WO2021232763A1 - 一种薄膜体声波谐振器及其制造方法 - Google Patents

一种薄膜体声波谐振器及其制造方法 Download PDF

Info

Publication number
WO2021232763A1
WO2021232763A1 PCT/CN2020/135646 CN2020135646W WO2021232763A1 WO 2021232763 A1 WO2021232763 A1 WO 2021232763A1 CN 2020135646 W CN2020135646 W CN 2020135646W WO 2021232763 A1 WO2021232763 A1 WO 2021232763A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
protrusion
layer
piezoelectric
cavity
Prior art date
Application number
PCT/CN2020/135646
Other languages
English (en)
French (fr)
Inventor
黄河
罗海龙
李伟
Original Assignee
中芯集成电路(宁波)有限公司上海分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯集成电路(宁波)有限公司上海分公司 filed Critical 中芯集成电路(宁波)有限公司上海分公司
Priority to US17/928,201 priority Critical patent/US20230353118A1/en
Publication of WO2021232763A1 publication Critical patent/WO2021232763A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/028Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired values of other parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0442Modification of the thickness of an element of a non-piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]

Definitions

  • the invention relates to the field of semiconductor device manufacturing, in particular to a thin-film bulk acoustic wave resonator and a manufacturing method thereof.
  • the radio frequency filter is an important part of the radio frequency system. It can filter out the interference and noise outside the communication spectrum to meet the requirements of the radio frequency system and the communication protocol for the signal-to-noise ratio. Taking a mobile phone as an example, since each frequency band needs a corresponding filter, dozens of filters may need to be set in a mobile phone.
  • the thin film bulk acoustic wave resonator includes two thin film electrodes, and a piezoelectric thin film layer is arranged between the two thin film electrodes. Its working principle is to use the piezoelectric thin film layer to generate vibration under an alternating electric field.
  • the bulk acoustic wave propagating in the thickness direction of the electric film layer is transmitted to the interface between the upper and lower electrodes and the air to be reflected back, and then reflected back and forth inside the film to form an oscillation.
  • a standing wave oscillation is formed.
  • the currently manufactured cavity-type thin-film bulk acoustic wave resonators suffer from transverse wave loss and insufficient structural strength, so that the quality factor (Q) cannot be further improved, and the yield is low. Therefore, they cannot meet the needs of high-performance radio frequency systems.
  • the invention discloses a thin film bulk acoustic wave resonator and a manufacturing method thereof, which can solve the problems of low quality factor and low structural strength caused by the transverse wave leakage of the thin film bulk acoustic wave resonator.
  • the present invention provides a thin film bulk acoustic resonator, including: a supporting substrate; a supporting layer bonded to the supporting substrate, the supporting layer enclosing a first cavity, and The first cavity exposes the carrier substrate; the piezoelectric laminate structure is located above the support layer and covers the first cavity, and the piezoelectric laminate structure includes first electrodes stacked sequentially from bottom to top , A piezoelectric layer and a second electrode, wherein the area where the first electrode, the piezoelectric layer and the second electrode located above the first cavity overlap each other in a direction perpendicular to the surface of the piezoelectric layer constitutes a resonator
  • the effective resonant region; the boundary of the effective resonant region is provided with a first protrusion and a second protrusion, the first protrusion is located on the side where the first electrode is located, and the second protrusion is located where the second electrode is located On the other hand, the projection of the first protrusion and
  • the present invention also provides a method for manufacturing a thin film bulk acoustic resonator, which includes: providing a temporary substrate; forming a piezoelectric laminate structure and a first protrusion on the temporary substrate, the piezoelectric laminate structure including A second electrode, a piezoelectric layer, and a first electrode are sequentially formed on the temporary substrate, the first protrusion is located on the side of the first electrode; a support layer is formed to cover the piezoelectric laminate structure; The support layer is patterned to form a first cavity, the first cavity penetrates the support layer, and the first protrusion is located in the area enclosed by the first cavity; on the support layer Bonding a carrier substrate, the carrier substrate covering the first cavity; removing the temporary substrate; forming a second bump on the second electrode, the first bump and/or the
  • the projection of the second protrusion on the plane where the piezoelectric layer is located includes a ring shape, and the ring shape includes an open loop or a closed loop.
  • the beneficial effects of the present invention are: at the boundary of the effective resonance area, the upper and lower surfaces are respectively provided with first protrusions and second protrusions, and the area where the first protrusions or second protrusions are located and the acoustic impedance inside the effective resonance area are mismatched
  • the projection of at least one of the first protrusion or the second protrusion on the plane where the piezoelectric layer is located includes a ring shape, and one side is provided with another protrusion.
  • the acoustic impedance mismatch effects of the two protrusions are superimposed, and the structural balance is improved, which is effective Prevent the lateral leakage of sound waves, and further improve the quality factor of the resonator.
  • the degree of acoustic impedance mismatch between the interior of the effective resonance region and the area where the protrusion is located is increased.
  • the projection of the second protrusion in the direction of the piezoelectric layer is provided with an overlap in the radial direction from the center to the edge of the effective resonance region (that is, the projection of one protrusion is located outside the projection of the other protrusion), which is equivalent There are two acoustic impedance mismatch areas.
  • the effective resonance area of the resonator is defined by the first groove and the second groove.
  • the first groove and the second groove respectively penetrate the first electrode and the second electrode, and the piezoelectric layer maintains a complete film layer. After etching, the structural strength of the resonator is ensured, and the yield of manufacturing the resonator is improved.
  • the manufacturing method of the resonator of the present invention is a double-sided manufacturing process, which can form first bumps on one side of the piezoelectric laminate structure before bonding the carrier substrate; after removing the temporary substrate, the piezoelectric laminate structure can be A second protrusion is formed on the other side.
  • the traditional manufacturing process is a single-sided manufacturing process, which can only form bumps on one side of the piezoelectric laminated structure.
  • FIG. 1 and FIG. 2 show a schematic diagram of the structure of a thin-film bulk acoustic resonator of Embodiment 1. As shown in FIG.
  • 3 to 10 show schematic structural diagrams corresponding to different steps of a method for manufacturing a thin-film bulk acoustic resonator of Embodiment 2.
  • 11 to 18 show schematic structural diagrams corresponding to different steps of a method for manufacturing a thin-film bulk acoustic resonator according to the third embodiment.
  • first element, component, region, layer or section discussed below may be represented as a second element, component, region, layer or section.
  • Spatial relationship terms such as “under”, “below”, “below”, “below”, “above”, “above”, etc., in It can be used here for the convenience of description to describe the relationship between one element or feature shown in the figure and other elements or features. It should be understood that in addition to the orientations shown in the figures, the spatial relationship terms are intended to include different orientations of devices in use and operation. For example, if the device in the figure is turned over, then elements or features described as “under” or “below” or “under” other elements will be oriented “on” the other elements or features. Therefore, the exemplary terms “below” and “below” can include both an orientation of above and below. The device can be otherwise oriented (rotated by 90 degrees or other orientation) and the spatial descriptors used here are interpreted accordingly.
  • the method herein includes a series of steps, and the order of these steps presented herein is not necessarily the only order in which these steps can be performed, and some steps may be omitted and/or some other steps not described herein may be added to this method. If the components in a certain drawing are the same as those in other drawings, although these components can be easily identified in all the drawings, in order to make the description of the drawings more clear, this specification will not describe all the same components. The reference numbers are shown in each figure.
  • FIG. 1 shows a schematic structural diagram of a thin film piezoelectric acoustic wave resonator of Embodiment 1. Please refer to FIG. 1.
  • the thin film bulk acoustic wave resonator includes: a bearing liner Bottom 100; a supporting layer 102, bonded to the supporting substrate 100, the supporting layer 102 encloses a first cavity 110a, and the first cavity 110a exposes the supporting substrate 100; piezoelectric stack The layer structure is located above the support layer 102 and covers the first cavity 110a.
  • the piezoelectric laminate structure includes a first electrode 103, a piezoelectric layer 104, and a second electrode 105 that are sequentially stacked from bottom to top.
  • the area where the first electrode 103, the piezoelectric layer 104 and the second electrode 105 located above the first cavity 110a overlap each other in a direction perpendicular to the surface of the piezoelectric layer constitutes the effective resonance region of the resonator;
  • a first protrusion 40a and a second protrusion 40b are provided at the boundary of the resonance region.
  • the first protrusion 40a is located on the side where the first electrode is located, and the second protrusion 40b is located on the side where the second electrode is located.
  • the projection of the first protrusion 40a and/or the second protrusion 40b on the plane of the piezoelectric layer 104 includes a ring shape, and the ring shape includes an open loop or a closed loop.
  • the shape of the ring can be a circle, an ellipse, a polygon, or an irregular shape composed of arcs and straight sides.
  • the ring shape can be a closed ring or an unclosed ring.
  • a closed ring means that the first protrusion 40a or the second protrusion 40b is continuous, and an unclosed ring means the first protrusion 40a or the second protrusion. 40b is not continuous.
  • the upper and lower surfaces are respectively provided with a first protrusion and a second protrusion.
  • the area where the first protrusion or the second protrusion is located is mismatched with the acoustic impedance inside the effective resonance area.
  • the first protrusion or the second protrusion The projection of at least one of the two protrusions on the plane where the piezoelectric layer is located includes a ring shape, and one side is provided with another protrusion. The acoustic impedance mismatch effects of the two protrusions are superimposed, and the structural balance is improved, effectively preventing the lateral leakage of sound waves, and further Improve the quality factor of the resonator.
  • the first protrusion 40a is located on the side of the first electrode 103 of the piezoelectric laminate structure, close to the carrier substrate 100; the second protrusion 40b is located on the second electrode 105 of the piezoelectric laminate structure The side is far away from the supporting substrate 100.
  • the first protrusion 40a protrudes from the bottom surface of the piezoelectric laminate structure, that is, the top surface of the first protrusion 40a is lower than the bottom surface of the first electrode 103; the second protrusion 40b It protrudes from the upper surface of the piezoelectric laminate structure, that is, the top surface of the second protrusion 40 b is higher than the upper surface of the second electrode 105.
  • the projections of the first protrusion 40a and the second protrusion 40b on the carrier substrate 100 each enclose a closed ring, such as a closed irregular polygon, a circle, or an ellipse.
  • the overlapping area surrounded by the first protrusion 40a and the second protrusion 40b is an effective resonance region.
  • the first electrode 103, the piezoelectric layer 104, and the second electrode 105 in the effective resonance area overlap each other in a direction perpendicular to the carrier substrate 100.
  • the first protrusion 40a and the second protrusion 40b overlap in a direction perpendicular to the piezoelectric layer 104.
  • the overlap includes at least the following three cases: 1.
  • the projection shapes of the first protrusion 40a and the second protrusion 40b are the same, and the two completely overlap. 2.
  • the projection area of one of the first protrusion 40a and the second protrusion 40b is larger than the area of the other projection, and the projection with the larger area covers the projection with the smaller area.
  • the two projections are partially overlapped. For example, the shape trends of the two projections are roughly the same, and the overlapping parts of the two projections are continuous, or only a part of the area of one projection and the other projection has an overlapping part.
  • the first protrusion 40a and the second protrusion 40b may partially overlap in the direction perpendicular to the piezoelectric layer 104, or the first protrusion 40a and the second protrusion 40b
  • the projection 40b in the direction of the piezoelectric layer is provided with an overlapping portion in the radial direction from the center to the edge of the effective resonance region (that is, the projection of one projection is located outside the other projection, such as the first
  • the projection of the projection is a ring, and the projection of the second projection surrounds the projection of the first projection).
  • the first protrusion 40a and the second protrusion 40b make the internal effective resonance area enclosed by the first protrusion 40a and the second protrusion 40b mismatch the acoustic impedance of the area where the first protrusion 40a and the second protrusion 40b are located. Prevent the lateral leakage of sound waves and improve the quality factor of the resonator.
  • the projection of each of the first protrusion 40a and the second protrusion 40b on the carrier substrate 100 may not be a completely closed pattern. It should be understood that when the projections of the first protrusions 40a and the second protrusions 40b on the carrier substrate 100 are closed patterns, it is more beneficial to prevent the lateral leakage of sound waves.
  • the material of the first protrusion 40a and the second protrusion 40b may be a conductive material or a dielectric material.
  • the material of the first protrusion 40a is a conductive material, it may be the same as the material of the first electrode 103.
  • the first electrode 103 includes a first protrusion 40a, and the first protrusion 40a and the first electrode 103 are integrally formed.
  • the material of the second protrusion 40b is a conductive material, it may be the same as the material of the second electrode 105.
  • the second electrode 105 includes a second protrusion 40b, and the second protrusion 40b and the second electrode 105 are integrally formed.
  • the material of the first protrusion 40a and the second protrusion 40b is a dielectric material, it may be any one of silicon oxide, silicon nitride, silicon oxynitride, or silicon carbonitride, but is not limited to the above materials.
  • the carrier substrate 100 may be at least one of the materials mentioned below: silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbon (SiC), silicon germanium (SiGeC), indium arsenide (InAs), gallium arsenide (GaAs), indium phosphide (InP) or other III/V compound semiconductors, including multilayer structures composed of these semiconductors, etc., and can also be ceramic substrates such as alumina, quartz or glass substrates Wait.
  • the supporting layer 102 is bonded to the supporting substrate 100, and the supporting layer 102 encloses a first cavity 110 a, and the first cavity 110 a exposes the supporting substrate 100.
  • the first cavity 110a is a ring-shaped closed cavity, and the first cavity 110a may be formed by etching the support layer 102 through an etching process.
  • the technology of the present invention is not limited to this. It should be noted that the support layer 102 is combined with the carrier substrate 100 by bonding, and the bonding methods include: covalent bonding, adhesive bonding, or fusion bonding.
  • the support layer 102 and the carrier substrate 100 are bonded through a bonding layer, and the bonding layer includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, or ethyl silicate.
  • the shape of the bottom surface of the first cavity 110a is rectangular, but in other embodiments of the present invention, the shape of the first cavity 110a on the bottom surface of the first electrode 103 can also be a circle, an ellipse, or Polygons other than rectangles, such as pentagons, hexagons, etc.
