WO2021012396A1 - Baw谐振器的封装模块及封装方法 - Google Patents

Baw谐振器的封装模块及封装方法 Download PDF

Info

Publication number
WO2021012396A1
WO2021012396A1 PCT/CN2019/109826 CN2019109826W WO2021012396A1 WO 2021012396 A1 WO2021012396 A1 WO 2021012396A1 CN 2019109826 W CN2019109826 W CN 2019109826W WO 2021012396 A1 WO2021012396 A1 WO 2021012396A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
gap
hole
baw resonator
Prior art date
Application number
PCT/CN2019/109826
Other languages
English (en)
French (fr)
Inventor
罗海龙
齐飞
Original Assignee
中芯集成电路(宁波)有限公司上海分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯集成电路(宁波)有限公司上海分公司 filed Critical 中芯集成电路(宁波)有限公司上海分公司
Priority to JP2021504205A priority Critical patent/JP7246775B2/ja
Publication of WO2021012396A1 publication Critical patent/WO2021012396A1/zh
Priority to US17/249,338 priority patent/US20210184645A1/en
Priority to JP2023036991A priority patent/JP2023071988A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type

Definitions

  • the present invention relates to the technical field of radio frequency product packaging, in particular to a packaging module and packaging method of a BAW resonator.
  • the radio frequency filter is an important part of the radio frequency system. It can filter out the interference and noise outside the communication spectrum to meet the signal-to-noise ratio requirements of the radio frequency system and communication protocol. Take a mobile phone as an example. Since each frequency band needs a corresponding filter, a mobile phone may need to set dozens of filters.
  • SAW filters Surface Acoustic Wave (SAW) filters and Bulk Acoustic Wave (BAW) filters are the two most mainstream implementations of radio frequency filters.
  • the SAW filter has a simple structure. Compared with the traditional cavity filter and ceramic filter, it is small in size. It combines low insertion loss and good suppression performance. It is widely used in 2G and 3G receiver front ends, duplexers and receivers.
  • the filter can better satisfy the frequency bands including GSM, CDMA, 3G and part of 4G, but the working frequency of SAW filter is inversely proportional to the electrode linewidth.
  • the selectivity of this filter decreases, and when the operating frequency is above 2.4GHz, the electrode line width is less than 0.5 ⁇ m, resulting in high-frequency insertion loss, quality factor and power tolerance degradation, and the SAW filter is very sensitive to temperature (temperature rise will cause up to 4MHz frequency response drop ), making the application extremely limited.
  • the sound wave in the BAW filter propagates vertically, its frequency is inversely proportional to the thickness of the film, that is, the size can be reduced as the frequency rises, and theoretically can meet the communication requirements within 20GHz, and the BAW The filter has the advantages of lower insertion loss, extremely high quality factor (Q value above 1000), low sensitivity to temperature changes, and integration on IC chips.
  • BAW The filter has become the preferred filter for solving many interference problems.
  • BAW resonators are the basic components of BAW filters. By cascading different BAW resonators, BAW filters that meet different performance requirements can be fabricated.
  • a BAW resonator usually includes a substrate, a cavity formed on the substrate, and a resonant structure on the cavity.
  • the resonant structure includes a lower electrode, a piezoelectric film, and an upper electrode.
  • the resonant structure is used to convert electrical signals through physical vibration. For elastic waves.
  • a resonant structure including a piezoelectric layer is suspended on a cavity on a supporting substrate.
  • a circle of dry film is coated on the top cover, and the top cover is aligned with the cavity position. Bonding to the resonant structure, and then performing TSV process to electrically lead the upper and lower electrodes of the resonant structure to the top cover.
  • this method needs to etch through holes in the thick dry film, which is difficult to control the process, and after the through holes are etched, conductive materials need to be deposited on the dry film, due to the poor stability of the dry film itself , Resulting in poor quality of the formed conductive plug and unstable electrical contact.
  • the present invention provides a BAW resonator packaging module and packaging method, which no longer engraves holes from the top cover direction, does not affect the setting of the top cover, and does not increase the process difficulty.
  • a method for packaging a BAW resonator which includes the following steps:
  • a BAW resonant device includes a first substrate and a resonant structure disposed on the first substrate, and a first gap is formed between the resonant structure and the first substrate;
  • the BAW resonant device is joined to the second substrate from one side of the resonant structure through a joining layer, and there is a second gap between the resonant structure and the second substrate mainly surrounded by the joining layer, the The second gap is at least partially aligned with the first gap;
  • a conductive interconnection layer is formed on the inner surface of the through hole and the surface of the first substrate at the periphery of the through hole.
  • a packaging module of a BAW resonator comprising:
  • a BAW resonator device the BAW resonator device is bonded to the bonding layer, the BAW resonator device includes a first substrate and a resonant structure provided on a surface of the first substrate facing the second substrate, A first gap is formed between the resonant structure and the first substrate, the bonding layer is sandwiched between the second substrate and the resonant structure, and the second substrate and the resonant structure There is a second gap mainly surrounded by the bonding layer, the second gap is at least partially aligned with the first gap, and the BAW resonator device is also provided with a through hole through which the through hole passes The first substrate on the periphery of the first gap and exposes the corresponding electrical connection part of the resonant structure; and,
  • a conductive interconnection layer is formed on the inner surface of the through hole and the surface of the first substrate at the periphery of the through hole.
  • the technical scheme of the present invention is to join the BAW resonator device with the second substrate through the bonding layer, and then form a through hole exposing the electrical connection part of the resonant structure in the BAW resonator device on the side of the first substrate, And a conductive interconnection layer is formed on the inner surface of the through hole and part of the surface of the first substrate, thereby avoiding the steps of through hole etching and depositing conductive material from the bonding layer, so that the material of the bonding layer can be selectively provided
  • the material with better bonding effect can help reduce the process difficulty, improve the stability of the through hole and the formed package module, thereby helping to improve the performance of the BAW resonator package structure.
  • the BAW resonant device includes a support layer disposed on the first substrate, the resonant structure is overlapped on the support layer, and the resonant structure and the first
  • the first gap between the substrates is mainly surrounded by the support layer, the through holes pass through the first substrate and the support layer, and the support layer can be made of materials with higher hardness, thereby making the support layer
  • the process of forming through-holes is lower than that of forming through-holes in the bonding layer, and the quality and stability of the through-holes are better.
  • the material of the bonding layer is a non-metallic material, for example, including photo-curable material, thermo-curable material, silicon dioxide, nitride, tetraethyl orthosilicate and dielectric constant K greater than 4.
  • a non-metallic material for example, including photo-curable material, thermo-curable material, silicon dioxide, nitride, tetraethyl orthosilicate and dielectric constant K greater than 4.
  • At least one of the high-K dielectrics which can reduce the process difficulty and cost of combining the second substrate and the BAW resonant device, and can be highly compatible with the process of the BAW resonant device, and will not cause gold-gold bonding, etc. Pollution caused by metal bonding process.
  • the same material as the piezoelectric layer in the bulk acoustic wave resonant structure can be used to make the passivation layer, which can be compatible with the first gap process to the greatest extent, while avoiding the use of other materials to make the passivation layer.
  • the passivation layer fills the through holes, which can enhance the mechanical strength of the BAW resonator, thereby increasing the supporting force of the sidewall of the first gap of the resonator, and preventing the deformation of the first gap from affecting the resonance performance and performance of the BAW resonator. reliability.
  • the bonding layer can fill the opening on the resonant structure at the periphery of the second gap, thereby tolerating a certain step height difference of the resonant structure in the area outside the second gap
  • the bonding layer not only can the surfaces of the second substrate and the first substrate facing away from each other not be inclined, but also can complement the resonant structure located at the periphery of the second gap
  • the step height difference on the side facing the second substrate partly ensures the reliability and stability of the joint.
  • a flat process window can be provided for the manufacturing process of the through hole and the conductive interconnection layer, thereby ensuring the performance of the formed through hole and the conductive interconnection layer.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a BAW resonator according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a BAW resonator device according to an embodiment of the invention.
  • Fig. 3 is a schematic cross-sectional view of a BAW resonator device according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a second substrate according to an embodiment of the invention.
  • FIG. 5 is a schematic cross-sectional view after bonding a second substrate by a BAW resonator packaging method according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a conductive plug formed by a BAW resonator packaging method according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a contact pad formed by the packaging method of a BAW resonator according to an embodiment of the present invention.
  • 100-BAW resonant device 110-first substrate; 120-resonant structure; 121-first electrode; 122-piezoelectric layer; 123-second electrode; 120a-first trench; 120b-second trench; 10-first gap; 20-second gap; 30-cavity; 130-support layer; 200-second substrate; 210-bonding layer; 140-first through hole; 150-second through hole; 111- Sidewall protection layer; 141—first conductive interconnection layer; 151—second conductive interconnection layer; 142—first contact pad; 152—second contact pad; 160—passivation layer.
  • FIG. 1 is a schematic flowchart of a packaging method of a BAW resonator according to an embodiment of the present invention.
  • the packaging method of the BAW resonator according to an embodiment of the present invention includes the following steps:
  • the BAW resonator device includes a first substrate and a resonant structure disposed on the first substrate, and a first gap is formed between the resonant structure and the first substrate;
  • a BAW resonant device 100 is provided.
  • the BAW resonant device 100 includes a first substrate 110 and a resonant structure 120 disposed on the first substrate 110.
  • the resonant structure A first gap 10 is formed between 120 and the first substrate 110.
  • the resonant structure 120 includes a first electrode 121 close to the first substrate 110, a piezoelectric layer 122 located on the first electrode 121, and a second electrode 123 located on the piezoelectric layer 122 .
  • the first electrode 121 may be used as an input electrode or an output electrode that receives or provides an electrical signal such as a radio frequency (RF) signal.
  • RF radio frequency
  • the first electrode 121 when the second electrode 123 is used as an input electrode, the first electrode 121 may be used as an output electrode, and when the second electrode 123 is used as an output electrode, the first electrode 121 may be used as an input electrode, and the piezoelectric layer 122
  • the electrical signal input through the first electrode 121 or the second electrode 123 is converted into a bulk acoustic wave.
  • the piezoelectric layer 122 converts electrical signals into bulk acoustic waves through physical vibration.
  • the BAW resonator device 100 includes a support layer 130 disposed on the first substrate 110, and the first gap 10 is mainly defined or enclosed by the support layer 130, so
  • the resonant structure 120 (here, specifically, the layer where the first electrode 121 of the resonant structure 120 is located) is in partial contact with the supporting layer 130 around the first gap 10. But not limited to this. Referring to FIG.
  • a groove is formed in the first substrate 110, and the groove defines the resonant structure 120 and the The first gap 10 between the first substrate 110, the resonance structure 120 (here specifically refers to the layer where the first electrode 121 of the resonance structure 120 is located) and the first substrate around the groove 100 laps.
  • the material of the first substrate 100 may be any suitable substrate known to those skilled in the art, for example, it may be at least one of the following materials: silicon (Si), germanium (Ge), germanium Silicon (SiGe), carbon silicon (SiC), silicon germanium (SiGeC), indium arsenide (InAs), gallium arsenide (GaAs), indium phosphide (InP) or other III/V compound semiconductors, including these semiconductors Multi-layer structure, etc., or silicon-on-insulator (SOI), silicon-on-insulator (SSOI), silicon germanium-on-insulator (S-SiGeOI), silicon germanium on insulator (SiGeOI), and germanium on insulator (GeOI ), or can also be Double Side Polished Wafers (DSP), or ceramic substrate such as alumina, quartz or glass substrate, etc.
  • the first substrate 100 is a P-type high-resistance single crystal silicon wafer
  • the manufacture of the BAW resonator device may include the following processes: first, a piezoelectric stack film layer is fabricated on a preparation substrate, the piezoelectric stack film layer includes a first electrode layer, a piezoelectric layer, and For the second electrode layer, before the piezoelectric stack film layer is fabricated, an isolation layer with a thickness of about 1 ⁇ m can be formed on the preparation substrate, and the isolation layer can subsequently be used as a barrier material for removing the preparation substrate; then, the piezoelectric stack film A support layer 130 is formed on the layer, and a first gap is formed in the support layer 130 through a photomask and etching process; then, the first substrate 110 is bonded on the support layer 130 to transfer the piezoelectric stack film layer to the second On a substrate 110, the backside etching process is used to remove and prepare the substrate; then, a photomask and etching process are used to process the piezoelectric stack film to form a resonance structure 120, and the support layer 130 .
  • the manufacturing of the BAW resonator device 100 of the present invention is not limited to the above method.
  • the first gap 10 may not be formed by a support layer, but a sacrificial layer (not shown) may be used directly on the first liner.
  • a first gap 10 and a resonant structure 120 are formed on the bottom 110 to obtain a BAW resonant device 100.
  • the specific process includes:
  • the first substrate 110 may include a base (not shown) And at least one thin film (not shown) covering the substrate (not shown) may also be a bare chip of semiconductor material.
  • a sacrificial layer (not shown) is filled in the groove, and the top surface of the sacrificial layer is flush with the top surface of the first substrate 110, or may be higher than the top surface of the first substrate 110, or slightly Below the top surface of the first substrate 110, the sacrificial layer may have a single-layer structure or a stacked-layer structure.
  • the top surface of the first substrate 110 and the sacrificial layer is covered with a piezoelectric stack film layer
  • the piezoelectric stack film layer includes a first electrode layer, a piezoelectric layer, and a second electrode layer stacked in sequence, and passes through Exposure, development, and etching processes to sequentially pattern the first electrode layer, piezoelectric layer, and second electrode layer or sequentially pattern the second electrode layer, piezoelectric layer, and first electrode layer to define the first electrode 121, the piezoelectric layer 122 on the first electrode 121 and the second electrode 123 on the piezoelectric layer 122, thereby forming a resonant structure 120.
