WO2021012492A1 - 行车轨迹生成方法、装置、计算机设备及存储介质 - Google Patents

行车轨迹生成方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021012492A1
WO2021012492A1 PCT/CN2019/116927 CN2019116927W WO2021012492A1 WO 2021012492 A1 WO2021012492 A1 WO 2021012492A1 CN 2019116927 W CN2019116927 W CN 2019116927W WO 2021012492 A1 WO2021012492 A1 WO 2021012492A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
angle
trajectory
node
distance
Prior art date
Application number
PCT/CN2019/116927
Other languages
English (en)
French (fr)
Inventor
成潜
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021012492A1 publication Critical patent/WO2021012492A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • This application belongs to the technical field of big data map navigation, and relates to a method, device, computer equipment and storage medium for generating a driving track.
  • the driving trajectory is basically obtained through GPS positioning of a vehicle-mounted terminal or a handheld terminal. Obtaining the driving track through GPS positioning requires the terminal to be in a good GPS signal state. When the GPS signal is weak, the GPS signal of the terminal cannot be obtained, and then the driving track of the vehicle cannot be obtained.
  • the embodiments of the present application disclose a method, a device, a computer device, and a storage medium for generating a driving trajectory, aiming to solve the technical problem of obtaining a driving trajectory of a vehicle when the GPS signal cannot be used for positioning.
  • Some embodiments of the present application disclose a method for generating a driving trajectory, including: obtaining a turning angle and a driving distance of a target vehicle in a historical time period; marking the angle node and the angle peak of the turning angle, and two adjacent ones
  • the angle change amount between the angle nodes is equal to the change amount threshold, and the maximum value of the turning angle in a turning direction is the angle peak value; it is marked according to the angle node and the angle peak value on the turning angle
  • the distance node and the turning point on the driving distance the driving trajectory simulation is performed on the angle node, the angle peak, the distance node, and the turning point to generate a driving simulation trajectory; importing the driving simulation trajectory
  • the map is matched; the driving simulation trajectory is corrected based on the map to obtain the driving trajectory of the target vehicle.
  • a driving trajectory generating device which includes: an acquisition module for acquiring the turning angle and driving distance of a target vehicle in a historical time period; a first marking module for marking the turning angle The angle node and the angle peak value of the angle node, the angle change between two adjacent angle nodes is equal to the change amount threshold, and the maximum value of the turning angle in a turning direction is the angle peak; the second marking module uses Marking the distance node and turning point on the driving distance according to the angle node and the angle peak value on the turning angle; a driving trajectory simulation module is used to combine the angle node, the angle peak value, and the The distance node and the turning point perform driving trajectory simulation to generate a simulated driving trajectory; a matching module is used to import the simulated driving trajectory into a map for matching; a driving trajectory correction module is used to perform a simulation of the driving based on the map The simulated trajectory is corrected to obtain the driving trajectory of the target vehicle.
  • Some embodiments of the present application disclose a computer device that includes a memory and a processor.
  • the memory stores computer-readable instructions.
  • the processor executes the computer-readable instructions, the steps of the method for generating a driving track are implemented. .
  • Some embodiments of the present application disclose a non-volatile readable storage medium having computer readable instructions stored on the non-volatile readable storage medium, and when the computer readable instructions are executed by a processor , So that the processor executes the steps of the method for generating a driving track.
  • FIG. 1 is a schematic diagram of a method for generating a driving track in an embodiment of the application
  • Fig. 2 is a schematic diagram of changes in turning angle and driving distance in a historical time period in an embodiment of the application
  • FIG. 3 is a schematic diagram of the steps of marking the driving distance in an embodiment of this application.
  • FIG. 4 is a schematic diagram after marking the turning angle and the driving distance in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the steps of simulating the driving trajectory in an embodiment of the application.
  • FIG. 6 is a schematic diagram of the steps of importing the driving simulation trajectory into a map for matching in an embodiment of the application;
  • FIG. 7 is a schematic diagram of steps for correcting the driving simulation trajectory based on the map in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a driving track generation device in an embodiment of the application.
  • FIG. 9 is a schematic diagram of the second marking module 30 in an embodiment of this application.
  • FIG. 10 is a schematic diagram of the driving trajectory simulation module 40 in an embodiment of the application.
  • FIG. 11 is a schematic diagram of the matching module 50 in an embodiment of the application.
  • FIG. 12 is a schematic diagram of the road network matching submodule 51 in an embodiment of the application.
  • FIG. 13 is a schematic diagram of the driving track correction module 60 in an embodiment of the application.
  • FIG. 14 is a block diagram of the basic structure of the computer device in an embodiment of this application.
  • FIG. 1 it is a schematic diagram of a method for generating a driving track in an embodiment of the application.
  • the method for generating a driving track includes:
  • S1 Obtain the turning angle and driving distance of the target vehicle in a historical time period.
  • FIG. 2 is a schematic diagram of the change of the turning angle and the driving distance in a historical time period in an embodiment of this application.
  • the curved portion of the turning angle indicates that the vehicle is turning
  • the straight portion of the turning angle indicates that the vehicle is traveling straight.
  • the turning angle and the driving distance have the following relationship: at a certain point in time, both the value of the turning angle of the target vehicle at that point in time and the driving of the target vehicle at that point in time can be acquired The value of the distance. From the turning angle in FIG. 1, it can be known at which point in the driving distance the target vehicle has performed a turning operation, and the turning angle value can be obtained.
