WO2021010783A1 - 고굴곡 및 저유전성 연성 동박 적층판 - Google Patents

고굴곡 및 저유전성 연성 동박 적층판 Download PDF

Info

Publication number
WO2021010783A1
WO2021010783A1 PCT/KR2020/009430 KR2020009430W WO2021010783A1 WO 2021010783 A1 WO2021010783 A1 WO 2021010783A1 KR 2020009430 W KR2020009430 W KR 2020009430W WO 2021010783 A1 WO2021010783 A1 WO 2021010783A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
clad laminate
copper clad
flexible copper
dielectric
Prior art date
Application number
PCT/KR2020/009430
Other languages
English (en)
French (fr)
Inventor
정진관
조원선
도윤선
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190086190A external-priority patent/KR20210009534A/ko
Priority claimed from KR1020200087531A external-priority patent/KR102435973B1/ko
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Publication of WO2021010783A1 publication Critical patent/WO2021010783A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a high-bending and low-dielectric ductile copper clad laminate.
  • a flexible printed circuit board is an electronic product in which a conductor circuit with excellent electrical conductivity is formed on an insulator.
  • the FPCB is an electronic component developed to cope with the trend of light, thin, short and high-functionalization of electronic products, and has the advantages of excellent workability, heat resistance and durability, chemical resistance, and excellent heat resistance, so that computers, electric vehicles, and flexible devices , Wearable devices, communication equipment, satellite equipment, military equipment, and medical equipment.
  • FCCL flexible copper clad laminate
  • a method of improving the signal transmission loss characteristics of a flexible copper clad laminate there are a method of using a material with low dielectric loss (dielectric loss tangent) of the insulating layer excluding the copper foil layer of FCCL, and a method of increasing the thickness of the material. .
  • dielectric loss tangent dielectric loss tangent
  • One object of the present invention is to provide a flexible copper clad laminate having low dielectric constant and dielectric loss and excellent flexural properties.
  • Another object of the present invention is to provide a flexible copper clad laminate having excellent interlayer adhesion and excellent productivity and economy.
  • Another object of the present invention is to provide a flexible copper clad laminate having excellent surface quality and reliability of an insulating layer.
  • the flexible copper clad laminate includes a first copper clad layer and an insulating layer sequentially laminated, and the insulating layer includes a thermosetting polyimide layer and a thermoplastic polyimide layer laminated on the thermosetting polyimide layer And, the insulating layer has a dielectric index (DI) of about 80 to about 135 according to Equation 1 below, and the flexible copper clad laminate has a dielectric-flexion index (DMI) of about 50,000 or more according to Equation 2:
  • DI dielectric index
  • DMI dielectric-flexion index
  • Dielectric index (DI) 1/(Dk * Df)
  • Equation 1 Dk is the dielectric constant at 10 GHz, and Df is the dielectric loss coefficient measured at 10 GHz
  • DMI Dielectric-flexion index
  • Ft is the thickness (mm) of the flexible copper clad laminate
  • Fm is the number of bending resistance (MIT) measured according to the JIS C 6471 standard of the flexible copper clad laminate
  • Df is the dielectric constant measured at 10 GHz. Loss factor
  • the insulating layer may have a dielectric constant of about 2.0 to about 3.2 at 10 GHz, and a dielectric loss coefficient of about 0.001 to about 0.006.
  • the total thickness of the flexible copper clad laminate may be about 20 ⁇ m to about 150 ⁇ m.
  • the total thickness of the insulating layer may be about 15 ⁇ m to about 125 ⁇ m.
  • the flexible copper clad laminate may be obtained by sequentially stacking a first copper foil layer, a thermoplastic polyimide layer, and a thermosetting polyimide layer.
  • it may further include a second copper foil layer laminated on one surface of the insulating layer.
  • the insulating layer is a first thermoplastic polyimide layer; A thermosetting polyimide layer; And a second thermoplastic polyimide layer are sequentially stacked, and the first thermoplastic polyimide layer and the second thermoplastic polyimide layer may contact the first copper foil layer and the second copper foil layer, respectively.
  • the thickness of the thermosetting polyimide layer may be about 10 ⁇ m to about 80 ⁇ m, and the thickness of the first thermoplastic polyimide layer and the second thermoplastic polyimide layer may be about 5 ⁇ m to about 30 ⁇ m, respectively.
  • the thickness of the first copper foil layer and the second copper foil layer may be about 5 ⁇ m to about 25 ⁇ m, respectively.
  • the thickness of the thermosetting polyimide layer may be about 20% to about 80% of the total insulating layer.