  • a release hole (not shown) is opened in the resonant structure 120 near the edge in the region of the first gap 10, and the sacrificial layer is removed by introducing an etchant into the release hole to re-empt the groove, thereby obtaining
  • the first gap 10 between the resonant structure 120 and the first substrate 110 is a groove structure with the entire bottom recessed in the first substrate 110. So far, the process of providing the BAW resonator 100 in step S1 is completed.
  • Another method of using a sacrificial layer to directly form the first gap 10 and the resonant structure 120 on the first substrate 110 to obtain the BAW resonator 100 may be provided.
  • the specific process includes :
  • a sacrificial layer (not shown) is completely covered on the first substrate 110.
  • the sacrificial layer may be a single-layer structure or a stacked-layer structure.
  • the top surfaces of the first substrate 110 and the sacrificial layer are sequentially covered with a piezoelectric stack film layer, the piezoelectric stack film layer includes a first electrode layer, a piezoelectric layer, and a second electrode layer stacked in sequence, and Through exposure, development, and etching processes, the first electrode layer, piezoelectric layer, and second electrode layer are sequentially patterned or the second electrode layer, piezoelectric layer, and first electrode layer are sequentially patterned to define the first The electrode 121, the piezoelectric layer 122 on the first electrode 121 and the second electrode 123 on the piezoelectric layer 122 form a resonance structure 120.
  • a release hole (not shown) may be opened on the edge area of the resonant structure 120, and the sacrificial layer may be removed by introducing an etchant into the release hole, thereby obtaining a gap between the resonant structure 120 and the first substrate 110
  • the first gap 10 is protrudingly provided on the first substrate 110. So far, the process of providing the BAW resonator 100 in step S1 is completed.
  • the BAW resonator 100 may not be an independent device, that is, the number of resonant structures 120 on the first substrate 110 is not limited to One, when multiple resonant structures 120 are formed on the first substrate 110 at the same time, there is a first gap 10 between each resonant structure 120 and the first substrate 110, and adjacent first gaps can pass through The corresponding support layer or the first substrate material is separated, and the adjacent resonant structures 120 may be disconnected from each other, or some of the film layers may be connected together.
  • the cross-section of the resonant structure 120 is not limited to the structure shown in FIG. 2 and FIG. 3, and can be specifically designed according to specific needs.
  • the planar shape of the resonant part that performs resonant operation in the resonant structure 120 may be a rectangle, or may be a circle, an ellipse, or a polygon other than a rectangle, such as a pentagon, a hexagon, and the like.
  • the planar shape of the first gap 10 may be a rectangle, or a circle, an ellipse, or a polygon other than a rectangle, such as a pentagon, a hexagon, and the like.
  • the BAW resonant device 100 shown in FIG. 2 is taken as an example.
  • the resonant structure 120 includes a first electrode 121 facing the first substrate 100, a piezoelectric layer 122 located on the first electrode 121, and The second electrode 123 is located on the piezoelectric layer 122.
  • the first electrode 121, the piezoelectric layer 122, and the second electrode 123 are formed by a patterning process.
  • the first electrode 121 and the second electrode 123 are exposed in a direction away from the first substrate 110, and have a step difference.
  • the resonant structure 120 may be formed as a double trench (Air Trench) structure, such as the first trench 120a and the second trench 120b in FIG. 2 and FIG. 3, and the first trench 120a penetrates the The second electrode 123 and the piezoelectric layer 122 expose the first electrode 121, the second groove 120b penetrates the first electrode 121 and the piezoelectric layer 122 and exposes the second electrode 123, and the The second groove 120b communicates with the first gap 10.
  • Air Trench Air Trench
  • the support layer 130 can be made of silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, titanium oxide, titanium nitride, amorphous carbon, etc.
  • the support layer 130 can also be made of two or more materials.
  • the supporting layer 130 may have a stacked structure of silicon oxide and silicon nitride, and the silicon nitride layer is in contact with the resonance structure 120.
  • the first electrode 121 and the second electrode 123 can be made of one or more of conductive materials such as molybdenum (Mo), tungsten (W), aluminum, copper, iridium (Ir), rubidium (Ru), and doped polysilicon.
  • the piezoelectric layer 122 can be made of quartz, aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobium oxide (LiNbO 3 ), lithium tantalum oxide (LiTaO 3 ) and other piezoelectric materials.
  • the piezoelectric layer 122 may also be doped with rare earth elements.
  • the material of the first electrode 121 and the second electrode 123 is, for example, molybdenum, and the material of the piezoelectric layer 122 is, for example, aluminum nitride.
  • the thickness of the first electrode 121 and the second electrode 123 is approximately in the range of 100 nm to 200 nm.
  • the thickness of the piezoelectric layer 122 is in the range of 1 ⁇ m to 3 ⁇ m.
  • Molybdenum can be deposited by PVD (physical vapor deposition) process or magnetron sputtering process, and aluminum nitride can be deposited by PVD (physical vapor deposition) process or MOCVD (metal organic chemical vapor deposition) process.
  • the second substrate is provided as a cap wafer, and the first substrate 110 is used as a carrier wafer.
  • 4 is a schematic cross-sectional view of a second substrate according to an embodiment of the invention. 4, the second substrate 200 may use a base material similar to that of the first substrate 110.
  • a bonding layer material with a certain thickness is formed on the second substrate 200, and the bonding layer material is patterned , To form a bonding layer 210 having a second gap 20.
  • the second substrate 200 may be bonded to the first substrate 110 by vacuum bonding or bonding in a vacuum environment, so that the bonding layer 210 may be a conventional bonding material, such as silicon oxide, silicon nitride, silicon oxynitride, Ethyl silicate, etc., may also be an adhesive such as a photocurable material or a thermosetting material, such as an adhesive film (Die Attach Film, DAF) or a dry film (Dry Film).
  • a conventional bonding material such as silicon oxide, silicon nitride, silicon oxynitride, Ethyl silicate, etc.
  • an adhesive such as a photocurable material or a thermosetting material, such as an adhesive film (Die Attach Film, DAF) or a dry film (Dry Film).
  • the resonant structure 120 is formed on the first substrate 110, and the contact area between the second substrate 200 and the first substrate 110 includes both the surface of the support layer 130 and
  • the surface including the resonant structure 120 has a certain step difference between the two surfaces, and for the resonant structure 120 shown in FIG. 2 or FIG. 3, the side of the resonant structure 120 facing the second substrate has The opening is located at the periphery of the first gap 10 and the second gap 20 and exposes part or all of the surface of the corresponding electrical connection portion of the resonant structure 120 facing the second substrate, that is, the first electrode 121
  • the second electrode 123 has a step difference at the opening that exposes the electrical connection part of the resonant structure 120.
  • the material selected for the bonding layer 210 needs to meet: can be patterned, can be cured under certain conditions, can stably adhere to the upper and lower materials, and be elastic (tolerant of certain deformations)
  • the material or the material with less hardness) can tolerate a certain step height difference when the second substrate 200 and the resonant structure 120 are subsequently joined.
  • the material of the bonding layer 210 is, for example, a photo-curable material, a heat-curable material, or a combination of a photo-curable material and a heat-curable material, which can lose its elasticity through light, heating and cooling.
  • the bonding layer 210 is, for example, a dry film.
  • the thickness of the dry film is about 10 ⁇ m-20 ⁇ m, and its formation method can adopt the process of "sticking dry film-exposure and developing-etching-demolding" or "substrate cleaning treatment-sticking dry film-exposing and developing-etching-demolding" Process formation, the process conditions of "sticking dry film” include: process temperature is 80 °C ⁇ 120 °C (for example, 110 °C), the process environment is vacuum; “exposure and development” process conditions include: UV exposure under vacuum conditions , Stand for a while after exposure, the radiation dose of the ultraviolet exposure is, for example, 200J/cm 2 ⁇ 300mJ/cm 2 ; pre-bake the exposed bonding layer 210 at a temperature of 100°C ⁇ 150°C (for example, 130°C) Bake for 100 seconds to 300 seconds (for example, 200 seconds); at room temperature, spin-spray the developer on the pre-baked bonding layer 210 many times (for
  • the dry film formed on the second substrate 200 is, for example, a ring structure, and the range defined by the dry film may be at least partially aligned with the defined range of the supporting layer in the BAW resonator device 100 (that is, the second gap formed subsequently and the first The gap is at least partially aligned) so as to form a cavity defining the resonant structure 120 between the first substrate 110 and the second substrate 200 after bonding.
  • FIG. 5 is a schematic cross-sectional view after bonding a second substrate by a BAW resonator packaging method according to an embodiment of the present invention.
  • the bonding operation in step S2 of the packaging method of the BAW resonator of this embodiment can be performed, specifically, the BAW resonator device 100 is connected to the second substrate from the side of the resonant structure 120 through the bonding layer 210 200 bonding, the resonant structure 120 and the second substrate 200 have a second gap 20 mainly surrounded by the bonding layer 210, and the second gap 20 surrounded by the bonding layer 210 and the first gap 10 at least partially aligned.
  • the first gap 10 and the second gap 20 may not be connected, or they may be connected.
  • the process conditions for bonding the second substrate 200 and the BAW resonator device 100 include: the process pressure is 1 Pa-10 5 Pa, the bonding is performed in a vacuum environment, the temperature is 150 °C ⁇ 200 °C (for example, 150 °C), and the pressure time is 20 min ⁇ 30min, so as to avoid affecting the resonance performance of the product while ensuring the joint performance.
  • the bonding layer 210 is solidified by light, heating and cooling, that is, the bonding layer 210 loses its elasticity, so that the second substrate 200 and the BAW resonator device 100 are reliably connected together.
  • the process of curing the bonding layer 210 can be a high-temperature curing process, where the curing temperature is 180° C. to 220° C. (for example, 190° C.), and the curing time is 1.5 hours to 2 hours (for example, 2 hours).
  • the process of curing the bonding layer 210 can also be a UV curing process, and the radiation dose of UV curing can be selected from 200mJ/cm 2 to 300mJ/cm 2 , which is different from the ultraviolet light when exposing the bonding layer 210.
  • the light used in the exposure process is the same to simplify the process and reduce costs.
  • the bonding layer 210 has a certain thickness and is a hollow structure, thereby defining between the resonant structure 120 and the second substrate 200
  • the second gap 20, the second gap 20 and the above-mentioned first gap 10 are respectively arranged on the upper and lower sides of the resonant structure 120 and communicated, thereby forming a cavity 30 between the first substrate 110 and the second substrate 200 , And the resonant structure 120 is confined in the cavity 30.
  • the shape and size of the second gap may be the same as the first gap 10, or not completely the same, as long as the second gap 20 can make the first electrode, piezoelectric layer, and piezoelectric layer of the resonant structure 120 after bonding It is sufficient that the second electrode has a portion overlapping with the first gap 10 and the second gap 20 at the same time, thereby forming an effective resonance region of the resonator.
  • the shape of the bottom surface of the cavity 300 is rectangular, but in other embodiments, according to the design of the resonant operation of the resonator device, the shape of the bottom surface of the cavity 300 may also be a circle, an ellipse or something other than a rectangle. Polygons, such as pentagons, hexagons, etc.
  • a dry film can be used to join the BAW resonator device 100 and the second substrate 200.
  • the dry film has a low hardness and can tolerate a certain step height difference, so that it can be compared with the support layer 130 and the first substrate of the resonant structure 120.
  • the electrode 121 and the second electrode 123 form good contact, and the bonding effect is good.
  • the bonding layer 210 when the bonding layer 210 does not have elasticity, you can choose to first cover the surface of the resonant structure 120 facing away from the first substrate 110 with a sufficiently thick bonding material and planarize it. The surface of the bonding material. At this time, when the resonance structure 120 has an opening at the periphery of the first gap exposing the corresponding electrical connection part, the bonding layer 210 can also fill the opening; then, the planarized bonding material is etched, Until the surface of the resonant structure 120 facing away from the first substrate 110 is exposed to form the bonding layer 210 with the second gap 20; after that, it can be directly formed between the bonding layer 210 and the second substrate 200.
  • the molecular adsorption force bonds the second substrate 200 to the bonding layer 210 to close the second gap 20. Since in this method of forming the bonding layer 210 with the second gap 20, the bonding layer 210 can fill the opening (not shown) of the resonant structure 120 in the peripheral area of the first gap 10 and have a flattened surface, so It can tolerate a certain step height difference, and can form good contact with the support layer 130 and the first electrode 121 and the second electrode 123 of the resonant structure 120, so that the second substrate 200 can have a better bonding effect .
  • the first electrode 121 and the second electrode 123 of the resonant structure 120 need to be led out in order to control from the outside of the package structure and obtain the relevant electrical parameters in the package structure from the outside.
  • the hardness of the bonding layer 210 is relatively small, if the through-hole etching and the conductive material are deposited therein, on the one hand, the process is difficult to control, on the other hand, the conductive material is not easy to form a continuous film, and the conductive performance is stable. Sex is relatively poor. Therefore, the following processes are avoided from the second substrate 200 side, but are performed from the first substrate 110 side.
  • FIG. 6 is a schematic cross-sectional view of a conductive interconnection layer formed by a BAW resonator packaging method according to an embodiment of the present invention.
  • the first through hole 140 and the second through hole 150 can be formed in the BAW resonator device 100.
  • the following processes may be included:
  • the first substrate 110 is thinned from the side away from the second substrate 200. Thinning the first substrate 110 facilitates the etching process corresponding to the through hole. Generally, the thickness of the first substrate 110 needs to be reduced to less than 80 ⁇ m, and the thickness of the first substrate 110 after the thinning in this embodiment is about 60 ⁇ m.
  • an etching process is performed on the side of the first substrate 110 to form a first through hole 140 and a second through hole 150, and the first through hole 140 exposes Part of the first electrode 121 (ie, the first electrical connection portion) of the resonant structure 120, and the second through hole 150 exposes a portion of the second electrode 123 (ie, the second electrical connection portion) of the resonant structure 120.
  • the first through-hole 140 may be formed through a first photomask process and an etching process, and the etching process for forming the first through-hole 140 is until the first electrode 121 is exposed, and then through the second photomask process The other area is covered, and the second through hole 150 is formed by an etching process, and the etching process of the second through hole 150 stops until the second electrode 123 is exposed.