  • the turning angle and driving distance are collected by the on-board sensors of the target vehicle (for example, a steering wheel turning angle sensor and an odometer sensor).
  • the trigger conditions for acquiring the turning angle and the driving distance of the target vehicle include: when the strength of the GPS signal of the target vehicle, the strength of the GPS signal of the mobile terminal in the target vehicle is lower than a threshold, When the target vehicle receives a trigger instruction. The target vehicle will continuously collect the turning angle and the driving distance through the on-board sensor during the driving process.
  • the angle change amount is an accumulated value, and the direction of the turning change is not considered.
  • the angle peak may appear between the two angle changes.
  • S3 Mark the distance node and turning point on the travel distance according to the angle node and the angle peak value on the turning angle.
  • FIG. 3 it is a schematic diagram of the steps of marking the driving distance in an embodiment of this application.
  • the step of marking the distance node and turning point on the driving distance according to the angle node and the angle peak value on the turning angle include:
  • S32 Mark the distance node and the turning point on the travel distance according to the time point of the angle node and the angle peak.
  • FIG. 4 is a schematic diagram after marking the turning angle and the driving distance in an embodiment of the application.
  • the angle nodes a1, a2, a3, and a4 of the turning angle are marked.
  • the angle peak q1 is also marked between the angle node a2 and the angle node a3.
  • the turning point y1 is marked corresponding to the time point t3.
  • the angle variation between two adjacent angle nodes among the angle nodes a1, a2, a3, and a4 is equal to the variation threshold m. The smaller the value of the change threshold m is, the finer the cutting of the turning angle will be, and the lower the degree of defects in the details of the finally simulated driving track will be.
  • S4 Perform a driving trajectory simulation on the angle node, the angle peak value, the distance node, and the turning point to generate a driving simulation trajectory.
  • FIG. 5 it is a schematic diagram of the steps of simulating the driving trajectory in an embodiment of the application.
  • the angle node, the angle peak, the distance node, and the turning point are subjected to a driving trajectory simulation to generate a driving simulation trajectory
  • the steps include:
  • the angle nodes and the angle peaks are sorted according to the order of each time point, and the distance nodes corresponding to the angle nodes, the angle peaks, and the angle peaks are sorted in the same order.
  • the turning points are sorted so that the angle nodes, the angle peaks, and the corresponding distance nodes and turning points form a map.
  • the step of importing the simulated driving track into a map for matching includes:
  • FIG. 6 it is a schematic diagram of the steps of importing the driving simulation track into a map for matching in an embodiment of the application.
  • the step of matching the driving simulation trajectory with the road network in the map to obtain the first preselected driving trajectory includes:
  • S511 Determine at least one driving trajectory in the road network according to the lane at the starting point of the driving simulation trajectory.
  • S512 Calculate the offset rate of the driving track relative to the driving simulation track in the map.
  • FIG. 7 it is a schematic diagram of the steps of correcting the driving simulation trajectory based on the map in an embodiment of the application.
  • the step of correcting the driving simulation trajectory based on the map to obtain the driving trajectory of the target vehicle includes:
  • S63 Generate the driving trajectory of the target vehicle according to the corrected driving simulation trajectory.
  • the target vehicle when the strength of the GPS signal of the target vehicle or the strength of the GPS signal of the mobile terminal in the target vehicle is lower than a threshold, or when the target vehicle receives a trigger instruction, it is acquired Turning angle and driving distance in a historical time period. Therefore, the dependence on GPS signals is eliminated from the data acquisition path, so that data related to the driving trajectory of the target vehicle can still be recorded when the strength of the GPS signal is weak or there is no GPS signal.
  • the distance node and turning point on the travel distance are marked according to the angle node and the angle peak value on the turning angle, and the angle is established
  • the relational database between the node, the angle peak, the distance node, and the turning point enables data related to the driving trajectory of the target vehicle to be sorted.
  • the above process can be completed on the vehicle-mounted terminal (for example, a trip computer) of the target vehicle or on a mobile terminal, so it is beneficial to complete data sorting in the case of weak or missing network signals.
  • the angle node, the angle peak value, the distance node and the turning point are simulated on a driving trajectory to generate a simulated driving trajectory, and then the simulated driving trajectory is imported into a map for matching, and finally based on the The map corrects the driving simulation trajectory to obtain the driving trajectory of the target vehicle.
  • the accurate generation of the driving simulation trajectory is realized, which is beneficial to accurately positioning the position of the target vehicle.
  • the driving trajectory generation method in the embodiment of the present application can accurately record the movement process of the target vehicle, and the driving trajectory of the target vehicle can be obtained even when the GPS signal strength is weak or there is no GPS signal.
  • An embodiment of the present application discloses a driving track generating device.
  • FIG. 8 is a schematic diagram of a driving track generating device in an embodiment of the application.
  • the driving track generating device includes:
  • the obtaining module 10 is used to obtain the turning angle and driving distance of the target vehicle in a historical time period.
  • the first marking module 20 is used to mark the angle node and the angle peak of the turning angle, the angle change between two adjacent angle nodes is equal to the change threshold, and the turning angle is the largest in a turning direction The value is the peak value of the angle.
  • the second marking module 30 is configured to mark the distance node and turning point on the travel distance according to the angle node and the angle peak value on the turning angle.
  • the driving trajectory simulation module 40 is configured to perform a driving trajectory simulation on the angle node, the angle peak, the distance node, and the turning point to generate a driving simulation trajectory.
  • the matching module 50 is used to import the simulated driving track into the map for matching.