  • the total thickness of the insulating layer is about 20 ⁇ m to about 125 ⁇ m
  • the sum of the thicknesses of the first copper foil layer and the second copper foil layer is about 10 ⁇ m to about 36 ⁇ m
  • the dielectric constant value of the insulating layer is It is about 3.1 or less at 10 GHz
  • the dielectric loss tangent may be about 0.004 or less at 10 GHz.
  • the flexible copper clad laminate may have a bending resistance (MIT) of about 200 cycles or more, as measured according to JIS C 6471 standards.
  • MIT bending resistance
  • the flexible copper clad laminate of the present invention has low dielectric constant and dielectric loss, has excellent bending properties, excellent interlayer adhesion, excellent productivity and economy, and may have excellent surface quality and reliability of the insulating layer.
  • FIG. 1 shows a flexible copper clad laminate according to an embodiment of the present invention.
  • Figure 2 shows a flexible copper clad laminate according to another embodiment of the present invention.
  • Figure 3 shows a flexible copper clad laminate according to another embodiment of the present invention.
  • FIG. 1 shows a flexible copper clad laminate according to an embodiment of the present invention.
  • a first copper foil layer 100 and an insulating layer 200 are sequentially stacked, and the insulating layer 200 is a thermosetting polyimide layer 220 and a thermosetting polyimide. It includes a thermoplastic polyimide layer 210 laminated on the layer 220.
  • the total thickness of the flexible copper clad laminate 1000 may be about 20 ⁇ m to about 150 ⁇ m. In the above range, low dielectric properties and bending resistance may be excellent. For example, it may be about 50 ⁇ m to about 120 ⁇ m.
  • the first copper foil layer 100 may be formed of copper (Cu) and an alloy including the same.
  • the first copper foil layer may be manufactured by a conventional method. For example, a copper foil manufactured by a rolling method, a vapor deposition method, or an electrolytic method can be used.
  • the first copper foil layer may have a thickness of about 5 ⁇ m to about 25 ⁇ m. Flexibility and mechanical properties may be excellent under the above conditions. For example, it may be about 5 ⁇ m to about 18 ⁇ m.
  • the first copper foil layer has a thickness of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, It may be 24 or 25 ⁇ m.
  • the insulating layer 200 physically supports the flexible copper clad laminate of the present invention, and has heat resistance and flexibility, thereby increasing the degree of freedom in product design.
  • the insulating layer is formed by laminating a thermosetting polyimide layer and a thermoplastic polyimide layer, and the outermost layer of the insulating layer may be formed of a thermoplastic polyimide layer.
  • the flexible copper clad laminate may be obtained by sequentially stacking a first copper foil layer, a thermoplastic polyimide layer, and a thermosetting polyimide layer.
  • the insulating layer 200 includes a thermosetting polyimide layer 220 and a thermoplastic polyimide layer 210 laminated on the thermosetting polyimide layer 220, and a thermoplastic polyimide layer 210 Silver may be in contact with the first copper foil layer 100.
  • the thermoplastic polyimide layer is applied to the outermost layer of an insulator, adhesion between the insulating layer and the copper foil layer may be excellent.
  • the insulating layer may be formed by alternately stacking a thermosetting polyimide layer and a thermoplastic polyimide layer.
  • Figure 2 shows a flexible copper clad laminate according to another embodiment of the present invention.
  • the flexible copper clad laminate 1000 includes a copper clad layer 100; And an insulating layer 200 stacked on the copper foil layer 100, wherein the insulating layer 200 includes a first thermoplastic polyimide layer 210; A thermosetting polyimide layer 220; And the second thermoplastic polyimide layer 212 are sequentially stacked, and the first thermoplastic polyimide layer 210 may contact the first copper foil layer 100.
  • the total thickness of the insulating layer 200 may be about 15 ⁇ m to about 125 ⁇ m. In the range of the insulating layer, dielectric properties and bending resistance may be excellent. For another example, the total thickness of the insulating layer may be about 20 ⁇ m to about 100 ⁇ m.
  • the total thickness of the insulating layer 200 is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
  • thermoplastic polyimide and thermosetting polyimide may be prepared by a conventional method.
  • the thermoplastic polyimide may be formed from a first polyamic acid composition comprising an acid dianhydride and a diamine.
  • the thermoplastic polyimide may be formed from a second polyamic acid composition containing an acid dianhydride and a diamine.
  • the acid dianhydride contained in the first polyamic acid composition or the second polyamic acid composition may include an aromatic acid dianhydride.