  • the size of the first through hole 140 and the second through hole 150 may be determined according to the range of the electrode to be exposed and the etching conditions.
  • the upper opening diameter of the first through hole 140 and the second through hole 150 is about 20 ⁇ m to 70 ⁇ m, and the depth of the first through hole 140 and the second through hole 150 is about 60 ⁇ m to 100 ⁇ m, specifically about 70 ⁇ m to 80 ⁇ m.
  • the corresponding electrical connection portion of the resonant structure 120 includes: a first electrical connection portion, including a part of the first electrode 121 extending from the first gap 10; Part of the second electrode 122 of the first gap 10 is shown.
  • a conductive interconnection can be formed on the inner surface of the first through-hole 140 and the second through-hole 150 and the surface of the first substrate 110 around the two through-holes.
  • the layer may include the following processes: firstly, a seed layer is formed on the surface of the first through hole 140, the second through hole 150 and the first substrate 110.
  • the seed layer may be formed by PVD or sputtering.
  • the main material of the conductive interconnection layer is copper
  • TiCu can be used as the seed layer material; then, the BAW resonator device 100 including the seed layer is placed in the electrolytic tank of the electrolytic equipment or the electroless plating solution of the electroless plating equipment , Taken out after a set time, a copper conductive layer is formed on the surface of the first through hole 140, the second through hole 150 and the first substrate 110; then, it can be removed by photolithography combined with an etching process Unnecessary copper conductive layer and seed layer on the surface of the first substrate 110 to form a conductive interconnection layer.
  • the conductive interconnection layer covering the first via 140 is defined as the first conductive interconnection layer 141, covering the second via
  • the conductive interconnection layer of the hole 150 is defined as the second conductive interconnection layer 151.
  • the first conductive interconnection layer 141 is in electrical contact with the first electrode 121 of the resonant structure 120
  • the second conductive interconnection layer 151 is in electrical contact with the second electrode 123 of the resonant structure 120.
  • the deposited conductive material may include one or more of metal materials such as copper, nickel, zinc, tin, silver, gold, tungsten, and magnesium, or include copper, nickel, and zinc. , Tin, silver, gold, tungsten and magnesium alloys.
  • the conductive material can be deposited using processes such as physical vapor deposition. Since electroplating and electroless plating processes have good hole filling effects, electroplating or electroless plating processes are preferably used to deposit conductive materials.
  • the material of the conductive interconnection layer may be the same as the material of the second electrode and the first electrode, and the deposition process conditions and the process conditions of etching the second electrode and the first electrode are also the same. This can maximize the compatibility with the process of step S1 and simplify the process.
  • the second through hole 150 needs to pass through the material layer where the first electrode 121 is located, and the material layer where the piezoelectric layer 122 is located to expose the second electrode 123.
  • the electroplating process is performed in the first through hole 140 and the second through hole 150, in order to prevent the conductive material from covering the sidewalls of the first electrode 121 material layer and the piezoelectric layer 122 in the first through hole 140 and the second through hole 150
  • the conductive performance of the first conductive interconnection layer 141 and the second conductive interconnection layer 151 is adversely affected.
  • the first through-hole A sidewall protection layer 111 is formed on the inner sidewalls of the second through holes 140 and 150 respectively.
  • the method for forming the sidewall protection layer 111 may include the following processes: forming a dielectric layer that fills the first through-hole 140 and the second through-hole 150; and etching the dielectric layer vertically to make the remaining dielectric layer The layer as the sidewall protection layer 111 only covers the sidewall surfaces of the first through hole 140 and the second through hole 150.
  • the bottom surfaces of the first through-hole 140 and the second through-hole 150 still expose the corresponding electrical connections (ie, electrodes) of the resonant structure 120, which can be formed by the above-mentioned electroplating or electroless plating process.
  • a conductive interconnection layer capable of making electrical contact with the resonant structure 120. Since the sidewall surfaces of the first through hole 140 and the second through hole 150 are different, the sidewall of the first through hole 140 does not expose the sidewalls of the first electrode 121 material layer and the piezoelectric layer 122 material layer.
  • the wall protection layer 111 may also cover only the side surface of the second through hole 150.
  • the method of forming a conductive interconnection layer on the surface of the first substrate 110 is not limited to this.
  • a conductive interconnection layer covering the inner surfaces of the first through hole 140 and the second through hole 150 may be formed first. After the portion, a conductive material is deposited to form a portion of the conductive interconnection layer covering the surface of the first substrate 110 away from the second substrate 200, so that the portion of the conductive interconnection layer on the first substrate 110 is respectively A through hole 140 is electrically connected to the conductive interconnection layer in the second through hole 150.
  • the formed first conductive interconnection layer 141 and the second conductive interconnection layer 151 respectively connect the electrical contacts of the first electrode 121 and the second electrode 123 to the first substrate 110 away from the second substrate 200.
  • FIG. 7 is a schematic cross-sectional view after forming a passivation layer and a contact pad by a packaging method of a BAW resonator according to an embodiment of the present invention.
  • the first through-hole 140 and the second through-hole 150 can be filled with a passivation layer, and a contact pad can be formed on the first substrate 110.
  • forming the contact pad may include the following processes: first, on the surface of the first through hole 140 where the first conductive interconnection layer 141 is formed, the surface of the second through hole 150 where the second conductive interconnection layer 151 is formed, and A passivation layer material is deposited on the surface of the first substrate 110 on which the conductive interconnection layer is formed, so that the passivation layer material fills the first through hole 140 and the second through hole 150 and covers the first substrate 110 A certain thickness; then a planarization process, such as a CMP process, removes part of the thickness of the passivation layer material, and the remaining passivation layer material is used as the passivation layer 160 to fill the first through-hole 140 and the second through-hole 150 and in
  • the first substrate 110 has a flat surface; then the passivation layer 160 is etched to form at least part of the first conductive interconnection layer 141 and at least part of the first substrate 110, respectively.
  • the exposed first conductive interconnection layer 141 is deposited on the surface of the first through hole 140 where
  • the passivation layer 160 is used to define the positions of the contact pads and protect the formed package structure.
  • the material of the passivation layer 160 may include magnesium oxide (MgO), zirconium oxide (ZrO 2 ), aluminum nitride (AlN), lead zirconate titanate (PZT), gallium arsenide (GaAs), hafnium oxide (HfO 2 ), Any one or more of dielectric materials such as aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ) and zinc oxide (ZnO).
  • the material of the passivation layer 160 can be the same as that of the piezoelectric layer 122, and the same deposition process as that of the piezoelectric layer 122 can be used, so as to be compatible with the manufacturing process of the BAW resonator device 100 to the maximum extent, while avoiding the use of other The problem of temperature drift and the introduction of unnecessary stress caused when the material is used to make the passivation layer, thereby improving the resonance performance of the resonator.
  • the passivation layer 160 fills the first through hole 140 and the second through hole 150, which can also enhance the mechanical support performance of the BAW resonator device 100.
  • a first contact pad 142 and a second contact pad 152 are formed respectively, and the first contact pad 142 is interconnected by a first conductive connection.
  • the layer 141 is electrically connected to the first electrode 121, and the second contact pad 152 is electrically connected to the second electrode 123 through the second conductive interconnection layer 151, so that the resonant structure can be electrically controlled from outside the package module.
  • the BAW resonator device 100 is bonded to the second substrate 200 through the bonding layer 210, and then an exposing resonant structure 120 in the BAW resonator device 100 is formed on the side of the first substrate 110
  • the through-holes of the electrical connection portion, and the conductive interconnection layer is formed on the inner surface of the through-hole and part of the surface of the first substrate, thereby avoiding the steps of etching through holes and depositing conductive materials from the bonding layer 210,
  • the material of the bonding layer 210 can be selected to provide a better bonding effect, which helps to reduce the process difficulty, and improves the stability of the conductive plug and the formed package module, thereby helping to improve the performance of the BAW resonator.
  • This embodiment also includes a BAW resonator packaging module, which can be manufactured by the BAW resonator packaging method of this embodiment.
  • the package module includes a BAW resonator device 100, a second substrate 200 joined to the BAW resonator device 100, a first through hole 140 and a second through hole 150 formed on the BAW resonator device 100, And, a conductive interconnection layer formed on the BAW resonator device 100.
  • the BAW resonator device 100 includes a first substrate 110 and a resonant structure 120 disposed on the side of the first substrate 110 facing the second substrate 200, and a resonant structure 120 is formed between the resonant structure 120 and the first substrate 110.
  • the first gap 10 and the second gap 20 may be connected to form a cavity 30, or may not be connected, and the overlapping portion of the resonant structure 120 with the first gap 10 and the second gap 20 is used as the effective working area.
  • the resonant structure 120 includes a first electrode 121 close to the first substrate 100, a piezoelectric layer 122 located on the first electrode 121, and a second piezoelectric layer 122 located on the piezoelectric layer 122. Electrode 123.
  • the first through hole 140 and the second through hole 150 are both located at the periphery of the first gap 10 and respectively pass through the first substrate 110 to expose the corresponding electrical connection portion of the resonant structure 120.
  • the electrical connection portion includes: a first electrical connection portion including a part of the first electrode 121 extending out of the first gap 10; a second electrical connection portion including a portion of the second electrode 123 extending out of the first gap 10.
  • the conductive interconnection layer includes: a first conductive interconnection layer 141 formed on the inner surface of the first through hole 140 and a portion of the first substrate 110 around the first through hole 140, the first conductive interconnection layer 141 passes Electrically contact the first electrical connection portion to be electrically connected to the first electrode 121; and, the second conductive interconnection layer 151 is formed on the inner surface of the second through hole 150 and a portion of the first substrate 110 around the second through hole 150 Above, the second conductive interconnection layer 151 is electrically connected to the second electrode 123 by electrically contacting the second electrical connection portion.
  • the package module of the above-mentioned BAW resonator may further include a passivation layer 160, which fills the first through-hole 140 and the second through-hole 150 and exposes the first through-hole 140 and the second through-hole, respectively.
  • a passivation layer 160 which fills the first through-hole 140 and the second through-hole 150 and exposes the first through-hole 140 and the second through-hole, respectively.
  • the exposed first conductive interconnection layer 141 serves as the first A contact pad 142
  • the exposed second conductive interconnection layer 151 serves as a second contact pad 152.
  • the first contact pad 142 and the second contact pad 152 may be connected to an external controller to control the operation of the resonance structure 120.
  • the packaging module of the BAW resonator of this embodiment can be packaged by the above-mentioned packaging method of the BAW resonator.
  • the bonding layer 210 can be made of materials with lower hardness, such as light-curable materials (including dry films) and/or heat-cured materials, so as to use its better step tolerance to be implemented between materials with poor flatness. Good bonding, so that the second substrate 200 (as the top cover of the package) has a good packaging quality for the BAW resonator device 100.
  • the bonding layer 210 can also be made of materials with higher hardness, such as silicon dioxide, nitride, and silicon. At least one of ethyl acid and a high-K medium with a dielectric constant K greater than 4.
  • structures such as through holes and conductive interconnection layers for electrically leading out the electrical connection portion of the BAW resonator device 100 are formed on the side of the first substrate 110 away from the second substrate 200, which can avoid the need for the second gap 20.
  • the top cover structure has an undesirable effect, and at the same time helps to improve the quality of through-holes and conductive interconnect layers.
  • the BAW resonant device may have a structure as shown in FIG. 2 or FIG. 3.
  • the BAW resonator device 100 includes a support layer 130 disposed on a first substrate 110.
  • the hardness of the support layer 130 may be greater than that of the bonding layer 210.
  • the first gap 10 is mainly It is defined by the support layer 130, and the resonant structure 120 overlaps the support layer 130.
  • the first through hole 140 and the second through hole 150 are both provided through the first substrate 110 and the supporting layer 130.
  • FIG. 7 in another embodiment (refer to FIG.
  • a groove is formed in the first substrate 110 of the BAW resonator device 100, and the resonant structure 120 is located above the groove and is in contact with the surrounding area of the groove. If the first substrate 110 is overlapped, in this embodiment, the first through hole and the second through hole provided in the BAW resonator device 100 can pass through the first substrate 110.
  • the support layer 130 can be made of materials with higher hardness than the dry film, such as silicon dioxide, silicon nitride, silicon oxynitride, aluminum nitride, titanium oxide, and nitride.
  • At least one of titanium on the one hand, can provide higher support strength, on the other hand, the process control of the hole etching process is less difficult, and when the conductive material is deposited in the hole to form a conductive interconnection layer, the conductive The film layer of the interconnection layer is continuous, the quality is higher, and the stability of the conductive interconnection layer is better, which is beneficial to improve the performance of the BAW resonator packaging structure.
  • This embodiment also includes a filter which is a packaged module of the above-mentioned BAW resonator.
  • the filter may be a radio frequency filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种BAW谐振器的封装模块及封装方法,所述封装方法将包括第一衬底(110)以及设置在所述第一衬底(110)上的谐振结构(120)的BAW谐振器件(100)通过接合层(210)与第二衬底(200)接合,在第一衬底(110)一侧形成暴露出谐振结构(120)相应的电连接部的穿通孔(140,150),并在穿通孔(140,150)的内表面以及部分第一衬底(110)的表面上形成导电互连层(141,151),避免了从接合层(210)中进行穿通孔刻蚀以及沉积导电材料的步骤,进而使得接合层(210)的材料可以选择提供较好接合效果的材料,有助于降低工艺难度,提高穿通孔以及所形成的封装模块的稳定性,从而有助于提高BAW谐振器封装结构的性能。所述封装模块可通过上述封装方法形成。

