学工作者的青睐,在显示和照明领域具有广泛的应用前景。
现今的OLED器件包含空穴注入层、空穴传输层、发光层、电子传输层、及电子注入层中之一或多层,并搭配合适之电极,上述层系分别由以下材料所构成:空穴注入材料、空穴传输材料、发光材料、电子传输材料、及电子注入材料;对于OLED器件来说,电荷的注入和传输是将电能转化为光的第一步,这一过程对器件的开启电压、发光效率、及寿命都起到至关重要的作用。而提高载流子的浓度和迁移率可以有效的提升电荷的注入和传输效率,进而降低器件的开启电压,提高发光效率和发光寿命。在空穴传输层方面,通过在空穴传输材料中加入P掺杂材料可以有效提升空穴的浓度,进而提升空穴的传输效率。
现行商业上所用的P掺杂材料虽拥有低LUMO能级,使之可以和常见空穴传输材料(如NPB)的HOMO能级匹配,但存在如下缺点:一、材料的合成与提纯困难,材料稳定性差,将其应用到有机电致器件中,器件的寿命较短,因而售价高昂;二、有些商业上所用的材料极易扩散到相邻的功能层中引起发光淬灭;三、现行商业上所用的P掺杂材料容易污染蒸镀系统,引起交叉污染,降低器件发光效率,器件的重复性和热稳定性也很难保证。
发明内容
本发明的目的在于克服现有技术中加入空穴传输材料中的P掺杂材料热稳定性差,对有机电致发光器件的发光效率和器件寿命提升有限的问题。
为达到上述目的,本发明采用如下技术方案:
一种环状化合物,所述环状化合物由n个
Figure PCTCN2019105878-appb-000001
与m个Ar 1形成,其中
Figure PCTCN2019105878-appb-000002
与Ar 1连接位置不固定,至少包括以下结构:
Figure PCTCN2019105878-appb-000003
Figure PCTCN2019105878-appb-000004
其中,n为1-4,m为1-4,同一结构式中有不少于一个
Figure PCTCN2019105878-appb-000005
时,各
Figure PCTCN2019105878-appb-000006
基团相同或不同,同一结构式中有不少于一个Ar 1时,各Ar 1基团相同或不同,
A 1、A 2相同或不同,并分别独立选自CN、卤素、CF 3、取代或未取代的C 6-C 30的芳基、取代或未取代的C 1-C 30的烷基、取代或未取代的C 2-C 30的烯基、取代或未取代的C 3-C 30的环烷基、取代或未取代的C 3-C 30的环烯基、取代或未取代的C 3-C 30的杂环、
Figure PCTCN2019105878-appb-000007
或A 1、A 2彼此连接以形成环B,所述环B选自取代或未取代的C 3-C 30的环烷基、取代或未取代的C 3-C 30的环烯基、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环,
X 1独立选自O、S、C(CN) 2、C(CF 3) 2、C(CN)(CF 3)、NCN,
Y 1独立选自C、SO,
R 1独立选自氢、卤素、氰基、硝基、三氟甲基、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环、取代或未取代的C 1-C 30的烷基、取代或未取代的C 1-C 30的烷氧基,
Ar 1独立选自C(R 18)C(R 19)、取代或未取代的C 6-C 30的亚芳基、取代或未取代的C 3-C 30的亚杂环,
R 18、R 19各自独立选自CN、CF 3
所述取代或未取代的C 3-C 30的杂环或亚杂环中的杂原子至少包含一个N、B、O、P、S、Si。
进一步的,所述A 1、A 2分别独立选自CN、CF 3、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环、
Figure PCTCN2019105878-appb-000008
或A 1、A 2彼此连接以形成环B,所述环B选自取代或未取代的C 6-C 30的芳基、取代或未取代的 C 3-C 30的杂环。
进一步的,所述取代或未取代的C 6-C 30的芳基选自如下结构:
Figure PCTCN2019105878-appb-000009
所述取代或未取代的C 6-C 30的亚芳基选自如下结构:
Figure PCTCN2019105878-appb-000010
所述取代或未取代的C 3-C 30的杂环选自如下结构:
Figure PCTCN2019105878-appb-000011
Figure PCTCN2019105878-appb-000012
Figure PCTCN2019105878-appb-000013
所述取代或未取代的C 3-C 30的亚杂环选自如下结构:
Figure PCTCN2019105878-appb-000014
Figure PCTCN2019105878-appb-000015
其中,R 10-R 16,R 20-R 44各自独立选自氢、氰基、硝基、卤素、三氟甲基、C(CN)C(CN) 2,或至少一相邻基团彼此连接以形成饱和或不饱和环。
进一步的,所述B环选自如下结构:
Figure PCTCN2019105878-appb-000016
其中,R 2-R 9各自独立选自氢、卤素、三氟甲基、硝基、氰基、C(CN)C(CN) 2,至少一相邻基团彼此连接以形成饱和或不饱和环,
X 2-X 3为氧。
进一步的,所述取代或未取代的C 3-C 30的杂环选自如下结构:
Figure PCTCN2019105878-appb-000017
Figure PCTCN2019105878-appb-000018
R所述取R代31或未R3取0代R的29C 3-C 30的亚杂R环34选自3如3下结32构:
Figure PCTCN2019105878-appb-000019
Figure PCTCN2019105878-appb-000020
所述B环选自如下结构:
Figure PCTCN2019105878-appb-000021
进一步的,所述取代或未取代的C 1-C 30的烷基各自独立选自全氟甲基、全氟乙基、全氟丙基,所述取代或未取代的C 2-C 30的烯基各自独立选自全氟乙烯基、全氟丙烯基、全氟异丙稀基,和/或,
所述环B选自取代或未取代杂芳基,和/或,
所述取代或未取代的C 3-C 30的杂环或亚杂环中的杂原子为N,和/或,
所述卤素为氟,和/或,
所述环状化合物不含氢原子。
本发明还提供一种上述所述的环状化合物作为有机电致发光材料的应用。
本发明还提供包括至少一种上述所述的环状化合物的电子器件,所述电子器件包括有机电致发光器件、有机场效应晶体管、有机薄膜晶体管、有机发光晶体管、有机集成电路、有机太阳能电池、有机场淬灭器件、发光电化学电池、有机激光二极管或有机光感受器。
本发明还提供一种显示装置,包含上述所述电子器件。
本发明还提供一种照明装置,包含上述所述电子器件。
本发明的有益效果:
1)本发明提供的环状化合物,由n个
Figure PCTCN2019105878-appb-000022
与m个Ar 1形成,其中
Figure PCTCN2019105878-appb-000023
与Ar 1连接位置不固定,n为1-4,m为1-4,其至少包括式001-011所示化合物,该化合物以环为核心,提供自由基;利用
Figure PCTCN2019105878-appb-000024
基团,保证分子内共轭的同时,分子间存在一定夹角,使分子间无相互作用,有效保证了所述环状化合物具有良好的热稳定性,且与相邻层具有可匹配的LUMO能级,将其作为空穴传输层中的p掺杂材料应用到OLED器件中,能促进空穴产生,使电子与空穴在OLED器件中更有效地再结合形成激子,所得OLED器件具有更低的驱动电压、更高的载流子结合率、发光效率以及更长的器件寿命,同时引入强吸电子基团,可保证LUMO能级较深,与相邻层具有更佳匹配的LUMO能级。