  • the aromatic acid dianhydride is pyromellitic dianhydride (PMDA), 3,4,3',4'-benzophenonetetracarboxylic dianhydride (3,3',4,4'- benzophenonetetracarboxylic dianhydride, BTDA), 3,4,3',4'-biphenyltetracarboxylic dianhydride (3,4,3',4'-biphenyltetracarboxylic dianhydride, BPDA), 3,4,3',4' -Diphenylsulfonetetracarboxylic dianhydride (3,4,3',4'-diphenylsulfonetetracarboxylic dianhydride), 1H,3H-naphtho[2,3-c:6,7-c']difuran-1
  • PMDA
  • the diamine contained in the first polyamic acid composition or the second polyamic acid composition may include an aromatic diamine.
  • the aromatic diamine is diaminophenyl ether, p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, 2 ,6-diaminopyridine (2,6-diaminopyridine), 4,4-diaminodiphenylsulfone (4,4-diaminodiphenylsulfone), 4,4'-methylenediamine (4,4'-methylenediamine), 3,4 '-Oxydianiline (3,4'-oxydianiline), 4,4'-oxydianiline (4,4'-oxydianiline), 2- (4-aminophenyl) -1H-benzoxazol-5-amine ( 2-(4-aminophenyl)-1H-benzoxazole-5-amine), 1,4-bis(4-aminophenoxy)benzen
  • the first polyamic acid composition or the second polyamic acid composition may further include a polymerization solvent and cycloaliphatic tetracarboxylic acid dianhydride.
  • Non-limiting examples of the alicyclic tetracarboxylic acid dianhydride include cyclobutane tetracarboxylic dianhydride (1,2,3,4-Cyclobutane tetracarboxylic dianhydride, CBDA), 1,2,3,4-cyclo Pentane tetracarboxylic dianhydride (1,2,3,4-cyclopentanetetra-carboxylic dianhydride, CPDA), cyclohexane tetracarboxylic dianhydride (1,2,3,4-Cyclohexane tetracarboxylic dianhydride, CHDA), bicyclo [2,2,2]-7-octene-2,3,5,6-tetracarboxylic dianhydride (Bicyclo[2,2,2]-7-octene-2,3,5,6- tetracarboxylic dianhydride , BCDA), bicyclo[2,2,2]heptene tetrac
  • the polymerization solvent may include at least one of dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, tetrahydrofuran, and chloroform.
  • the first polyamic acid composition is applied and dried on one surface of the first copper foil layer 100 to form a first thermoplastic polyimide precursor layer, and a second polyimide precursor layer is formed on one surface of the first thermoplastic polyimide precursor layer.
  • the mixed acid composition may be applied and dried to form a thermosetting polyimide precursor layer.
  • thermoplastic polyimide precursor layer is formed by applying and drying a first polyamic acid composition on one surface of the first copper foil layer 100, and a second polyimide precursor layer is formed on one surface of the first thermoplastic polyimide precursor layer.
  • the mixed acid composition may be applied and dried to form a thermosetting polyimide precursor layer.
  • a second thermoplastic polyimide precursor layer may be formed by applying and drying the first polyamic acid composition on one surface of the thermosetting polyimide precursor layer, followed by heat treatment to form the insulating layer 200.
  • the drying temperature is about 80 to 150°C, and the heat treatment may be performed at about 150 to 400°C.
  • the first thermoplastic polyimide layer 210 and the second thermoplastic polyimide layer 212 may each have a thickness of about 5 ⁇ m to about 30 ⁇ m. When formed in the above range, adhesion to the copper foil layer may be excellent, and low dielectric properties, heat resistance, and flexibility may be excellent.
  • the first thermoplastic polyimide layer 210 and the second thermoplastic polyimide layer 212 have a thickness of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, respectively. , 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 ⁇ m.
  • the thickness of the thermosetting polyimide layer may be about 10 ⁇ m to about 80 ⁇ m. In this thickness, dimensional stability, flexibility, and low dielectric properties may be excellent. For example, it may be about 12 ⁇ m to about 65 ⁇ m.
  • the thickness of the thermosetting polyimide layer is about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 , 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 , 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 Or it may be 80 ⁇ m.
  • the insulating layer has a dielectric index (DI) of about 80 to about 135 according to Equation 1 below, and the flexible copper clad laminate has a dielectric-flexion index (DMI) of about 50,000 or more according to Equation 2 below:
  • Dielectric index (DI) 1/(Dk * Df)
  • Equation 1 Dk is the dielectric constant at 10 GHz, and Df is the dielectric loss coefficient measured at 10 GHz
  • DMI Dielectric-flexion index
  • Ft is the thickness (mm) of the flexible copper clad laminate
  • Fm is the number of bending resistance (MIT) measured according to the JIS C 6471 standard of the flexible copper clad laminate
  • Df is the dielectric constant measured at 10 GHz. Loss factor
  • the dielectric index (DI) of the insulating layer is less than about 80, low dielectric properties are deteriorated and signal transmission loss is increased, making it unsuitable for use in the flexible copper clad laminate of the present invention.