Description

BAW谐振器的封装模块及封装方法 技术领域
本发明涉及射频产品封装技术领域,特别涉及一种BAW谐振器的封装模块及封装方法。
背景技术
随着无线通讯技术的不断发展,为了满足各种无线通讯终端的多功能化需求,终端设备需要能够利用不同的载波频谱传输数据,同时,为了在有限的带宽内支持足够的数据传输率,对于射频系统也提出了严格的性能要求。射频滤波器是射频系统的重要组成部分,可以将通信频谱外的干扰和噪声滤出以满足射频系统和通信协议对于信噪比的需求。以手机为例,由于每一个频带需要有对应的滤波器,一台手机中可能需要设置数十个滤波器。
声表面波(Surface Acoustic Wave,简称SAW)滤波器和体声波(Bulk Acoustic Wave,简称BAW)滤波器是射频滤波器最主流的两种实现方式。其中,SAW滤波器结构简单,与传统空腔滤波器和陶瓷滤波器相比,体积小,综合了低插入损耗和良好的抑制性能,广泛用于2G和3G接收器前端、双工器以及接收滤波器,可以较好地满足包括GSM、CDMA、3G以及部分4G频带,但是SAW滤波器的工作频率与电极线宽成反比,在频率大于1GHz时,这种滤波器的选择度下降,而当工作频率在2.4GHz以上时,电极线宽小于0.5μm,导致高频段插入损耗较大,品质因数和功率承受能力下降,并且SAW滤波器对温度非常敏感(温度上升会引起高达4MHz的频响下降),使得应用受到了极大的局限。相较而言,BAW滤波器内的声波由于是垂直传播,其频率与薄膜的厚度成反比,即尺寸可以随着频率的升高而降低,理论上可以满足20GHz以内的通讯要求,并且,BAW滤波器具有更低的插入损耗、极高的品质因数(Q值1000以上)、对温度变化的敏感性低以及可集成于IC芯片上的优点,随着4G的普及以及5G的逐渐发展,BAW滤波器成为了解决许多干涉难题的首选滤波器。
BAW谐振器是组成BAW滤波器的基本组件,通过将不同的BAW谐振器级联,可以制作出满足不同性能要求的BAW滤波器。BAW谐振器通常包括衬底、形成于衬底上的空腔以及位于空腔上的谐振结构,其中谐振结构包括下电 极、压电膜和上电极,谐振结构用于通过物理振动将电信号转换为弹性波。
一种BAW谐振器中,包括压电层的谐振结构悬浮设置在支撑衬底上的空腔上,在封装时,通过在顶盖上涂覆一圈干膜,对准空腔位置将顶盖接合在谐振结构上,然后进行TSV工艺将谐振结构的上下电极电引出至顶盖上。但是,这种方法需要在较厚的干膜中刻蚀出通孔,工艺控制难度大,并且刻蚀出通孔后,还需要在干膜上沉积导电材料,由于干膜本身稳定性较差,导致形成的导电插塞质量差,电接触不稳定。
发明内容
基于现有工艺中存在的问题,本发明提供一种BAW谐振器的封装模块及封装方法,不再从顶盖方向刻孔,不影响顶盖的设置,同时不增加工艺难度。
根据本发明的一个方面,提供一种BAW谐振器的封装方法,包括以下步骤:
提供BAW谐振器件,所述BAW谐振器件包括第一衬底以及设置在所述第一衬底上的谐振结构,所述谐振结构与所述第一衬底之间形成有第一间隙;
通过接合层将所述BAW谐振器件从谐振结构一侧与第二衬底接合,所述谐振结构与所述第二衬底之间具有主要由所述接合层围成的第二间隙,所述第二间隙和所述第一间隙至少部分对准;
在所述第一间隙周围形成穿过所述第一衬底且暴露出所述谐振结构的相应的电连接部的穿通孔;以及
形成导电互连层于所述穿通孔的内表面以及所述穿通孔外围的部分所述第一衬底的表面上。
根据本发明的另一方面,提供一种BAW谐振器的封装模块,所述封装模块包括:
第二衬底和接合层,所述接合层形成在部分所述第二衬底上;
BAW谐振器件,所述BAW谐振器件接合到所述接合层上,所述BAW谐振器件包括第一衬底以及设置在所述第一衬底面向所述第二衬底的表面上的谐振结构,所述谐振结构与所述第一衬底之间形成有第一间隙,所述接合层夹在所述第二衬底和所述谐振结构之间,所述第二衬底和所述谐振结构之间具有主要由所述接合层围成的第二间隙,所述第二间隙与所述第一间隙至少部分对准,所述BAW谐振器件上还设有穿通孔,所述穿通孔穿过所述第一间隙外围的第一 衬底,并暴露出所述谐振结构相应的电连接部;以及,
导电互连层,所述导电互连层形成于所述穿通孔的内表面以及所述穿通孔外围的部分所述第一衬底的表面上。
与现有技术相比,本发明的技术方案具有以下有益效果:
1、本发明的技术方案,将BAW谐振器件通过接合层与第二衬底接合,然后在所述第一衬底一侧形成暴露出BAW谐振器件中的谐振结构的电连接部的穿通孔,并在穿通孔的内表面以及部分第一衬底的表面上形成导电互连层,由此避免从接合层中进行穿通孔刻蚀以及沉积导电材料的步骤,进而使得接合层的材料可以选择提供较好接合效果的材料,有助于降低工艺难度,提高穿通孔以及所形成的封装模块的稳定性,从而有助于提高BAW谐振器封装结构的性能。
2、本发明的技术方案中,进一步的,所述BAW谐振器件包括设置在所述第一衬底上的支撑层,所述谐振结构搭接在支撑层上,且所述谐振结构与第一衬底之间的第一间隙主要由所述支撑层围成,所述穿通孔穿过所述第一衬底和支撑层,支撑层可以选择较高硬度的材料,由此使得在支撑层中形成穿通孔相比于在接合层中形成穿通孔的工艺难度较低,并且穿通孔的质量和稳定性较好。
3、本发明的技术方案中,进一步的,接合层的材料为非金属材料,例如包括光固化材料、热固化材料、二氧化硅、氮化物、正硅酸乙酯以及介电常数K大于4的高K介质中的至少一种,由此能够降低第二衬底和BAW谐振器件相结合的工艺难度及成本,且可以跟BAW谐振器件的工艺高度相容,还不会造成金-金键合等金属键合工艺造成的污染问题。
4、本发明的技术方案中,可以选择采用与体声波谐振结构中的压电层相同的材质制作做钝化层,能够最大限度兼容第一间隙工艺,同时还能避免使用其他材料来制作钝化层时引起的温度漂移的问题以及引入不必要的应力的问题,由此提高谐振器的谐振性能。另外,钝化层填满穿通孔,由此可以增强BAW谐振器件的机械强度,进而提高谐振器的第一间隙的侧壁的支撑力,防止第一间隙变形而影响BAW谐振器的谐振性能和可靠性。
5、本发明的技术方案中,可以选择在形成导电互连层之前,先在形成的穿通孔的侧壁上形成侧壁保护层,以避免导电互连层和其他结构之间出现不必要的电连接问题,进而保证形成的导电互连层和谐振结构之间的电连接可靠性。
6、本发明的技术方案中,进一步地,接合层能够填满谐振结构上的位于所述第二间隙外围的开口,由此容忍谐振结构在第二间隙外围的区域上具有一定的台阶高度差异,进而在所述第二衬底接合到接合层上后,不但能使得第二衬底和第一衬底相互背向的表面不发生倾斜,还能补足所述谐振结构位于第二间隙外围的部分面向第二衬底一侧的台阶高度差异,保证接合的可靠性和稳定性。而且因为第一衬底背向第二衬底的一面水平,可以为穿通孔和导电互连层的制作工艺提供平坦的工艺窗口,进而保证形成的穿通孔和导电互连层的性能。
附图说明
图1是本发明一实施例的BAW谐振器的制作方法的流程示意图。
图2是本发明一实施例的BAW谐振器件的剖面示意图。
图3本发明另一实施例的BAW谐振器件的剖面示意图。
图4是本发明一实施例的第二衬底的剖面示意图。
图5是本发明一实施例利用BAW谐振器的封装方法接合第二衬底后的剖面示意图。
图6是本发明一实施例利用BAW谐振器的封装方法形成导电插塞后的剖面示意图。
图7是本发明一实施例利用BAW谐振器的封装方法形成接触垫后的剖面示意图。
附图标记说明:
100-BAW谐振器件;110-第一衬底;120-谐振结构;121-第一电极;122-压电层;123-第二电极;120a-第一沟槽;120b-第二沟槽;10-第一间隙;20-第二间隙;30-空腔;130-支撑层;200-第二衬底;210-接合层;140-第一穿通孔;150-第二穿通孔;111-侧壁保护层;141-第一导电互连层;151-第二导电互连层;142-第一接触垫;152-第二接触垫;160-钝化层。
具体实施方式
以下结合附图和具体的实施例对本发明的BAW谐振器的封装模块及封装方法和BAW滤波器作进一步详细说明。根据下面的说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明的实施例,本发明的实施例不应该被认为 仅限于图中所示区域的特定形状。为了清楚起见,在用于辅助说明本发明实施例的全部附图中,对相同部件原则上标记相同的标号,而省略对其重复的说明。
需说明的是,下文中的术语“第一”“第二”等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换,例如可使得本文所述的本发明实施例能够不同于本文所述的或所示的其他顺序来操作。类似的,如果本文所述的方法包括一系列步骤,且本文所呈现的这些步骤的顺序并非必须是可执行这些步骤的唯一顺序,且一些所述的步骤可被省略和/或一些本文未描述的其他步骤可被添加到该方法。
图1是本发明一实施例的BAW谐振器的封装方法的流程示意图。参照图1,本发明一实施例的BAW谐振器的封装方法包括以下步骤:
S1:提供BAW谐振器件,所述BAW谐振器件包括第一衬底以及设置在所述第一衬底上的谐振结构,所述谐振结构与所述第一衬底之间形成有第一间隙;
S2:通过接合层将所述BAW谐振器件从谐振结构一侧与第二衬底接合,所述谐振结构与所述第二衬底之间具有主要由所述接合层围成的第二间隙,所述第二间隙和所述第一间隙至少部分对准;
S3:在所述第一间隙周围形成穿过所述第一衬底且暴露出所述谐振结构的相应的电连接部的穿通孔;
S4:形成导电互连层于所述穿通孔的内表面以及所述穿通孔外围的部分所述第一衬底的表面上;以及,
S5:形成钝化层,所述钝化层填满所述穿通孔并暴露出所述穿通孔外围的谐振器盖体表面上的部分所述导电互连层,被暴露出的所述导电互连层形成接触垫。
以下结合实施过程中的剖面示意图对本发明实施例的BAW谐振器的封装方法作进一步描述。
图2是本发明一实施例的BAW谐振器件的剖面示意图。图3本发明另一实施例的BAW谐振器件的剖面示意图。参照图2或图3,在步骤S1中,提供BAW谐振器件100,所述BAW谐振器件100包括第一衬底110以及设置在所述第一衬底110上的谐振结构120,所述谐振结构120与所述第一衬底110之间形成有第一间隙10。
具体的,所述谐振结构120包括靠近所述第一衬底110的第一电极121、位 于所述第一电极121上的压电层122以及位于所述压电层122上的第二电极123。其中,第一电极121可用作接收或提供诸如射频(RF)信号等的电信号的输入电极或输出电极。例如,当第二电极123用作输入电极时,第一电极121可用作输出电极,并且当第二电极123用作输出电极时,第一电极121可用作输入电极,压电层122将通过第一电极121或第二电极123上输入的电信号转换为体声波。例如,压电层122通过物理振动将电信号转换为体声波。
参照图2,本实施例中,所述BAW谐振器件100包括设置在所述第一衬底110上的支撑层130,第一间隙10主要由所述支撑层130限定或者围设而成,所述谐振结构120(此处具体为谐振结构120的第一电极121所在的层)与所述第一间隙10周围的支撑层130部分接触。但不限于此,参照图3,本发明另一实施例中,所述BAW谐振器件中,所述第一衬底110中形成有凹槽,所述凹槽限定出所述谐振结构120与所述第一衬底110之间的第一间隙10,所述谐振结构120(此处具体为指谐振结构120的第一电极121所在的层)与所述凹槽周围的所述第一衬底100搭接。
具体的,第一衬底100的材料可以是本领域技术人员熟知的任意合适的底材,例如可以是以下所提到的材料中的至少一种:硅(Si)、锗(Ge)、锗硅(SiGe)、碳硅(SiC)、碳锗硅(SiGeC)、砷化铟(InAs)、砷化镓(GaAs)、磷化铟(InP)或者其它III/V化合物半导体,还包括这些半导体构成的多层结构等,或者为绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI),或者还可以为双面抛光硅片(Double Side Polished Wafers,DSP),也可为氧化铝等的陶瓷基底、石英或玻璃基底等。本实施例中所述第一衬底100为<100>晶向的P型高阻单晶硅片。
作为示例,所述BAW谐振器件的制作可包括如下过程:首先,在一制备衬底制作压电堆叠膜层,所述压电堆叠膜层包括依次叠加设置的第一电极层、压电层以及第二电极层,在制作压电堆叠膜层之前,可以在制备衬底上形成约1μm厚度的隔离层,隔离层后续可以作为移除制备衬底时的阻挡材料;然后,在压电堆叠膜层上形成支撑层130,并通过光罩及刻蚀工艺在支撑层130中形成第一空隙;接着,在支撑层130上键合第一衬底110,以将压电堆叠膜层转移至第一衬底110上,然后利用背面刻蚀工艺移除制备衬底;然后,利用光罩及刻蚀工艺对压电堆叠膜层进行处理,形成谐振结构120,所述支撑层130围成谐振结构 120与所述第一衬底110之间的第一间隙10,如图2所示。