2)本发明提供的环状化合物,进一步的,所述环状化合物不含氢原子,所述环状化合物结构式中单键、双键交替排列,将其作为空穴传输层中的掺杂材料应用到OLED器件时,器件的电流效率更高,寿命更长。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例5提供的C4所示的化合物的HOMO能级、LUMO能级,以及单-三线态能极差Eg的理论计算结果对比图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
以下是对在本发明中出现的部分名词及符号做出的解释,具体如下:
烷基:饱和烃基,是烷基分子中少一个氢原子而成的烃基,包括支链和直链的。例如:甲基、乙基、丙基、异丙基等。
烯基:烯烃分子中少掉一个或几个氢原子而成的烃基,包括支链和直链的。例如,乙烯基、丙烯基、异丙稀基等。
芳基:任何从简单芳香环衍生出的官能团或取代基,其中一个原子与主环连接。
亚芳基:任何从简单芳香环衍生出的官能团或取代基,其中两个原子与主环连接。
杂环:构成环的原子除碳原子外还有其他原子,其中一个原子与主环连接,杂原子可以是一种原子,也可以是多种不同的原子;环可以是三元环、四元环、五元环、六元环等;环也可以是单环、螺环或稠环;杂环还包括饱和和部分不饱和脂杂环和芳杂环。例如:环氧乙烷、环硫乙烷、己内酰胺、呋喃、噻吩、吡啶、喹啉、嘧啶、四氢吡喃等。
亚杂环:构成环的原子除碳原子外还有其他原子,其中两个原子与主环连接,杂原子可以是一种原子,也可以是多种不同的原子;环可以是三元环、四元环、五元环、六元环等;环也可以是单环、螺环或稠环;杂环还包括饱和和部分不饱和脂杂环和芳杂环。
主环:本发明主环为m个(Ar 1)上两个原子和n个(C)形成。
烷氧基:烷基与氧原子直接连接的基团,例如甲氧基、乙氧基、丙氧基等。
环烷基:饱和环状碳链,例如环丙烷、环丁烷、环戊烷、环已烷等。
环烯基:不饱和环状碳链,例如环丙烯、环丁烯、环丁二烯、环戊烯、环己烯等。
全共轭结构:单键、双键交替排列结构。
Figure PCTCN2019105878-appb-000025
表示连接键;“●”表示环B上的连接位点,其中与A 1、A 2相连的碳原子即为“●”处碳原子;
Figure PCTCN2019105878-appb-000026
表示连接位点,其中
Figure PCTCN2019105878-appb-000027
处两个碳原子即为式001-011所示结构式中与Ar 1相连的两个碳原子。
实施例1
本实施例提供一种环状化合物,具有下述式C1所示的结构:
Figure PCTCN2019105878-appb-000028
式C1所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000029
式C1所示化合物的制备方法具体包括以下步骤:
1)中间体1-1的合成:在250毫升单颈瓶中,氮气保护下加入化合物N1(19.00克,1当量)溶解到50毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、化合物M1(8.80克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),得中间体1-1(21.32克,产率82%)。
2)中间体2-1的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-1(26.00克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机相,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷的体积比1/15),得中间体2-1(21.76克,产率85%)。
3)化合物C1的合成:在250毫升三颈瓶中,氮气保护下加入中间体2-1(25.60克,1当量)、化合物N2(10.80克,1当量)、乙酸(100毫升),40℃下反应4小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机相,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷的体积比1/10),得化合物C1(21.32克,产率65%)。
元素分析:C 14N 6F 4理论值:C,51.24;N,25.61;实测值:C,51.26;N,25.60;HRMS(ESI)m/z(M+):理论值:328.0121;实测值:328.0120。
实施例2
本实施例提供一种环状化合物,具有下述式C2所示的结构:
Figure PCTCN2019105878-appb-000030
式C2所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000031
式C2所示化合物的制备方法具体包括以下步骤:
1)中间体1-2的合成:在250毫升单颈瓶中,氮气保护下将化合物N2(10.80克,1当量)溶解到50毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、化合物M2(11.60克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),得中间体1-2(14.85克,产率79%)。
2)中间体2-2的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-2(18.80克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-2(13.80克,产率75%)。
3)化合物C2的合成:在250毫升三颈瓶中,氮气保护下加入中间体2-2(18.40克,1当量)、化合物N3(42.80克,2当量)、乙酸(120毫升),40℃下反应5小时,冷却至室温后,加入150毫升 水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得化合物C2(35.71克,产率62%)。
元素分析:C 26N 8F 8理论值:C,54.18;N,19.44;实测值:C,54.15;N,19.47;HRMS(ESI)m/z(M+):理论值:576.0118;实测值:576.0120。
实施例3
本实施例提供一种中间体化合物,其合成路径如下所示:
Figure PCTCN2019105878-appb-000032
1)中间体1’的合成:在250毫升三颈瓶中,氮气保护下加入4,5-二羟基环戊-4-烯-1,2,3-三酮(14.21克,1当量)、2,3-二氨基-2-丁烯二腈(10.80克,1当量)、乙酸(100毫升),40℃下反应4小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体1’(14.98克,产率70%)。
2)中间体2’的合成:在250毫升三颈瓶中,氮气保护下加入中间体1’(21.40克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体2’(12.30克,产率58%)。
3)中间体3’的合成:在250毫升三颈瓶中,氮气保护下加入中间体2’(21.20克,1当量)、2,3-二氨基-2-丁烯二腈(10.80克,1当量)、乙酸(100毫升),40℃下反应4小时,冷却至室温后,加入50毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得化合物3’(20.45克,78%)。