  • the dielectric index according to Equation 1 is about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, It may be 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 or 135.
  • the dielectric-bend index (DMI) is less than about 50,000, it may be difficult to achieve mechanical properties such as dielectric properties and bending resistance required for the flexible copper clad laminate of the present invention.
  • the dielectric-flexion index may be about 50,000 to about 1,000,000.
  • the flexible copper clad laminate may have a bending resistance (MIT) of about 150 cycles or more, as measured according to JIS C 6471 standards.
  • MIT bending resistance
  • the bending resistance is less than about 150 cycles, mechanical properties such as bending resistance required for the flexible copper clad laminate of the present invention cannot be achieved.
  • it may be about 150 cycles to about 2600 cycles.
  • the insulating layer may have a dielectric constant (Dk) of about 3.2 or less at 10 GHz, and a dielectric loss coefficient (Df) of about 0.006 or less at 10 GHz. In the above range, low dielectric loss characteristics may be excellent.
  • the insulating layer may have a dielectric constant (Dk) of about 0 or more and about 3.2 or less at 10 GHz, for example, about 2.0 or more and about 3.2 or less.
  • the insulating layer may have a dielectric loss coefficient (Df) of about 0.001 or more and about 0.006 or less at 10 GHz.
  • the dielectric constant (Dk) at 10 GHz is about 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, It may be 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1 or 3.2.
  • the insulating layer may have a dielectric loss coefficient (Df) of 0, 0.001, 0.002, 0.003, 0.004, 0.005, or 0.006 at 10 GHz.
  • Figure 3 shows a flexible copper clad laminate according to another embodiment of the present invention.
  • the flexible copper clad laminate 3000 includes a first copper clad layer 100; An insulating layer 200; And the second copper foil layer 110 is sequentially stacked, the insulating layer 200 is a first thermoplastic polyimide layer 210; A thermosetting polyimide layer 220; And a second thermoplastic polyimide layer 212 are sequentially stacked, and the first thermoplastic polyimide layer 210 and the second thermoplastic polyimide layer 212 are respectively a first copper foil layer 100 and a second copper foil layer Can be in contact with (110).
  • low dielectric properties and bending resistance are excellent, and productivity and economy are excellent.
  • the dielectric constant value of the insulating layer 200 may be about 3.1 or less at 10 GHz and a dielectric loss tangent (dielectric loss) value of about 0.004 or less at 10 GHz. In the above range, low dielectric loss characteristics may be excellent.
  • the dielectric constant value of the insulating layer may be about 0 or more and about 3.1 or less at 10 GHz, for example, about 2.0 or more and about 3.1 or less.
  • the dielectric loss tangent (dielectric loss) value of the insulating layer may be about 0.001 or more and about 0.004 or less at 10 GHz.
  • the thickness of the thermosetting polyimide layer may be about 20% to about 80% of the total insulating layer.
  • the insulating layer may be excellent in productivity, economy, dimensional stability, low dielectric properties, heat resistance, and bending resistance.
  • the second copper foil layer 110 may be formed of copper (Cu) and an alloy containing the same.
  • the second copper foil layer may be manufactured by a conventional method. For example, a copper foil manufactured by a rolling method, a vapor deposition method, or an electrolytic method can be used.
  • the second copper foil layer 110 may be formed by stacking on the surface of the second thermoplastic polyimide layer 212 of the insulating layer 200.
  • the second copper foil layer 110 may have a thickness of about 5 ⁇ m to about 25 ⁇ m. Flexibility and mechanical properties may be excellent under the above conditions. For example, it may be about 5 to 18 ⁇ m.
  • the second copper foil layer has a thickness of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, It may be 24 or 25 ⁇ m.
  • the thickness of the first copper foil layer 100 and the second copper foil layer 110 may be the same. Under the above conditions, it is possible to prevent stress deformation due to a difference in coefficient of thermal expansion.
  • the sum of the thicknesses of the first copper foil layer and the second copper foil layer may be about 10 to 36 ⁇ m.
  • an increase in electrical resistance or a decrease in mechanical properties such as bending resistance may be prevented.
  • the sum of the thicknesses of the first copper foil layer and the second copper foil layer is about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 , 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 or 36 ⁇ m.
  • the thicknesses of the first copper foil layer and the second copper foil layer may be about 5 to 18 ⁇ m, respectively. Flexibility and mechanical properties may be excellent under the above conditions.