  • the material of the support layer 102 can be any suitable dielectric material, including but not limited to one of silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, and the like. In other embodiments, the material of the support layer 102 and the bonding layer may be the same.
  • a piezoelectric stack structure is provided above the first cavity 110a, and the piezoelectric stack structure includes a first electrode 103, a piezoelectric layer 104, and a second electrode 105 in order from bottom to top.
  • the first electrode 103 is located on the supporting layer 102
  • the piezoelectric layer 104 is located on the first electrode 103
  • the second electrode 105 is located on the piezoelectric layer 104.
  • the first electrode 103, the piezoelectric layer 104, and the second electrode 105 above the first cavity 110a are provided with overlapping regions in a direction perpendicular to the carrier substrate 100, and the first protrusion 40a and the second protrusion
  • the overlapping area of the area surrounded by the ridge 40b is the effective resonance area.
  • the piezoelectric layer 104 covers the first cavity 110a, and covering the first cavity 110a should be understood to mean that the piezoelectric layer 104 is a complete film layer and has not been etched. It does not mean that the piezoelectric layer 104 completely covers the first cavity 110a to form a sealed cavity. Of course, the piezoelectric layer 104 can completely cover the first cavity 110a to form a sealed cavity.
  • the piezoelectric layer is not etched to ensure that the piezoelectric laminated structure has a certain thickness, so that the resonator has a certain structural strength. Improve the yield of resonators.
  • an etch stop layer is further provided between the support layer 102 and the first electrode 103, and its material includes but is not limited to silicon nitride (Si3N4) and silicon oxynitride (SiON).
  • the etch stop layer can be used to increase the structural stability of the finally manufactured thin film bulk acoustic wave resonator.
  • the etch stop layer has a lower etching rate than the support layer 102 and can be used to etch the support The layer 102 prevents over-etching during the process of forming the first cavity 110a, and protects the surface of the first electrode 103 located thereunder from damage, thereby improving the performance and reliability of the device.
  • the surface of the piezoelectric laminate structure further includes a first groove 130a and a second groove 130b.
  • the first groove 130a is located on the lower surface of the piezoelectric laminate structure on the side where the first cavity 110a is located. , Penetrates the first electrode 103 and surrounds the outer circumference of the area where the first protrusion 40a is located.
  • the second groove 130b is located on the upper surface of the piezoelectric laminate structure, penetrates the second electrode 105, and surrounds the outer circumference of the area where the second protrusion 40b is located.
  • the two ends of the first groove 130a and the two ends of the second groove 130b are arranged opposite to each other, so that the projections of the first groove 130a and the second groove 130b on the carrier substrate 100
  • the two junctions meet or have a gap.
  • the projections of the first protrusions 40a and the second protrusions 40b on the piezoelectric layer 104 are closed polygons, and the inner edges of the first groove 130a and the second groove 130b are respectively along
  • the outer boundaries of the first protrusion 40a and the second protrusion 40b are arranged, that is, the outer boundaries of the first protrusion 40a and the second protrusion 40b are connected to the first groove 130a and the second groove respectively.
  • the inner edges of the groove 130b coincide.
  • the projections of the first grooves 130a and the second grooves 130b on the carrier substrate 100 are closed patterns, which are consistent with the shapes of the projections of the first protrusions 40a and the second protrusions 40b on the carrier substrate 100, respectively. They are respectively located on the outer periphery of the projection formed by the first protrusion 40a and the second protrusion 40b.
  • the first protrusion 40a and the second protrusion 40b mismatch the acoustic impedance of the area inside the protrusion and the acoustic impedance of the area where the protrusion is located, and define the boundary of the effective resonance area of the resonator.
  • the first groove 130a and the second groove 130b separate the first electrode 103 and the second electrode 105, respectively, so that the resonator cannot meet the working conditions (the working condition is that the first electrode 103, the piezoelectric layer 104 and the second electrode 105 are in The thickness direction overlaps each other), which further defines the boundary of the effective resonance region of the resonator.
  • the first protrusion 40a and the second protrusion 40b make the acoustic impedance mismatch by the addition of a mass.
  • the first groove 130a and the second groove 130b make the electrode end face contact with the air to make the acoustic impedance mismatch. It plays a role in preventing the leakage of transverse waves and improves the Q value of the resonator.
  • only the first trench 130a or the second trench 130b may be provided separately.
  • the first trench 130a or the second trench 130b is not suitable to form a closed ring, at this time the first groove 130a or the second groove 130b cannot completely surround the area where the first protrusion 40a or the second protrusion 40b is located.
  • the first groove 130a or the second groove 130b may be formed into a nearly closed ring shape, and the non-closed area is used to introduce electrical signals. This arrangement can simplify the process flow and reduce the cost of the resonator.
  • it further includes a frequency adjustment layer, which is disposed on the surface of the first electrode 103 in the effective resonance region. In another embodiment, it can also be arranged on the surface of the second electrode 105 in the effective resonance zone.
  • the frequency adjustment layer is used to adjust the frequency of the resonator.
  • the frequency of the resonator is related to the thickness of the effective resonance zone.
  • the thickness of the first electrode 103, the second electrode 105 and the piezoelectric layer 104 of different resonators is the same In order to make the frequencies of different resonators different, frequency adjustment layers of different thicknesses can be set.
  • the material of the frequency adjustment layer may be ethyl silicate.
  • the material of the frequency adjustment layer can also be silicon oxide, silicon nitride, silicon oxynitride, or silicon carbonitride.
  • it further includes a bonding layer 106 disposed above the piezoelectric laminate structure, the bonding layer 106 encloses a second cavity 110b, and the second cavity 110b exposes the piezoelectric laminate
  • the bonding layer 106 encloses a second cavity 110b
  • the second cavity 110b exposes the piezoelectric laminate
  • the bonding layer 106 encloses a closed ring
  • the second cavity 110b is a closed cavity.
  • the bonding layer 106 can be made of conventional bonding materials, such as silicon oxide, silicon nitride, silicon oxynitride, ethyl silicate, etc., or a bonding agent such as a light-curing material or a heat-curing material, such as an adhesive film (Die Attach Film, DAF) or dry film (Dry Film).
  • the material of the bonding layer and the material of the capping substrate 200 may be the same, and the two are an integral structure, and the second cavity 110b is formed by forming a space in the film layer (forming the bonding layer 106 and the capping substrate 200).
  • the first electrical connection portion is used to introduce electrical signals into the first electrode 103 of the effective resonance region
  • the second electrical connection portion is used for introducing electrical signals into the second electrode 105 of the effective resonance region.
  • a pressure difference is generated on the upper and lower surfaces of the piezoelectric layer 104, forming a standing wave oscillation.
  • the conductive interconnect structure 120 is used to short-circuit the first electrode and the second electrode outside the effective resonance region.
  • the effective resonance region also includes the area where the piezoelectric layer, the first electrode, and the second electrode overlap each other in the direction perpendicular to the piezoelectric layer.
  • the first electrode and the second electrode are energized, the pressure difference between the upper and lower surfaces of the piezoelectric layer outside the effective resonance region can also be generated, and standing wave oscillation is also generated.
  • the standing wave oscillation outside the effective resonance region is undesirable.
  • the first electrode and the second electrode outside the effective resonance area are short-circuited to make the upper and lower voltages of the piezoelectric layer outside the effective resonance area consistent, and no standing wave oscillation can be generated outside the effective resonance area, which improves the Q value of the resonator.
  • the specific structures of the first electrical connection portion, the second electrical connection portion and the conductive interconnection structure 120 are as follows:
  • the first electrical connection portion includes: a first through hole 140, which penetrates the lower layer structure of the first electrode 103 outside the effective resonance region, exposing the first electrode 103; and a first conductive interconnection
  • the layer 141 covers the inner surface of the first through hole 140 and a part of the surface of the carrier substrate 100 on the outer periphery of the first through hole 140, and is connected to the first electrode 103; and an insulating layer 160 covers the first through hole 140.
  • a conductive interconnection layer 141 and the surface of the carrier substrate 100; conductive bumps 142 are disposed on the surface of the carrier substrate 100 and are electrically connected to the first conductive interconnection layer 141.
  • the second electrical connection portion includes: a second through hole 150, which penetrates the lower layer structure of the first electrode 103 outside the effective resonance region, exposing the first electrode 103;
  • the interconnection layer 151 covers the inner surface of the second through hole 150 and a part of the surface of the carrier substrate 100 on the outer periphery of the second through hole 150, and is connected to the first electrode 103;
  • the insulating layer 160 covers all The second conductive interconnection layer 151 and the surface of the carrier substrate 100; second conductive bumps 152 are disposed on the surface of the carrier substrate 100 and are electrically connected to the second conductive interconnection layer 151.
  • the conductive interconnect structure 120 includes two parts, one part is disposed in the outer area of the second trench 130b, and connects the first electrode 103 and the second electrode 105, and is electrically connected to the first electrical connection part through the first electrode 103. connect.
  • the other part of the conductive interconnect structure 120 is disposed in the outer area of the first trench 130a, connects the first electrode 103 and the second electrode 105, and is electrically connected to the second electrical connection portion through the first electrode 103.
  • Both parts of the conductive interconnection structure 120 are provided with a region covering part of the surface of the second electrode 105. This region increases the contact area with the second electrode 105, reduces the contact resistance, and can prevent local high temperature caused by excessive current.
  • the second electrical connection part is not directly electrically connected to the second electrode, but is connected to the first electrode outside the effective resonance region, and is electrically connected to the second electrode of the effective resonance region through the conductive interconnection structure 120.
  • the first electrical connection portion is electrically connected to the first electrode inside the effective resonance area, giving One electrode is powered
  • the first electrical connection part is electrically connected to the second electrode outside the effective resonant area through the first electrode outside the effective resonant area and the conductive interconnection structure 120, and is not connected to the second electrode inside the effective resonant area.
  • the second electrical connection part is connected to the first electrode outside the effective resonant area and the second electrode inside the effective resonant area to realize power supply to the second electrode inside the effective resonant area.
  • Embodiment 2 provides a method for manufacturing a thin film bulk acoustic resonator, including the following steps S01: providing a temporary substrate; S02: forming a piezoelectric laminate structure and a first protrusion on the temporary substrate, and the pressing
  • the electrical laminated structure includes a second electrode, a piezoelectric layer, and a first electrode sequentially formed on the temporary substrate, and the first protrusion is located on the side of the first electrode;
  • S03 forming a support layer to cover all The piezoelectric laminated structure;
  • S04 the support layer is patterned to form a first cavity, the first cavity penetrates the support layer, and the first protrusion is located in the area enclosed by the first cavity
  • Two protrusions The projection of the first protrusion and/or the second protrusion on the plane where the
  • step S0N does not represent a sequence.
  • step S01 is performed: a temporary substrate 300 is provided.
  • the temporary substrate 300 may be at least one of the materials mentioned below: silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbon (SiC), silicon germanium (SiGeC), indium arsenide (InAs), gallium arsenide (GaAs), indium phosphide (InP), or other III/V compound semiconductors, can also be ceramic substrates such as alumina, quartz or glass substrates, etc.
  • step S02 is performed: forming a piezoelectric laminate structure and a first protrusion 40a on the temporary substrate 300, the piezoelectric laminate structure including those sequentially formed on the temporary substrate
  • the second electrode 105, the piezoelectric layer 104, the first electrode 103, and the first protrusion 40a is located on the side of the first electrode.
  • the materials of the second electrode 105 and the first electrode 103 can use any suitable conductive material or semiconductor material well known to those skilled in the art, wherein the conductive material can be a metal material with conductive properties, for example, made of molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), tantalum (Ta), platinum (Pt), ruthenium (Ru), rhodium (Rh), iridium (Ir), chromium (Cr), titanium (Ti), gold (Au), osmium (Os), rhenium (Re), palladium (Pd) and other metals or laminates of the above metals, semiconductor materials such as Si, Ge, SiGe, SiC, SiGeC, etc.
  • the second electrode 105 and the first electrode 103 may be formed by physical vapor deposition or chemical vapor deposition methods such as magnetron sputtering, evaporation, or the like.
  • the material of the piezoelectric layer 104 can be aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO3), quartz (Quartz), potassium niobate (KNbO3) or tantalic acid Piezoelectric materials with wurtzite crystal structure such as lithium (LiTaO3) and their combinations.
  • the piezoelectric layer 104 may further include rare earth metals, such as at least one of scandium (Sc), erbium (Er), yttrium (Y), and lanthanum (La).
  • the piezoelectric layer 104 may further include a transition metal, such as at least one of zirconium (Zr), titanium (Ti), manganese (Mn), and hafnium (Hf). kind.
  • the piezoelectric layer 104 can be deposited and formed by any suitable method known to those skilled in the art, such as chemical vapor deposition, physical vapor deposition, or atomic layer deposition.
  • the second electrode 105 and the first electrode 103 are made of metal molybdenum (Mo)
  • the piezoelectric layer 104 is made of aluminum nitride (AlN).
  • step S03 is performed: forming a support layer 102 to cover the piezoelectric laminate structure.
  • the support layer 102 is formed by physical vapor deposition or chemical vapor deposition.
  • the material of the support layer 102 can be any suitable dielectric material, including but not limited to at least one of silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, and the like.
  • step S04 is performed: pattern the support layer 102 to form a first cavity 110a, the first cavity 110a penetrates the support layer 102, and the first protrusion 40a is located in the first cavity 110a Within the enclosed area.
  • the support layer 102 is etched by an etching process to form the first cavity 110a, and the first electrode layer 103 and the first protrusion 40a at the bottom are exposed.
  • the etching process may be a wet etching process or a dry etching process. Dry etching includes but is not limited to reactive ion etching (RIE), ion beam etching, and plasma etching.
  • RIE reactive ion etching
  • the depth and shape of the first cavity 110a depend on the depth and shape of the cavity required by the bulk acoustic wave resonator to be manufactured, that is, the depth of the first cavity 110a can be determined by forming the thickness of the support layer 102.
  • the shape of the bottom surface of the first cavity 110a can be a rectangle or a polygon other than a rectangle, such as a pentagon, a hexagon, an octagon, etc., and can also be a circle or an ellipse.
  • step S05 is performed: bonding a carrier substrate 100 on the support layer 102, and the carrier substrate 100 covers the first cavity 110a.