  • the driving track correction module 60 is configured to correct the driving simulation track based on the map to obtain the driving track of the target vehicle.
  • FIG. 9 is a schematic diagram of the second marking module 30 in an embodiment of this application.
  • the second marking module 30 includes:
  • the recording submodule 31 is configured to record the angle node and the time point of the angle peak.
  • the point marking submodule 32 is configured to mark the distance node and the turning point on the driving distance according to the time point of the angle node and the angle peak.
  • FIG. 10 is a schematic diagram of the driving track simulation module 40 in an embodiment of the application.
  • the driving track simulation module 40 includes:
  • the relational database sub-module 41 is configured to establish a relational database between the angle node, the angle peak value, the distance node, and the turning point.
  • the simulation submodule 42 is configured to call the relational database to simulate the distance node and the turning point into the driving simulation trajectory according to the time course.
  • FIG. 11 is a schematic diagram of the matching module 50 in an embodiment of the application.
  • the matching module 50 includes: a road network matching sub-module 51 for matching the driving simulation track with the road network in the map. Out the first pre-selected driving track.
  • FIG. 12 it is a schematic diagram of the road network matching submodule 51 in an embodiment of the application.
  • the road network matching submodule 51 includes:
  • the determining unit 511 is configured to determine at least one driving trajectory in the road network according to the lane at the starting point of the driving simulation trajectory.
  • the offset rate calculation unit 512 is configured to calculate the offset rate of the driving trajectory relative to the driving simulation trajectory in the map.
  • the selection unit 513 is configured to take the driving trajectory with the smallest deviation rate as the first preselected driving trajectory.
  • FIG. 13 is a schematic diagram of the driving track correction module 60 in an embodiment of the application.
  • the driving track correction module 60 includes:
  • the first correction sub-module 61 is configured to correct the driving trajectory at the distance node and the turning point in the driving simulation trajectory in combination with the map.
  • the second correction sub-module 62 is used to correct the offset of the simulated driving trajectory in the map, so that all the simulated driving trajectories fall on the road network of the map.
  • a generating sub-module 63 is used to generate the driving trajectory of the target vehicle according to the corrected driving simulation trajectory.
  • the driving trajectory generating device can be used to accurately record the movement process of the target vehicle, and the driving trajectory of the target vehicle can still be obtained when the GPS signal strength is weak or there is no GPS signal.
  • the driving trajectory generating device solves the technical problem of obtaining the driving trajectory of the vehicle when the GPS signal cannot be used for positioning.
  • Some embodiments of the present application disclose a computer device.
  • FIG. 14 is a block diagram of the basic structure of the computer device in an embodiment of this application.
  • the computer device includes at least one first memory 801 and at least one first processor 802.
  • the first memory 801 stores computer-readable instructions, and the computer-readable instructions are When the first processor 802 is executed, the driving track generation method applied to the computer device is implemented.
  • the computer device receives and sends data through the first network interface 803.
  • FIG. 14 only shows a computer device with components 801-803, but it should be understood that it is not required to implement all the components shown, and more or fewer components may be implemented instead.
  • the computer equipment here can automatically perform numerical calculation and/or information processing according to pre-set or stored instructions. Its hardware includes, but is not limited to, microprocessors, application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA), Digital Processor (Digital Signal Processor, DSP), embedded equipment, etc.
  • the first memory 801 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card type memory (for example, SD or DX memory, etc.), random access memory (RAM) , Static random access memory (SRAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), programmable read only memory (PROM), magnetic memory, magnetic disks, optical disks, etc.
  • the first memory 801 may be an internal storage unit, such as the hard disk or memory.
  • the first memory 801 may also be an external storage device, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card, and a flash memory card.
  • the first memory 801 may include an internal storage unit and an external storage device.
  • the first memory 801 is generally used to store operating computer equipment and various application software.
  • the first memory 801 is used to store computer readable instructions applied to the method of generating driving tracks of the computer equipment.
  • the first memory 801 may be used to temporarily store various types of data that have been output or will be output.
  • the first processor 802 may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor, or other data processing chips in some embodiments.
  • the first processor 802 is configured to run computer-readable instructions or processed data stored in the first memory 801, for example, run a computer-readable method for generating a driving track applied to the computer device instruction.
  • An embodiment of the present application discloses one or more non-volatile readable storage media.
  • the non-volatile readable storage medium stores computer readable instructions.