本发明的BAW谐振器件100的制作不限于上述方法,例如,在另一实施例中,也可以不利用支撑层形成第一间隙10,而是利用牺牲层(未图示)直接在第一衬底110上形成第一间隙10和谐振结构120,以获得BAW谐振器件100,请参考图3,具体过程包括:
首先,刻蚀去除第一衬底110部分区域中的部分厚度,以形成用于制作第一间隙的凹槽(未图示),此处,第一衬底110可以包括基底(未图示)以及覆盖在基底(未图示)上的至少一层薄膜(未图示),也可以是半导体材质的裸片。
接着,在凹槽中填满牺牲层(未图示),该牺牲层的顶面与第一衬底110的顶面齐平,也可以高于第一衬底110的顶面,也可以略低于第一衬底110的顶面,该牺牲层可以是单层结构,也可以是叠层结构。
之后,在第一衬底110和牺牲层的顶面上覆盖压电堆叠膜层,所述压电堆叠膜层包括依次叠加设置的第一电极层、压电层以及第二电极层,并通过曝光、显影和刻蚀等工艺,来依次图案化第一电极层、压电层和第二电极层或者依次图案化第二电极层、压电层和第一电极层,以定义出第一电极121、位于所述第一电极121上的压电层122以及位于所述压电层122上的第二电极123,由此,形成谐振结构120。
然后,在第一间隙10区域中且靠近边缘处的谐振结构120上开释放孔(未图示),通过向释放孔中引入刻蚀剂来去除牺牲层,以重新清空凹槽,由此获得了谐振结构120和第一衬底110之间的第一间隙10,第一间隙10为整个底部凹陷在所述第一衬底110中的凹槽结构。至此,完成了步骤S1中提供BAW谐振器100的工艺过程。
在本发明的其他实施例中,还可以提供另外一种利用牺牲层来直接在第一衬底110上形成第一间隙10和谐振结构120,以获得BAW谐振器100的方法,其具体过程包括:
首先,在第一衬底110上全面覆盖牺牲层(未图示),牺牲层可以是单层结构,也可以是叠层结构。
然后,执行曝光、显影、刻蚀工艺,刻蚀牺牲层以使其图形化,以形成用于制作第一间隙10的图形化的牺牲层。
接着,在第一衬底110和牺牲层的顶面上依次覆盖压电堆叠膜层,所述压 电堆叠膜层包括依次叠加设置的第一电极层、压电层以及第二电极层,并通过曝光、显影和刻蚀等工艺,来依次图案化第一电极层、压电层和第二电极层或者依次图案化第二电极层、压电层和第一电极层,以定义出第一电极121、位于所述第一电极121上的压电层122以及位于所述压电层122上的第二电极123,由此,形成谐振结构120。
然后,可以在谐振结构120的边缘区域上开释放孔(未图示),通过向释放孔中引入刻蚀剂来去除牺牲层,由此获得了谐振结构120和第一衬底110之间的第一间隙10,第一间隙10是凸设在第一衬底110上的。至此,完成了步骤S1中提供BAW谐振器100的工艺过程。
此外,需要说明的是,当第一衬底110为晶圆时,提供BAW谐振器100也可以不是独立器件,也就是说,第一衬底110上的谐振结构120的数量并不仅仅限定于一个,当在第一衬底110上同时形成有多个谐振结构120时,每个谐振结构120和第一衬底110之间都具有一个第一间隙10,相邻第一间隙之间可以通过相应的支撑层或者第一衬底材料隔开,相邻的谐振结构120之间可以是相互断开的,或者有部分膜层是连接在一起的。
此外,上述谐振结构120的剖面也不限于图2和图3示出的结构,可以根据具体需要来具体设计。所述谐振结构120中进行谐振工作的谐振部的平面形状可以为矩形,还可以是圆形、椭圆形或是矩形以外的多边形,例如五边形、六边形等。进而,第一间隙10的平面形状可以为矩形,还可以是圆形、椭圆形或是矩形以外的多边形,例如五边形、六边形等。
本实施例以图2所示的BAW谐振器件100为例,所述谐振结构120包括面向所述第一衬底100的第一电极121、位于所述第一电极121上的压电层122以及位于所述压电层122上的第二电极123。其中,第一电极121、压电层122以及第二电极123经图形化工艺形成,第一电极121和第二电极123均朝向远离第一衬底110的方向露出,且具有台阶差。
具体的,所述谐振结构120可以形成为双沟槽(Air Trench)结构,如图2和图3中的第一沟槽120a和第二沟槽120b,所述第一沟槽120a贯穿所述第二电极123和所述压电层122并暴露第一电极121,所述第二沟槽120b贯穿所述第一电极121和所述压电层122并暴露第二电极123,且所述第二沟槽120b与所述第一间隙10连通。
上述支撑层130可采用氧化硅、氮化硅、氮氧化硅、氧化铝、氮化铝、氧化钛、氮化钛、无定型碳等材料制作而成,支撑层130也可以采用两种以上材料的叠加层,例如支撑层130可具有氧化硅和氮化硅的叠层结构,其中的氮化硅层与谐振结构120接触。第一电极121和第二电极123可采用钼(Mo)、钨(W)、铝、铜、铱(Ir)、铷(Ru)以及掺杂多晶硅等导电材料中的一种或者多种制作。压电层122可采用石英、氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、氧化铌锂(LiNbO 3)、氧化钽锂(LiTaO 3)等压电材料中的一种或多种制作,压电层122中也可以掺杂有稀土元素。本实施例中的第一电极121和第二电极123的材质例如是钼,压电层122的材质例如是氮化铝。第一电极121和第二电极123的厚度约在100nm~200nm范围。压电层122的厚度在1μm~3μm范围。沉积钼可利用PVD(物理气相沉积)工艺或者磁控溅射工艺,沉积氮化铝可利用PVD(物理气相沉积)工艺或MOCVD(金属有机化学气相沉积)工艺。
在形成BAW谐振器件100后,需要从谐振结构120背向第一衬底110一侧对其进行封盖,并使得谐振结构120的两侧均具有振动空间。本实施例中,在步骤S2中,提供第二衬底作为封装顶盖(cap wafer),而以第一衬底110作为支撑衬底(carry wafer)。图4是本发明一实施例的第二衬底的剖面示意图。参照图4,第二衬底200可以采用与第一衬底110类似的基底材料。并且,为了较好地覆盖在BAW谐振器件100上并为谐振结构120提供足够的振动空间,在第二衬底200上先形成了具有一定厚度的接合层材料,并对接合层材料进行图形化,以形成具有第二间隙20的接合层210。
第二衬底200可以采用真空键合或者真空环境下黏合的方式与第一衬底110接合,从而接合层210可以采用常规的键合材料,例如氧化硅、氮化硅、氮氧化硅、正硅酸乙酯等,也可以是光固化材料或热固化材料等黏结剂,例如粘片膜(Die Attach Film,DAF)或干膜(Dry Film)。由于第一衬底110和第二衬底200接合时,第一衬底110上形成有谐振结构120,第二衬底200和第一衬底110接触的区域既包括支撑层130的表面,还包括谐振结构120的表面,这两个表面之间具有一定台阶差,并且,对于如图2或图3所示的谐振结构120来说,所述谐振结构120面向第二衬底的一侧具有开口,所述开口位于所述第一间隙10和第二间隙20的外围且暴露谐振结构120相应的电连接部面向所述第二衬底的部分表面或全部表面,也就是说,第一电极121第二电极123在暴露出所述 谐振结构120的电连接部的开口处具有台阶差,因此,为了在第一衬底110和第二衬底200之间形成较好地密封并容忍谐振结构120在第一间隙10外围的台阶差,接合层210所选用的材料需要满足:能图形化、能在一定的条件下固化、能稳定地与上下层的材料粘附且具有弹性(容忍一定形变的材料或硬度较小的材料),以能够在后续接合第二衬底200和谐振结构120时能容忍一定的台阶高度差异。所述接合层210的材料例如为光固化材料、热固化材料或者光固化材料和热固化材料的组合,能通过光照、加热后冷却的方式失去弹性。本实施例中,接合层210例如采用干膜。干膜的厚度约10μm~20μm,其形成方法可采用如“贴干膜-曝光显影-蚀刻-去模”的工序或者“衬底清洁处理-贴干膜-曝光显影-蚀刻-去模”的工序形成,其中的“贴干膜”的工序条件包括:工艺温度为80℃~120℃(例如为110℃),工艺环境为真空;“曝光显影”的工序条件包括:真空条件下进行紫外线曝光,曝光后静置片刻,所述紫外线曝光的辐照剂量例如为200J/cm 2~300mJ/cm 2;在100℃~150℃(例如130℃)的温度下对曝光后的接合层210预烘烤100秒~300秒(例如200秒);在常温下,多次(例如3次)在预烘烤后的接合层210上旋喷显影液,来对预烘烤后的接合层219显影,所述显影液为PGMEA,其成分包括丙二醇甲醚醋酸酯,丙二醇甲醚醋酸酯的分子式为C 6H 12O 3。第二衬底200上形成的干膜例如为环状结构,干膜所限定的范围可与BAW谐振器件100中的支撑层的限定范围至少部分对准(即后续形成的第二间隙和第一间隙至少部分对准),以便在接合之后在第一衬底110和第二衬底200之间形成限定谐振结构120的空腔。
图5是本发明一实施例利用BAW谐振器的封装方法接合第二衬底后的剖面示意图。参照图5,接着可执行本实施例的BAW谐振器的封装方法的步骤S2中的接合操作,具体地,通过接合层210将所述BAW谐振器件100从谐振结构120一侧与第二衬底200接合,所述谐振结构120与所述第二衬底200之间具有主要由所述接合层210围成的第二间隙20,所述接合层210围成的第二间隙20与第一间隙10至少部分对准。其中,第一间隙10和第二间隙20可以不连通,也可以连通,当第一间隙10和第二间隙20连通时,在所述第一衬底110和所述第二衬底200之间形成空腔30,所述谐振结构120用于振动的部分被限制在所述空腔30内。接合第二衬底200和BAW谐振器件100的工艺条件包括:工艺压力为1Pa~10 5Pa,真空环境下接合,温度为150℃~200℃(例如为150℃), 施压时间为20min~30min,由此在保证接合性能的前提下,避免影响产品的谐振性能。在接合完以后通过光照、加热后冷却的方式固化接合层210,即使得接合层210失去弹性,以使得第二衬底200和BAW谐振器件100可靠的连接在一起。固化接合层210的工艺可以选用高温固化工艺,其固化温度为180℃~220℃(例如为190℃),固化时间为1.5小时~2小时(例如为2小时)。在本发明的其他实施例中,固化接合层210的工艺也可以选择紫外光固化工艺,紫外线固化的辐照剂量可选为200mJ/cm 2~300mJ/cm 2,与曝光接合层210时的紫外线曝光工艺所使用的光照相同,以简化工艺,降低成本。
具体的,在将第一衬底110和第二衬底200接合之后,由于所述接合层210具有一定厚度且为镂空结构,从而在所述谐振结构120与第二衬底200之间限定出第二间隙20,第二间隙20与上述第一间隙10分别设置于所述谐振结构120的上下两侧并连通,从而在第一衬底110和第二衬底200之间形成了空腔30,而谐振结构120被限定在空腔30内。也就是说,其中第二间隙的形状和尺寸可以均与第一间隙10相同,也可以不完全相同,只要第二间隙20能够使得在接合后,谐振结构120的第一电极、压电层以及第二电极同时具有与第一间隙10和第二间隙20重叠的部分即可,由此形成谐振器的有效谐振区。
本实施例中,空腔300的底面的形状为矩形,但在其它实施例中,根据谐振器件的谐振工作的设计,空腔300的底面形状也可以是圆形、椭圆形或是矩形以外的多边形,例如五边形、六边形等。
本实施例中,可以采用干膜将BAW谐振器件100与第二衬底200接合,干膜的硬度较小,可以容忍一定的台阶高度差异,从而可以与支撑层130以及谐振结构120的第一电极121和第二电极123形成良好的接触,接合效果较好。
需要说明的是,在本发明的其他实施例中,当接合层210不具有弹性时,可以选择先在谐振结构120背向第一衬底110的表面上覆盖足够厚的接合材料,并平坦化接合材料的表面,此时,当谐振结构120在第一间隙外围具有暴露出相应的电连接部的开口时,接合层210也能填满该开口;接着,刻蚀平坦化后的接合材料,直至暴露出所述谐振结构120背向所述第一衬底110的表面,以形成具有第二间隙20的接合层210;之后,可以直接通过接合层210和第二衬底200之间产生的分子吸附力(或者分子键合力),将第二衬底200键合到接合层210上,以封闭第二间隙20。由于这种形成具有第二间隙20的接合层210的 方法中,接合层210能填满谐振结构120在第一间隙10外围区域中的开口(未图示)并具有平坦化的表面,因此也可以容忍一定的台阶高度差异,并可以与支撑层130以及谐振结构120的第一电极121和第二电极123等结构形成良好的接触,从而也能够使得第二衬底200接合后的效果较好。
接下来需要将谐振结构120的第一电极121和第二电极123引出,以便从封装结构外部进行控制以及从外部获取封装结构中的相关电学参数。本实施例中,由于接合层210的硬度较小,假如在其中进行穿通孔刻蚀以及沉积导电材料的话,一方面工艺较难控制,另一方面导电材料不容易形成连续膜,导电性能和稳定性比较差。因此,以下工艺避开从第二衬底200一侧进行,而是从第一衬底110一侧进行。
图6是本发明一实施例利用BAW谐振器的封装方法形成导电互连层后的剖面示意图。参照图6,本实施例执行步骤S3后,能在BAW谐振器件100中形成了第一穿通孔140和第二穿通孔150,具体的,可包括以下过程:
首先,从远离所述第二衬底200一侧减薄所述第一衬底110。减薄第一衬底110有利于进行对应穿通孔的刻蚀工艺。通常需要将第一衬底110的厚度减薄至80μm以下,本实施例减薄后的第一衬底110的厚度约60μm。
接着,例如采用硅穿孔(TSV)技术,在所述第一衬底110一侧执行刻蚀工艺,以分别形成第一穿通孔140和第二穿通孔150,所述第一穿通孔140暴露出谐振结构120的部分第一电极121(即第一电连接部),所述第二穿通孔150暴露出谐振结构120的部分第二电极123(即第二电连接部)。具体的,可以通过第一次光罩工艺和刻蚀工艺形成第一穿通孔140,形成第一穿通孔140的刻蚀过程在露出第一电极121为止,然后再通过第二次光罩工艺将其它区域覆盖,利用刻蚀工艺形成第二穿通孔150,第二穿通孔150的刻蚀过程在露出第二电极123为止。第一穿通孔140和第二穿通孔150的尺寸可以根据需要暴露的电极范围以及刻蚀条件确定。本实施例中,第一穿通孔140和第二穿通孔150的上开口直径约20μm~70μm,第一穿通孔140和第二穿通孔150的深度约60μm~100μm,具体约70μm~80μm。也就是说,本实施例中,所述谐振结构120的相应的电连接部包括:第一电连接部,包括伸出第一间隙10的部分第一电极121;第二电连接部,包括伸出第一间隙10的部分第二电极122。
请继续参照图6,本实施例执行步骤S4后,能在第一穿通孔140和第二穿 通孔150的内表面以及两个穿通孔外围的第一衬底110的部分表面上形成导电互连层,具体的,可包括以下过程:首先,在第一穿通孔140、第二穿通孔150以及第一衬底110的表面上形成种子层,种子层可以通过PVD或者溅射形成,本实施例中,当导电互连层的主要材质为铜时,可以利用TiCu作为种子层材料;然后,将包括有种子层的BAW谐振器件100放置在电解设备的电解槽或者化学镀设备的化学镀溶液中,经设定时间后取出,在所述第一穿通孔140、第二穿通孔150以及第一衬底110的表面上形成了铜导电层;接着,可以通过光刻结合刻蚀的工艺,去除第一衬底110表面上不需要的铜导电层和种子层,以形成导电互连层,其中覆盖第一穿通孔140的导电互连层定义为第一导电互连层141,覆盖第二穿通孔150的导电互连层定义为第二导电互连层151。本实施例中,由于第一衬底110和谐振结构120的第一电极121之间设置有支撑层130,因而第一穿通孔140和第二穿通孔150均穿过第一衬底110以及支撑层130,因此,第一导电互连层141与谐振结构120的第一电极121电接触,而第二导电互连层151与谐振结构120的第二电极123电接触。而在另一实施例中(如图3),谐振结构120与第一衬底110之间并不需要设置约第一间隙10高度的支撑层,从而穿通孔可以较图6中的穿通孔深度减小。此外,在本发明的其他实施例中,沉积的导电材料可以包括铜、镍、锌、锡、银、金、钨和镁等金属材料中的一种或多种金属或者包括铜、镍、锌、锡、银、金、钨和镁等元素的合金。导电材料可以采用诸如物理气相沉积等工艺沉积。由于电镀和化学镀工艺具有良好的填孔效果,优选采用电镀工艺或者化学镀工艺沉积导电材料。在本发明的其他实施例中,所述导电互连层的材料可以与第二电极和第一电极的材料相同,沉积工艺条件和刻蚀第二电极和第一电极的工艺条件也相同,由此能最大程度的兼容步骤S1的工艺,并简化工艺。
另外,在如图6所示的实施例中,由于第二穿通孔150需要穿过第一电极121所在的材料层、压电层122所在的材料层方可暴露出第二电极123,因而在第一穿通孔140和第二穿通孔150中进行电镀工艺时,为了避免导电材料覆盖在第一穿通孔140和第二穿通孔150中的第一电极121材料层侧壁和压电层122材料层侧壁上时,对第一导电互连层141和第二导电互连层151的导电性能产生不利影响,在本发明的一实施例中,在沉积导电材料之前,可以在第一穿通孔140和第二穿通孔150的内侧壁上分别形成侧壁保护层111。所述侧壁保护层 111的形成方法可以包括以下过程:形成介质层,所述介质层填充所述第一穿通孔140和第二穿通孔150;垂直刻蚀所述介质层,使剩余的介质层作为侧壁保护层111仅覆盖所述第一穿通孔140和第二穿通孔150的侧壁表面。在形成侧壁保护层111后,第一穿通孔140和第二穿通孔150的底表面仍然暴露出谐振结构120的对应的电连接部(即电极),从而可以通过上述电镀或化学镀工艺形成能够与谐振结构120电接触的导电互连层。由于第一穿通孔140和第二穿通孔150的侧壁表面不同,第一穿通孔140的侧壁并未暴露出第一电极121材料层和压电层122材料层的侧壁,因此,侧壁保护层111也可以仅覆盖在第二通孔150的侧表面。
此外,在第一衬底110表面形成导电互连层的方法不限于此,在另一实施例中,可以先形成覆盖第一穿通孔140和第二穿通孔150的内表面的导电互连层部分后,再沉积导电材料以形成覆盖在第一衬底110的远离第二衬底200表面的导电互连层部分,且使得第一衬底110上的导电互连层部分分别与所述第一穿通孔140和所述第二穿通孔150中的导电互连层电连接。
经过上述工艺,形成的第一导电互连层141和第二导电互连层151分别将第一电极121和第二电极123的电接触连接至了第一衬底110远离第二衬底200一侧的表面。
图7是本发明一实施例利用BAW谐振器的封装方法形成钝化层和接触垫后的剖面示意图。参照图7,进一步的,本实施例中执行步骤S5后,能在第一穿通孔140和第二穿通孔150中填满钝化层,并在第一衬底110上形成接触垫。具体的,形成接触垫可包括如下过程:首先,在形成有第一导电互连层141的第一穿通孔140的表面、形成有第二导电互连层151的第二穿通孔150的表面和形成有导电互连层的第一衬底110的表面上沉积钝化层材料,使所述钝化层材料填满第一穿通孔140和第二穿通孔150并在第一衬底110上方覆盖一定厚度;然后进行平坦化工艺,例如CMP工艺,去除部分厚度的钝化层材料,剩余的钝化层材料作为钝化层160填满所述第一穿通孔140和第二穿通孔150并在所述第一衬底110的上方具有平坦的表面;接着刻蚀钝化层160,以形成分别露出所述第一衬底110上方的至少部分所述第一导电互连层141和至少部分所述第二导电互连层151的接触开口,露出的所述第一导电互连层141作为第一接触垫142,露出的所述第二导电互连层151作为第二接触垫152。
钝化层160用于限定出接触垫的位置,同时保护所形成的封装结构。钝化层160的材料可包括氧化镁(MgO)、氧化锆(ZrO 2)、氮化铝(AlN)、锆钛酸铅(PZT)、砷化镓(GaAs)、氧化铪(HfO 2)、氧化铝(Al 2O 3)、氧化钛(TiO 2)和氧化锌(ZnO)等介质材料中的任意一种或者多种。其中,钝化层160的材质可以与压电层122的材质相同,并采用与压电层122完全相同的沉积工艺,由此最大限度兼容BAW谐振器件100的制作工艺,同时还能避免使用其他材料来制作钝化层时引起的温度漂移的问题以及引入不必要的应力的问题,由此提高谐振器的谐振性能。此外,钝化层160填满第一穿通孔140和第二穿通孔150,还能增强BAW谐振器件100的机械支撑性能。
本实施例中,为了分别对谐振结构120的第一电极121和第二电极123进行控制,分别形成了第一接触垫142和第二接触垫152,第一接触垫142通过第一导电互连层141与第一电极121电连接,第二接触垫152通过第二导电互连层151与第二电极123电连接,从而可以从封装模块外部对谐振结构施电控制。
上述BAW谐振器的封装方法中,将BAW谐振器件100通过接合层210与第二衬底200接合,然后在所述第一衬底110一侧形成暴露出BAW谐振器件100中的谐振结构120的电连接部的穿通孔,并在穿通孔的内表面以及部分第一衬底的表面上形成导电互连层,由此,避免从接合层210中进行通孔刻蚀以及沉积导电材料的步骤,接合层210的材料可以选择提供较好接合效果的材料,有助于降低工艺难度,提高导电插塞以及所述形成的封装模块的稳定性,从而有助于提高BAW谐振器的性能。
本实施例还包括一种BAW谐振器的封装模块,可以采用本实施例的BAW谐振器的封装方法来制得。请参照图7,所述封装模块包括BAW谐振器件100、与所述BAW谐振器件100接合的第二衬底200、形成于BAW谐振器件100上的第一穿通孔140和第二穿通孔150,以及,形成于BAW谐振器件100上的导电互连层。
具体而言,所述BAW谐振器件100包括第一衬底110以及设置在第一衬底110面向第二衬底200一侧上的谐振结构120,谐振结构120与第一衬底110之间形成有第一间隙10;所述BAW谐振器件100通过接合层210与第二衬底200接合,谐振结构120与第二衬底200之间具有主要由接合层210围成的第二间隙20,所述第二间隙20与第一间隙10至少部分对准,以将部分谐振结构120 被限制在所述第二间隙20与第一间隙10之间。其中,第一间隙10和第二间隙20可以连通而形成空腔30,也可以不连通,谐振结构120与第一间隙10和第二间隙20均重叠的部分作为有效工作区。
本实施例中,所述谐振结构120包括靠近所述第一衬底100的第一电极121、位于所述第一电极121上的压电层122以及位于所述压电层122上的第二电极123。第一穿通孔140和第二穿通孔150均位于第一间隙10的外围,并分别穿过所述第一衬底110而暴露出所述谐振结构120的相应的电连接部。所述电连接部包括:第一电连接部,包括伸出第一间隙10的部分第一电极121;第二电连接部,包括伸出第一间隙10的部分第二电极123。所述导电互连层包括:第一导电互连层141,形成于第一穿通孔140的内表面和第一穿通孔140周围的部分第一衬底110上,第一导电互连层141通过电接触第一电连接部而与第一电极121电连接;以及,第二导电互连层151,形成于第二穿通孔150的内表面和第二穿通孔150周围的部分第一衬底110上,第二导电互连层151通过电接触第二电连接部而与第二电极123电连接。
此外,上述BAW谐振器的封装模块还可包括钝化层160,所述钝化层160填满第一穿通孔140和第二穿通孔150并分别暴露出所述第一穿通孔140和第二穿通孔150外围的第一衬底110表面上的部分或全部的所述第一导电互连层141和第二导电互连层151,被暴露出的所述第一导电互连层141作为第一接触垫142,被暴露出的所述第二导电互连层151作为第二接触垫152。第一接触垫142和第二接触垫152可以连接外部控制器以控制谐振结构120工作。
本实施例的BAW谐振器的封装模块可以采用上述BAW谐振器的封装方法封装而成。其中,接合层210可以采用硬度较低的材料,例如光固化材料(包括干膜)和/或热固化材料,以利用其较好的台阶容忍度在平坦性较差的材料之间也能实现良好的接合,从而使第二衬底200(作为封装顶盖)对BAW谐振器件100的封装质量良好,接合层210也可以采用硬度较大的材料,例如包括二氧化硅、氮化物、正硅酸乙酯以及介电常数K大于4的高K介质中的至少一种。另外,用于电性引出BAW谐振器件100的电连接部的穿通孔、导电互连层等结构均形成于第一衬底110远离第二衬底200一侧,可以避免对第二间隙20所在的顶盖结构造成不良影响,同时有助于提高穿通孔和导电互连层的质量。
本实施例封装模块中,BAW谐振器件可以具有如图2或图3所示的结构。 以图2所示的BAW谐振器件为例,所述BAW谐振器件100包括设置在第一衬底110上的支撑层130,支撑层130的硬度可以大于接合层210的硬度,第一间隙10主要由支撑层130限定,所述谐振结构120与支撑层130搭接。此外,如图7所示,封装模块中,第一穿通孔140和第二穿通孔150均穿过第一衬底110和支撑层130设置。而在另一实施例中(参照图3),所述BAW谐振器件100的第一衬底110中形成有凹槽,所述谐振结构120位于所述凹槽上方且与所述凹槽周围的所述第一衬底110搭接,则在该实施例中,在BAW谐振器件100中设置的第一穿通孔和第二穿通孔穿过第一衬底110设置即可。
以图2所示的BAW谐振器件为例,其中支撑层130可以选择较干膜硬度更高的材料,例如包括二氧化硅、氮化硅、氮氧化硅、氮化铝、氧化钛、氮化钛中的至少一种,一方面可以提供较高的支撑强度,另一方面在其中进行孔刻蚀工艺的工艺控制难度较小,并且在孔内沉积导电材料以形成导电互连层时,导电互连层的膜层连续,质量较高,导电互连层的稳定性也更好,有利于提高BAW谐振器封装结构的性能。
本实施例还包括一种滤波器,所述滤波器上述BAW谐振器的封装模块。所述滤波器可以是射频滤波器。通过对其中的BAW谐振器件的封装方法进行改进,降低了制作难度,提高了谐振器件的性能及可靠性,也有利于提高滤波器的性能和可靠性。
本实施例中的方法和结构采用递进的方式描述,在后的方法和结构重点描述说明的是与在前的方法和结构的不同之处,相关之处可以参照理解。
上述描述仅是对本发明较佳实施例的描述,并非对本发明权利范围的任何限定,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (20)