  • the material of the carrier substrate 100 may refer to the material of the temporary substrate 300.
  • the bonding of the carrier substrate 100 and the supporting layer 102 can be achieved by thermocompression bonding, or the bonding of the carrier substrate 100 and the supporting layer 102 can be achieved by dry film bonding.
  • step S06 is performed: removing the temporary substrate.
  • the method of removing the temporary substrate can be mechanical grinding.
  • step S07 forming a second protrusion 40b on the second electrode 105, and the first protrusion 40a and/or the second protrusion 40b are on the plane where the piezoelectric layer 104 is located
  • the projection of includes a ring, the ring includes an open loop or a closed loop.
  • Embodiment 1 for the structure, positional relationship and beneficial effects of the first protrusion 40a and the second protrusion 40b, and will not be repeated here.
  • the method for forming the first protrusion 40a and the second protrusion 40b is: sequentially forming a second conductive material layer and a piezoelectric layer 104 on the temporary substrate 300, and the second conductive material
  • the thickness of the material layer is the sum of the thickness of the second electrode 105 and the second protrusion 40b. After that, a first conductive material layer is formed on the piezoelectric layer 104.
  • the thickness of the first conductive material layer formed at this time is the first electrode 103
  • the thickness of the first bump 40a after forming the first conductive material layer, etch the first conductive material layer of a set thickness to form the first bump 40a and the first electrode 103, and remove the temporary substrate 300 Afterwards, the second conductive material layer with the set thickness is etched to form the second bump 40b and the second electrode 105.
  • the classification of the material for forming the protrusion includes the following two forms:
  • the first form forming a structural material layer on the temporary substrate or the second electrode or the piezoelectric layer, performing an etching process on the structural material layer to form the first bump, and
  • the structural material layer formed on the temporary substrate is used to form the second electrode, and the structural material layer formed on the second electrode is used to form the piezoelectric layer.
  • the formed structural material layer is used to form the first electrode; in this embodiment, the first protrusion is formed in this form.
  • a structural material layer is formed on the temporary substrate, and after removing the temporary substrate, an etching process is performed on the structural material layer to form the second protrusions, and the structural material layer is used to form the second protrusions. electrode.
  • the method of forming the first protrusion and the second protrusion is in this form.
  • the second form forming a protruding material layer on the temporary substrate or the second electrode or the piezoelectric layer or the first electrode, and performing an etching process on the protruding material layer to form the First bump; after removing the temporary substrate, a bump material layer is formed on the second electrode, and an etching process is performed on the bump material layer to form the second bump.
  • the protrusion and the structural material layer are made of the same material, and the structural material layer and the protrusion material layer can be formed through a single deposition process, reducing the number of process steps.
  • the bump material and the structural material layer are made of different materials and need to be formed by two deposition processes, but the choice of bump material is not limited to the same material as the first electrode or the second electrode or the piezoelectric layer. The choice of materials is wider.
  • the specific method for forming the piezoelectric laminate structure and the first protrusion and the second protrusion may include:
  • Method 1 The second electrode, the piezoelectric layer, and the first electrode are sequentially formed on the temporary substrate, the first bump is formed on the first electrode, and after the temporary substrate is removed, The second bump is formed on the second electrode.
  • the material of the first protrusion and the material of the first electrode may be the same or different.
  • the material of the second protrusion and the material of the second electrode may be the same or different.
  • the materials of the two are the same.
  • the conductive material layer is formed by a deposition process, and the first electrode and the first protrusion are formed by an etching process.
  • the second electrode and the second protrusion are formed.
  • the two materials may be different.
  • the second electrode and the first electrode may be formed first, and then the second protrusion and the first protrusion material layer are formed by a deposition process, and then the first protrusion is formed by an etching process. Up and second bump.
  • Method 2 sequentially forming the second electrode and the piezoelectric layer on the temporary substrate, forming the first bump on the piezoelectric layer, and forming the first bump on the piezoelectric layer.
  • the first electrode is formed on the upper surface, and after the temporary substrate is removed, the second bump is formed on the second electrode.
  • the difference between this method and method 1 is that the first bump of method 1 is formed on the first electrode, and the first bump of this method is formed on the piezoelectric layer.
  • the formation of the first protrusion in this manner also includes two cases. One is that the material of the first protrusion and the piezoelectric layer are the same, and they are formed by a single deposition process.
  • a piezoelectric material layer is formed on the second electrode, the thickness of the piezoelectric material layer is the sum of the height of the first protrusion and the piezoelectric layer, and then the piezoelectric layer and the first protrusion are formed through an etching process.
  • the other is that the first bump and the piezoelectric layer are formed separately.
  • a piezoelectric layer is formed on the second electrode, and then a first bump material layer is formed on the piezoelectric layer, which is formed by an etching process.
  • the first protrusion, and then a first electrode is formed on the first protrusion and on the piezoelectric layer.
  • the formation of the second bump also includes two cases.
  • One is that the second bump and the second electrode are made of the same material and are formed by a single deposition process.
  • a conductive material layer is formed on the temporary substrate.
  • the thickness of the conductive material layer is the sum of the height of the second protrusion and the second electrode.
  • the second electrode and the second electrode are respectively formed by an etching process. Two bulges.
  • the other is that the second bump and the second electrode are formed separately.
  • a second electrode is formed on the temporary substrate. After the temporary substrate is removed, a second bump material layer is formed on the second electrode. The second protrusion is formed through an etching process.
  • Method 3 forming the second electrode on the temporary substrate, forming the first bump on the second electrode, and forming the first bump and the second electrode in sequence.
  • the difference between this method and method 2 is that the first bump of method 2 is formed on the piezoelectric layer, the first bump of this method is formed on the second electrode, and the materials of the second bump and the first bump are formed on the piezoelectric layer.
  • the method can refer to Method 2, which will not be repeated here.
  • Method 4 forming the first bump on the temporary substrate, on the first bump, forming the second electrode, the piezoelectric layer, and the first electrode in sequence on the temporary substrate, and removing After the temporary substrate, the second bump is formed on the second electrode.
  • the material of the first bump in this method may be the same as or different from that of the first electrode.
  • Method 2 For the forming method, refer to Method 2, and for the material and forming method of the second bump, refer to Method 2, which will not be repeated here.
  • This embodiment provides another method for manufacturing a thin film piezoelectric acoustic resonator.
  • Figures 11 to 18 show corresponding structural schematic diagrams in different steps.
  • steps S01 to S04 in this embodiment are the same as those in the second embodiment.
  • the main difference from the second embodiment is that after step S04 is performed, before step S05 is performed, the method further includes: forming a ring surrounding the first protrusion 40a at the bottom of the first cavity 110a and on the periphery of the first protrusion 40a.
  • the first trench 130 a penetrates the first electrode 103.
  • the method further includes: forming a second groove 130b on the second electrode 105 on the side opposite to the first groove 130a, and the second groove 130b surrounds the second protrusion 40b,
  • the second groove 130b penetrates the second electrode 105; the first groove 130a and the second groove 130b meet or have a gap at the two junctions of the projection of the carrier substrate 100 .
  • the first electrode layer 103 is etched to form a first trench 130a in the first cavity 110a on the outer periphery of the first protrusion 40a.
  • the sidewalls of the first trench 130a may be inclined or vertical. straight.
  • the sidewall of the first trench 130a and the plane of the piezoelectric layer 104 form an obtuse angle (the shape of the longitudinal section (the section along the thickness direction of the film) of the first trench 130a is a trapezoid).
  • the projection of the first groove 130a on the plane where the piezoelectric layer 104 is located is a half-ring or a half-ring-like polygon.
  • the first trench 130a after forming the first trench 130a, it further includes: forming a bonding layer 101 on the surface of the supporting layer 102, and the bonding layer 101 is used to bond the supporting layer 102 and The supporting substrate 100.
  • the bonding layer 101 is formed on the surface of the support layer 102, the first electrode 103, the first protrusion 40a, and the first trench 130a through a deposition process.
  • the material of the bonding layer includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, or ethyl silicate. It can be seen from the material of the support layer 102 described above that the material of the support layer 102 and the bonding layer 102 may be the same. In this embodiment, the material of the bonding layer 101 is ethyl silicate.
  • the bonding layer 101 after forming the bonding layer 101 in this embodiment, it further includes: forming a frequency adjustment layer 1010 on the surface of the first electrode 103 surrounded by the first protrusion 40 a.
  • the bonding layer 102 may not be formed before the frequency adjustment layer 1010 is formed.
  • the material of the frequency adjustment layer 1010 may include silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, or ethyl silicate.
  • the material of the frequency adjustment layer 1010 and the material of the bonding layer 101 are the same as ethyl silicate.
  • the method of forming the bonding layer 101 and the frequency adjustment layer 1010 includes physical vapor deposition or chemical vapor deposition. For the function of the frequency adjustment layer 1010, refer to the description of Embodiment 1, and will not be repeated here.
  • step S06 is performed: removing the temporary substrate.
  • step S07 is performed: forming a second protrusion 40b on the second electrode, and the first protrusion 40a and/or the second protrusion 40b are on the plane where the piezoelectric layer 104 is located.
  • the projection includes a ring shape, and the ring shape includes an open loop or a closed loop.
  • a second groove 130b is formed on the second electrode 105 on the side opposite to the first groove 130a, and the second groove 130b surrounds the second protrusion 40b, the second trench 130b penetrates the second electrode 105.
  • the first trench 130 a and the second trench 130 b meet at two junctions of the projection of the carrier substrate 100. Form a closed irregular polygon.
  • the structure and forming method of the second trench 130b refer to the structure and forming method of the first trench 130a. In other embodiments, only the first trench 130a or the second trench 130b may be formed separately.
  • the structure and function of the first trench 130a and the second trench 130b are referred to Embodiment 1, and will not be repeated here.
  • step S07 after step S07 is performed, it further includes: forming a bonding layer 106 on the piezoelectric laminate structure, the bonding layer 106 enclosing a second cavity 110b, and the second cavity 110b It is located above the first cavity 110a, and the second protrusion 40b is located inside the second cavity 110b; a cover substrate 200 is bonded to the bonding layer 106, and the cover substrate 200 covers the The second cavity 110b. It also includes forming a first electrical connection portion and a second electrical connection portion. The first electrical connection portion is used for electrical connection with the first electrode of the effective resonance area, and the second electrical connection portion is used for electrical connection with the second electrode of the effective resonance area. . It also includes forming a conductive interconnect structure 120 that is connected to the first electrode 103 and the second electrode 105 outside the effective resonance region.
  • forming the first electrical connection part includes: forming a first through hole 140 penetrating the lower layer structure of the first electrode 103 by an etching process, the first through hole 140 exposing the first electrode 103, and In the first through hole 103, a first conductive interconnection layer 141 is formed by an electroplating process or a physical vapor deposition process, and the first conductive interconnection layer 141 covers the inner surface of the first through hole 140 and the first through hole 140.
  • a portion of the surface of the carrier substrate 100 on the periphery of the hole 140 is connected to the first electrode 103; an insulating layer 160 is formed on the surface of the first conductive interconnection layer 141 by a deposition process; on the surface of the carrier substrate 100 A first conductive bump 142 is formed on the surface, and the first conductive bump 142 is electrically connected to the first conductive interconnect layer 141.
  • Forming the second electrical connection portion includes: forming a second through hole 150 penetrating the underlying structure of the first electrode 103 through an etching process, the second through hole 150 exposing the first electrode 103, and A second conductive interconnection layer 151 is formed in the second through hole 150 through a deposition process or an electroplating process, and the second conductive interconnection layer 151 covers the inner surface of the second through hole 150 and the outer periphery of the second through hole 150 Part of the surface of the carrier substrate 100 is connected to the first electrode 103; an insulating layer 160 is formed on the surface of the second conductive interconnection layer 151 by a deposition process; a second conductive layer is formed on the surface of the carrier substrate 100 Two conductive bumps 152, and the second conductive bumps 152 are electrically connected to the second conductive interconnection layer 151.
  • the structure of the first electrical connection portion and the second electrical connection portion are the same, but the positions are different. Therefore, the first electrical connection portion and the second electrical connection portion can be formed at the same time, which saves process steps and shortens the manufacturing cycle.
  • the conductive interconnection structure 120 includes two parts.
  • the formation method of the two-part conductive interconnection structure 120 is the same. The method is: forming a through hole through an etching process outside the effective resonance region, and the through hole penetrates the second electrode 105 and the piezoelectric layer 104 to expose the first electrode 103.
  • the conductive interconnection structure 120 is formed in the through hole through an electroplating process.
  • the material of the conductive interconnection structure 120 is the same as that of the first conductive interconnection layer 141 and the second conductive interconnection layer 151, and both are copper. Refer to Embodiment 1 for the function of the conductive interconnection structure 120.
  • Example 1 for the materials of the cover substrate 200 and the bonding layer 106.
  • the manufacturing method of the resonator of the present invention is a double-sided manufacturing process, which can form first bumps on one side of the piezoelectric laminate structure before bonding the carrier substrate; after removing the temporary substrate, the piezoelectric laminate structure can be A second protrusion is formed on the other side.
  • the traditional manufacturing process is a single-sided manufacturing process, which can only form bumps on one side of the piezoelectric laminated structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种薄膜体声波谐振器及其制造方法,薄膜体声波谐振器包括:承载衬底(100);支撑层(102),键合于承载衬底(100)上,支撑层(102)围成第一空腔(110a),第一空腔(110a)暴露出承载衬底(100);压电叠层结构,位于支撑层(102)上方,覆盖第一空腔(110a),压电叠层结构从下至上包括依次层叠的第一电极(103)、压电层(104)和第二电极(105),位于第一空腔(110a)上方的第一电极(103)、压电层(104)和第二电极(105)在垂直于压电层(104)表面方向上相互重叠的区域构成谐振器的有效谐振区;有效谐振区边界处设置有第一凸起(40a)和第二凸起(40b),第一凸起(40a)位于第一电极(103)所在侧,第二凸起(40b)位于第二电极(105)所在侧,所述第一凸起(40a)和/或所述第二凸起(40b)在所述压电层(104)所在平面上的投影包括环形,所述环形包括开环或闭环。

