WO2021015115A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2021015115A1
WO2021015115A1 PCT/JP2020/027781 JP2020027781W WO2021015115A1 WO 2021015115 A1 WO2021015115 A1 WO 2021015115A1 JP 2020027781 W JP2020027781 W JP 2020027781W WO 2021015115 A1 WO2021015115 A1 WO 2021015115A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
lubricating oil
oil
back pressure
scroll
Prior art date
Application number
PCT/JP2020/027781
Other languages
English (en)
French (fr)
Inventor
淳夫 手島
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2021015115A1 publication Critical patent/WO2021015115A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to a compressor that compresses a compressible fluid such as a gaseous refrigerant.
  • the compressor In a compressor built into an air conditioner, if the mist of lubricating oil mixed in the gaseous refrigerant is introduced into the condenser of the refrigerant circuit, the heat exchange efficiency may decrease. Therefore, the compressor is provided with an oil separator that separates the mist of the lubricating oil from the gaseous refrigerant.
  • an oil separator applicable to a compressor, as described in Japanese Patent Application Laid-Open No. 2016-300115 (Patent Document 1), a separation chamber for separating a mist of lubricating oil using centrifugal force and a separation chamber.
  • a centrifugal oil separator has been proposed in which a rectifying plate (partition plate) is arranged between an oil storage chamber for temporarily storing the lubricating oil separated by the above. Then, the lubricating oil separated by adhering to the inner peripheral surface of the separation chamber by receiving centrifugal force passes through the gap between the straightening vane and the inner peripheral surface of the separation chamber to the oil storage chamber located below it. Is collected.
  • a rectifying plate partition plate
  • the centrifugal oil separator uses the swirling flow of the gaseous refrigerant generated in the separation chamber and separates it by applying centrifugal force to the mist of the lubricating oil mixed in the gaseous refrigerant. For this reason, a strong swirling flow of gaseous refrigerant is generated near the inner peripheral surface of the separation chamber, and this passes through the gap between the straightening vane and the inner peripheral surface of the separation chamber and reaches the oil storage chamber. It ends up.
  • the lubricating oil stored in the oil storage chamber is wound up and passes through the gap between the straightening vane and the inner peripheral surface of the separation chamber, and the lubricating oil passes through the separation chamber. It is returned to the above, and the separation rate of the lubricating oil of the oil separator is lowered.
  • an object of the present invention is to improve the separation rate of lubricating oil in a compressor provided with a centrifugal oil separator.
  • the compressor is equipped with a compression mechanism that sucks, compresses and discharges the compressible fluid, and an oil separator that separates the lubricating oil from the compressible fluid discharged from the compression mechanism.
  • the oil separator has a separation chamber that separates lubricating oil from the compressible fluid using centrifugal force, an oil storage chamber that is located below the separation chamber and stores the lubricating oil separated in the separation chamber, and a separation chamber and oil storage. It has a partition plate arranged so as to partition the room. A plurality of communication holes are formed in the partition plate along the circumferential direction, and the communication holes have an inclined surface facing the compressible fluid swirling in the separation chamber.
  • the separation rate of lubricating oil can be improved in a compressor provided with a centrifugal oil separator.
  • FIG. 1 It is sectional drawing which shows an example of the scroll type compressor. It is a block diagram explaining the flow of a gaseous refrigerant and a lubricating oil. It is a perspective view which shows the detail of an example of a partition plate. It is sectional drawing which shows the detail of the communication hole formed in the partition plate. It is explanatory drawing which shows the separation process of the lubricating oil by an oil separator. It is a perspective view which shows the detail of another example of a partition plate.
  • FIG. 1 shows an example of a scroll type compressor 100, which can be given as an example of a compressor.
  • the scroll type compressor 100 is incorporated into, for example, a refrigerant circuit of a vehicle air conditioner, and compresses and discharges a gaseous refrigerant (compressible fluid) sucked from the low pressure side of the refrigerant circuit.
  • the scroll type compressor 100 includes a scroll unit 120, a housing 140 including a suction chamber H1 and a discharge chamber H2 for a gaseous refrigerant, an electric motor 160 for driving the scroll unit 120, and an inverter 180 for driving and controlling the electric motor 160. , Is equipped.
  • the scroll unit 120 is given as an example of the compression mechanism.
  • the scroll unit 120 may be driven by, for example, an engine output instead of the electric motor 160.
  • the inverter 180 does not have to be incorporated in the scroll type compressor 100.
  • the scroll unit 120 has a fixed scroll 122 and a swivel scroll 124 that are meshed with each other.
  • the fixed scroll 122 includes a disk-shaped bottom plate 122A and an involute-shaped (spiral-shaped) wrap 122B erected from one surface of the bottom plate 122A.
  • the swivel scroll 124 includes a disk-shaped bottom plate 124A and an involute-shaped wrap 124B erected from one surface of the bottom plate 124A.
  • the disk shape may be such that it can be visually recognized as a disk shape, and for example, a convex portion, a concave portion, a slit, or the like may be formed on the outer surface (the shape may be the same below).
  • the fixed scroll 122 and the swivel scroll 124 are arranged in a state where the laps 122B and 124B are meshed with each other. Therefore, the tip of the lap 122B of the fixed scroll 122 is in contact with one surface of the bottom plate 124A of the swivel scroll 124, and the tip of the lap 124B of the swivel scroll 124 is in contact with one surface of the bottom plate 122A of the swivel scroll 122.
  • Tip seals (not shown) are attached to the tips of the wraps 122B and 124B, respectively.
  • the fixed scroll 122 and the swivel scroll 124 are arranged in a state in which the circumferential angles of the laps 122B and 124B are deviated from each other, and the side walls of the laps 122B and 124B are partially in contact with each other. Therefore, a crescent-shaped sealed space that functions as a compression chamber H3 for compressing the gaseous refrigerant is formed between the lap 122B of the fixed scroll 122 and the lap 124B of the swivel scroll 124.
  • the swivel scroll 124 is revolved around the axis of the fixed scroll 122 via a crank mechanism 240, which will be described later, in a state where its rotation is prevented. Therefore, when the swivel scroll 124 revolves around the axis of the fixed scroll 122, the scroll unit 120 moves the compression chamber H3 partitioned by the lap 122B of the fixed scroll 122 and the lap 124B of the swivel scroll 124 to the central portion. And gradually reduce its volume. As a result, the scroll unit 120 compresses the gaseous refrigerant sucked into the compression chamber H3 from the outer ends of the wraps 122B and 124B.