  • the thickness of the first copper foil layer and the second copper foil layer may be the same. Under the above conditions, it is possible to prevent stress deformation due to a difference in coefficient of thermal expansion.
  • the flexible copper clad laminate according to the present invention has low dielectric constant and dielectric loss, excellent bending properties, and high flexibility, so that the circuit is not damaged even when folded at a sharp angle and/or maintained in a folded state for a long time, and the film Since the thickness and adhesive thickness can be adjusted, a flexible printed circuit board with an optimal combination can be manufactured according to the product shape.
  • the electronic device not only can the electronic device meet the demand for miniaturization, weight reduction, and signal transmission loss reduction, but also it is possible to prevent the deterioration of marketability and reliability of the electronic device due to the breakage of the flexible copper clad laminate film.
  • thermosetting polyimide composition containing an acid dianhydride and diamine was applied and dried to form a thermosetting polyimide precursor layer. Applying and drying a first thermoplastic polyimide composition containing an acid dianhydride and diamine on one surface of the thermosetting polyimide precursor layer to form a first thermoplastic polyimide precursor layer, and then forming a first thermoplastic polyimide precursor layer.
  • a first copper foil was laminated on one surface.
  • thermoplastic polyimide composition containing an acid dianhydride and a diamine was applied and dried on the other surface of the thermosetting polyimide precursor layer to form a second thermoplastic polyimide precursor layer, followed by heat treatment to form a second thermoplastic polyimide precursor layer in Table 1
  • a second copper foil was laminated on the surface of the second thermoplastic polyimide layer of the insulating layer to prepare a flexible copper clad laminate having a thickness as shown in Table 1.
  • thermosetting polyimide composition was applied and dried to form a thermosetting polyimide precursor layer. Then, the first copper foil is laminated on one surface of the thermosetting polyimide precursor layer to form a first copper foil layer, and the second copper foil is laminated on the other surface of the thermosetting polyimide precursor layer to form a second copper foil layer. Then, it was heat-treated to prepare a flexible copper clad laminate having a thickness as shown in Table 1 below.
  • thermosetting polyimide layer (general grade) was applied.
  • a flexible copper clad laminate was manufactured in the same manner as in Comparative Example 1, except that a thermosetting polyimide layer having a thickness of Table 1 was applied.
  • MIT evaluation The flexible copper clad laminates of Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated according to JIS C 6471 standard. After forming an MIT pattern on the laminated specimen, a coverlay film (1/2mm polyimide film + 25 ⁇ m adhesive) was adhered to prepare specimens for measurement. Then, the specimens for measurement of the Examples and Comparative Examples were measured using a bending resistance measuring device (manufacturer: Tyo seiki, product name: Type D). Specifically, the number of cycles until the coverlay film was short-circuited was measured after repeated bending under conditions of radius: 0.38mm, revolutions per minute: 175rpm, angle 135 ⁇ and load: 0.5kgf, and the results are shown in Table 1 below. .
  • Dielectric index (DI) 1/(Dk * Df)
  • Equation 1 Dk is the dielectric constant at 10 GHz, and Df is the dielectric loss coefficient measured at 10 GHz
  • DMI Dielectric-flexion index
  • Ft is the thickness (mm) of the flexible copper clad laminate
  • Fm is the number of bending resistance (MIT) measured according to the JIS C 6471 standard of the flexible copper clad laminate
  • Df is the dielectric constant measured at 10 GHz. Loss factor
  • the dielectric index (DI) value was 80 to 135, and the dielectric-flexion index (DMI) value was 50,000 or more. It was found that the bending resistance and low dielectric properties were superior to Comparative Examples 1 to 3 out of the conditions of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 연성 동박 적층판에 관한 것이다. 한 구체예에서 상기 연성 동박 적층판은 제1 동박층 및 절연층이 순차로 적층되며, 상기 절연층은, 열경화성 폴리이미드층 및 상기 열경화성 폴리이미드층에 적층된 열가소성 폴리이미드층을 포함하는 연성 동박 적층판이고, 상기 절연층은 식 1에 의한 유전지수(DI)가 약 80 내지 약 135 이고, 상기 연성 동박 적층판은 식 2에 의한 유전-굴곡지수(DMI)가 약 50,000 이상이다.

Description

고굴곡 및 저유전성 연성 동박 적층판
본 발명은 고굴곡 및 저유전성 연성 동박 적층판에 관한 것이다.