Description

一种薄膜体声波谐振器及其制造方法 技术领域
本发明涉及半导体器件制造领域,尤其涉及一种薄膜体声波谐振器及其制造方法。
背景技术
随着无线通讯技术的不断发展,为了满足各种无线通讯终端的多功能化需求,终端设备需要能够利用不同的载波频谱传输数据,同时,为了在有限的带宽内支持足够的数据传输率,对于射频系统也提出了严格的性能要求。射频滤波器是射频系统的重要组成部分,可以将通信频谱外的干扰和噪声滤出以满足射频系统和通信协议对于信噪比的需求。以手机为例,由于每一个频带需要有对应的滤波器,一台手机中可能需要设置数十个滤波器。
通常,薄膜体声波谐振器包括两个薄膜电极,并且两个薄膜电极之间设有压电薄膜层,其工作原理为利用压电薄膜层在交变电场下产生振动,该振动激励出沿压电薄膜层厚度方向传播的体声波,此声波传至上下电极与空气交界面被反射回来,进而在薄膜内部来回反射,形成震荡。当声波在压电薄膜层中传播正好是半波长的奇数倍时,形成驻波震荡。
技术问题
但是,目前制作出的空腔型薄膜体声波谐振器,存在横波损失,结构强度不够,使品质因子(Q)无法进一步提高、成品率低等问题,因此无法满足高性能的射频系统的需求。
技术解决方案
本发明揭示了一种薄膜体声波谐振器及其制造方法,能够解决薄膜体声波谐振器横波泄露造成品质因数不高,以及结构强度低的问题。
为解决上述技术问题,本发明提供了一种薄膜体声波谐振器,包括:承载衬底;支撑层,键合于所述承载衬底上,所述支撑层围成第一空腔,所述第一空腔暴露出所述承载衬底;压电叠层结构,位于所述支撑层上方,覆盖所述第一空腔,所述压电叠层结构从下至上包括依次层叠的第一电极、压电层和第二电极,其中位于所述第一空腔上方的所述第一电极、压电层和第二电极在垂直于所述压电层表面方向上相互重叠的区域构成谐振器的有效谐振区;有效谐振区边界处设置有第一凸起和第二凸起,所述第一凸起位于所述第一电极所在侧,所述第二凸起位于所述第二电极所在侧,所述第一凸起和/或所述第二凸起在所述压电层所在平面上的投影包括环形,所述环形包括开环或闭环。
本发明还提供了一种薄膜体声波谐振器的制造方法,包括:提供临时衬底;在所述临时衬底上形成压电叠层结构及第一凸起,所述压电叠层结构包括依次形成在所述临时衬底上的第二电极、压电层、第一电极,所述第一凸起位于所述第一电极所在侧;形成支撑层,覆盖所述压电叠层结构;图形化所述支撑层,形成第一空腔,所述第一空腔贯穿所述支撑层,所述第一凸起位于所述第一空腔围成的区域内;在所述支撑层上键合承载衬底,所述承载衬底覆盖所述第一空腔;去除所述临时衬底;在所述第二电极上形成第二凸起,所述第一凸起和/或所述第二凸起在所述压电层所在平面上的投影包括环形,所述环形包括开环或闭环。
有益效果
本发明的有益效果在于:在有效谐振区的边界,上下表面分别设置第一凸起和第二凸起,第一凸起或第二凸起所在的区域与有效谐振区内部的声阻抗失配,第一凸起或第二凸起至少之一在压电层所在平面的投影包括环形,在一面设有另一凸起,两凸起声阻抗失配效果叠加,且结构平衡性提高,有效防止声波的横向泄露,进一步提高了谐振器的品质因数。更优的,当第一凸起和第二凸起在垂直于压电层方向上的投影相互重叠时,增加了有效谐振区内部与凸起所在区域的声阻抗失配程度,当第一凸起与第二凸起在压电层方向上的投影沿有效谐振区中心到边缘的径向方向上设有重叠的部分(即其中一个凸起的投影位于另一个凸起投影的外侧),相当于设置了两处声阻抗失配区。
进一步地,通过第一沟槽和第二沟槽定义出谐振器的有效谐振区,第一沟槽和第二沟槽分别贯穿第一电极和第二电极,压电层保持完整的膜层未经过刻蚀,保证了谐振器的结构强度,提高了制造谐振器的成品率。
本发明谐振器的制造方法,是双面制造工艺,可以在键合承载衬底之前在压电叠层结构的一面形成第一凸起;去除临时衬底后,可以在压电叠层结构的另一面形成第二凸起。而传统的制造工艺流程,是单面制造工艺,只能在压电叠层结构的一面形成凸起。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,在本发明示例性实施例中,相同的参考标号通常代表相同部件。
图1与图2示出了实施例1的一种薄膜体声波谐振器的结构示意图。
图3至图10示出了实施例2的一种薄膜体声波谐振器的制造方法的不同步骤对应的结构示意图。
图11至图18示出了实施例3的一种薄膜体声波谐振器的制造方法的不同步骤对应的结构示意图。
附图标记说明:100-承载衬底;101-键合层;102支撑层;103-第一电极;104-压电层;105-第二电极;106-接合层;110a-第一空腔;110b-第二空腔;120-导电互连结构;130a-第一沟槽;130b-第二沟槽;1010-频率调整层;140-第一通孔;141-第一导电互连层;142-第一导电凸起;151-第二导电互连层;150-第二通孔;152-第二导电凸起;160-绝缘层;200-封盖基板;40a-第一凸起;40b-第二凸起;300-临时衬底。
本发明的实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。根据下面的说明和附图,本发明的优点和特征将更清楚,然而,需说明的是,本发明技术方案的构思可按照多种不同的形式实施,并不局限于在此阐述的特定实施例。附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
如果本文的方法包括一系列步骤,且本文所呈现的这些步骤的顺序并非必须是可执行这些步骤的唯一顺序,且一些的步骤可被省略和/或一些本文未描述的其他步骤可被添加到该方法。若某附图中的构件与其他附图中的构件相同,虽然在所有附图中都可轻易辨认出这些构件,但为了使附图的说明更为清楚,本说明书不会将所有相同构件的标号标于每一图中。
实施例1
本实施例提供了一种薄膜体声波谐振器,图1示出了实施例1的一种薄膜压电声波谐振器的结构示意图,请参考图1,所述薄膜体声波谐振器包括:承载衬底100;支撑层102,键合于所述承载衬底100上,所述支撑层102围成第一空腔110a,所述第一空腔110a暴露出所述承载衬底100;压电叠层结构,位于所述支撑层102上方,覆盖所述第一空腔110a,所述压电叠层结构从下至上包括依次层叠的第一电极103、压电层104和第二电极105,其中位于所述第一空腔110a上方的所述第一电极103、压电层104和第二电极105在垂直于所述压电层表面方向上相互重叠的区域构成谐振器的有效谐振区;有效谐振区边界处设置有第一凸起40a和第二凸起40b,所述第一凸起40a位于所述第一电极所在侧,所述第二凸起40b位于所述第二电极所在侧,所述第一凸起40a和/或所述第二凸起40b在所述压电层104所在平面上的投影包括环形,所述环形包括开环或闭环。环形的形状可以是圆形,椭圆形,多边形,或者由弧线和直边共同构成的不规则形状。环形可以是封闭的环形也可以是不封闭的环形,封闭的环形意味着第一凸起40a或第二凸起40b是连续的,不封闭的环形意味着第一凸起40a或第二凸起40b是不连续的。在有效谐振区的边界,上下表面分别设置第一凸起和第二凸起,第一凸起或第二凸起所在的区域与有效谐振区内部的声阻抗失配,第一凸起或第二凸起至少之一在压电层所在平面的投影包括环形,在一面设有另一凸起,两凸起声阻抗失配效果叠加,且结构平衡性提高,有效防止声波的横向泄露,进一步提高了谐振器的品质因数。
本实施例中,所述第一凸起40a位于压电叠层结构的第一电极103所在侧,靠近承载衬底100;所述第二凸起40b位于压电叠层结构的第二电极105所在侧,远离承载衬底100。所述第一凸起40a突出于所述压电叠层结构的下表面,即所述第一凸起40a的顶面低于所述第一电极103的下表面;所述第二凸起40b突出于所述压电叠层结构的上表面,即所述第二凸起40b的顶面高于所述第二电极105的上表面。所述第一凸起40a和所述第二凸起40b在承载衬底100上的投影各自围成封闭的环形,如封闭的不规则多边形、圆形或椭圆形。所述第一凸起40a和所述第二凸起40b包围的重叠区域为有效谐振区。所述有效谐振区内的所述第一电极103、压电层104和第二电极105在垂直于所述承载衬底100方向上相互重叠。
本实施例中,所述第一凸起40a和所述第二凸起40b在垂直于所述压电层104方向重叠。其中,重叠至少包括以下三种情况,1、第一凸起40a和第二凸起40b的投影形状一致,两者完全重叠。2、第一凸起40a和第二凸起40b其中之一的投影面积大于另一投影的面积,面积较大的投影覆盖面积较小的投影。3、两个投影部分重叠,如两个投影的形状趋势大致相同,两者的重叠部分是连续的,或者其中一个投影与另一投影只有一部分区域设有重叠的部分。这种设置方式相比于只在压电叠层结构的一个表面形成凸起,提高了阻抗失配程度,更能有效防止横波的泄露,提高谐振器的品质因数。在其他实施例中,所述第一凸起40a和所述第二凸起40b在垂直于所述压电层104方向可以部分重叠,或者,所述第一凸起40a和所述第二凸起40b在所述压电层方向上的投影沿所述有效谐振区中心到边缘的径向方向上设有重叠的部分(即,其中一个凸起的投影位于另一个投影的外部,如第一凸起的投影为一环形,第二凸起的投影包围第一凸起的投影)。这种情况下,当横向声波传输至第一凸起所在区域时,产生一次声波反射,当剩余的横向声波继续传输至第二凸起所在区域时,又产生一次声波反射,通过两次反射,有效阻止了横向声波的泄露,提高了谐振器的品质因数。
本实施例中,所述第一凸起40a和所述第二凸起40b使其包围的内部有效谐振区和第一凸起40a、第二凸起40b所在的区域声阻抗失配,可以有效防止声波的横向泄露,提高谐振器的品质因数。在其他实施例中,所述第一凸起40a和所述第二凸起40b各自在承载衬底100上的投影可以不是完全封闭的图形。应当理解,当第一凸起40a和第二凸起40b各自在承载衬底100上的投影为封闭图形时,更有利于防止声波的横向泄露。
所述第一凸起40a和所述第二凸起40b的材料可以为导电材料也可以为介质材料,当第一凸起40a的材料为导电材料时,可以和第一电极103的材料相同,优选的,第一电极103包括第一凸起40a,第一凸起40a和第一电极103一体成型。当第二凸起40b的材料为导电材料时,可以和第二电极105的材料相同,优选的,第二电极105包括第二凸起40b,第二凸起40b和第二电极105一体成型。当第一凸起40a和第二凸起40b的材料为介质材料时,可以为氧化硅、氮化硅、氮氧化硅或碳氮化硅中的任意一种,但不限于以上材料。
承载衬底100可以为以下所提到的材料中的至少一种:硅(Si)、锗(Ge)、锗硅(SiGe)、碳硅(SiC)、碳锗硅(SiGeC)、砷化铟(InAs)、砷化镓(GaAs)、磷化铟(InP)或者其它III/V化合物半导体,还包括这些半导体构成的多层结构等,也可为氧化铝等的陶瓷基底、石英或玻璃基底等。
支撑层102键合于承载衬底100上,且支撑层102围成第一空腔110a,所述第一空腔110a暴露出所述承载衬底100。本实施例中,第一空腔110a为环形的封闭空腔,第一空腔110a可以通过刻蚀工艺刻蚀支撑层102形成。但本发明的技术不仅仅限定于此。需要说明的是,支撑层102是通过键合的方式与承载衬底100结合,键合的方式包括:共价键键合、粘结键合或熔融键合。在其他实施例中,支撑层102和承载衬底100通过键合层实现键合,键合层的材料包括氧化硅、氮化硅、氮氧化硅、碳氮化硅或硅酸乙酯。
本实施例中,第一空腔110a的底面的形状为矩形,但在本发明的其他实施例中,第一空腔110a在第一电极103底面的形状还可以是圆形、椭圆形或是矩形以外的多边形,例如五边形、六边形等。支撑层102的材料可以是任意适合的介电材料,包括但不限于氧化硅、氮化硅、氮氧化硅、碳氮化硅等材料中的一种。在其他实施例中,所述支撑层102与所述键合层的材料可以相同。
第一空腔110a的上方设有压电叠层结构,压电叠层结构从下至上依次包括第一电极103、压电层104和第二电极105。第一电极103位于支撑层102上,压电层104位于第一电极103上,第二电极105位于压电层104上。第一空腔110a的上方的第一电极103、压电层104和第二电极105在垂直于承载衬底100的方向上设有重叠区域,所述第一凸起40a和所述第二凸起40b包围的区域的重叠区域为有效谐振区。