实施例4
本实施例提供一种环状化合物,具有下述式C3所示的结构:
Figure PCTCN2019105878-appb-000033
式C3所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000034
式C3所示化合物的制备方法具体包括以下步骤:
化合物C3的合成:在250毫升单颈瓶中,氮气保护下将化合物N1(20.70克,1当量)溶解到100毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、中间体3’(28.40克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干有机溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C3(35.57克,产率78%)。
元素分析:C 20N 10F 4理论值:C,52.65;N,30.70;实测值:C,52.67;N,30.71;HRMS(ESI)m/z(M+):理论值:456.0244;实测值:456.0245。
实施例5
本实施例提供一种环状化合物,具有下述式C4所示的结构:
Figure PCTCN2019105878-appb-000035
式C4所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000036
式C4所示化合物的制备方法具体包括以下步骤:
化合物C4的合成:在250毫升单颈瓶中,氮气保护下将化合物N4(36.20克,1当量)溶解到100毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、中间体3’(28.40克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干有机溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/7),得化合物C4(42.70克,产率68%)。
元素分析:C 25N 10F 8理论值:C,53.52;N,22.29;实测值:C,53.50;N,22.30;HRMS(ESI)m/z(M+):理论值:628.0180;实测值:628.0184。
实施例6
本实施例提供一种环状化合物,具有下述式C5所示的结构:
Figure PCTCN2019105878-appb-000037
式C5所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000038
式C5所示化合物的制备方法具体包括以下步骤:
中间体1-5的合成:在250毫升三颈瓶中,氮气保护下加入4,5-二腈环戊-4-烯-1,2,3-三酮(16.00克,1当量)、2,3-二氨基-2-丁烯二腈(10.80克,1当量)、乙酸(100毫升),40℃下反应4小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体1-5(15.08克,产率65%)。
化合物C5的合成:在250毫升单颈瓶中,氮气保护下将化合物N1(19.00克,1当量)溶解到100毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、中间体1-5(23.20克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干有机溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C5(33.13克,产率82%)。
元素分析:C 18N 8F 4理论值:C,53.48;N,27.72;实测值:C,53.47;N,27.73;HRMS(ESI)m/z(M+):理论值:404.0182;实测值:404.0185。
实施例7
本实施例提供一种环状化合物,具有下述式C6所示的结构:
Figure PCTCN2019105878-appb-000039
式C6所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000040
式C6所示化合物的制备方法具体包括以下步骤:
化合物C6的合成:在250毫升三颈瓶中,氮气保护下加入四氢呋喃(20毫升)、二氯化汞(0.55克,1当量)、镁屑(1.8克,4当量),混合物在室温下搅拌30分钟,上层液体通过注射器吸除,剩余的汞合金用四氢呋喃洗涤(10毫升×3次),随后用四氢呋喃覆盖(50毫升),冷却至零下10℃,随后滴加四氯化钛(4.4毫升,20当量),得黄绿色混合物。将溶解在四氢呋喃(25毫升)中的中间体3’(2.84克,5当量)加入到上述黄绿色混合物中,混合物在黑暗处0℃下搅拌2小时。反应体系升温至室温后加热回流24小时。反应结束后,降温至室温,饱和碳酸钾(5毫升)淬灭,搅拌30分钟,反应体系用乙醚(5毫升)稀释并过滤。滤液浓缩,滤渣溶解在乙醚中,盐水洗,无水硫酸镁干燥后浓缩,浓缩后的滤液经硅胶柱层析(乙酸乙酯/己烷体积比1/8)分离,得化合物C6(产率4.45克,83%)。
元素分析:C 26N 16理论值:C,58.22;N,41.78;实测值:C,58.25;N,41.75;HRMS(ESI)m/z(M+):理论值:536.0492;实测值:536.0490。
实施例8
本实施例提供一种环状化合物,具有下述式C7所示的结构:
Figure PCTCN2019105878-appb-000041
式C7所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000042
1)中间体1-7的合成:在250毫升单颈瓶中,氮气保护下将化合物M8(14.20克,1当量)溶解到50毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、化合物N2(10.80克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干有机溶剂,乙酸乙酯(100毫升×3)萃取,旋干有机溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),得中间体1-7(13.05克,产率61%)。
2)中间体2-7的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-7(21.40克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-7(16.54克,产率78%)。
3)化合物C7的合成:在250毫升三颈瓶中,氮气保护下加入中间体2-7(21.20克,1当量)、化合物N13(64.80克,3当量)、乙酸(180毫升),40℃下反应5小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得化合物C7(33.30克,产率45%)。
元素分析:C 36N 22理论值:C,58.39;N,41.61;实测值:C,58.42;N,41.58;HRMS(ESI)m/z(M+):理论值:740.0676;实测值:740.0612。
实施例9
本实施例提供一种环状化合物,具有下述式C8所示的结构:
Figure PCTCN2019105878-appb-000043
式C8所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000044
式C8所示化合物的制备方法具体包括以下步骤:
1)中间体1-8的合成:在250毫升单颈瓶中加入化合物M5(42.77克,1当量)、化合物N1(38.00克,2当量)、碳酸钾(28.98克,2.1当量)、四氢呋喃100毫升,室温下搅拌3小时后,将溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物1-8(57.88克,75%)。
2)中间体2-8的合成:在250毫升单颈瓶中加入中间体1-8(1当量)、乙腈(100毫升),冰水浴保持0-5℃,加入RuCl3·H2O(0.07当量)和高碘酸钠(1.5当量)的水溶液(10毫升),搅拌5小时,溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-8(35.84克,70%)。
3)化合物C8的合成:在250毫升单颈瓶中加入中间体2-8(51.20克,1当量)、化合物N2(21.60克,2当量)、碳酸钾(28.98克,2.1当量)、四氢呋喃100毫升,室温下搅拌5小时。溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C8(45.92克,70%)。
元素分析:C 24N 6F 4理论值:C,51.24;N,25.61;实测值:C,51.26;N,25.60;HRMS(ESI)m/z(M+):理论值:656.0241;实测值:656.0245。
实施例10
本实施例提供一种环状化合物,具有下述式C9所示的结构:
Figure PCTCN2019105878-appb-000045
式C9所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000046
式C9所示化合物的制备方法具体包括以下步骤:
1)中间体1-9的合成:在250毫升三颈瓶中,氮气保护下加入4,5-二羟基环戊-4-烯-1,2,3-三酮(14.21克,1当量)、化合物N6(10.81克,1当量)、乙酸(100毫升),40℃下反应2小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体1-9(16.71克,产率78%)。
2)中间体2-9的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-9(21.42克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体2-9(13.16克,产率62%)。
3)中间体3-9的合成:在250毫升三颈瓶中,氮气保护下加入2-9(21.22克,1当量)、化合物N6(10.81克,1当量)、乙酸(100毫升),40℃下反应2小时,冷却至室温后,加入50毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析 纯化(乙酸乙酯/己烷体积比1/10),得化合物3-9(22.73克,80%)。
4)化合物C9的合成:在250毫升单颈瓶中加入中间体3-9(28.41克,1当量)、化合物N1(19.00克,1当量)、碳酸钾(14.49克,1.05当量)、四氢呋喃100毫升,室温下搅拌3小时。溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C9(32.86克,72%)。
元素分析:C 24H 8N 6F 4理论值:C,63.17;N,18.42;H,1.77;实测值:C,63.20;N,18.43;H,1.74;HRMS(ESI)m/z(M+):理论值:456.0747;实测值:456.0750。
实施例11
本实施例提供一种环状化合物,具有下述式C10所示的结构:
Figure PCTCN2019105878-appb-000047
式C10所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000048
式C10所示化合物的制备方法具体包括以下步骤:
化合物C10的合成:在250毫升单颈瓶中加入中间体3’(28.41克,1当量)、化合物N7(10.00克,1当量)、碳酸钾(14.49克,1.05当量)、四氢呋喃100毫升,室温下搅拌6小时。溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C10(23.06克,63%)。
元素分析:C 17H 2N 8OS理论值:C,55.74;N,30.59;H,0.55;S,8.75;实测值:C,55.75;N,30.62;H,0.54;S,8.73;HRMS(ESI)m/z(M+):理论值:366.0072;实测值:366.0070。
实施例12
本实施例提供一种环状化合物,具有下述式C11所示的结构:
Figure PCTCN2019105878-appb-000049
式C11所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000050
式C11所示化合物的制备方法具体包括以下步骤:
化合物C11的合成:在250毫升单颈瓶中加入M5(35.20克,1当量)、化合物N8(20.70克,1当量)、碳酸钾(28.98克,2.10当量)、四氢呋喃150毫升,室温下搅拌4小时。溶剂旋干,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比1/8),得化合物C11(45.26克,62%)。
元素分析:C 24N 6理论值:C,49.34;N,3.84;实测值:C,49.31;N,3.84;HRMS(ESI)m/z(M+):理论值:729.9774;实测值:729.9716。
实施例13
本实施例提供一种环状化合物,具有下述式C12所示的结构:
Figure PCTCN2019105878-appb-000051
式C12所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000052
式C12所示化合物的制备方法具体包括以下步骤:
1)中间体1-12的合成:在250毫升单颈瓶中,氮气保护下将化合物N6(17.60克,1当量)溶解到50毫升无水乙醇中,加入碳酸钾(14.49克,1.05当量)、化合物M9(31.20克,1当量),室温搅拌4小时。加入50毫升水淬灭,旋干溶剂,乙酸乙酯(100毫升×3)萃取,旋干溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),得中间体1-12(30.29克,产率67%)。
2)中间体2-12的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-12(45.21克,1当量)、50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-12(32.86克,产率74%)。
3)化合物C12的合成:在250毫升三颈瓶中,氮气保护下加入中间体2-12(44.40克,1当量)、化合物N10(30.40克,2当量)、乙酸(120毫升),40℃下反应5小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得化合物C12(55.86克,产率57%)。
元素分析:C 32N 10F 24理论值:C,39.20;N,14.29;实测值:C,39.23;N,14.28;HRMS(ESI)m/z(M+):理论值:979.9924;实测值:979.9989。
实施例14
本实施例提供一种环状化合物,具有下述式C13所示的结构:
Figure PCTCN2019105878-appb-000053
式C13所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000054