  • the housing 140 includes a front housing 142 that houses the electric motor 160 and the inverter 180, a center housing 144 that houses the scroll unit 120, a rear housing 146, and an inverter cover 148. Then, the front housing 142, the center housing 144, the rear housing 146, and the inverter cover 148 are integrally fastened by, for example, a fastener (not shown) including bolts and washers, so that the housing of the scroll type compressor 100 is used. 140 is configured.
  • the front housing 142 has a cylindrical peripheral wall portion 142A and a thin plate-shaped partition wall portion 142B.
  • the internal space of the front housing 142 is partitioned by a partition wall portion 142B into a space for accommodating the electric motor 160 and a space for accommodating the inverter 180.
  • One end side of the peripheral wall portion 142A that is, the opening of the space for accommodating the inverter 180 is closed by the inverter cover 148.
  • the other end side of the peripheral wall portion 142A that is, the opening of the space for accommodating the electric motor 160 is closed by the center housing 144.
  • the gas refrigerant suction chamber H1 is partitioned by the peripheral wall portion 142A and the partition wall portion 142B of the front housing 142 and the center housing 144. Gas refrigerant is sucked into the suction chamber H1 from the low pressure side of the refrigerant circuit through the suction port P1 formed in the peripheral wall portion 142A. In the suction chamber H1, the gas refrigerant circulates around the electric motor 160 to cool the electric motor 160, and the space on one side of the electric motor 160 and the space on the other side communicate with each other. Two suction chambers H1 are formed. An appropriate amount of lubricating oil is stored in the suction chamber H1 for lubricating sliding portions such as a drive shaft 166 that is driven to rotate. Therefore, in the suction chamber H1, the gaseous refrigerant is distributed as a mixed fluid with the lubricating oil.
  • the flow of the gaseous refrigerant before or after the lubricating oil is mixed is indicated by a diagonal arrow, and the flow of the gaseous refrigerant (mixed fluid) mixed with the lubricating oil is indicated by a black arrow.
  • the flow of lubricating oil separated from the gaseous refrigerant is indicated by a white arrow (the same applies hereinafter).
  • the center housing 144 has a bottomed cylindrical shape with an opening on the side opposite to the fastening side with the front housing 142, and the scroll unit 120 can be housed inside the center housing 144.
  • the center housing 144 has a cylindrical portion 144A and a bottom wall portion 144B on one end side thereof.
  • the scroll unit 120 is housed in a space partitioned by the cylindrical portion 144A and the bottom wall portion 144B.
  • a fitting portion 144A1 into which the fixed scroll 122 is fitted is formed on the other end side of the cylindrical portion 144A. Therefore, the opening of the center housing 144 is closed by the fixed scroll 122.
  • the bottom wall portion 144B is formed so that the central portion in the radial direction thereof bulges toward the electric motor 160.
  • a through hole for penetrating the other end of the drive shaft 166 is formed in the radial center portion of the bulging portion 144B1 of the bottom wall portion 144B. Then, on the scroll unit 120 side of the bulging portion 144B1, a fitting portion is formed in which a bearing 200 that freely supports the other end of the drive shaft 166 is fitted.
  • a thin ring-shaped thrust plate 210 is arranged between the bottom wall portion 144B of the center housing 144 and the bottom plate 124A of the swivel scroll 124.
  • the outer peripheral portion of the bottom wall portion 144B receives the thrust force from the swivel scroll 124 via the thrust plate 210.
  • Seal members (not shown) are embedded in the bottom wall portion 144B and the bottom plate 124A at the portions where they come into contact with the thrust plate 210, respectively.
  • the swivel scroll 124 is fixedly scrolled between the electric motor 160 side end surface of the bottom plate 124A and the bottom wall portion 144B, that is, between the end face of the swivel scroll 124 opposite to the fixed scroll 122 and the center housing 144.
  • a back pressure chamber H4 that is pressed toward 122 is formed.
  • the center housing 144 is formed with a refrigerant introduction passage L1 for introducing a gaseous refrigerant from the suction chamber H1 into the space H5 near the outer ends of the laps 122B and 124B of the scroll unit 120. Since the refrigerant introduction passage L1 communicates the space H5 with the suction chamber H1, the pressure in the space H5 is equal to the pressure in the suction chamber H1 (suction pressure Ps).
  • the rear housing 146 is fastened to the end surface of the cylindrical portion 144A of the center housing 144 on the fitting portion 144A1 side by a fastener. Therefore, the bottom plate 122A of the fixed scroll 122 is sandwiched and fixed between the fitting portion 144A1 and the rear housing 146. Further, the rear housing 146 has a bottomed cylindrical shape in which the fastening side with the center housing 144 is open, and has a cylindrical portion 146A and a bottom wall portion 146B on the other end side.
  • the gas refrigerant discharge chamber H2 is partitioned by the cylindrical portion 146A and the bottom wall portion 146B of the rear housing 146 and the bottom plate 122A of the fixed scroll 122.
  • a gas refrigerant discharge passage (discharge hole) L2 is formed in the central portion of the bottom plate 122A.
  • the discharge passage L2 is provided with a check valve 220 including, for example, a reed valve that regulates the flow of the gaseous refrigerant from the discharge chamber H2 to the scroll unit 120.
  • the gaseous refrigerant compressed in the compression chamber H3 of the scroll unit 120 is discharged into the discharge chamber H2 via the discharge passage L2 and the check valve 220.
  • the rear housing 146 is provided with a centrifugal oil separator 230 that separates lubricating oil from the gaseous refrigerant in the discharge chamber H2, which will be described in detail later.
  • the gaseous refrigerant from which the lubricating oil has been separated by the oil separator 230 is discharged to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the lubricating oil separated by the oil separator 230 is supplied to the back pressure chamber H4 via the back pressure supply passage L3, which will be described in detail later.
  • the electric motor 160 is composed of, for example, a three-phase AC motor, and has a rotor 162 and a stator core unit 164 arranged on the radial outer side of the rotor 162. Then, for example, a direct current from an in-vehicle battery (not shown) is converted into an alternating current by the inverter 180 and supplied to the stator core unit 164 of the electric motor 160.
  • the rotor 162 is rotatably supported inside the stator core unit 164 via a drive shaft 166 that is press-fitted into a shaft hole formed at the center thereof in the radial direction.
  • One end of the drive shaft 166 is rotatably supported by the support portion 142B1 of the front housing 142 via a slide bearing (not shown).