  • the computer readable instructions are executed by a processor, Realize the above-mentioned method for generating driving track applied to the computer equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种行车轨迹生成方法、装置、计算机设备及存储介质。该方法包括:获取目标车辆在一个历史时间段内的转弯角度和行驶距离(S1);标记所述转弯角度的角度节点和角度峰值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值(S2);根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点(S3);将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹(S4);将所述行车模拟轨迹导入地图进行匹配(S5);基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹(S6)。该方法能够在无法利用GPS信号定位的情况下获取车辆的行车轨迹。

Description

行车轨迹生成方法、装置、计算机设备及存储介质
本申请以2019年7月24日提交的申请号为201910670496.6,名称为“行车轨迹生成方法、装置、计算机设备及存储介质”的中国发明专利申请为基础,并要求其优先权。
技术领域
本申请属于大数据地图导航技术领域,涉及行车轨迹生成方法、装置、计算机设备及存储介质。
背景技术
目前行车轨迹基本上是通过车载终端或者手持终端的GPS定位获取。通过GPS定位获取行车轨迹需要终端处于良好的GPS信号状态。当GPS信号弱时,则无法获取到终端的GPS信号,继而无法获取车辆的行车轨迹。
现有的技术条件下,当车辆进入地下停车场等GPS信号受影响的地方时,难以获取行车轨迹,不利于重新找到车辆。因此如何在无法利用GPS信号实现定位的情况下获取车辆的行车轨迹成为亟待解决的技术问题。
发明内容
本申请实施例公开了行车轨迹生成方法、装置、计算机设备及存储介质,旨在解决在无法利用GPS信号实现定位的情况下获取车辆的行车轨迹的技术问题。
本申请的一些实施例公开了一种行车轨迹生成方法,包括:获取目标车辆在一个历史时间段内的转弯角度和行驶距离;标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值;根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;将所述行车模拟轨迹导入地图进行匹配;基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
本申请的一些实施例公开了一种行车轨迹生成装置,包括:获取模块,用于获取目标车辆在一个历史时间段内的转弯角度和行驶距离;第一标记模块, 用于标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值;第二标记模块,用于根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;行车轨迹模拟模块,用于将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;匹配模块,用于将所述行车模拟轨迹导入地图进行匹配;行车轨迹校正模块,用于基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
本申请的一些实施例公开了一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述处理器执行所述计算机可读指令时实现上述行车轨迹生成方法的步骤。
本申请的一些实施例公开了一种非易失性可读存储介质,所述非易失性可读存储介质上存储有计算机可读指令,所述计算机可读指令被一种处理器执行时,使得所述处理器执行上述行车轨迹生成方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其他特征和优点将从说明书、附图以及权利要求变得明显。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请的一实施例中一种行车轨迹生成方法的示意图;
图2为本申请的一实施例中在一个历史时间段内的转弯角度和行驶距离的变化示意图;
图3为本申请的一实施例中对所述行驶距离进行标记的步骤示意图;
图4为本申请的一实施例中对所述转弯角度和所述行驶距离进行标记后的示意图;
图5为本申请的一实施例中进行行车轨迹模拟的步骤示意图;
图6为本申请的一实施例中将所述行车模拟轨迹导入地图进行匹配的步骤示意图;
图7为本申请的一实施例中基于所述地图对所述行车模拟轨迹进行校正的步骤示意图;
图8为本申请的一实施例中一种行车轨迹生成装置的示意图;
图9为本申请的一实施例中所述第二标记模块30的示意图;
图10为本申请的一实施例中所述行车轨迹模拟模块40的示意图;
图11为本申请的一实施例中所述匹配模块50的示意图;
图12为本申请的一实施例中所述路网匹配子模块51的示意图;
图13为本申请的一实施例中所述行车轨迹校正模块60的示意图;
图14为本申请的一实施例中所述计算机设备的基本结构框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
参考图1,为本申请的一实施例中一种行车轨迹生成方法的示意图。
如图1中所示意的,所述行车轨迹生成方法,包括:
S1:获取目标车辆在一个历史时间段内的转弯角度和行驶距离。
参考图2,为本申请的一实施例中在一个历史时间段内的转弯角度和行驶距离的变化示意图。
如图2中所示意的,在本申请的一些实施例中,所述转弯角度的曲线部分示意了车辆在转弯行驶,所述转弯角度的直线部分示意了车辆在直行。所述转弯角度与所述行驶距离存在以下的关系:在某一个时间点,既能获取到该时间点所述目标车辆的转弯角度的值,又能获取到该时间点所述目标车辆的行驶距离的值。通过图1中的转弯角度能够得知在行驶距离中哪一个点所述目标车辆进行了转弯操作,并能够获取转弯的角度值。在本申请的一些实施例中,通过所述目标车辆的车载传感器(例如,方向盘转弯角度传感器和里程表传感器)采集转弯角度和行驶距离。获取所述目标车辆的所述转弯角度和所述行驶距离 的触发条件包括:在所述目标车辆的GPS信号的强度、所述目标车辆内的移动终端的GPS信号的强度低于阈值时、在所述目标车辆接收到触发指令时。所述目标车辆会在行驶过程中持续通过车载传感器采集所述转弯角度和所述行驶距离。
S2:标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值。
如图2中所示意的,在本申请的一些实施例中,所述角度变化量是一个累计值,并不考虑转弯变化的方向。此外,所述角度峰值可以出现在两个所述角度变化量之间。
S3:根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点。
参考图3,为本申请的一实施例中对所述行驶距离进行标记的步骤示意图。
如图3中所示意的,在本申请的一些实施例中,所述根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点的步骤包括:
S31:记录所述角度节点和所述角度峰值的时间点。
S32:根据所述角度节点和所述角度峰值的所述时间点在所述行驶距离上标记所述距离节点和所述拐弯点。