  1. 一种BAW谐振器的封装方法,其特征在于,包括:
    提供BAW谐振器件,所述BAW谐振器件包括第一衬底以及设置在所述第一衬底上的谐振结构,所述谐振结构与所述第一衬底之间形成有第一间隙;
    通过接合层将所述BAW谐振器件从谐振结构一侧与第二衬底接合,所述谐振结构与所述第二衬底之间具有主要由所述接合层围成的第二间隙,所述第二间隙和所述第一间隙至少部分对准;
    在所述第一间隙周围形成穿过所述第一衬底且暴露出所述谐振结构的相应的电连接部的穿通孔;以及
    形成导电互连层于所述穿通孔的内表面以及所述穿通孔外围的部分所述第一衬底的表面上。
  2. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,所述谐振结构包括面向所述第一衬底的第一电极、位于所述第一电极上的压电层以及位于所述压电层上的第二电极。
  3. 如权利要求2所述的BAW谐振器的封装方法,其特征在于,所述电连接部包括:第一电连接部,包括伸出第一间隙的部分所述第一电极;第二电连接部,包括伸出第一间隙的部分所述第二电极。
  4. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,所述谐振结构面向所述第二衬底的一侧具有开口,所述开口位于所述第二间隙外围且暴露所述电连接部面向所述第二衬底的部分表面或全部表面;所述接合层填满所述开口。
  5. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,将所述BAW谐振器件与第二衬底接合在一起之后且在形成所述穿通孔之前,先对所述第一衬底进行减薄。
  6. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,在形成所述穿通孔之后且在所述穿通孔的内表面上形成所述导电互连层之前,先在所述穿通孔的侧壁上形成侧壁保护层。
  7. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,在形成所述导电互连层之后,还包括:
    形成钝化层,所述钝化层填满所述穿通孔并暴露出所述穿通孔外围的谐振 器盖体表面上的部分所述导电互连层,被暴露出的所述导电互连层形成接触垫。
  8. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,所述钝化层和所述压电层的材质相同;或者,所述钝化层的材质包括氧化硅、氮化硅、氮氧化硅、金属氮化物和聚合物中的至少一种。
  9. 如权利要求1所述的BAW谐振器的封装方法,其特征在于,所述接合层的材料包括光固化材料、热固化材料、二氧化硅、氮化物、正硅酸乙酯以及介电常数K大于4的高K介质中的至少一种。
  10. 如权利要求1所述的体声波谐振器的封装方法,其特征在于,提供所述BAW谐振器件的步骤包括:
    提供制备衬底,并依次形成用于制作所述谐振结构的压电堆叠膜层和支撑层于所述制备衬底上;
    刻蚀所述支撑层,以在所述支撑层中形成第一间隙;
    提供所述第一衬底,并将所述第一衬底键合到所述支撑层上;以及,
    去除所述制备衬底,以形成所述BAW谐振器件。
  11. 如权利要求10所述的体声波谐振器的封装方法,其特征在于,在所述压电堆叠膜层上形成所述支撑层之前,或者,在去除所述制备衬底之后,将所述压电堆叠膜层图形化,以形成所述谐振结构。
  12. 如权利要求1所述的体声波谐振器的封装方法,其特征在于,提供所述BAW谐振器件的步骤包括:
    提供第一衬底,形成牺牲层于部分所述第一衬底上;
    形成所述谐振结构于所述牺牲层和所述第一衬底上;以及,
    去除所述牺牲层,以形成所述第一间隙。
  13. 如权利要求12所述的体声波谐振器的封装方法,其特征在于,形成牺牲层于部分所述第一衬底上的步骤包括:刻蚀所述第一衬底,以形成凹槽于所述第一衬底中;形成所述牺牲层填充于所述凹槽中;或者,
    形成牺牲层于部分所述第一衬底上的步骤包括:覆盖牺牲层于所述第一衬底上;图案化所述牺牲层,以形成牺牲层凸设于部分所述第一衬底上。
  14. 一种BAW谐振器的封装模块,其特征在于,所述封装模块包括:
    第二衬底和接合层,所述接合层形成在部分所述第二衬底上;
    BAW谐振器件,所述BAW谐振器件接合到所述接合层上,所述BAW谐 振器件包括第一衬底以及设置在所述第一衬底面向所述第二衬底的表面上的谐振结构,所述谐振结构与所述第一衬底之间形成有第一间隙,所述接合层夹在所述第二衬底和所述谐振结构之间,所述第二衬底和所述谐振结构之间具有主要由所述接合层围成的第二间隙,所述第二间隙与所述第一间隙至少部分对准,所述BAW谐振器件上还设有穿通孔,所述穿通孔穿过所述第一间隙外围的第一衬底,并暴露出所述谐振结构相应的电连接部;以及,
    导电互连层,所述导电互连层形成于所述穿通孔的内表面以及所述穿通孔外围的部分所述第一衬底的表面上。
  15. 如权利要求14所述的封装模块,其特征在于,所述BAW谐振器件还包括设置在所述第一衬底面向所述第二衬底的表面上的支撑层,所述第一间隙包括所述支撑层所围成的空间,所述谐振结构搭接在所述支撑层面向所述第二衬底的表面上,所述穿通孔穿过所述第一衬底和所述支撑层。
  16. 如权利要求15所述的封装模块,其特征在于,所述接合层的硬度小于所述支撑层的硬度。
  17. 如权利要求16所述的封装模块,其特征在于,所述封装模块还包括侧壁保护层和/或钝化层,所述侧壁保护层位于所述穿通孔的侧壁上,并夹设在所述谐振结构和所述导电互连层之间以及所述第一衬底和所述导电互连层之间,所述钝化层填满所述穿通孔并暴露出所述穿通孔外围的第一衬底表面上部分所述导电互连层,被暴露出的所述导电互连层形成接触垫。
  18. 如权利要求16所述的封装模块,其特征在于,所述钝化层和所述压电层的材质相同;或者,所述钝化层的材质包括氧化硅、氮化硅、氮氧化硅、金属氮化物和聚合物中的至少一种。
  19. 如权利要求14所述的封装模块,其特征在于,所述谐振结构包括面向所述第二衬底的第二电极、位于所述第二电极上的压电层以及位于所述压电层上的第一电极;所述电连接部包括第一电连接部和第二电连接部,所述第一电连接部包括伸出第一间隙的部分所述第一电极,所述第二电连接部包括伸出第一间隙的部分所述第二电极。
  20. 如权利要求14所述的封装模块,其特征在于,所述接合层的材料包括光固化材料、热固化材料、二氧化硅、氮化物、正硅酸乙酯以及介电常数K大于4的高K介质中的至少一种。
PCT/CN2019/109826 2019-07-19 2019-10-04 Baw谐振器的封装模块及封装方法 WO2021012396A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021504205A JP7246775B2 (ja) 2019-07-19 2019-10-04 Baw共振器のパッケージングモジュールおよびパッケージング方法
US17/249,338 US20210184645A1 (en) 2019-07-19 2021-02-26 Packaging module and packaging method of baw resonator
JP2023036991A JP2023071988A (ja) 2019-07-19 2023-03-09 Baw共振器のパッケージングモジュールおよびパッケージング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910656689.6 2019-07-19
CN201910656689 2019-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/249,338 Continuation US20210184645A1 (en) 2019-07-19 2021-02-26 Packaging module and packaging method of baw resonator