  • the other end of the drive shaft 166 penetrates a through hole formed in the bottom wall portion 144B of the center housing 144 and is rotatably supported by the bearing 200.
  • the crank mechanism 240 is eccentrically attached to a cylindrical boss portion 240A formed on the back pressure chamber H4 side end surface of the bottom plate 124A of the swivel scroll 124 and a crank pin 240B provided at the other end of the drive shaft 166. It has a cranked eccentric bush 240C.
  • the eccentric bush 240C is rotatably supported on the inner peripheral surface of the boss portion 240A via a slide bearing (not shown). Therefore, the swivel scroll 124 can revolve around the axis of the fixed scroll 122 via the crank mechanism 240 in a state where its rotation is prevented.
  • a balancer weight 240D that opposes the centrifugal force of the swivel scroll 124 is attached to the other end of the drive shaft 166.
  • FIG. 2 is a block diagram for explaining the flow of the gaseous refrigerant and the lubricating oil in the scroll type compressor 100.
  • the low-temperature / low-pressure gas refrigerant from the low-pressure side of the refrigerant circuit is introduced into the suction chamber H1 via the suction port P1 and then the scroll unit via the refrigerant introduction passage L1. It is guided to the space H5 near the outer end of 120. Then, the gaseous refrigerant in the space H5 is taken into the compression chamber H3 of the scroll unit 120 and compressed. The gaseous refrigerant compressed in the compression chamber H3 is discharged to the discharge chamber H2 via the discharge passage L2 and the check valve 220, and then is guided to the oil separator 230.
  • the gaseous refrigerant from which the lubricating oil has been separated by the oil separator 230 is discharged to the high pressure side of the refrigerant circuit via the discharge port P2.
  • the scroll unit 120 is configured in which the gaseous refrigerant flowing in from the suction chamber H1 is compressed in the compression chamber H3 and the gaseous refrigerant is discharged via the discharge chamber H2.
  • a back pressure control valve 250 for controlling the back pressure Pm of the back pressure chamber H4 is further incorporated in the rear end portion of the rear housing 146.
  • the back pressure control valve 250 operates according to the differential pressure between the discharge pressure Pd of the discharge chamber H2 and the back pressure Pm of the back pressure chamber H4 so that the back pressure Pm of the back pressure chamber H4 approaches the target back pressure Pc.
  • a mechanical (autonomous) pressure regulating valve that automatically adjusts the valve opening.
  • the scroll type compressor 100 further includes a back pressure supply passage L3 and a discharge pressure passage L4 in addition to the refrigerant introduction passage L1 and the discharge passage L2.
  • the back pressure supply passage L3 is formed in the rear housing 146 and the center housing 144 so as to communicate the discharge chamber H2 and the back pressure chamber H4 via the oil separator 230. Then, the lubricating oil separated from the gaseous refrigerant in the discharge chamber H2 by the oil separator 230 is guided to the back pressure chamber H4 via the back pressure control valve 250 and the back pressure supply passage L3, and lubricates each sliding portion. At the same time, the back pressure Pm of the back pressure chamber H4 is increased.
  • the back pressure control valve 250 is arranged in the middle of the back pressure supply passage L3 so as to form a part of the back pressure supply passage L3. Therefore, the lubricating oil separated from the gas refrigerant in the discharge chamber H2 by the oil separator 230 is appropriately depressurized by the back pressure control valve 250 and enters the back pressure chamber H4 via the back pressure supply passage L3 located on the downstream side thereof. Be supplied. That is, by adjusting the opening degree of the back pressure supply passage L3 connected to the inlet side (upstream side) of the back pressure chamber H4 by the back pressure control valve 250, the flow rate of the lubricating oil flowing into the back pressure chamber H4 can be adjusted. Increase or decrease the back pressure Pm.
  • the pressure release passage L4 is formed so as to communicate with the back pressure chamber H4 and the suction chamber H1 so as to penetrate in the axial direction of the drive shaft 166.
  • An orifice OL is arranged in the middle of the pressure release passage L4, for example, at the end of the drive shaft 166 on the suction chamber H1 side. Therefore, the lubricating oil in the back pressure chamber H4 is returned to the suction chamber H1 while the flow rate is limited by the orifice OL.
  • the back pressure Pm of the back pressure chamber H4 pushes the swivel scroll 124 toward the fixed scroll 122.
  • the resultant force of the back pressure Pm acting on the back pressure chamber H4 side end surface of the bottom plate 124A of the swivel scroll 124 is too lower than the compression reaction force acting on the compression chamber H3 side end surface of the bottom plate 124A, that is, When the back pressure is insufficient, a gap is formed between the tip of the lap 124B of the swivel scroll 124 and the bottom plate 122A of the fixed scroll 122, and the bottom plate 124A of the swivel scroll 124 and the tip of the lap 122B of the fixed scroll 122.
  • a gap is created between the two, which reduces the volumetric efficiency of the compressor.
  • the back pressure control valve 250 raises the back pressure Pm to bring it closer to the target back pressure Pc so that the back pressure is not insufficient.
  • the oil separator 230 is arranged in the rear housing 146 so as to form a part of the back pressure supply passage L3 that connects the discharge chamber H2 and the back pressure control valve 250.
  • the rear end of the rear housing 146 that is, the end located on the opposite side of the center housing 144, has a circular cross section extending downward from the upper surface of the bottom wall portion 146B.
  • a chamber 230A is formed.
  • a stepped inner cylinder 230B having a circular cross section is inserted in the accommodation chamber 230A so as to be concentric with the accommodation chamber 230A.
  • the base end portion of the inner cylinder 230B is locked to the step portion 230A1 of the accommodation chamber 230A, and the tip end portion thereof extends to a position separated from the innermost portion of the accommodation chamber 230A by a predetermined distance.
  • a plate is placed on the cross section of the accommodation chamber 230A at a position separated from the bottom wall of the lower portion of the accommodation chamber 230A, specifically, the tip end portion of the inner cylinder 230B and the bottom wall of the accommodation chamber 230A.
  • a disk-shaped partition plate 230C having an extended surface is arranged.
  • An O-ring (not shown) that secures a seal against the inner peripheral surface of the accommodation chamber 230A is embedded in the outer peripheral surface of the partition plate 230C.
  • the space located above functions as a separation chamber H6 that separates the lubricating oil from the gaseous refrigerant by using centrifugal force, and functions downward.
  • the located space functions as an oil storage chamber H7 for storing lubricating oil.