本实施例中,压电层104遮盖所述第一空腔110a,遮盖所述第一空腔110a应当理解为压电层104为完整的膜层,没有经过刻蚀。并不意味着压电层104将第一空腔110a全部遮盖,形成密封的空腔。当然,压电层104可以完全遮盖第一空腔110a,形成密封的空腔。压电层不经过刻蚀可以保证压电叠层结构具有一定的厚度,使谐振器具有一定的结构强度。提高制作谐振器的成品率。
在一个实施例中,支撑层102与第一电极103之间还设置有刻蚀停止层,其材质包括但不限于氮化硅(Si3N4)和氮氧化硅(SiON)。刻蚀停止层一方面可以用于增加最终制造的薄膜体声波谐振器的结构稳定性,另一方面,刻蚀停止层与支撑层102相比具有较低的刻蚀速率,可以在刻蚀支撑层102形成第一空腔110a的过程中防止过刻蚀,保护位于其下的第一电极103的表面不受到损伤,从而提高器件性能与可靠性。
本实施例中,压电叠层结构的表面还包括第一沟槽130a和第二沟槽130b,第一沟槽130a位于压电叠层结构的下表面、所述第一空腔110a所在侧,贯穿所述第一电极103,环绕于所述第一凸起40a所在区域的外周。第二沟槽130b位于压电叠层结构的上表面,贯穿所述第二电极105,环绕于所述第二凸起40b所在区域的外周。第一沟槽130a的两个端部与第二沟槽130b的两个端部相对设置,使所述第一沟槽130a与所述第二沟槽130b在所述承载衬底100的投影的两个交界处相接或设有间隙。本实施例中,所述第一凸起40a和所述第二凸起40b各自在压电层104的投影为封闭的多边形,第一沟槽130a和第二沟槽130b的内边缘分别沿着所述第一凸起40a和所述第二凸起40b的外边界设置,即所述第一凸起40a和第二凸起40b的外边界分别与第一沟槽130a和所述第二沟槽130b的内边缘重合。第一沟槽130a与第二沟槽130b在所述承载衬底100的投影为封闭的图形,分别与第一凸起40a和第二凸起40b在承载衬底100的投影的图形形状一致,分别位于第一凸起40a和第二凸起40b形成的投影的外周。
第一凸起40a和第二凸起40b使凸起内部区域的声阻抗和凸起所在区域的声阻抗失配,界定了谐振器有效谐振区的边界。第一沟槽130a和第二沟槽130b分别将第一电极103和第二电极105隔断,使谐振器不能满足工作条件(工作条件为第一电极103、压电层104和第二电极105在厚度方向上相互重叠),进一步界定了谐振器的有效谐振区的边界。第一凸起40a和第二凸起40b通过质量块的添加使声阻抗失配,第一沟槽130a和第二沟槽130b通过使电极端面和空气接触,使声阻抗失配,两者均起到阻止横波泄露的问题,提高了谐振器的Q值。当然,在其他实施例中,也可以只单独设置第一沟槽130a或第二沟槽130b,由于第一电极103和第二电极105需要引入电信号,第一沟槽130a或第二沟槽130b不适宜形成封闭的环形,此时第一沟槽130a或第二沟槽130b不能完全包围第一凸起40a或第二凸起40b所在的区域。可以将第一沟槽130a或第二沟槽130b构成接近封闭的环形,非封闭的区域用于引入电信号。这种设置方式可以简化工艺流程,降低谐振器成本。
在一个实施例中,还包括频率调整层,设置于所述有效谐振区的所述第一电极103的表面。在另一个实施例中,还可以设置于所述有效谐振区的所述第二电极105的表面。频率调整层用于调整谐振器的频率,谐振器的频率和有效谐振区的厚度有关,在制作滤波器时,不同谐振器的第一电极103、第二电极105和压电层104的厚度相同,为了使不同谐振器的频率不同,可以设置不同厚度的频率调整层。在一个实施例中,频率调整层的材料可以为硅酸乙酯。频率调整层的材料还可以为:氧化硅、氮化硅、氮氧化硅或碳氮化硅。
本实施例中,还包括接合层106,设置于所述压电叠层结构上方、所述接合层106围成第二空腔110b,所述第二空腔110b暴露出所述压电叠层结构的上表面,所述第二空腔110b位于所述第一空腔110a上方,所述第一沟槽130a和所述第二沟槽130b位于所述第二空腔110b围成的区域内部。还包括封盖基板200,设置于所述接合层106上,并覆盖所述第二空腔110b。本实施例中,接合层106围成封闭的环形,第二空腔110b为封闭的空腔。接合层106的下表面一部分连接于有效谐振区外部的第二电极105,一部分连接于有效谐振区外部的第一电极103。接合层106可以采用常规的键合材料,例如氧化硅、氮化硅、氮氧化硅、硅酸乙酯等,也可以是光固化材料或热固化材料等黏结剂,例如粘片膜(Die Attach Film,DAF)或干膜(Dry Film)。接合层的材料和封盖基板200的材料可以相同,两者为一体结构,第二空腔110b通过在膜层(形成接合层106和封盖基板200)中形成空间而形成。
参考图2,在一个实施例中,还包括第一电连接部、第二电连接部和导电互连结构120,第一电连接部用于将电信号引入有效谐振区的第一电极103,第二电连接部用于将电信号引入有效谐振区的第二电极105。第一电极103和第二电极105通电后,压电层104上下表面产生压差,形成驻波振荡。导电互连结构120用于将有效谐振区外的第一电极和第二电极短接。由图可知,有效谐振区外也包含在垂直于压电层方向上压电层、第一电极、第二电极相互重叠的区域。当第一电极和第二电极通电,有效谐振区外部的压电层表面上下也能够产生压差,也产生了驻波振荡,然而有效谐振区外部的驻波振荡是不希望发生的,本实施例将有效谐振区外部的第一电极和第二电极短接,使有效谐振区外部的压电层上下电压一致,有效谐振区外部不能够产生驻波振荡,提高了谐振器的Q值。具体的第一电连接部、第二电连接部和导电互连结构120的结构如下:
第一电连接部包括:第一通孔140,所述第一通孔140贯穿有效谐振区外部的所述第一电极103的下层结构,暴露出所述第一电极103;第一导电互连层141,覆盖所述第一通孔140的内表面、及第一通孔140外周的所述承载衬底100的部分表面,与所述第一电极103连接;绝缘层160,覆盖所述第一导电互连层141和所述承载衬底100的表面;导电凸起142,设置于所述承载衬底100的表面、与所述第一导电互连层电141连接。
所述第二电连接部包括:第二通孔150,所述第二通孔150贯穿有效谐振区外部的所述第一电极103的下层结构,暴露出所述第一电极103;第二导电互连层151,覆盖所述第二通孔150的内表面、及第二通孔150外周的所述承载衬底100的部分表面,与所述第一电极103连接;绝缘层160,覆盖所述第二导电互连层151和所述承载衬底100的表面;第二导电凸起152,设置于所述承载衬底100的表面、与所述第二导电互连层电151连接。
在一个实施例中,导电互连结构120包括两部分,一部分设置于第二沟槽130b的外部区域,连接第一电极103和第二电极105,通过第一电极103与第一电连接部电连接。导电互连结构120的另一部分设置于第一沟槽130a的外部区域,连接第一电极103和第二电极105,通过第一电极103与第二电连接部电连接。两部分导电互连结构120均设有覆盖第二电极105部分表面的区域,此区域增大了与第二电极105的接触面积,减少了接触阻抗,能够防止电流过大引起的局部高温。
需要说明的是,第二电连接部并不直接与第二电极电连接,而是连接于有效谐振区外部的第一电极,通过导电互连结构120与有效谐振区的第二电极电连接。可以看出,第一电连接部和第二电连接部在结构上一致,只是设置的位置不同,第一电连接部与有效谐振区内部的第一电极电连接,给有效谐振区内部的第一电极供电,第一电连接部通过有效谐振区外部的第一电极和导电互连结构120与有效谐振区外部的第二电极电连接,并不连接于有效谐振区内部的第二电极。同理,第二电连接部连接于有效谐振区外部的第一电极和有效谐振区内部的第二电极,实现对有效谐振区内部的第二电极供电。
实施例2
实施例2提供了一种薄膜体声波谐振器的制造方法,包括以下步骤S01:提供临时衬底;S02:在所述临时衬底上形成压电叠层结构及第一凸起,所述压电叠层结构包括依次形成在所述临时衬底上的第二电极、压电层、第一电极,所述第一凸起位于所述第一电极所在侧;S03:形成支撑层,覆盖所述压电叠层结构;S04:图形化所述支撑层,形成第一空腔,所述第一空腔贯穿所述支撑层,所述第一凸起位于所述第一空腔围成的区域内;S05:在所述支撑层上键合承载衬底,所述承载衬底覆盖所述第一空腔;S06:去除所述临时衬底;S07:在所述第二电极上形成第二凸起,所述第一凸起和/或所述第二凸起在所述压电层所在平面上的投影包括环形,所述环形包括开环或闭环。
图3至图10示出了根据本发明实施例2的一种薄膜压电声波谐振器的制造方法不同阶段的结构示意图,请参考图3至图10,详细说明各步骤。需要说明的是步骤S0N不代表先后顺序。
参考图3,执行步骤S01:提供临时衬底300。
临时衬底300可以是以下所提到的材料中的至少一种:硅(Si)、锗(Ge)、锗硅(SiGe)、碳硅(SiC)、碳锗硅(SiGeC)、砷化铟(InAs)、砷化镓(GaAs)、磷化铟(InP)或者其它III/V化合物半导体,也可为氧化铝等的陶瓷基底、石英或玻璃基底等。
参考图4和图5,执行步骤S02:在所述临时衬底300上形成压电叠层结构及第一凸起40a,所述压电叠层结构包括依次形成在所述临时衬底上的第二电极105、压电层104、第一电极103,所述第一凸起40a位于所述第一电极所在侧。
第二电极105和第一电极103的材料可以使用本领域技术人员熟知的任意合适的导电材料或半导体材料,其中,导电材料可以为具有导电性能的金属材料,例如,由钼(Mo)、铝(Al)、铜(Cu)、钨(W)、钽(Ta)、铂(Pt)、钌(Ru)、铑(Rh)、铱(Ir)、铬(Cr)、钛(Ti)、金(Au)、锇(Os)、铼(Re)、钯(Pd)等金属中一种制成或由上述金属形成的叠层制成,半导体材料例如是Si、Ge、SiGe、SiC、SiGeC等。可以通过磁控溅射、蒸镀等物理气相沉积或者化学气相沉积方法形成第二电极105和第一电极103。压电层104的材料可以使用氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO3)、石英(Quartz)、铌酸钾(KNbO3)或钽酸锂(LiTaO3)等具有纤锌矿型结晶结构的压电材料及它们的组合。当压电层104包括氮化铝(AlN)时,压电层104还可包括稀土金属,例如钪(Sc)、铒(Er)、钇(Y)和镧(La)中的至少一种。此外,当压电层104包括氮化铝(AlN)时,压电层104还可包括过渡金属,例如锆(Zr)、钛(Ti)、锰(Mn)和铪(Hf)中的至少一种。可以使用化学气相沉积、物理气相沉积或原子层沉积等本领域技术人员熟知的任何适合的方法沉积形成压电层104。可选的,本实施例中,第二电极105和第一电极103由金属钼(Mo)制成,压电层104由氮化铝(AlN)制成。第一凸起的形成方法有多种,将在后续描述中集中阐述。
参考图6,执行步骤S03:形成支撑层102,覆盖所述压电叠层结构。
通过物理气相沉积或化学气相沉积形成支撑层102。支撑层102的材料可以是任意适合的介电材料,包括但不限于氧化硅、氮化硅、氮氧化硅、碳氮化硅等材料中的至少一种。
参考图7,执行步骤S04:图形化所述支撑层102,形成第一空腔110a,所述第一空腔110a贯穿所述支撑层102,第一凸起40a位于所述第一空腔110a所围成的区域内。
通过刻蚀工艺刻蚀支撑层102形成第一空腔110a,并暴露出底部的第一电极层103、第一凸起40a。该刻蚀工艺可以是湿法刻蚀或者干法刻蚀工艺,干法刻蚀包括但不限于反应离子刻蚀(RIE)、离子束刻蚀、等离子体刻蚀。第一空腔110a的深度和形状均取决于待制造的体声波谐振器所需空腔的深度和形状,即可以通过形成支撑层102的厚度来确定第一空腔110a的深度。第一空腔110a底面的形状可以为矩形或是矩形以外的多边形,例如五边形、六边形、八边形等,也可以为圆形或椭圆形。