연성 인쇄회로기판(Flexible Printed Circuit Board, FPCB)은 절연체 상에 전기전도성이 우수한 도체 회로를 형성한 전자제품이다. 상기 FPCB는, 전자제품의 경박 단소 및 고기능화 추세에 대응하기 위해 개발된 전자부품이며, 작업성이 뛰어나고, 내열성 및 내구성, 내약품성이 강하며, 내열성이 우수한 장점을 가져 컴퓨터, 전기자동차, 플렉서블 기기, 웨어러블 기기, 통신장비, 위성장비, 군사장비 및 의료장비 등의 분야에서 널리 사용되고 있다.
한편, 최근 5세대 이동통신(5G)이 도래함에 따라, 상기 FPCB를 구성하는 주요 부품인 연성 동박 적층판(FCCL)에 보다 낮은 신호 전송손실 특성이 요구되고 있다. 한편, 연성 동박 적층판의 신호전송 손실특성을 개선하는 방법으로는, FCCL의 동박층을 제외한 절연층의 유전손실(유전정접)이 낮은 소재를 사용하는 방법과, 소재의 두께를 증가시키는 방법이 있다. 그러나, 절연층 소재의 두께를 증가시키는 경우 FPCB에 요구되는 굴곡성이 저하되는 문제가 발생한다.
본 발명과 관련한 배경기술은 대한민국 등록특허공보 제2008-0061587 호(2008.07.03. 공개, 발명의 명칭: 우수한 접착력 및 최적의 표면조도를 갖는 연성 동박 적층판 및 이의 제조방법)에 개시되어 있다.
본 발명의 하나의 목적은 유전율 및 유전손실이 낮으며, 굴곡특성이 우수한 연성 동박 적층판을 제공하는 것이다.
본 발명의 다른 목적은 층간 부착력이 우수하고, 생산성 및 경제성이 우수한 연성 동박 적층판을 제공하는 것이다.
본 발명의 다른 목적은 절연층의 표면 품질 및 신뢰성이 우수한 연성 동박 적층판을 제공하는 것이다.
본 발명의 하나의 관점은 연성 동박 적층판에 관한 것이다. 한 구체예에서 상기 연성 동박 적층판은 제1 동박층 및 절연층이 순차로 적층되며, 상기 절연층은, 열경화성 폴리이미드층 및 상기 열경화성 폴리이미드층에 적층된 열가소성 폴리이미드층을 포함하는 연성 동박 적층판이고, 상기 절연층은 하기 식 1에 의한 유전지수(DI)가 약 80 내지 약 135 이고, 상기 연성 동박 적층판은 하기 식 2에 의한 유전-굴곡지수(DMI)가 약 50,000 이상이다:
[식 1]
유전지수(DI) = 1/(Dk * Df)
(상기 식 1에서, Dk 는 10 GHz 에서 유전율이고, Df는 10 GHz 에서 측정된 유전손실계수임)
[식 2]
유전-굴곡지수(DMI) = (Ft)2 * (Fm)/(Df)2
(상기 식 2에서, Ft는 상기 연성 동박 적층판의 두께(mm)이고, Fm은 연성 동박 적층판의 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT) 횟수이며, Df는 10 GHz 에서 측정된 유전손실계수임).
한 구체예에서 상기 절연층은 10 GHz 에서 유전율이 약 2.0 내지 약 3.2 이고, 유전손실계수가 약 0.001 내지 약 0.006 일 수 있다.
한 구체예에서 상기 연성 동박 적층판의 총 두께는 약 20㎛ 내지 약 150㎛일 수 있다.
한 구체예에서 상기 절연층의 총 두께는 약 15㎛ 내지 약 125㎛ 일 수 있다.
한 구체예에서 상기 연성 동박 적층판은, 제1 동박층, 열가소성 폴리이미드층 및 열경화성 폴리이미드층이 순차적으로 적층된 것일 수 있다.
한 구체예에서 상기 절연층의 일면에 적층된 제2 동박층을 더 포함할 수 있다.
한 구체예에서 상기 절연층은 제1 열가소성 폴리이미드층; 열경화성 폴리이미드층; 및 제2 열가소성 폴리이미드층이 순차적으로 적층되며, 상기 제1 열가소성 폴리이미드층 및 제2 열가소성 폴리이미드층은 각각 제1 동박층 및 제2 동박층과 접할 수 있다.
한 구체예에서 상기 열경화성 폴리이미드층의 두께는 약 10㎛ 내지 약 80㎛ 이며, 상기 제1 열가소성 폴리이미드층 및 제2 열가소성 폴리이미드층의 두께는 각각 약 5㎛ 내지 약 30㎛ 일 수 있다.
한 구체예에서 상기 제1 동박층 및 제2 동박층의 두께는 각각 약 5㎛ 내지 약 25㎛ 일 수 있다.