  • the partition plate 230C may be supported by, for example, a stay (not shown) erected from the bottom wall of the accommodation chamber 230A in order to keep the position constant.
  • a plurality of communication holes 230C1 communicating the separation chamber H6 and the oil storage chamber H7 are formed at the peripheral edge of the plate surface of the partition plate 230C arranged in the storage chamber 230A. ing.
  • the plurality of communication holes 230C1 are formed at equal intervals along the circumferential direction of the partition plate 230C, that is, at equal distances and equidistants with respect to the central axis of the partition plate 230C.
  • each communication hole 230C1 has an inclined surface facing the swirling gas refrigerant in the separation chamber H6, that is, an inclined surface directly receiving the gas refrigerant.
  • each communication hole 230C1 has a tapered shape in which the cross-sectional area gradually decreases from the separation chamber H6 toward the oil storage chamber H7, that is, the opening formed on the upper surface of the partition plate 230C has a large diameter and is formed on the lower surface thereof. It has a shape in which the opening has a small diameter.
  • the partition plate 230C shown in FIG. 3 is formed with four communication holes 230C1 equidistant from the central axis and at 90 ° intervals.
  • the number of communication holes 230C1 is, for example, the amount of the gas refrigerant in the separation chamber H6. It can be arbitrarily determined according to the flow rate and the like.
  • the opening of the accommodation chamber 230A in the rear housing 146 is closed by a plug (not shown) such as a bolt capable of pressing the base end portion of the inner cylinder 230B.
  • the plug that closes the opening of the accommodation chamber 230A is formed with a through hole that penetrates from the end face of the base end portion to the end face of the tip end portion.
  • a discharge port P2 for guiding the gaseous refrigerant from which the lubricating oil is separated by the oil separator 230 to the high pressure side of the refrigerant circuit is formed on the end surface of the base end portion of the plug.
  • the gas refrigerant of the discharge chamber H2 is introduced into the upper part of the separation chamber H6 to generate a swirling flow in the separation chamber H6 in the tangential direction of the inner peripheral surface of the accommodation chamber 230A.
  • Introductory port 146C extending to is formed. The introduction port 146C forms a part of the back pressure supply passage L3.
  • the gaseous refrigerant in the discharge chamber H2 is introduced into the oil separator 230 from the introduction port 146C.
  • the gaseous refrigerant introduced into the oil separator 230 swirls in a cylindrical space defined by the inner peripheral surface of the separation chamber H6 and the outer peripheral surface of the inner cylinder 230B, and flows downward.
  • the mist of the lubricating oil contained in the gaseous refrigerant moves outward due to the centrifugal force generated when the gaseous refrigerant swirls.
  • the mist of the lubricating oil moves outward, it adheres to the inner peripheral surface of the separation chamber H6 and is dropped downward by using gravity.
  • the lubricating oil dropped below the separation chamber H6 flows along the upper surface of the partition plate 230C and is supplied to the oil storage chamber H7 through the plurality of communication holes 230C1.
  • the communication hole 230C1 has an inclined surface facing the swirling gas refrigerant in the separation chamber H6, the gas refrigerant hits the inclined surface and disperses, so that the gas refrigerant goes downward of the partition plate 230C.
  • the vector component of is small. Therefore, the hoisting of the lubricating oil stored below the oil storage chamber H7 is suppressed, and the absolute amount of the lubricating oil returned from the oil storage chamber H7 to the separation chamber H6 can be reduced. Further, the lubricating oil supplied and stored in the oil storage chamber H7 is supplied to the back pressure control valve 250 via the back pressure supply passage L3.
  • the cross-sectional area of the communication hole 230C1 of the partition plate 230C gradually decreases from the separation chamber H6 toward the oil storage chamber H7, the flow of lubricating oil from the separation chamber H6 to the oil storage chamber H7 is not obstructed. The amount of lubricating oil returning from the oil storage chamber H7 to the separation chamber H6 can be reduced. Further, since the communication hole 230C1 is formed at the peripheral edge of the partition plate 230C in which the swirling flow of the gas refrigerant is strong, the vector component of the gas refrigerant from the separation chamber H6 to the oil storage chamber H7 can be efficiently reduced. it can.
  • the gaseous refrigerant from which the mist of the lubricating oil is separated enters the internal space through the opening at the tip of the inner cylinder 230B, and uses the pressure from the discharge port P2 formed in the plug to the high pressure side of the refrigerant circuit. Is discharged.
  • the compressor is not limited to the scroll type compressor 100, and may be a reciprocating compressor, a swash plate type compressor, a rotary piston compressor, a slide vane type compressor, or the like.