式C13所示化合物的制备方法具体包括以下步骤:
1)中间体1-13的合成:在250毫升三颈瓶中,氮气保护下加入化合物M9(17.60克,1当量)、化合物N14(32.10克,1当量)、乙酸(180毫升),40℃下反应5小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得中间体1-13(50.83克,产率65%)。
2)中间体2-13的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-13(78.20克,1当量)、100毫升硝酸,室温反应2小时。反应完成后加150毫升水淬灭,乙酸乙酯(200毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-13(59.60克,产率77%)。
3)化合物C13的合成:在250毫升单颈瓶中,氮气保护下将中间体2-13(77.40克,1当量)溶解 到50毫升无水乙醇中,加入碳酸钾(28.98克,2.10当量)、化合物N2(21.60克,2当量),室温搅拌4小时。加入50毫升水淬灭,旋干溶剂,乙酸乙酯(100毫升×3)萃取,旋干溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),化合物C13(42.23克,产率46%)。
元素分析:C 40N 10F 14O 2理论值:C,55.31;N,15.25;实测值:C,55.29;N,15.26;HRMS(ESI)m/z(M+):理论值:917.9982;实测值:917.9876。
实施例15
本实施例提供一种环状化合物,具有下述式C14所示的结构:
Figure PCTCN2019105878-appb-000055
式C14所示化合物的合成路径如下所示:
Figure PCTCN2019105878-appb-000056
式C14所示化合物的制备方法具体包括以下步骤:
1)中间体1-14的合成:在250毫升单颈瓶中,氮气保护下将化合物M7(19.80克,1当量)溶解到50毫升无水乙醇中,加入碳酸钾(43.47克,3.15当量)、化合物N11(48.00克,3当量),室温搅拌4小时。加入50毫升水淬灭,旋干溶剂,乙酸乙酯(100毫升×3)萃取,旋干溶剂,得粗产物,粗产物以层析纯化(乙酸乙酯/己烷体积比为1/20),得中间体1-14(30.79克,产率54%)。
2)中间体2-14的合成:在250毫升三颈瓶中,氮气保护下加入中间体1-14(57.01克,1当量)、 50毫升硝酸,室温反应2小时。反应完成后加50毫升水淬灭,乙酸乙酯(100毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/15),得中间体2-14(42.04克,产率74%)。
3)化合物C14的合成:在250毫升三颈瓶中,氮气保护下加入中间体2-14(56.81克,1当量)、化合物N12(14.20克,1当量)、乙酸(120毫升),40℃下反应5小时,冷却至室温后,加入150毫升水淬灭,乙酸乙酯(150毫升×3)萃取,有机相用无水硫酸钠干燥,旋干有机溶剂,得粗产物。粗产物以层析纯化(乙酸乙酯/己烷体积比1/10),得化合物C14(35.30克,产率51%)。
元素分析:C 32N 22理论值:C,55.50;N,45.50;实测值:C,55.48;N,45.52;HRMS(ESI)m/z(M+):理论值:692.0676;实测值:692.0697。
实施例16
本实施例提供一种有机电致发光器件,包括从下向上依次层叠设置的阳极(ITO)/空穴传输层(HTL)/有机发光层(EML)/电子传输层(ETL)/电子注入层(EIL)/阴极(Al)。
其中,空穴传输层(HTL)材料由NPB所示化合物和C1所示化合物共掺杂形成,NPB和C1掺杂的质量比100:5;
Figure PCTCN2019105878-appb-000057
有机发光层(EML)材料选用1,4-双(2,2-二苯基乙烯基)苯;
Figure PCTCN2019105878-appb-000058
电子传输层(ETL)材料选用如下所述结构的化合物TPBI:
Figure PCTCN2019105878-appb-000059
电子注入层(EIL)材料选用LiF;
上述有机电致发光器件的制备包括如下步骤:
1)基板清理:
将表面涂覆了ITO透明导电薄膜的透明玻璃基板依次在水性清洗剂(所述水性清洗剂的成分及浓度:乙二醇类溶剂≤10wt%,三乙醇胺≤1wt%)中超声处理,在去离子水中冲洗,在丙酮和乙醇(体积比1:1)混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,最后用紫外光和臭氧清洗;
2)有机层和阴极的制备:
将经过步骤1)处理的ITO透明玻璃基板放置在蒸镀设备中,依次蒸镀40nm HTL层、40nm EML层、40nm ETL层、1nm EIL层和150nm铝作为阴极,其中HTL层由NPB和C1共掺杂形成,NPB和C1掺杂的质量比100:5。
实施例17
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C2所示化合物共掺杂形成,NPB和C2掺杂的质量比100:5。
实施例18
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C3所示化合物共掺杂形成,NPB和C3掺杂的质量比100:5。
实施例19
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C4所示化合物共掺杂形成,NPB和C4掺杂的质量比100:5。
实施例20
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C5所示化合物共掺杂形成,NPB和C5掺杂的质量比100:5。
实施例21
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C6所示化合物共掺杂形成,NPB和C6掺杂的质量比100:5。
实施例22
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C7所示化合物共掺杂形成,NPB和C7掺杂的质量比100:5。
实施例23
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C8所示化合物共掺杂形成,NPB和C8掺杂的质量比100:5。
实施例24
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C9所示化合物共掺杂形成,NPB和C9掺杂的质量比100:5。
实施例25
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C10所示化合物共掺杂形成,NPB和C10掺杂的质量比100:5。
实施例26
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴 传输层(HTL)材料由NPB所示化合物和C11所示化合物共掺杂形成,NPB和C11掺杂的质量比100:5。
实施例27
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C12所示化合物共掺杂形成,NPB和C12掺杂的质量比100:5。
实施例28
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C13所示化合物共掺杂形成,NPB和C13掺杂的质量比100:5。
实施例29