参考图8,执行步骤S05:在所述支撑层102上键合承载衬底100,所述承载衬底100覆盖所述第一空腔110a。承载衬底100的材料可以参照临时衬底300的材料。可以通过热压键合的方式实现承载衬底100与支撑层102的键合,也可以通过干膜粘合的方式实现承载衬底100与支撑层102的键合。
参考图9,执行步骤S06:去除所述临时衬底。去除临时衬底的方法可以采用机械研磨。
参考图10,执行步骤S07:在所述第二电极105上形成第二凸起40b,所述第一凸起40a和/或所述第二凸起40b在所述压电层104所在平面上的投影包括环形,所述环形包括开环或闭环。
第一凸起40a和第二凸起40b的结构、位置关系以及带来的有益效果参照实施例1,此处不在赘述。
本实施例中形成所述第一凸起40a和所述第二凸起40b的方法为:在所述临时衬底300上依次形成第二导电材料层、压电层104,所述第二导电材料层的厚度为第二电极105和第二凸起40b的厚度总和,之后,在压电层104上形成第一导电材料层,此时形成的第一导电材料层的厚度为第一电极103和第一凸起40a的厚度的总和,形成第一导电材料层后,刻蚀设定厚度的第一导电材料层,形成第一凸起40a和第一电极103,去除所述临时衬底300后,刻蚀设定厚度的第二导电材料层,形成第二凸起40b和第二电极105。本发明形成第一凸起40a和第二凸起40b的方法有多种,从形成凸起的材料划分包括以下两种形式:
第一种形式:在所述临时衬底或所述第二电极或所述压电层上形成结构材料层,对所述结构材料层进行刻蚀工艺形成所述第一凸起,在所述临时衬底上形成的所述结构材料层用于形成所述第二电极,在所述第二电极上形成的所述结构材料层用于形成所述压电层,在所述压电层上形成的所述结构材料层用于形成所述第一电极;本实施例中,形成第一凸起为此种形式。在所述临时衬底上形成结构材料层,去除所述临时衬底后,对所述结构材料层进行刻蚀工艺形成所述第二凸起,所述结构材料层用于形成所述第二电极。本实施例中,形成第一凸起和第二凸起的方法为此种形式。
第二种形式:在所述临时衬底或所述第二电极或所述压电层或所述第一电极上形成凸起材料层,对所述凸起材料层进行刻蚀工艺形成所述第一凸起;去除所述临时衬底后,在所述第二电极上形成凸起材料层,对所述凸起材料层进行刻蚀工艺形成所述第二凸起。
第一种形式中,凸起和结构材料层的材料相同,可以通过一次沉积工艺形成结构材料层和凸起材料层,减少工艺步骤。第二种形式中,凸起材料和结构材料层的材料不同,需要通过两次沉积工艺形成,但凸起材料的选择不限于和第一电极或第二电极或压电层材料相同,凸起材料的选择范围更广。
针对以上任何一种形式,形成所述压电叠层结构及所述第一凸起和所述第二凸起具体方法可以包括:
方法1:在所述临时衬底上依次形成所述第二电极、压电层、第一电极,在所述第一电极上形成所述第一凸起,去除所述临时衬底后,在所述第二电极上形成所述第二凸起。此时所述第一凸起的材料和所述第一电极的材料可以相同也可以不同,同理,所述第二凸起的材料和所述第二电极的材料可以相同也可以不同。本实施例中两者的材料均相同,通过沉积工艺形成导电材料层,通过刻蚀工艺形成第一电极和第一凸起,同理,形成第二电极和第二凸起。在其他实施例中,两者材料可以不相同,可以先形成第二电极和第一电极,之后通过沉积工艺形成第二凸起、第一凸起材料层,再通过刻蚀工艺形成第一凸起和第二凸起。
方法2,在所述临时衬底上依次形成所述第二电极、压电层,在所述压电层上形成所述第一凸起,在所述第一凸起、所述压电层上形成所述第一电极,去除所述临时衬底后,在所述第二电极上形成所述第二凸起。此方法与方法1的区别在于,方法1的第一凸起形成在第一电极上,此方法的第一凸起是在所述压电层上形成。此种方式形成第一凸起也包括两种情况,一种为第一凸起的材料和压电层的材料相同,并通过一次沉积工艺形成。此时,在第二电极上形成压电材料层,压电材料层的厚度为第一凸起和压电层高度的总和,之后通过刻蚀工艺形成压电层和第一凸起。另一种为第一凸起和压电层分别单独形成,首先在所述第二电极上形成压电层,之后在所述压电层上形成第一凸起材料层,通过刻蚀工艺形成第一凸起,再在第一凸起上、压电层上形成第一电极。
同理,形成第二凸起也包括两种情况,一种为第二凸起和第二电极的材料相同,并通过一次沉积工艺形成。此时,在临时衬底上形成导电材料层,导电材料层的厚度为第二凸起和第二电极高度的总和,去除所述临时衬底后,通过刻蚀工艺分别形成第二电极和第二凸起。另一种为第二凸起和第二电极分别单独形成,首先在所述临时衬底上形成第二电极,去除所述临时衬底后,在第二电极上形成第二凸起材料层,通过刻蚀工艺形成第二凸起。
方法3,在所述临时衬底上形成所述第二电极,在所述第二电极上形成所述第一凸起,在所述第一凸起、所述第二电极上依次形成所述压电层、第一电极,去除所述临时衬底后,在所述第二电极上形成所述第二凸起。此方法与方法2的区别在于,方法2的第一凸起形成在压电层上,此方法的第一凸起形成在第二电极上,第二凸起和第一凸起的材料与形成方法可以参照方法2,此处不再赘述。
方法4,在所述临时衬底上形成所述第一凸起,在所述第一凸起上,所述临时衬底上依次形成所述第二电极、压电层、第一电极,去除所述临时衬底后,在所述第二电极上形成所述第二凸起。此方法的第一凸起的材料可以和第一电极相同也可以不同,形成方法参考方法2,第二凸起的材料和形成方法参考方法2,此处不再赘述。
实施例3
本实施例提供了另一种薄膜压电声波谐振器的制造方法。图11至图18示出了不同步骤中对应的结构示意图。
参考图11至图18,本实施例中步骤S01至S04与实施例2相同。与实施例2的主要区别在于执行完步骤S04之后,执行步骤S05之前还包括:在所述第一空腔110a底部、所述第一凸起40a的外围形成环绕所述第一凸起40a的第一沟槽130a,所述第一沟槽130a贯穿所述第一电极103。执行步骤S07之后还包括:在所述第二电极105上、所述第一沟槽130a相对的一侧形成第二沟槽130b,所述第二沟槽130b环绕所述第二凸起40b,所述第二沟槽130b贯穿所述第二电极105;所述第一沟槽130a和所述第二沟槽130b在所述承载衬底100的投影的两个交界处相接或设有间隙。
具体地,参照图11,刻蚀第一电极层103以在第一空腔110a内、第一凸起40a的外周形成第一沟槽130a,第一沟槽130a的侧壁可以是倾斜或者竖直的。本实施例中,第一沟槽130a的侧壁与压电层104所在平面构成一钝角(第一沟槽130a的纵向截面(沿膜层厚度方向的截面)形状为梯形)。第一沟槽130a在压电层104所在平面的投影为一半环形或类似半环形的多边形。
参考图12,本实施例中,形成第一沟槽130a后,还包括:在所述支撑层102的表面形成键合层101,所述键合层101用于键合所述支撑层102与所述承载衬底100。通过沉积工艺在支撑层102、第一电极103、第一凸起40a以及第一沟槽130a的表面形成键合层101。键合层的材料包括氧化硅、氮化硅、氮氧化硅、碳氮化硅或硅酸乙酯。由上文表述的支撑层102的材料可知,所述支撑层102与所述键合层102的材料可以相同。本实施例中,键合层101的材料为硅酸乙酯。
参考图13,本实施例中形成所述键合层101后还包括:在所述第一凸起40a包围的所述第一电极103的表面形成频率调整层1010。需要说明的是,形成所述频率调整层1010和键合层是两个独立的步骤。形成频率调整层1010之前可以不形成键合层102。频率调整层1010的材料可以包括氧化硅、氮化硅、氮氧化硅、碳氮化硅或硅酸乙酯。本实施例中,频率调整层1010的材料与键合层101的材料相同为硅酸乙酯。形成键合层101和频率调整层1010的方法包括物理气相沉积或化学气相沉积。频率调整层1010的作用参见实施例1的描述,此处不在赘述。
参考图14,执行步骤S05:在所述键合层101上键合承载衬底100,所述承载衬底100覆盖所述第一空腔110a。承载衬底100的材料可以参照临时衬底300的材料。通过键合层101将承载衬底100与支撑层102进行键合。
参考图15,执行步骤S06:去除所述临时衬底。
参考图16,执行步骤S07:在所述第二电极上形成第二凸起40b,所述第一凸起40a和/或所述第二凸起40b在所述压电层104所在平面上的投影包括环形,所述环形包括开环或闭环。参考图17,执行步骤S07后,在所述第二电极105上、所述第一沟槽130a相对的一侧形成第二沟槽130b,所述第二沟槽130b环绕所述第二凸起40b,所述第二沟槽130b贯穿所述第二电极105。本实施例中,所述第一沟槽130a和所述第二沟槽130b在所述承载衬底100的投影的两个交界处相接。构成封闭的不规则多边形。第二沟槽130b的结构和形成方法参照第一沟槽130a的结构和形成方法。在其他实施例中,也可以只单独形成第一沟槽130a或第二沟槽130b。第一沟槽130a和第二沟槽130b的结构和作用参照实施例1,此处不再赘述。
参考图18,本实施例中,执行步骤S07后还包括:在所述压电叠层结构上形成接合层106,所述接合层106围成第二空腔110b,所述第二空腔110b位于所述第一空腔110a上方,所述第二凸起40b位于所述第二空腔110b内部;在所述接合层106上键合封盖基板200,所述封盖基板200覆盖所述第二空腔110b。还包括形成第一电连接部和第二电连接部,第一电连接部用于和有效谐振区的第一电极电连接,第二电连接部用于和有效谐振区的第二电极电连接。还包括形成导电互连结构120,连接于所述有效谐振区外部的第一电极103和第二电极105。
其中形成所述第一电连接部包括:通过刻蚀工艺形成贯穿所述第一电极103下层结构的第一通孔140,所述第一通孔140暴露出所述第一电极103,在所述第一通孔103中通过电镀工艺或物理气相沉积工艺形成第一导电互连层141,所述第一导电互连层141覆盖所述第一通孔140内表面、及所述第一通孔140外周的所述承载衬底100的部分表面,与所述第一电极103连接;在所述第一导电互连层141表面通过沉积工艺形成绝缘层160;在所述承载衬底100的表面形成第一导电凸起142,所述第一导电凸起142与所述第一导电互连层141电连接。
形成所述第二电连接部包括:通过刻蚀工艺形成贯穿所述第一电极103下层结构的第二通孔150,所述第二通孔150暴露出所述第一电极103,在所述第二通孔150中通过沉积工艺或电镀工艺形成第二导电互连层151,所述第二导电互连层151覆盖所述第二通孔150内表面、及所述第二通孔150外周的所述承载衬底100的部分表面,与所述第一电极103连接;在所述第二导电互连层151表面通过沉积工艺形成绝缘层160;在所述承载衬底100的表面形成第二导电凸起152,所述第二导电凸起152与所述第二导电互连层151电连接。
第一电连接部和第二电连接部的结构相同,只是位置不同,因此第一电连接部和第二电连接部可以同时形成,节省工艺步骤,缩短制造周期。
本实施例中,导电互连结构120包括两部分,两部分导电互连结构的位置参照实施例1,两部分导电互连结构120的形成方法相同。所述方法为:在有效谐振区的外部通过刻蚀工艺形成通孔,所述通孔贯穿第二电极105和压电层104,暴露出第一电极103。通过电镀工艺在通孔中形成导电互连结构120。本实施例中,导电互连结构120的材质与第一导电互连层141、第二导电互连层151的材质相同,均为铜。导电互连结构120的作用参照实施例1。
封盖基板200和接合层106的材料参照实施例1。
本发明谐振器的制造方法,是双面制造工艺,可以在键合承载衬底之前在压电叠层结构的一面形成第一凸起;去除临时衬底后,可以在压电叠层结构的另一面形成第二凸起。而传统的制造工艺流程,是单面制造工艺,只能在压电叠层结构的一面形成凸起。
需要说明的是,本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本相似于结构实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (20)