  • the communication hole 230C1 of the partition plate 230C is not limited to having a circular cross section, and may have an arbitrary polygonal cross section as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

【課題】遠心分離式のオイルセパレータを備えた圧縮機において、潤滑油の分離率を向上させる。スクロール型圧縮機100は、圧縮性流体としての気体冷媒を吸入、圧縮及び吐出するスクロールユニット120と、スクロールユニット120から吐出される気体冷媒から潤滑油を分離するオイルセパレータ230と、を備えている。オイルセパレータ230は、遠心力を利用して気体冷媒から潤滑油を分離する分離室H6と、分離室H6の下方に位置して分離室H6で分離された潤滑油を貯留する貯油室H7と、分離室H6と貯油室H7とを仕切るように配置された仕切板230Cと、を有している。仕切板230Cには、複数の連通孔230C1が周方向に沿って形成され、この連通孔230C1は、分離室H6内において旋回する気体冷媒に対向する傾斜面を有している。

Description

圧縮機
 本発明は、気体冷媒などの圧縮性流体を圧縮する圧縮機に関する。
 空調機器に組み込まれた圧縮機において、気体冷媒に混入した潤滑油のミストが冷媒回路の凝縮器などに導入されると、その熱交換効率が低下してしまうおそれがある。このため、圧縮機には、気体冷媒から潤滑油のミストを分離するオイルセパレータが備えられている。圧縮機に適用可能なオイルセパレータの一例として、特開2016-200315号公報(特許文献1)に記載されるように、遠心力を利用して潤滑油のミストを分離する分離室と、分離室で分離された潤滑油を一時的に貯留する貯油室と、の間に整流板(仕切板)が配設された、遠心分離式のオイルセパレータが提案されている。そして、遠心力を受けて分離室の内周面に付着して分離された潤滑油は、整流板と分離室の内周面との間の隙間を通って、その下方に位置する貯油室へと集められる。
特開2016-200315号公報
 遠心分離式のオイルセパレータは、分離室内に発生した気体冷媒の旋回流を利用し、気体冷媒に混入した潤滑油のミストに遠心力を作用させてこれを分離している。このため、分離室の内周面近傍には気体冷媒の強い旋回流が発生しており、これが整流板と分離室の内周面との間の隙間を通過して貯油室にも到達してしまう。気体冷媒の強い旋回流が貯油室に到達すると、貯油室に貯留されている潤滑油が巻き上げられて、整流板と分離室の内周面との間の隙間を通過して潤滑油が分離室に戻されてしまい、オイルセパレータの潤滑油の分離率が低下してしまう。
 そこで、本発明は、遠心分離式のオイルセパレータを備えた圧縮機において、潤滑油の分離率を向上させることを目的とする。
 圧縮機は、圧縮性流体を吸入、圧縮及び吐出する圧縮機構と、圧縮機構から吐出される圧縮性流体から潤滑油を分離するオイルセパレータと、を備えている。オイルセパレータは、遠心力を利用して圧縮性流体から潤滑油を分離する分離室と、分離室の下方に位置して分離室で分離された潤滑油を貯留する貯油室と、分離室と貯油室とを仕切るように配置された仕切板と、を有している。仕切板には、複数の連通孔が周方向に沿って形成され、この連通孔は、分離室内において旋回する圧縮性流体に対向する傾斜面を有している。
 本発明によれば、遠心分離式のオイルセパレータを備えた圧縮機において、潤滑油の分離率を向上させることができる。
スクロール型圧縮機の一例を示す断面図である。 気体冷媒及び潤滑油の流れを説明するブロック図である。 仕切板の一例の詳細を示す斜視図である。 仕切板に形成した連通孔の詳細を示す断面図である。 オイルセパレータによる潤滑油の分離過程を示す説明図である。 仕切板の他の例の詳細を示す斜視図である。
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、圧縮機の一例として挙げることができる、スクロール型圧縮機100の一例を示している。
 スクロール型圧縮機100は、例えば、車両用空調機器の冷媒回路に組み込まれ、冷媒回路の低圧側から吸入した気体冷媒(圧縮性流体)を圧縮して吐出する。スクロール型圧縮機100は、スクロールユニット120と、気体冷媒の吸入室H1及び吐出室H2を内包するハウジング140と、スクロールユニット120を駆動する電動モータ160と、電動モータ160を駆動制御するインバータ180と、を備えている。ここで、スクロールユニット120が、圧縮機構の一例として挙げられる。なお、スクロールユニット120は、電動モータ160に代えて、例えば、エンジン出力によって駆動されてもよい。また、インバータ180は、スクロール型圧縮機100に組み込まれていなくてもよい。
 スクロールユニット120は、互いに噛み合わされる固定スクロール122及び旋回スクロール124を有している。固定スクロール122は、円板形状の底板122Aと、底板122Aの一面から立設するインボリュート形状(渦巻形状)のラップ122Bと、を含んでいる。旋回スクロール124は、固定スクロール122と同様に、円板形状の底板124Aと、底板124Aの一面から立設するインボリュート形状のラップ124Bと、を含んでいる。ここで、円板形状とは、見た目で円板形状であると認識できる程度でよく、例えば、外面に凸部、凹部、スリットなどが形成されていてもよい(形状については以下同様)。
 固定スクロール122及び旋回スクロール124は、そのラップ122B及び124Bを噛み合わせた状態で配置されている。従って、固定スクロール122のラップ122Bの先端部が、旋回スクロール124の底板124Aの一面に接触し、旋回スクロール124のラップ124Bの先端部が、固定スクロール122の底板122Aの一面に接触している。なお、ラップ122B及び124Bの先端部には、チップシール(図示せず)が夫々取り付けられている。
 また、固定スクロール122及び旋回スクロール124は、そのラップ122B及び124Bの周方向の角度が互いにずれた状態で、そのラップ122B及び124Bの側壁が互いに部分的に接触した状態で配置されている。従って、固定スクロール122のラップ122Bと旋回スクロール124のラップ124Bとの間には、気体冷媒を圧縮する圧縮室H3として機能する、三日月形状の密閉空間が形成されている。
 旋回スクロール124は、その自転が阻止された状態で、後述するクランク機構240を介して、固定スクロール122の軸心周りに公転可能に配置されている。従って、スクロールユニット120は、旋回スクロール124が固定スクロール122の軸心周りに公転旋回運動すると、固定スクロール122のラップ122Bと旋回スクロール124のラップ124Bとによって区画される圧縮室H3を中央部に移動させ、その容積を徐々に減少させる。その結果、スクロールユニット120は、ラップ122B及び124Bの外端部から圧縮室H3に吸入された気体冷媒を圧縮する。
 ハウジング140は、電動モータ160及びインバータ180を収容するフロントハウジング142と、スクロールユニット120を収容するセンターハウジング144と、リアハウジング146と、インバータカバー148と、を有している。そして、フロントハウジング142、センターハウジング144、リアハウジング146及びインバータカバー148が、例えば、ボルト及びワッシャを含む締結具(図示せず)によって一体的に締結されることで、スクロール型圧縮機100のハウジング140が構成されている。