本实施例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和C14所示化合物共掺杂形成,NPB和C14掺杂的质量比100:5。
对比例1
本对比例提供一种有机电致发光器件,与实施例16中提供有机电致发光器件的区别仅在于:空穴传输层(HTL)材料由NPB所示化合物和NDP-9所示化合物共掺杂形成,NPB和NDP-9掺杂的质量比100:5。
Figure PCTCN2019105878-appb-000060
测试例1
1、测定热分解温度
使用热重分析仪(TGA)对本专利材料进行热分解温度测试,测试范围室温至600℃,升温速率10℃/min,氮气氛围下,重量损失5%的温度定义为分解温度。
2、LUMO能级测试
使用电化学工作站利用循环伏安法(CV)对本专利材料的LUMO能级进行测试,以铂丝(Pt)为对电极,银/氯化银(Ag/AgCl)为参比电极。在氮气氛围下,在含有0.1M四丁基六氟磷酸铵的二氯甲烷电解液中以100mV/s的扫描速率进行测试,以二茂铁进行电位标定,设定二茂铁的电位在真空状态下的绝对能级为-4.8eV:
Figure PCTCN2019105878-appb-000061
测试结果见表1。
化合物 T d(℃) LUMO(eV)
C1 342 -5.06
C2 402 -5.10
C3 387 -5.38
C4 432 -5.34
C5 375 -5.24
C6 424 -5.55
C7 443 -5.23
C8 423 -5.21
C9 389 -4.88
C10 360 -4.98
C11 421 -5.34
C12 460 -5.30
C13 456 -5.28
C14 424 -5.26
由表1中结果显示,本发明提供的环状化合物拥有高的热分解温度,可以保证材料在器件中保持优异的热稳定性,使得其在器件制备过程中不易分解变坏;且本发明提供的环状化合物的低LUMO能级可促进空穴传输层更有效地产生空穴,提高载子结合率,降低器件的工作电压并提升其发光效率。
测试例2
器件的电流、电压、亮度、发光光谱等特性采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统同步测试,器件的寿命测试是在20mA/cm 2电流密度下测试器件T95寿命(寿命测试仪器购置于弗士达科学仪器有限公司)。
对实施例16-29和对比例1中的所提供的有机电致发光器件进行测试,结果如表2所示:
表2
Figure PCTCN2019105878-appb-000062
Figure PCTCN2019105878-appb-000063
结果如表2所示,将本发明中提供的环状化合物作为空穴传输层中的掺杂材料应用到OLED器件时,可以有效降低器件的工作电压,同时提升器件的发光效率,延长器件的使用寿命。
值得注意的是,发明人在研究过程中发现,当本发明提供的环状化合物结构中不含氢原子,且为全共轭结构(单键、双键交替排列)时,将其作为空穴传输层中的掺杂材料应用到OLED器件时,器件的电流效率更高,寿命更长。当本发明提供的环状化合物结构中含有活泼氢(氢原子)时,分子间容易有氢键产生,不利于器件电流效率的提升和寿命的延长;当本发明提供的环状化合物结构中不是全共轭结构,分子的结构不能实现单键、双键交替排列时,会使分子结构的共轭性降低,不利于器件膜的稳定性,进而导致器件的稳定性相对较差,从而影响电流效率的提升和器件寿命的延长。如本发明C9所示化合物中含有活泼氢,C10所示化合物中由于S原子的存在,使得C10所示化合物不能完全实现单键、双键交替排列。由表1和表2中的数据可以看出,相比于其它实施例,C9所示化合物和C10所示化合物的LUMO能级更高,其作为空穴传输层中的掺杂材料应用到OLED器件时,器件的驱动电压相对较高,电流效率、器件寿命相对较低。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种环状化合物,其特征在于,所述环状化合物由n个
    Figure PCTCN2019105878-appb-100001
    与m个Ar 1形成,其中
    Figure PCTCN2019105878-appb-100002
    与Ar 1连接位置不固定,至少包括以下结构:
    Figure PCTCN2019105878-appb-100003
    其中,n为1-4,m为1-4,同一结构式中有不少于一个
    Figure PCTCN2019105878-appb-100004
    时,各
    Figure PCTCN2019105878-appb-100005
    基团相同或不同,同一结构式中有不少于一个Ar 1时,各Ar 1基团相同或不同,
    A 1、A 2相同或不同,并分别独立选自CN、卤素、CF 3、取代或未取代的C 6-C 30的芳基、取代或未取代的C 1-C 30的烷基、取代或未取代的C 2-C 30的烯基、取代或未取代的C 3-C 30的环烷基、取代或未取代的C 3-C 30的环烯基、取代或未取代的C 3-C 30的杂环、
    Figure PCTCN2019105878-appb-100006
    或A 1、A 2彼此连接以形成环B,所述环B选自取代或未取代的C 3-C 30的环烷基、取代或未取代的C 3-C 30的环烯基、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环,
    X 1独立选自O、S、C(CN) 2、C(CF 3) 2、C(CN)(CF 3)、NCN,
    Y 1独立选自C、SO,
    R 1独立选自氢、卤素、氰基、硝基、三氟甲基、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环、取代或未取代的C 1-C 30的烷基、取代或未取代的C 1-C 30的烷氧基,
    Ar 1独立选自C(R 18)C(R 19)、取代或未取代的C 6-C 30的亚芳基、取代或未取代的C 3-C 30的亚杂环,
    R 18、R 19各自独立选自CN、CF 3
    所述取代或未取代的C 3-C 30的杂环或亚杂环中的杂原子至少包含一个N、B、O、P、S、Si。
  2. 根据权利要求1所述的环状化合物,其特征在于,所述A 1、A 2分别独立选自CN、CF 3、取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环、
    Figure PCTCN2019105878-appb-100007
    或A 1、A 2彼此连接以形成环B,所述环B选自取代或未取代的C 6-C 30的芳基、取代或未取代的C 3-C 30的杂环。
  3. 根据权利要求1或2所述的环状化合物,其特征在于,所述取代或未取代的C 6-C 30的芳基选自如下结构:
    Figure PCTCN2019105878-appb-100008
    所述取代或未取代的C 6-C 30的亚芳基选自如下结构:
    Figure PCTCN2019105878-appb-100009
    所述取代或未取代的C 3-C 30的杂环选自如下结构:
    Figure PCTCN2019105878-appb-100010
    Figure PCTCN2019105878-appb-100011
    所述取代或未取代的C 3-C 30的亚杂环选自如下结构:
    Figure PCTCN2019105878-appb-100012
    Figure PCTCN2019105878-appb-100013
    其中,R 10-R 16,R 20-R 44各自独立选自氢、氰基、硝基、卤素、三氟甲基、C(CN)C(CN) 2,或至少一相邻基团彼此连接以形成饱和或不饱和环。