  1. 一种薄膜体声波谐振器,其特征在于,包括:承载衬底;支撑层,键合于所述承载衬底上,所述支撑层围成第一空腔,所述第一空腔暴露出所述承载衬底;压电叠层结构,位于所述支撑层上方,覆盖所述第一空腔,所述压电叠层结构从下至上包括依次层叠的第一电极、压电层和第二电极,其中位于所述第一空腔上方的所述第一电极、压电层和第二电极在垂直于所述压电层表面方向上相互重叠的区域构成谐振器的有效谐振区;有效谐振区边界处设置有第一凸起和第二凸起,所述第一凸起位于所述第一电极所在侧,所述第二凸起位于所述第二电极所在侧,所述第一凸起和/或所述第二凸起在所述压电层所在平面上的投影包括环形,所述环形包括开环或闭环。
  2. 如权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一凸起和所述第二凸起在所述压电层所在平面上的投影至少部分重合,或者其中之一的投影环绕于另一投影的外周。
  3. 如权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一凸起或所述第二凸起的材料包括介质材料或导电材料。
  4. 如权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一电极包括所述第一凸起;和/或,所述第二电极包括所述第二凸起。
  5. 如权利要求1所述的薄膜体声波谐振器,其特征在于,还包括第一沟槽,位于所述第一空腔内部,贯穿所述第一电极,环绕于所述第一凸起所在区域的外周。
  6. 如权利要求5所述的薄膜体声波谐振器,其特征在于,还包括第二沟槽,在横向方向上与所述第一沟槽相对设置,贯穿所述第二电极,环绕于所述第二凸起所在区域的外周;
    所述第一沟槽与所述第二沟槽在所述承载衬底的投影的两个交界处相接或设有间隙。
  7. 如权利要求6所述的薄膜体声波谐振器,其特征在于,所述第一沟槽的内边缘与所述第一凸起的外边界重合;和/或,所述第二沟槽的内边缘与所述第二凸起的外边界重合。
  8. 如权利要求6所述的薄膜体声波谐振器,其特征在于,还包括:
    接合层,设置于所述压电叠层结构上方、所述接合层围成第二空腔,所述第二空腔暴露出所述压电叠层结构的表面,所述第二空腔位于所述第一空腔上方,所述第一沟槽和所述第二沟槽位于所述第二空腔围成的区域内部;封盖基板,设置于所述接合层上,并覆盖所述第二空腔。
  9. 如权利要求1所述的薄膜体声波谐振器,其特征在于,所述支撑层的材料包括氧化硅、氮化硅、氮氧化硅、碳氮化硅或硅酸乙酯。
  10. 如权利要求1所述的薄膜体声波谐振器,其特征在于,还包括键合层,设置于所述支撑层与所述承载衬底之间。
  11. 一种薄膜体声波谐振器的制造方法,其特征在于,包括:提供临时衬底;在所述临时衬底上形成压电叠层结构及第一凸起,所述压电叠层结构包括依次形成在所述临时衬底上的第二电极、压电层、第一电极,所述第一凸起位于所述第一电极所在侧;形成支撑层,覆盖所述压电叠层结构;图形化所述支撑层,形成第一空腔,所述第一空腔贯穿所述支撑层,所述第一凸起位于所述第一空腔围成的区域内;在所述支撑层上键合承载衬底,所述承载衬底覆盖所述第一空腔;去除所述临时衬底;在所述第二电极上形成第二凸起,所述第一凸起和/或所述第二凸起在所述压电层所在平面上的投影包括环形,所述环形包括开环或闭环。
  12. 如权利要求11所述的薄膜体声波谐振器的制造方法,其特征在于,所述第一凸起和所述第二凸起在所述压电层所在平面上的投影至少部分重合,或者其中之一的投影环绕于另一投影的外周。
  13. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,形成所述第一凸起的方法包括:在所述临时衬底或所述第二电极或所述压电层上形成结构材料层,对所述结构材料层进行刻蚀工艺形成所述第一凸起,在所述临时衬底上形成的所述结构材料层用于形成所述第二电极,在所述第二电极上形成的所述结构材料层用于形成所述压电层,在所述压电层上形成的所述结构材料层用于形成所述第一电极;或者,在所述临时衬底或所述第二电极或所述压电层或所述第一电极上形成凸起材料层,对所述凸起材料层进行刻蚀工艺形成所述第一凸起。
  14. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,形成所述第二凸起的方法包括:在所述临时衬底上形成结构材料层,去除所述临时衬底后,对所述结构材料层进行刻蚀工艺形成所述第二凸起,所述结构材料层用于形成所述第二电极;或者,去除所述临时衬底后,在所述第二电极上形成凸起材料层,对所述凸起材料层进行刻蚀工艺形成所述第二凸起。
  15. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,形成压电叠层结构及第一凸起包括:在所述临时衬底上依次形成所述第二电极、压电层、第一电极,之后,在所述第一电极上形成所述第一凸起;或者,在所述临时衬底上依次形成所述第二电极、压电层,在所述压电层上形成所述第一凸起,在所述第一凸起、所述压电层上形成所述第一电极;或者,在所述临时衬底上形成所述第二电极,在所述第二电极上形成所述第一凸起,在所述第一凸起、所述第二电极上依次形成所述压电层、第一电极;或者,在所述临时衬底上形成所述第一凸起,在所述第一凸起上,所述临时衬底上依次形成所述第二电极、压电层、第一电极。
  16. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,所述第一凸起和/或所述第二凸起在所述压电层所在平面的投影为环形。
  17. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,所述第一凸起和所述第二凸起在所述压电层所在平面上的投影重合,或者其中之一的投影环绕于另一投影的外周。
  18. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,键合所述承载衬底前还包括:在所述第一空腔底部、所述第一凸起的外围形成环绕所述第一凸起的第一沟槽,所述第一沟槽贯穿所述第一电极。
  19. 如权利要求18所述的薄膜体声波谐振器的制造方法,其特征在于,在所述第二电极上形成第二凸起后还包括:在所述第二电极上、所述第一沟槽相对的一侧形成第二沟槽,所述第二沟槽环绕所述第二凸起,所述第二沟槽贯穿所述第二电极;
    所述第一沟槽和所述第二沟槽在所述承载衬底的投影的两个交界处相接或设有间隙。
  20. 如权利要求12所述的薄膜体声波谐振器的制造方法,其特征在于,在所述支撑层上键合所述承载衬底包括:在所述支撑层的表面形成键合层,通过所述键合层键合所述支撑层与所述承载衬底,所述支撑层与所述键合层的材料相同。
PCT/CN2020/135646 2020-05-20 2020-12-11 一种薄膜体声波谐振器及其制造方法 WO2021232763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/928,201 US20230353118A1 (en) 2020-05-20 2020-12-11 Film bulk acoustic resonator and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010431226.2A CN112039466B (zh) 2020-05-20 2020-05-20 一种薄膜体声波谐振器及其制造方法
CN202010431226.2 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021232763A1 true WO2021232763A1 (zh) 2021-11-25