 フロントハウジング142は、円筒形状の周壁部142Aと薄板形状の仕切壁部142Bとを有している。フロントハウジング142の内部空間は、仕切壁部142Bによって、電動モータ160を収容するための空間とインバータ180を収容するための空間とに仕切られている。周壁部142Aの一端側、即ち、インバータ180を収容するための空間の開口は、インバータカバー148によって閉塞されている。また、周壁部142Aの他端側、即ち、電動モータ160を収容するための空間の開口は、センターハウジング144によって閉塞されている。仕切壁部142Bには、その径方向の中央部において後述する駆動軸166の一端部を回転自由に支持する、円筒形状の支持部142B1が、周壁部142Aの他端側に向かって突設されている。
 また、フロントハウジング142の周壁部142A及び仕切壁部142Bとセンターハウジング144とによって、気体冷媒の吸入室H1が区画されている。吸入室H1には、周壁部142Aに形成された吸入ポートP1を介して、冷媒回路の低圧側から気体冷媒が吸入される。なお、吸入室H1では、気体冷媒が電動モータ160の周囲を流通して電動モータ160を冷却可能になっており、電動モータ160の一方側の空間とその他方側の空間とが連通して1つの吸入室H1が形成されている。吸入室H1には、回転駆動される駆動軸166などの摺動箇所の潤滑のため、適量の潤滑油が貯留されている。このため、吸入室H1においては、気体冷媒は、潤滑油との混合流体として流通している。
 なお、図1においては、潤滑油の混合前又は分離後の気体冷媒の流れは斜線付き矢印で示され、潤滑油と混合された気体冷媒(混合流体)の流れは黒塗り矢印で示され、気体冷媒から分離された潤滑油の流れは白抜き矢印で示されている(以下同様)。
 センターハウジング144は、フロントハウジング142との締結側とは反対側が開口した有底円筒形状をなし、その内部にスクロールユニット120を収容することができる。センターハウジング144は、円筒部144Aとその一端側の底壁部144Bとを有している。円筒部144Aと底壁部144Bとによって区画される空間に、スクロールユニット120が収容されている。円筒部144Aの他端側には、固定スクロール122が嵌合する嵌合部144A1が形成されている。従って、センターハウジング144の開口は、固定スクロール122によって閉塞されている。また、底壁部144Bは、その径方向の中央部が電動モータ160に向かって膨出するように形成されている。底壁部144Bの膨出部144B1の径方向の中央部には、駆動軸166の他端部を貫通させるための貫通孔が形成されている。そして、膨出部144B1のスクロールユニット120側には、駆動軸166の他端部を回転自由に支持するベアリング200が嵌合する嵌合部が形成されている。
 センターハウジング144の底壁部144Bと旋回スクロール124の底板124Aとの間には、薄板円環形状のスラストプレート210が配置されている。底壁部144Bの外周部は、スラストプレート210を介して、旋回スクロール124からのスラスト力を受ける。底壁部144B及び底板124Aのスラストプレート210と当接する部位には、シール部材(図示せず)が夫々埋設されている。
 また、底板124Aの電動モータ160側端面と底壁部144Bとの間、つまり、旋回スクロール124の固定スクロール122とは反対側の端面とセンターハウジング144との間には、旋回スクロール124を固定スクロール122に向けて押しつける背圧室H4が形成されている。センターハウジング144には、吸入室H1からスクロールユニット120のラップ122B及び124Bの外端部付近の空間H5へと気体冷媒を導入する、冷媒導入通路L1が形成されている。冷媒導入通路L1は、空間H5と吸入室H1とを連通しているため、空間H5の圧力は、吸入室H1の圧力(吸入圧力Ps)と等しくなっている。
 リアハウジング146は、センターハウジング144の円筒部144Aの嵌合部144A1側端面に、締結具によって締結されている。従って、固定スクロール122は、その底板122Aが嵌合部144A1とリアハウジング146との間に挟持されて固定されている。また、リアハウジング146は、センターハウジング144との締結側が開口した有底円筒形状をなし、円筒部146Aとその他端側の底壁部146Bとを有している。
 リアハウジング146の円筒部146A及び底壁部146Bと固定スクロール122の底板122Aとによって、気体冷媒の吐出室H2が区画されている。底板122Aの中央部には、気体冷媒の吐出通路(吐出孔)L2が形成されている。吐出通路L2には、吐出室H2からスクロールユニット120への気体冷媒の流れを規制する、例えば、リードバルブからなる逆止弁220が付設されている。吐出室H2には、スクロールユニット120の圧縮室H3で圧縮された気体冷媒が、吐出通路L2及び逆止弁220を介して吐出される。
 リアハウジング146には、詳細については後述する、吐出室H2の気体冷媒から潤滑油を分離する遠心分離式のオイルセパレータ230が配設されている。オイルセパレータ230によって潤滑油が分離された気体冷媒は、吐出ポートP2を介して、冷媒回路の高圧側へと吐出される。一方、オイルセパレータ230によって分離された潤滑油は、詳細を後述する背圧供給通路L3を介して、背圧室H4へと供給される。
 電動モータ160は、例えば、三相交流モータからなり、ロータ162と、ロータ162の径方向外側に配置されるステータコアユニット164と、を有している。そして、例えば、車載のバッテリ(図示せず)からの直流電流が、インバータ180によって交流電流に変換され、電動モータ160のステータコアユニット164に供給される。
 ロータ162は、その径方向中心に形成された軸孔に圧入される駆動軸166を介して、ステータコアユニット164の径方向内側で回転可能に支持されている。駆動軸166の一端部は、すべり軸受(図示せず)を介して、フロントハウジング142の支持部142B1に回転可能に支持されている。駆動軸166の他端部は、センターハウジング144の底壁部144Bに形成された貫通孔を貫通して、ベアリング200によって回転可能に支持されている。インバータ180からの給電によって、ステータコアユニット164に磁界が発生すると、ロータ162に回転力が作用して駆動軸166が回転駆動される。駆動軸166の他端部は、クランク機構240を介して、旋回スクロール124に連結されている。
 クランク機構240は、旋回スクロール124の底板124Aの背圧室H4側端面に突出形成された円筒形状のボス部240Aと、駆動軸166の他端部に設けられたクランクピン240Bに偏心状態で取り付けられた偏心ブッシュ240Cと、を有している。偏心ブッシュ240Cは、すべり軸受(図示せず)を介して、ボス部240Aの内周面に回転可能に支持されている。従って、旋回スクロール124は、その自転が阻止された状態で、クランク機構240を介して、固定スクロール122の軸心周りに公転可能になっている。なお、駆動軸166の他端部には、旋回スクロール124の遠心力に対抗するバランサウェイト240Dが取り付けられている。
 図2は、スクロール型圧縮機100における、気体冷媒及び潤滑油の流れを説明するためのブロック図である。