  4. 根据权利要求1-3任一项所述的环状化合物,其特征在于,所述B环选自如下结构:
    Figure PCTCN2019105878-appb-100014
    其中,R 2-R 9各自独立选自氢、卤素、三氟甲基、硝基、氰基、C(CN)C(CN) 2,至少一相邻基团彼此连接以形成饱和或不饱和环,
    X 2-X 3为氧。
  5. 根据权利要求1-4任一项所述的环状化合物,其特征在于,所述取代或未取代的C 3-C 30的杂环选自如下结构:
    Figure PCTCN2019105878-appb-100015
    Figure PCTCN2019105878-appb-100016
    所述取R代31或未R3取0代R的29C 3-C 30的亚杂R环34选自R3如3下R结32构:
    Figure PCTCN2019105878-appb-100017
    Figure PCTCN2019105878-appb-100018
    所述B环选自如下结构:
    Figure PCTCN2019105878-appb-100019
  6. 根据权利要求1-5任一项所述的环状化合物,其特征在于,所述取代或未取代的C 1-C 30的烷基各自独立选自全氟甲基、全氟乙基、全氟丙基,所述取代或未取代的C 2-C 30的烯基各自独立选自全氟乙烯基、全氟丙烯基、全氟异丙稀基,和/或,
    所述环B选自取代或未取代杂芳基,和/或,
    所述取代或未取代的C 3-C 30的杂环或亚杂环中的杂原子为N,和/或,
    所述卤素为氟,和/或,
    所述环状化合物不含氢原子。
  7. 一种权利要求1-6任一项所述的环状化合物作为有机电致发光材料的应用。
  8. 包括至少一种权利要求1-6中任一项所述的环状化合物的电子器件,所述电子器件包括有机电致发光器件、有机场效应晶体管、有机薄膜晶体管、有机发光晶体管、有机集成电路、有机太阳能电池、有机场淬灭器件、发光电化学电池、有机激光二极管或有机光感受器。
  9. 一种显示装置,其特征在于,包含权利要求8所述电子器件。
  10. 一种照明装置,其特征在于,包含权利要求8所述电子器件。
PCT/CN2019/105878 2019-08-01 2019-09-16 一种环状化合物及其用途和电子器件 WO2021017114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910707975.0 2019-08-01
CN201910707975.0A CN110437103B (zh) 2019-08-01 2019-08-01 一种环状化合物及其用途和电子器件

Publications (1)

Publication Number Publication Date
WO2021017114A1 true WO2021017114A1 (zh) 2021-02-04

Family

ID=68432751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105878 WO2021017114A1 (zh) 2019-08-01 2019-09-16 一种环状化合物及其用途和电子器件

Country Status (2)

Country Link
CN (1) CN110437103B (zh)
WO (1) WO2021017114A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124051A1 (de) * 2020-09-15 2022-03-17 RUHR-UNIVERSITäT BOCHUM Mechanochemisches Syntheseverfahren zur Herstellung stickstoffhaltiger Arene
CN112679503B (zh) * 2020-12-14 2022-08-23 阜阳欣奕华材料科技有限公司 一种p型掺杂剂及其中间体和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US5102757A (en) * 1988-09-13 1992-04-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member and image forming process
JPH04338761A (ja) * 1991-05-15 1992-11-26 Konica Corp 電子写真感光体
DE19830040A1 (de) * 1998-06-26 1999-12-30 Syntec Ges Fuer Chemie Und Tec Neue Cyclopentadiquinoxalin-Derivate
CN101346830A (zh) * 2005-12-27 2009-01-14 出光兴产株式会社 有机电致发光元件用材料及有机电致发光元件
CN102239140A (zh) * 2008-12-03 2011-11-09 出光兴产株式会社 茚并芴二酮衍生物、有机电致发光元件用材料及有机电致发光元件
KR20150104259A (ko) * 2014-03-04 2015-09-15 삼성디스플레이 주식회사 유기 발광 소자
KR20160083184A (ko) * 2014-12-30 2016-07-12 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20170003471A (ko) * 2015-06-30 2017-01-09 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20170003472A (ko) * 2015-06-30 2017-01-09 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
CN108349878A (zh) * 2015-11-17 2018-07-31 株式会社Lg化学 化合物和包含其的有机电子元件
CN108586289A (zh) * 2018-05-04 2018-09-28 西北大学 丙二腈取代的芳基蒽菲类有机电致发光材料及其制备方法和应用
CN108863957A (zh) * 2017-05-12 2018-11-23 杰秀有限公司 喹喔啉稠合二苯并环庚烷螺旋烯化合物以及有机发光二极体元件
CN108947925A (zh) * 2018-08-22 2018-12-07 石家庄诚志永华显示材料有限公司 1,3,4-噁二唑衍生物、材料和有机电致发光器件
CN109422666A (zh) * 2017-09-04 2019-03-05 北京夏禾科技有限公司 含有以三聚茚为基的化合物的空穴注入层和电荷产生层
CN109928894A (zh) * 2018-10-09 2019-06-25 宁波卢米蓝新材料有限公司 一种含有多元环的化合物、应用及有机电致发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240841B2 (ja) * 2001-04-27 2009-03-18 キヤノン株式会社 有機発光素子

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102757A (en) * 1988-09-13 1992-04-07 Fuji Xerox Co., Ltd. Electrophotographic photosensitive member and image forming process