参考图4,为本申请的一实施例中对所述转弯角度和所述行驶距离进行标记后的示意图。
如图4中所示意的,标记出所述转弯角度的所述角度节点a1、a2、a3、a4。在角度节点a2与角度节点a3之间还标记出所述角度峰值q1。记录所述角度节点a1、a2、a3、a4以及所述角度峰值q1的所述时间点t1、t2、t4、t5、t3,对应所述时间点t1、t2、t4、t5标记出所述距离节点x1、x2、x3、x4。对应所述时间点t3标记出所述拐弯点y1。所述角度节点a1、a2、a3、a4中相邻两个所述角度节点之间的角度变化量等于变化量阈值m。所述变化量阈值m的取值越小对所述转弯角度的切割越细,最终模拟出的行车轨迹在细节上的缺损程度就越低。
S4:将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹。
参考图5,为本申请的一实施例中进行行车轨迹模拟的步骤示意图。
如图5中所示意的,在本申请的一些实施例中,所述将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹的步骤包括:
S41:建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库。
参考下表,该表表示本申请的一实施例中所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的映射关系。
时间点 角度节点/角度峰值 距离节点/拐弯点
t1 a1 x1
t2 a2 x2
t3 q1 y1
t4 a3 x3
t5 a4 x4
如表中所示意的,按照各时间点的顺序,对所述角度节点和所述角度峰值进行排序,并按照相同的顺序对与所述角度节点、所述角度峰值对应的所述距离节点、所述拐弯点进行排序,使得所述角度节点、所述角度峰值与对应的所述距离节点、所述拐弯点形成映射。
S42:调用所述关系型数据库依据时间进程将所述距离节点和所述拐弯点模拟成所述行车模拟轨迹。
S5:将所述行车模拟轨迹导入地图进行匹配。
在本申请的一些实施例中,所述将所述行车模拟轨迹导入地图进行匹配的步骤包括:
S51:将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹。
参考图6,为本申请的一实施例中将所述行车模拟轨迹导入地图进行匹配的步骤示意图。
如图6中所示意的,在本申请的一些实施例中,所述将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹的步骤包括:
S511:根据所述行车模拟轨迹的起点处的车道判断出在所述路网中的至少一条行驶轨迹。
S512:计算所述行驶轨迹相对于所述行车模拟轨迹在所述地图中的偏移率。
S513:取所述偏移率最小的所述行驶轨迹作为所述第一预选行驶轨迹。
在本申请的一些实施例中,按照公式δ=1-λ计算所述偏移率,其中δ表示所述偏移率,λ表示所述行车模拟轨迹与所述地图中路网的重合率;捕捉所述行车模拟轨迹在所述地图中路网内的长度,然后计算所述长度与所述行驶距离的比值获得所述重合率。
S6:基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
参考图7,为本申请的一实施例中基于所述地图对所述行车模拟轨迹进行校正的步骤示意图。
如图7中所示意的,在本申请的一些实施例中,所述基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹的步骤包括:
S61:结合所述地图校正所述行车模拟轨迹中在所述距离节点处和所述拐弯点处的行车轨迹。
S62:校正所述行车模拟轨迹在所述地图中的偏移量,使得所述行车模拟轨迹全部落在所述地图的路网上。
S63:根据校正后的所述行车模拟轨迹生成所述目标车辆的行车轨迹。
在本申请的实施例中,首先在目标车辆的GPS信号的强度或者所述目标车辆内的移动终端的GPS信号的强度低于阈值时或者在所述目标车辆接收到触发指令时获取目标车辆在一个历史时间段内的转弯角度和行驶距离。因此从数据的获取途径上就摆脱了对GPS信号的依赖,使得在GPS信号的强度较弱或者没有GPS信号的情况下仍然能够记录与所述目标车辆的行驶轨迹相关的数据。
其次,通过标记所述转弯角度的角度节点和角度峰值,根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点,并建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库,使得与所述目标车辆的行驶轨迹相关的数据得到整理。上述过程可以在所述目标车辆的车载终端(例如,行车电脑)或者在移动终端上完成,因此有利于在网络信号较弱或者缺失的情况下完成数据的整理。
再者,将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹,然后将所述行车模拟轨迹导入地图进行匹配,最后基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。实现了精准生成所述行车模拟轨迹,有利于对所述目标车辆的位置进行准确定位。
本申请实施例中的所述行车轨迹生成方法能够准确记录所述目标车辆的移动过程,在GPS信号的强度较弱或者没有GPS信号的情况下仍然能够得到所述目标车辆的行车轨迹,解决了在无法利用GPS信号实现定位的情况下获取车辆的行车轨迹的技术问题。
本申请的一实施例公开了一种行车轨迹生成装置。
参考图8,为本申请的一实施例中一种行车轨迹生成装置的示意图。
如图8中所示意的,所述行车轨迹生成装置包括:
获取模块10,用于获取目标车辆在一个历史时间段内的转弯角度和行驶距离。
第一标记模块20,用于标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值。
第二标记模块30,用于根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点。
行车轨迹模拟模块40,用于将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹。
匹配模块50,用于将所述行车模拟轨迹导入地图进行匹配。
行车轨迹校正模块60,用于基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
参考图9,为本申请的一实施例中所述第二标记模块30的示意图。
如图9中所示意的,在本申请的一些实施例中,所述第二标记模块30包括:
记录子模块31,用于记录所述角度节点和所述角度峰值的时间点。
点标记子模块32,用于根据所述角度节点和所述角度峰值的所述时间点在所述行驶距离上标记所述距离节点和所述拐弯点。
参考图10,为本申请的一实施例中所述行车轨迹模拟模块40的示意图。
如图10中所示意的,在本申请的一些实施例中,所述行车轨迹模拟模块40包括:
关系型数据库子模块41,用于建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库。
模拟子模块42,用于调用所述关系型数据库依据时间进程将所述距离节点和所述拐弯点模拟成所述行车模拟轨迹。
参考图11,为本申请的一实施例中所述匹配模块50的示意图。
如图11中所示意的,在本申请的一些实施例中,所述匹配模块50包括:路网匹配子模块51,用于将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹。
参考图12,为本申请的一实施例中所述路网匹配子模块51的示意图。
如图12中所示意的,在本申请的一些实施例中,所述路网匹配子模块51包括:
判断单元511,用于根据所述行车模拟轨迹的起点处的车道判断出在所述路网中的至少一条行驶轨迹。