한 구체예에서 상기 열경화성 폴리이미드층의 두께는 전체 절연층 중 약 20% 내지 약 80% 일 수 있다.
한 구체예에서 상기 절연층의 총 두께는 약 20㎛ 내지 약 125㎛ 이며, 상기 제1 동박층 및 제2 동박층 두께의 합은 약 10㎛ 내지 약 36㎛ 이고, 상기 절연층의 유전율 값은 10 GHz 에서 약 3.1 이하이고, 유전정접 값이 10 GHz 에서 약 0.004 이하일 수 있다.
한 구체예에서 상기 연성 동박 적층판은 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT)이 약 200 사이클 이상일 수 있다.
본 발명의 연성 동박 적층판은 유전율 및 유전손실이 낮으며, 굴곡특성이 우수하고, 층간 부착력이 우수하고, 생산성 및 경제성이 우수하며, 절연층의 표면 품질 및 신뢰성이 우수할 수 있다.
도 1은 본 발명의 한 구체예에 따른 연성 동박 적층판을 나타낸 것이다.
도 2는 본 발명의 다른 구체예에 따른 연성 동박 적층판을 나타낸 것이다.
도 3은 본 발명의 또 다른 구체예에 따른 연성 동박 적층판을 나타낸 것이다.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 보는 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있다.
연성 동박 적층판
본 발명의 하나의 관점은 연성 동박 적층판에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 연성 동박 적층판을 나타낸 것이다. 상기 도 1을 참조하면, 연성 동박 적층판(1000)은 제1 동박층(100) 및 절연층(200)이 순차로 적층되며, 절연층(200)은 열경화성 폴리이미드층(220) 및 열경화성 폴리이미드층(220)에 적층된 열가소성 폴리이미드층(210)을 포함한다.
한 구체예에서, 연성 동박 적층판(1000)의 총 두께는 약 20㎛ 내지 약 150㎛ 일 수 있다. 상기 범위에서 저유전특성 및 내굴곡성이 우수할 수 있다. 예를 들면 약 50㎛ 내지 약 120㎛ 일 수 있다.
제1 동박층
제1 동박층(100)은 구리(Cu) 및 이를 포함하는 합금을 포함하여 형성될 수 있다. 상기 제1 동박층은 통상의 방법으로 제조될 수 있다. 예를 들면 압연법, 증착법 또는 전해법으로 제조된 동박을 사용할 수 있다.
한 구체예에서 상기 제1 동박층은 두께가 약 5㎛ 내지 약 25㎛ 일 수 있다. 상기 조건에서 굴곡성과 기계적 물성이 우수할 수 있다. 예를 들면 약 5㎛ 내지 약 18㎛ 일 수 있다. 예를 들면 상기 제1 동박층은 두께가 약 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 또는 25㎛일 수 있다.
절연층
절연층(200)은 본 발명의 연성 동박 적층판을 물리적으로 지지하며, 내열성 및 유연성(flexibility)을 가짐에 따라 제품 설계의 자유도를 높일 수 있다.
한 구체예에서 상기 절연층은 열경화성 폴리이미드층과 열가소성 폴리이미드층이 적층되어 형성되며, 절연층의 최외각층은 열가소성 폴리이미드층으로 이루어질 수 있다.
한 구체예에서 상기 연성 동박 적층판은 제1 동박층, 열가소성 폴리이미드층 및 열경화성 폴리이미드층이 순차적으로 적층된 것일 수 있다. 상기 도 1을 참조하면, 절연층(200)은 열경화성 폴리이미드층(220) 및 열경화성 폴리이미드층(220)상에 적층된 열가소성 폴리이미드층(210)을 포함하며, 열가소성 폴리이미드층(210)은 제1 동박층(100)과 접할 수 있다. 상기 열가소성 폴리이미드층을 절연체 최외각층에 적용시, 상기 절연층 및 동박층 사이의 부착력이 우수할 수 있다.
다른 구체예에서 상기 절연층은 열경화성 폴리이미드층과 열가소성 폴리이미드층이 교대로 적층되어 형성될 수 있다. 도 2는 본 발명의 다른 구체예에 따른 연성 동박 적층판을 나타낸 것이다. 상기 도 2를 참조하면, 연성 동박 적층판(1000)은 동박층(100); 및 동박층(100)에 적층된 절연층(200);으로 이루어지고, 절연층(200)은 제1 열가소성 폴리이미드층(210); 열경화성 폴리이미드층(220); 및 제2 열가소성 폴리이미드층(212)이 순차적으로 적층되며, 제1 열가소성 폴리이미드층(210)은 제1 동박층(100)과 접할 수 있다.