Publications (1)

Publication Number Publication Date
WO2021012396A1 true WO2021012396A1 (zh) 2021-01-28

Family

ID=73576222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109826 WO2021012396A1 (zh) 2019-07-19 2019-10-04 Baw谐振器的封装模块及封装方法

Country Status (4)

Country Link
US (1) US20210184645A1 (zh)
JP (2) JP7246775B2 (zh)
CN (1) CN112039464B (zh)
WO (1) WO2021012396A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210809A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 弾性波装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285685B (zh) * 2021-03-05 2022-12-09 广州乐仪投资有限公司 石英薄膜体声波谐振器及其加工方法、电子设备
CN113328725B (zh) * 2021-05-21 2024-04-05 武汉衍熙微器件有限公司 声波谐振结构、滤波器及声波谐振结构的制造方法
CN114421910B (zh) * 2022-01-20 2023-06-09 武汉敏声新技术有限公司 谐振器及其制备方法、滤波器
CN115425391B (zh) 2022-09-22 2023-03-17 安徽大学 一种陶瓷压电水下探测和5g手机天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183399A1 (en) * 2001-07-17 2004-09-23 Fujitsu Limited Film bulk acoustic resonator
CN2899285Y (zh) * 2006-06-02 2007-05-09 苏州市捷润电子科技有限公司 声表面波器件的高可靠封装结构
CN104767500A (zh) * 2014-01-03 2015-07-08 李国强 空腔型薄膜体声波谐振器及其制备方法
CN109586680A (zh) * 2017-09-29 2019-04-05 安华高科技股份有限公司 用于声谐振器结构的经锚定聚合物封装
CN109639251A (zh) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器
CN109672419A (zh) * 2018-11-01 2019-04-23 中国科学院半导体研究所 一种体声波谐振器的结构及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616508B1 (ko) * 2002-04-11 2006-08-29 삼성전기주식회사 Fbar 소자 및 그 제조방법
US6894383B2 (en) * 2003-03-31 2005-05-17 Intel Corporation Reduced substrate micro-electro-mechanical systems (MEMS) device and system for producing the same
KR100698287B1 (ko) * 2005-01-31 2007-03-22 삼성전자주식회사 박막벌크음향공진기 및 그 제조 방법
WO2008023478A1 (fr) * 2006-08-25 2008-02-28 Murata Manufacturing Co., Ltd. pièce électronique, et procédé de fabrication de la pièce électronique
JP2008098831A (ja) * 2006-10-10 2008-04-24 Toshiba Corp 薄膜圧電共振器
CN103873010B (zh) * 2014-03-17 2017-03-22 电子科技大学 一种压电薄膜体声波谐振器及其制备方法
WO2016174789A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 共振子及び共振装置
US10873311B2 (en) * 2017-02-15 2020-12-22 Skyworks Solutions, Inc. Acoustic resonators with reduced loss characteristics and methods of manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183399A1 (en) * 2001-07-17 2004-09-23 Fujitsu Limited Film bulk acoustic resonator
CN2899285Y (zh) * 2006-06-02 2007-05-09 苏州市捷润电子科技有限公司 声表面波器件的高可靠封装结构
CN104767500A (zh) * 2014-01-03 2015-07-08 李国强 空腔型薄膜体声波谐振器及其制备方法
CN109586680A (zh) * 2017-09-29 2019-04-05 安华高科技股份有限公司 用于声谐振器结构的经锚定聚合物封装
CN109672419A (zh) * 2018-11-01 2019-04-23 中国科学院半导体研究所 一种体声波谐振器的结构及其制备方法
CN109639251A (zh) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 体声波谐振器及其制作方法、滤波器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210809A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN112039464B (zh) 2024-01-23
CN112039464A (zh) 2020-12-04
JP2021534613A (ja) 2021-12-09
JP2023071988A (ja) 2023-05-23
JP7246775B2 (ja) 2023-03-28
US20210184645A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN108667437B (zh) 一种薄膜体声波谐振器及其制造方法和电子装置
WO2021012396A1 (zh) Baw谐振器的封装模块及封装方法
WO2021012376A1 (zh) 体声波谐振器的封装方法及封装结构
JP4248180B2 (ja) 導電性ミラーを有するバルク音響波共振器
JP7255910B2 (ja) 共振器及びその形成方法
US7161283B1 (en) Method for placing metal contacts underneath FBAR resonators
WO2021179729A1 (zh) 一种薄膜体声波谐振器及其制造方法
JP7218020B2 (ja) バルク音響波共振器のパッケージング方法及びパッケージング構造
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
WO2021232763A1 (zh) 一种薄膜体声波谐振器及其制造方法
CN112039456A (zh) 体声波谐振器的封装方法及封装结构
WO2021189965A1 (zh) 一种薄膜体声波谐振器及其制造方法
JP7134530B2 (ja) バルク音響波共振器のパッケージング方法及びパッケージング構造
US20230336149A1 (en) Mems device and fabrication method thereof
WO2022179479A1 (zh) 一种mems器件及其制作方法
EP4087127A1 (en) Semiconductor structure having stacking unit and manufacturing method therefore, and electronic device
WO2022057766A1 (zh) 薄膜体声波谐振器的制造方法及滤波器
WO2021135013A1 (zh) 具有叠置单元的半导体结构及制造方法、电子设备
JP7111406B2 (ja) 薄膜バルク音響波共振器の作製方法
CN111555728A (zh) 三维体声波谐振器及其制造方法
CN117060875A (zh) 一种体声波滤波器及其制造方法、电子装置
CN114337579A (zh) 谐振器件及其制备方法、集成有谐振器件的集成电路板
CN117277987A (zh) 滤波器及其制备方法
JP2001244782A (ja) 弾性表面波デバイス及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021504205

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938348

Country of ref document: EP

Kind code of ref document: A1