 図1及び図2に示すように、冷媒回路の低圧側からの低温・低圧の気体冷媒は、吸入ポートP1を介して吸入室H1へと導入された後、冷媒導入通路L1を介してスクロールユニット120の外端部付近の空間H5へと導かれる。そして、空間H5の気体冷媒は、スクロールユニット120の圧縮室H3に取り込まれて圧縮される。圧縮室H3で圧縮された気体冷媒は、吐出通路L2及び逆止弁220を介して吐出室H2へと吐出された後、オイルセパレータ230へと導かれる。オイルセパレータ230によって潤滑油が分離された気体冷媒は、吐出ポートP2を介して冷媒回路の高圧側へと吐出される。このようにして、吸入室H1から流入される気体冷媒を圧縮室H3で圧縮し、この気体冷媒を吐出室H2を介して吐出するスクロールユニット120が構成される。
 ここで、図1に示すように、リアハウジング146の後端部には、背圧室H4の背圧Pmを制御する背圧制御弁250が更に組み込まれている。
 背圧制御弁250は、吐出室H2の吐出圧力Pdと背圧室H4の背圧Pmとの差圧に応じて作動し、背圧室H4の背圧Pmが目標背圧Pcに近づくように、その弁開度を自動的に調整する、機械式(自律式)の圧力調整弁である。
 スクロール型圧縮機100は、図1及び図2に示すように、冷媒導入通路L1及び吐出通路L2に加えて、背圧供給通路L3及び放圧通路L4を更に備えている。
 背圧供給通路L3は、オイルセパレータ230を経由して吐出室H2と背圧室H4とを連通するように、リアハウジング146及びセンターハウジング144に形成されている。そして、オイルセパレータ230により吐出室H2の気体冷媒から分離された潤滑油は、背圧制御弁250及び背圧供給通路L3を介して背圧室H4へと導かれて、各摺動部位の潤滑に供されると共に、背圧室H4の背圧Pmを上昇させる。
 背圧制御弁250は、背圧供給通路L3の一部を形成するように、背圧供給通路L3の途上に配置されている。従って、オイルセパレータ230によって吐出室H2の気体冷媒から分離された潤滑油は、背圧制御弁250によって適宜減圧されつつ、その下流側に位置する背圧供給通路L3を介して背圧室H4に供給される。つまり、背圧室H4の入口側(上流側)に接続される背圧供給通路L3の開度を背圧制御弁250によって調整することで、背圧室H4へと流入する潤滑油の流量を増減して背圧Pmを調整する。
 放圧通路L4は、背圧室H4と吸入室H1とを連通するように、駆動軸166の軸方向に貫通して形成されている。放圧通路L4の途上、例えば、駆動軸166の吸入室H1側の端部には、オリフィスOLが配置されている。従って、背圧室H4の潤滑油は、オリフィスOLによって流量が制限されつつ、吸入室H1へと戻される。
 そして、背圧室H4の背圧Pmによって、旋回スクロール124が固定スクロール122に向けて押しつけられる。スクロールユニット120の圧縮運転中において、旋回スクロール124の底板124Aの背圧室H4側端面に作用する背圧Pmの合力が底板124Aの圧縮室H3側端面に作用する圧縮反力より低すぎる、即ち、背圧不足状態になると、旋回スクロール124のラップ124Bの先端部と固定スクロール122の底板122Aとの間に隙間が生じると共に、旋回スクロール124の底板124Aと固定スクロール122のラップ122Bの先端部との間に隙間が生じ、圧縮機の体積効率が低下する。背圧制御弁250は、背圧Pmが目標背圧Pcを下回った場合、背圧不足状態にならないように、背圧Pmを上昇させて目標背圧Pcに近づける。
 一方、背圧室H4の背圧Pmによる合力が圧縮反力よりも高すぎる、即ち、背圧過剰状態になると、固定スクロール122と旋回スクロール124との間の摩擦力が大きくなるため、圧縮機の機械効率が低下する。背圧制御弁250は、背圧Pmが目標背圧Pcを上回った場合、背圧過剰状態にならないように、背圧Pmを低下させて目標背圧Pcに近づける。
 オイルセパレータ230は、吐出室H2と背圧制御弁250とを接続する背圧供給通路L3の一部を形成するように、リアハウジング146に配設されている。具体的には、リアハウジング146の後端部、即ち、センターハウジング144とは反対側に位置する端部には、底壁部146Bの上面から下方へと向かって延びる、円形横断面を有する収容室230Aが形成されている。収容室230Aには、これと同心となるように、円形横断面を有する段付形状の内筒230Bが内挿されている。内筒230Bの基端部は、収容室230Aの段部230A1に係止し、その先端部は、収容室230Aの最奥部から所定距離を隔てた位置まで延びている。
 収容室230Aの下部、具体的には、内筒230Bの先端部と収容室230Aの底壁との間には、その底壁から所定距離を隔てた位置において収容室230Aの横断面上に板面が延びる、円板形状の仕切板230Cが配設されている。仕切板230Cの外周面には、収容室230Aの内周面に対するシールを確保するOリング(図示せず)が埋設されている。ここで、収容室230Aにおいて、仕切板230Cによって二分割される空間のうち、上方に位置する空間は、遠心力を利用して気体冷媒から潤滑油を分離する分離室H6として機能し、下方に位置する空間は、潤滑油を貯留する貯油室H7として機能する。なお、仕切板230Cは、その位置を一定に保つべく、例えば、収容室230Aの底壁から立設するステー(図示せず)によって支持されていてもよい。
 収容室230Aに配設された仕切板230Cの板面の周縁部には、図1及び図3に示すように、分離室H6と貯油室H7とを連通する、複数の連通孔230C1が形成されている。複数の連通孔230C1は、仕切板230Cの周方向に沿って等間隔、即ち、仕切板230Cの中心軸に対して等距離かつ等角度に形成されている。また、各連通孔230C1は、図4に示すように、分離室H6内において旋回する気体冷媒に対向する傾斜面、即ち、その気体冷媒を直接受ける傾斜面を有している。さらに、各連通孔230C1は、分離室H6から貯油室H7に向かうにつれて横断面積が徐々に小さくなるテーパ形状、即ち、仕切板230Cの上面に形成された開口が大径に、その下面に形成された開口が小径になる形状を有している。なお、図3に示す仕切板230Cは、その中心軸から等距離かつ90°ごとに4つの連通孔230C1が形成されているが、連通孔230C1の個数は、例えば、分離室H6における気体冷媒の流量などに応じて任意に決定することができる。
 そして、リアハウジング146における収容室230Aの開口は、内筒230Bの基端部を押圧可能なボルトなどのプラグ(図示せず)によって閉塞されている。収容室230Aの開口を閉塞するプラグには、その基端部の端面から先端部の端面へと貫通する貫通孔が形成されている。プラグの基端部の端面には、オイルセパレータ230によって潤滑油が分離された気体冷媒を、冷媒回路の高圧側へと導くための吐出ポートP2が形成されている。また、リアハウジング146の底壁部146Bには、吐出室H2の気体冷媒を分離室H6の上部へと導入しつつ分離室H6に旋回流を発生させる、収容室230Aの内周面の接線方向に延びる導入ポート146Cが形成されている。なお、導入ポート146Cは、背圧供給通路L3の一部を形成している。
 かかるオイルセパレータ230によれば、図5に示すように、吐出室H2の気体冷媒は、導入ポート146Cからオイルセパレータ230へと導入される。オイルセパレータ230へと導入された気体冷媒は、分離室H6の内周面と内筒230Bの外周面とにより区画される円筒形状の空間を旋回しつつ、その下方へと向かって流れる。このとき、気体冷媒に含まれる潤滑油のミストは、気体冷媒が旋回するときに発生する遠心力を受けて外方へと移動する。潤滑油のミストが外方へと移動すると、分離室H6の内周面に付着し、重力を利用して下方へと滴下される。