偏移率计算单元512,用于计算所述行驶轨迹相对于所述行车模拟轨迹在所述地图中的偏移率。
选择单元513,用于取所述偏移率最小的所述行驶轨迹作为所述第一预选行驶轨迹。
在本申请的一些实施例中,所述偏移率计算单元512按照公式δ=1-λ计算所述偏移率,其中δ表示所述偏移率,λ表示所述行车模拟轨迹与所述地图中路网的重合率。捕捉所述行车模拟轨迹在所述地图中路网内的长度,然后计算所述长度与所述行驶距离的比值获得所述重合率。
参考图13,为本申请的一实施例中所述行车轨迹校正模块60的示意图。
如图13中所示意的,在本申请的一些实施例中,所述行车轨迹校正模块60包括:
第一校正子模块61,用于结合所述地图校正所述行车模拟轨迹中在所述距离节点处和所述拐弯点处的行车轨迹。
第二校正子模块62,用于校正所述行车模拟轨迹在所述地图中的偏移量,使得所述行车模拟轨迹全部落在所述地图的路网上。
生成子模块63,用于根据校正后的所述行车模拟轨迹生成所述目标车辆的行车轨迹。
在本申请中,所述行车轨迹生成装置能够用于准确记录所述目标车辆的移动过程,在GPS信号的强度较弱或者没有GPS信号的情况下仍然能够得到所述目标车辆的行车轨迹。所述行车轨迹生成装置解决了在无法利用GPS信号实现定位的情况下获取车辆的行车轨迹的技术问题。
本申请的一些实施例公开了一种计算机设备。
请参考图14,为本申请的一实施例中所述计算机设备的基本结构框图。
如图14中所示意的,所述计算机设备包括至少一个第一存储器801和至少一个第一处理器802,所述第一存储器801中存储有计算机可读指令,所述计算机可读指令被所述第一处理器802执行时实现应用于所述计算机设备的行车轨迹生成方法。所述所述计算机设备通过第一网络接口803接收和发送数据。
需要指出的是,图14中仅示出了具有组件801-803的计算机设备,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。本技术领域技术人员应当理解,这里的计算机设备能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
所述第一存储器801至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述第一存储器801可以是内部存储单元,例如该硬盘或内存。在另一些实施例中,所述第一存储器801也都可以是外部存储设备,例如插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述第一存储器801可以包括内部存储单元和外部存储设备。本实施例中,所述第一存储器801通常用于存储操作计算机设备和各类应用软件,例如所述第一存储器801用于存储应用于所述计算机设备的行车轨迹生成方法的计算机可读指令。此外,所述第一存储器801可以用于暂时地存储已经输出或者将要输出的各类数据。
所述第一处理器802在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。在本实施例中,所述第一处理器802用于运行所述第一存储器801中存储的计算机可读指令或者处理数据,例如运行应用于所述计算机设备的行车轨迹生成方法的计算机可读指令。
本申请的一实施例公开了一个或多个非易失性可读存储介质,所述非易失性可读存储介质上存储有计算机可读指令,所述计算机可读指令被处理器执行 时实现上述应用于所述计算机设备的行车轨迹生成方法
最后应说明的是,显然以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (20)

  1. 一种行车轨迹生成方法,其特征在于,包括:
    获取目标车辆在一个历史时间段内的转弯角度和行驶距离;
    标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值;
    根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;
    将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;
    将所述行车模拟轨迹导入地图进行匹配;
    基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
  2. 根据权利要求1所述行车轨迹生成方法,其特征在于,所述根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点的步骤包括:记录所述角度节点和所述角度峰值的时间点;根据所述角度节点和所述角度峰值的所述时间点在所述行驶距离上标记所述距离节点和所述拐弯点。
  3. 根据权利要求1所述行车轨迹生成方法,其特征在于,所述将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹的步骤包括:建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库;
    调用所述关系型数据库依据时间进程将所述距离节点和所述拐弯点模拟成所述行车模拟轨迹。
  4. 根据权利要求1所述行车轨迹生成方法,其特征在于,所述将所述行车模拟轨迹导入地图进行匹配的步骤包括:将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹。
  5. 根据权利要求4所述行车轨迹生成方法,其特征在于,所述将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹的步骤包括:
    根据所述行车模拟轨迹的起点处的车道判断出在所述路网中的至少一条行 驶轨迹;
    计算所述行驶轨迹相对于所述行车模拟轨迹在所述地图中的偏移率;
    取所述偏移率最小的所述行驶轨迹作为所述第一预选行驶轨迹。
  6. 根据权利要求5所述行车轨迹生成方法,其特征在于,按照公式δ=1-λ计算所述偏移率,其中δ表示所述偏移率,λ表示所述行车模拟轨迹与所述地图中路网的重合率;捕捉所述行车模拟轨迹在所述地图中路网内的长度,然后计算所述长度与所述行驶距离的比值获得所述重合率。
  7. 根据权利要求1所述行车轨迹生成方法,其特征在于,所述基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹的步骤包括:
    结合所述地图校正所述行车模拟轨迹中在所述距离节点处和所述拐弯点处的行车轨迹;
    校正所述行车模拟轨迹在所述地图中的偏移量,使得所述行车模拟轨迹全部落在所述地图的路网上;
    根据校正后的所述行车模拟轨迹生成所述目标车辆的行车轨迹。
  8. 一种行车轨迹生成装置,其特征在于,包括:
    获取模块,用于获取目标车辆在一个历史时间段内的转弯角度和行驶距离;
    第一标记模块,用于标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值;
    第二标记模块,用于根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;
    行车轨迹模拟模块,用于将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;
    匹配模块,用于将所述行车模拟轨迹导入地图进行匹配;
    行车轨迹校正模块,用于基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
  9. 一种计算机设备,包括存储器和处理器,其特征在于,所述存储器中存储有计算机可读指令,所述处理器执行所述计算机可读指令时实现如下步骤:
    获取目标车辆在一个历史时间段内的转弯角度和行驶距离;
    标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述 角度峰值;
    根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;
    将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;
    将所述行车模拟轨迹导入地图进行匹配;
    基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
  10. 根据权利要求9所述的计算机设备,其特征在于,所述根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点的步骤包括:记录所述角度节点和所述角度峰值的时间点;根据所述角度节点和所述角度峰值的所述时间点在所述行驶距离上标记所述距离节点和所述拐弯点。
  11. 根据权利要求9所述的计算机设备,其特征在于,所述将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹的步骤包括:建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库;
    调用所述关系型数据库依据时间进程将所述距离节点和所述拐弯点模拟成所述行车模拟轨迹。
  12. 根据权利要求9所述的计算机设备,其特征在于,所述将所述行车模拟轨迹导入地图进行匹配的步骤包括:将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹。
  13. 根据权利要求12所述的计算机设备,其特征在于,所述将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹的步骤包括:
    根据所述行车模拟轨迹的起点处的车道判断出在所述路网中的至少一条行驶轨迹;
    计算所述行驶轨迹相对于所述行车模拟轨迹在所述地图中的偏移率;
    取所述偏移率最小的所述行驶轨迹作为所述第一预选行驶轨迹。
  14. 根据权利要求13所述的计算机设备,其特征在于,按照公式δ=1-λ计算所述偏移率,其中δ表示所述偏移率,λ表示所述行车模拟轨迹与所述地图中路网的重合率;捕捉所述行车模拟轨迹在所述地图中路网内的长度,然后计算所 述长度与所述行驶距离的比值获得所述重合率。
  15. 一个或多个非易失性可读存储介质,其特征在于,所述非易失性可读存储介质上存储有计算机可读指令,所述计算机可读指令被一种处理器执行时,使得所述处理器执行如下步骤:
    获取目标车辆在一个历史时间段内的转弯角度和行驶距离;
    标记所述转弯角度的角度节点和角度峰值,相邻两个所述角度节点之间的角度变化量等于变化量阈值,所述转弯角度在一个转弯方向上的最大值为所述角度峰值;
    根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点;
    将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹;
    将所述行车模拟轨迹导入地图进行匹配;
    基于所述地图对所述行车模拟轨迹进行校正获得所述目标车辆的行车轨迹。
  16. 根据权利要求15所述的非易失性可读存储介质,其特征在于,所述根据所述转弯角度上的所述角度节点和所述角度峰值标记出所述行驶距离上的距离节点和拐弯点的步骤包括:记录所述角度节点和所述角度峰值的时间点;根据所述角度节点和所述角度峰值的所述时间点在所述行驶距离上标记所述距离节点和所述拐弯点。
  17. 根据权利要求15所述的非易失性可读存储介质,其特征在于,所述将所述角度节点、所述角度峰值、所述距离节点以及所述拐弯点进行行车轨迹模拟,以生成行车模拟轨迹的步骤包括:建立所述角度节点、所述角度峰值与所述距离节点、所述拐弯点之间的关系型数据库;
    调用所述关系型数据库依据时间进程将所述距离节点和所述拐弯点模拟成所述行车模拟轨迹。
  18. 根据权利要求15所述的非易失性可读存储介质,其特征在于,所述将所述行车模拟轨迹导入地图进行匹配的步骤包括:将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹。
  19. 根据权利要求18所述的非易失性可读存储介质,其特征在于,所述将所述行车模拟轨迹与所述地图中的路网进行匹配得出第一预选行驶轨迹的步骤包 括:
    根据所述行车模拟轨迹的起点处的车道判断出在所述路网中的至少一条行驶轨迹;
    计算所述行驶轨迹相对于所述行车模拟轨迹在所述地图中的偏移率;
    取所述偏移率最小的所述行驶轨迹作为所述第一预选行驶轨迹。
  20. 根据权利要求19所述的非易失性可读存储介质,其特征在于,按照公式δ=1-λ计算所述偏移率,其中δ表示所述偏移率,λ表示所述行车模拟轨迹与所述地图中路网的重合率;捕捉所述行车模拟轨迹在所述地图中路网内的长度,然后计算所述长度与所述行驶距离的比值获得所述重合率。
PCT/CN2019/116927 2019-07-24 2019-11-10 行车轨迹生成方法、装置、计算机设备及存储介质 WO2021012492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910670496.6 2019-07-24
CN201910670496.6A CN110595487A (zh) 2019-07-24 2019-07-24 行车轨迹生成方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021012492A1 true WO2021012492A1 (zh) 2021-01-28

Family

ID=68853206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116927 WO2021012492A1 (zh) 2019-07-24 2019-11-10 行车轨迹生成方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN110595487A (zh)
WO (1) WO2021012492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113254562A (zh) * 2021-06-18 2021-08-13 长安大学 一种高效gps轨迹地图匹配方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125293B (zh) * 2019-12-31 2021-07-09 南京市城市与交通规划设计研究院股份有限公司 公交网络模型自动生成方法、装置及电子设备
CN111553966B (zh) * 2020-04-24 2023-08-25 泰华智慧产业集团股份有限公司 基于ArcGIS API for JavaScript实现动画回放历史轨迹的方法
CN111624636B (zh) * 2020-05-25 2023-06-20 腾讯科技(深圳)有限公司 数据处理方法、装置、电子设备及计算机可读介质