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
JPH04338761A (ja) * 1991-05-15 1992-11-26 Konica Corp 電子写真感光体
DE19830040A1 (de) * 1998-06-26 1999-12-30 Syntec Ges Fuer Chemie Und Tec Neue Cyclopentadiquinoxalin-Derivate
CN101346830A (zh) * 2005-12-27 2009-01-14 出光兴产株式会社 有机电致发光元件用材料及有机电致发光元件
CN102239140A (zh) * 2008-12-03 2011-11-09 出光兴产株式会社 茚并芴二酮衍生物、有机电致发光元件用材料及有机电致发光元件
KR20150104259A (ko) * 2014-03-04 2015-09-15 삼성디스플레이 주식회사 유기 발광 소자
KR20160083184A (ko) * 2014-12-30 2016-07-12 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR20170003471A (ko) * 2015-06-30 2017-01-09 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20170003472A (ko) * 2015-06-30 2017-01-09 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
CN108349878A (zh) * 2015-11-17 2018-07-31 株式会社Lg化学 化合物和包含其的有机电子元件
CN108863957A (zh) * 2017-05-12 2018-11-23 杰秀有限公司 喹喔啉稠合二苯并环庚烷螺旋烯化合物以及有机发光二极体元件
CN109422666A (zh) * 2017-09-04 2019-03-05 北京夏禾科技有限公司 含有以三聚茚为基的化合物的空穴注入层和电荷产生层
CN108586289A (zh) * 2018-05-04 2018-09-28 西北大学 丙二腈取代的芳基蒽菲类有机电致发光材料及其制备方法和应用
CN108947925A (zh) * 2018-08-22 2018-12-07 石家庄诚志永华显示材料有限公司 1,3,4-噁二唑衍生物、材料和有机电致发光器件
CN109928894A (zh) * 2018-10-09 2019-06-25 宁波卢米蓝新材料有限公司 一种含有多元环的化合物、应用及有机电致发光器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRIAN HALTON ET AL.: "Synthetic Protocols, Molecular Polarity, and 13C NMR Correlations for 1-aryl- and 1-diarylmethylidene-1H-cyclopropa[b]naphthalenes", ORG. BIOMOL. CHEM., vol. 2,, no. 21, 30 September 2004 (2004-09-30), XP055776477, ISSN: 1477-0539 *
MELANIE CHIU ET AL.: "Strain-Accelerated Formation of Chiral, Optically Active Buta-1,3-dienes", ANGEW. CHEM. INT. ED., vol. 54, no. 1, 26 November 2014 (2014-11-26), XP055776474, ISSN: 1521-3773 *

Also Published As

Publication number Publication date
CN110437103B (zh) 2021-01-26
CN110437103A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN106467549B (zh) 一种含有苯并咪唑的化合物及其在有机电致发光器件上的应用
CN109928894B (zh) 一种含有多元环的化合物、应用及有机电致发光器件
CN106467548B (zh) 一种含有苯并咪唑的化合物及其应用
US20130105767A1 (en) Carbazole derivatives and organic light emitting diodes comprising the same
CN106467552B (zh) 一种含有苯并咪唑的化合物及其在oled器件上的应用
CN104119861B (zh) 有机电子材料
WO2021017114A1 (zh) 一种环状化合物及其用途和电子器件
JP5344441B2 (ja) 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
CN110964019B (zh) 一种以6-苯基-6H-吲哚并[2,3-b]喹喔啉为受体的化合物及其应用
CN112409371B (zh) 有机电致发光材料及其应用
CN106749320B (zh) 一种苯并咪唑并酮类化合物及其在oled器件上的应用
KR102422398B1 (ko) 축합 다환 화합물 및 그 제조방법과 용도
CN109776533B (zh) 一种萘二酰亚胺衍生物及其制备方法和应用
CN111574505A (zh) 一种以苯并[c]噌啉为受体的化合物及其应用
CN108949152B (zh) 一种以咔唑联吖啶为给体的热活性延迟荧光有机化合物及其制备和应用
CN109748821B (zh) 一种含有氰基苯或者硫氰基苯的化合物及其在有机电致发光器件上的应用
CN110483533A (zh) 一种化合物及其制备方法和应用
Liu et al. Synthesis and luminescent properties of blue sextuple-hydrogen-bond self-assembly molecular duplexes bearing 4-phenoxy-1, 8-naphthalimide moieties
CN110938085B (zh) 一种轴烯化合物及其制备方法和应用
CN117247366A (zh) 含有萘苯并呋喃结构的有机化合物及包含其的有机电致发光器件
CN111018863B (zh) 一种以吡咯[1,2-a]并喹喔啉为受体的化合物及其应用
CN112125880B (zh) 一种化合物及其应用、包含其的有机电致发光器件
Duan et al. Synthesis and physical properties of triphenylamine-functionalized twistacenes: blue-emitting fluorophores
CN114315816B (zh) 一种有机电致发光的化合物及其应用
CN108365127A (zh) 一种有机半导电性材料及其有机发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939093

Country of ref document: EP

Kind code of ref document: A1