 そして、分離室H6の下方へと滴下された潤滑油は、仕切板230Cの上面に沿って流れ、複数の連通孔230C1を通って貯油室H7へと供給される。このとき、連通孔230C1は、分離室H6において旋回する気体冷媒に対向する傾斜面を有しているため、気体冷媒がその傾斜面に当たって分散することで、仕切板230Cの下方へと向かう気体冷媒のベクトル成分が小さくなる。このため、貯油室H7の下方に貯留している潤滑油の巻き上げが抑制され、貯油室H7から分離室H6へと戻されてしまう潤滑油の絶対量を低減することができる。また、貯油室H7に供給されて貯留された潤滑油は、背圧供給通路L3を介して背圧制御弁250へと供給される。
 仕切板230Cの連通孔230C1は、分離室H6から貯油室H7に向かうにつれて横断面積が徐々に小さくなっているので、分離室H6から貯油室H7へと向かう潤滑油の流れを阻害せずに、貯油室H7から分離室H6へと戻る潤滑油を低減することができる。また、連通孔230C1は、気体冷媒の旋回流が強い仕切板230Cの周縁部に形成されているため、分離室H6から貯油室H7へと向かう気体冷媒のベクトル成分を効率的に小さくすることができる。
 一方、潤滑油のミストが分離された気体冷媒は、内筒230Bの先端部の開口から内部空間へと入り込み、その圧力を利用してプラグに形成された吐出ポートP2から冷媒回路の高圧側へと吐出される。
 以上、本発明を実施するための実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の技術的思想の範囲内で種々の変形が可能であることに留意されたい。
 その一例を挙げると、圧縮機としては、スクロール型圧縮機100に限らず、往復圧縮機、斜板式圧縮機、ロータリーピストン圧縮機、スライドベーン型圧縮機などであってもよい。また、仕切板230Cの連通孔230C1は、円形横断面を有するものに限らず、図6に示すように、任意の多角形横断面を有していてもよい。
  100 スクロール型圧縮機(圧縮機)
  120 スクロールユニット(圧縮機構)
  230 オイルセパレータ
  230C 仕切板
  230C1 連通孔
  H6 分離室
  H7 貯油室

Claims (3)

  1.  圧縮性流体を吸入、圧縮及び吐出する圧縮機構と、
     前記圧縮機構から吐出される圧縮性流体から潤滑油を分離するオイルセパレータと、
     を備えた圧縮機であって、
     前記オイルセパレータは、
     遠心力を利用して圧縮性流体から潤滑油を分離する分離室と、
     前記分離室の下方に位置して当該分離室で分離された潤滑油を貯留する貯油室と、
     前記分離室と前記貯油室とを仕切るように配置され、当該分離室と当該貯油室とを連通する複数の連通孔が周方向に沿って形成された仕切板と、
     を有し、
     前記連通孔は、前記分離室内において旋回する圧縮性流体に対向する傾斜面を有している、
     圧縮機。
  2.  前記連通孔は、前記分離室から前記貯油室に向かうにつれて、横断面積が徐々に小さくなる形状を有している、
     請求項1に記載の圧縮機。
  3.  前記連通孔は、前記仕切板の周縁部に形成された、
     請求項1又は請求項2に記載の圧縮機。
PCT/JP2020/027781 2019-07-23 2020-07-17 圧縮機 WO2021015115A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019135302A JP2021017871A (ja) 2019-07-23 2019-07-23 圧縮機
JP2019-135302 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021015115A1 true WO2021015115A1 (ja) 2021-01-28

Family

ID=74192858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027781 WO2021015115A1 (ja) 2019-07-23 2020-07-17 圧縮機

Country Status (2)

Country Link
JP (1) JP2021017871A (ja)
WO (1) WO2021015115A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040105264A (ko) * 2003-06-04 2004-12-16 엘지전자 주식회사 공조기의 오일분리기
JP2018127933A (ja) * 2017-02-07 2018-08-16 サンデンホールディングス株式会社 圧縮機
JP2019082269A (ja) * 2017-10-30 2019-05-30 ダイキン工業株式会社 油分離器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040105264A (ko) * 2003-06-04 2004-12-16 엘지전자 주식회사 공조기의 오일분리기
JP2018127933A (ja) * 2017-02-07 2018-08-16 サンデンホールディングス株式会社 圧縮機
JP2019082269A (ja) * 2017-10-30 2019-05-30 ダイキン工業株式会社 油分離器

Also Published As

Publication number Publication date
JP2021017871A (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US7972125B2 (en) Compressor having output adjustment assembly including piston actuation
US6264446B1 (en) Horizontal scroll compressor
US11248608B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
US6287099B1 (en) Scroll compressor
EP1672768A2 (en) Scroll machine with brushless permanent magnet electric motor
JPH11241682A (ja) Co2用圧縮機
WO2021015115A1 (ja) 圧縮機
JP6875201B2 (ja) 背圧制御弁及びスクロール型圧縮機
JP2000337256A (ja) 流体機械
WO2020230773A1 (ja) スクロール型圧縮機
WO2020184057A1 (ja) モータ及び電動圧縮機
JP2021021345A (ja) スクロール型圧縮機
JP3580758B2 (ja) スクロール圧縮機
CN219327627U (zh) 涡旋压缩机
JPH0942177A (ja) スクロール圧縮機
WO2022113558A1 (ja) スクロール流体機械
JPH0121358B2 (ja)
WO2022064947A1 (ja) スクロール型圧縮機
WO2022130893A1 (ja) スクロール型圧縮機
JPH086696B2 (ja) 電動圧縮機
WO2020189605A1 (ja) モータ及び電動圧縮機
JP2021032107A (ja) 圧縮機
JPH0932765A (ja) スクロール型電動圧縮機
JP2021032108A (ja) スクロール型圧縮機
JP3252404B2 (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843812

Country of ref document: EP

Kind code of ref document: A1