CN112988931B (zh) * 2021-03-03 2023-02-03 广州小鹏自动驾驶科技有限公司 一种行驶轨迹的对齐方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168119A1 (en) * 2006-01-17 2007-07-19 Daishi Mori Navigation Device And Current-Position-Calculation Method
CN106123906A (zh) * 2016-08-17 2016-11-16 深圳市金立通信设备有限公司 一种辅助导航方法及终端
CN106355927A (zh) * 2016-08-30 2017-01-25 成都路行通信息技术有限公司 Gps标记点确定方法、轨迹优化方法及装置
WO2018081186A1 (en) * 2016-10-24 2018-05-03 Invensense, Inc. Method and system for global shape matching a trajectory

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278150A (ja) * 1995-04-03 1996-10-22 Alpine Electron Inc 走行軌跡表示方法
JP3559142B2 (ja) * 1997-04-25 2004-08-25 三菱電機株式会社 ロケータ装置
JP2001272238A (ja) * 2000-03-24 2001-10-05 Aisin Aw Co Ltd ナビゲーション装置及び記憶媒体
KR20090070936A (ko) * 2007-12-27 2009-07-01 에스케이마케팅앤컴퍼니 주식회사 네비게이션 시스템 및 방법, 방법 프로그램을 기록한저장매체
CN103605362B (zh) * 2013-09-11 2016-03-02 天津工业大学 基于车辆轨迹多特征的运动模式学习及异常检测方法
CN108240813B (zh) * 2016-12-23 2021-08-24 北京四维图新科技股份有限公司 获取车辆实际行车轨迹、行车历史的存储及导航方法
CN107247446B (zh) * 2017-06-29 2020-01-10 深圳市雷赛控制技术有限公司 异形轨迹控制方法及装置
CN108694237A (zh) * 2018-05-11 2018-10-23 东峡大通(北京)管理咨询有限公司 处理车辆位置数据的方法、设备、可视化系统和用户终端
CN108882172B (zh) * 2018-06-22 2020-10-23 电子科技大学 一种基于hmm模型的室内移动轨迹数据的预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168119A1 (en) * 2006-01-17 2007-07-19 Daishi Mori Navigation Device And Current-Position-Calculation Method
CN106123906A (zh) * 2016-08-17 2016-11-16 深圳市金立通信设备有限公司 一种辅助导航方法及终端
CN106355927A (zh) * 2016-08-30 2017-01-25 成都路行通信息技术有限公司 Gps标记点确定方法、轨迹优化方法及装置
WO2018081186A1 (en) * 2016-10-24 2018-05-03 Invensense, Inc. Method and system for global shape matching a trajectory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113254562A (zh) * 2021-06-18 2021-08-13 长安大学 一种高效gps轨迹地图匹配方法
CN113254562B (zh) * 2021-06-18 2021-09-28 长安大学 一种高效gps轨迹地图匹配方法

Also Published As

Publication number Publication date
CN110595487A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2021012492A1 (zh) 行车轨迹生成方法、装置、计算机设备及存储介质
CN106610981B (zh) 电子地图中道路信息的验证更新方法及系统
CN106104656B (zh) 地图信息生成系统、方法及程序
RU2713788C1 (ru) Способ автоматической калибровки датчика угла для системы управления автоматическим приводом сельскохозяйственной машины
CN109444932B (zh) 一种车辆定位方法、装置、电子设备及存储介质
CN102915532B (zh) 确定车辆视觉系统外部参数的方法以及车辆视觉系统
CN113551664B (zh) 一种地图构建方法、装置、电子设备及存储介质
CN113155139B (zh) 车辆轨迹纠偏方法、装置及电子设备
US20200348146A1 (en) Apparatus for generating data of travel path inside intersection, program for generating data of travel path inside intersection, and storage medium
JP2008267875A5 (zh)
WO2015122121A1 (ja) ホスト車走行位置特定装置及びホスト車走行位置特定プログラム製品
CN110967035B (zh) 一种提高车载v2x车道匹配度方法
CN103971081A (zh) 多车道检测方法和系统
TW202112513A (zh) 定位方法、路徑確定方法、機器人及儲存介質
US20190380106A1 (en) Indoor positioning system and method based on geomagnetic signals in combination with computer vision
CN110850859B (zh) 一种机器人及其避障方法和避障系统
CN113701781B (zh) 一种基于高精地图和视觉车道线的匹配车道搜索方法
CN110736963B (zh) 一种基于CSI的室内Wi-Fi定位方法、装置及存储介质
DE112019000855T5 (de) Fahrzeugsteuergerät
CN116105755A (zh) 一种车辆定位修正方法、存储介质及终端设备
CN109154505A (zh) 用于确定车辆相对于马路的车道的横向位置的方法、设备和具有指令的计算机可读存储介质
CN113609148A (zh) 一种地图更新的方法和装置
CN113850237B (zh) 基于视频和轨迹数据的网联车目标检测评价方法及系统
DE112016007440T5 (de) Fahrradverfolgung für Bike-Sharing-System
CN113050660B (zh) 误差补偿方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938768

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19938768

Country of ref document: EP

Kind code of ref document: A1