Family

ID=73579659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135646 WO2021232763A1 (zh) 2020-05-20 2020-12-11 一种薄膜体声波谐振器及其制造方法

Country Status (3)

Country Link
US (1) US20230353118A1 (zh)
CN (1) CN112039466B (zh)
WO (1) WO2021232763A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421910A (zh) * 2022-01-20 2022-04-29 武汉敏声新技术有限公司 谐振器及其制备方法、滤波器
CN115842530A (zh) * 2023-02-27 2023-03-24 武汉敏声新技术有限公司 体声波谐振器以及体声波谐振器的制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039466B (zh) * 2020-05-20 2024-03-12 中芯集成电路(宁波)有限公司上海分公司 一种薄膜体声波谐振器及其制造方法
CN113824420A (zh) * 2021-08-23 2021-12-21 杭州电子科技大学 具有双环形结构电极的单晶薄膜体声波谐振器制备方法
CN113839637A (zh) * 2021-08-26 2021-12-24 杭州电子科技大学 电极带环槽及条状凸起的单晶薄膜体声波谐振器制备方法
CN114421913B (zh) * 2022-01-20 2024-01-26 武汉敏声新技术有限公司 一种谐振器及其制备方法
CN117639708A (zh) * 2023-01-09 2024-03-01 北京芯溪半导体科技有限公司 一种体声波谐振器、滤波器和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041153A (ja) * 2008-07-31 2010-02-18 Kyocera Corp 圧電共振器およびその製造方法
CN110829997A (zh) * 2018-08-07 2020-02-21 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN112039484A (zh) * 2020-03-27 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法
CN112039466A (zh) * 2020-05-20 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 一种薄膜体声波谐振器及其制造方法
CN112039465A (zh) * 2020-03-10 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309483B (zh) * 2018-10-10 2022-03-25 华南理工大学 一种支撑型薄膜体声波谐振器的制备方法
CN109660227B (zh) * 2018-12-24 2023-08-18 江西省纳米技术研究院 薄膜体声波滤波器及其封装方法
CN111130490A (zh) * 2019-12-09 2020-05-08 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器及制造方法、滤波器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041153A (ja) * 2008-07-31 2010-02-18 Kyocera Corp 圧電共振器およびその製造方法
CN110829997A (zh) * 2018-08-07 2020-02-21 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN112039465A (zh) * 2020-03-10 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法
CN112039484A (zh) * 2020-03-27 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器及其制造方法
CN112039466A (zh) * 2020-05-20 2020-12-04 中芯集成电路(宁波)有限公司上海分公司 一种薄膜体声波谐振器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421910A (zh) * 2022-01-20 2022-04-29 武汉敏声新技术有限公司 谐振器及其制备方法、滤波器
CN115842530A (zh) * 2023-02-27 2023-03-24 武汉敏声新技术有限公司 体声波谐振器以及体声波谐振器的制作方法

Also Published As

Publication number Publication date
CN112039466A (zh) 2020-12-04
US20230353118A1 (en) 2023-11-02
CN112039466B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2021179729A1 (zh) 一种薄膜体声波谐振器及其制造方法
WO2021232763A1 (zh) 一种薄膜体声波谐振器及其制造方法
US11942917B2 (en) Film bulk acoustic resonator and fabrication method thereof
WO2021189965A1 (zh) 一种薄膜体声波谐振器及其制造方法
WO2020199507A1 (zh) 体声波谐振器及其制造方法和滤波器、射频通信系统
JP2021536158A (ja) 薄膜バルク音響波共振器及びその製造方法
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
CN112039468B (zh) 薄膜体声波谐振器及其制造方法
US20210184645A1 (en) Packaging module and packaging method of baw resonator
WO2020199511A1 (zh) 体声波谐振器及其制造方法和滤波器、射频通信系统
CN112039471A (zh) 薄膜体声波谐振器及其制造方法
CN112039470B (zh) 薄膜体声波谐振器的制造方法
WO2022100469A1 (zh) 一种薄膜体声波谐振器及其制造方法和滤波器
WO2020199510A1 (zh) 体声波谐振器及其制造方法和滤波器、射频通信系统
WO2020199508A1 (zh) 体声波谐振器及其制造方法和滤波器、射频通信系统
WO2021012917A1 (zh) 薄膜体声波谐振器及其制造方法和滤波器、射频通信系统
US20230336157A1 (en) Mems device and fabrication method thereof
US20230336149A1 (en) Mems device and fabrication method thereof
WO2021189964A1 (zh) 一种薄膜体声波谐振器及其制造方法
CN114070223A (zh) 薄膜体声波谐振器及其制造方法
WO2022057769A1 (zh) 一种薄膜体声波谐振器及其制造方法和滤波器
WO2022057767A1 (zh) 一种薄膜体声波谐振器的制造方法
WO2022057466A1 (zh) 薄膜体声波谐振器、其制造方法及滤波器
WO2022057768A1 (zh) 一种薄膜体声波谐振器的制造方法
WO2022057766A1 (zh) 薄膜体声波谐振器的制造方法及滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936789

Country of ref document: EP

Kind code of ref document: A1