한 구체예에서 절연층(200)의 총 두께는 약 15㎛ 내지 약 125㎛ 일 수 있다. 상기 절연층의 범위에서 유전특성 및 내굴곡성이 우수할 수 있다. 다른 예를 들면 상기 절연층의 총 두께는 약 20㎛ 내지 약 100㎛일 수 있다. 예를 들면 상기 절연층(200)의 총 두께는 약 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124 또는 125㎛ 일 수 있다.
상기 열가소성 폴리이미드와 열경화성 폴리이미드는, 통상의 방법으로 제조될 수 있다. 한 구체예에서 상기 열가소성 폴리이미드는 산 이무수물 및 디아민을 포함하는 제1 폴리아믹산 조성물로부터 형성될 수 있다. 또한 상기 열가소성 폴리이미드는 산 이무수물 및 디아민을 포함하는 제2 폴리아믹산 조성물로부터 형성될 수 있다.
한 구체예에서 상기 제1 폴리아믹산 조성물 또는 제2 폴리아믹산 조성물에 포함되는 산 이무수물은 방향족 산 이무수물을 포함할 수 있다. 예를 들면 상기 방향족 산 이무수물은 피로멜리트산 이무수물 (pyromellitic dianhydride, PMDA), 3,4,3',4'-벤조페논테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 3,4,3',4'-비페닐테트라카르복실산 이무수물(3,4,3',4'-biphenyltetracarboxylic dianhydride, BPDA), 3,4,3',4'-디페닐설폰테트라카르복실산 이무수물(3,4,3',4'-diphenylsulfonetetracarboxylic dianhydride), 1H,3H-나프토[2,3-c:6,7-c']디퓨란-1,3,6,8-테트론 2,3,6,7-나프탈렌테트라카르복실산 이무수물(1H,3H-naphtho[2,3-c:6,7-c']difuran-1,3,6,8-tetrone 2,3,6,7-naphthalenetetracarboxylic dianhydride), 1,4,5,8- 나프탈렌테트라카르복실산 이무수물(1,4,5,8-naphthalenetetracarboxylic dianhydride), 4,4'-옥시비스(2-벤조퓨란-1,3-디온), 4-[(1,3-디옥소-1,3-디하이드로-2-벤조퓨란-5-일)옥시]-2-벤조퓨란-1,3-디온 및 5,5'-설포닐비스-1,3-이소벤조퓨란디온 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 제1 폴리아믹산 조성물 또는 제2 폴리아믹산 조성물에 포함되는 디아민은 방향족 디아민을 포함할 수 있다. 예를 들면 상기 방향족 디아민은 디아미노페닐에테르(diaminophenyl ether), p-페닐렌디아민(p-phenylenediamine), o-페닐렌디아민(o-phenylenediamine), m-페닐렌디아민(m-phenylenediamine), 2,6-디아미노피리딘(2,6-diaminopyridine), 4,4-디아미노디페닐설폰(4,4-diaminodiphenylsulfone), 4,4'-메틸렌디아민(4,4'-methylenediamine), 3,4'-옥시디아닐린(3,4'-oxydianiline), 4,4'-옥시디아닐린(4,4'-oxydianiline), 2-(4-아미노페닐)-1H-벤조옥사졸-5-아민(2-(4-aminophenyl)-1H-benzoxazole-5-amine), 1,4-비스(4-아미노페녹시)벤젠(1,4-bis(4-aminophenoxy)benzene), 2-(4-아미노페닐)-5-아미노벤즈이미다졸(2-(4-aminophenyl)-5-aminobenzimidazole), 6-아미노-2-(p-아미노페닐)벤즈옥사졸(6-amino-2-(p-aminophenyl)benzoxazole) 및 4,4'-디아미노-p-터페닐(4,4'-diamino-p-terphenyl) 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 제1 폴리아믹산 조성물 또는 제2 폴리아믹산 조성물은 중합용매 및 지환족 테트라카복실산 이무수물(cycloaliphatic tetracarboxylic acid dianhydride)을 더 포함할 수 있다.
상기 지환족 테트라카르복실산 디안하드라이드의 비제한적인 예로는, 사이클로부탄 테트라카르복실산 이무수물(1,2,3,4-Cyclobutane tetracarboxylic dianhydride, CBDA), 1,2,3,4-사이클로펜탄 테트라카르복실산 이무수물(1,2,3,4-cyclopentanetetra-carboxylic dianhydride, CPDA), 사이클로헥산 테트라카르복실산 이무수물(1,2,3,4-Cyclohexane tetracarboxylic dianhydride, CHDA), 비사이클로[2,2,2]-7-옥텐-2,3,5,6-테트라카르복실산 이무수물(Bicyclo[2,2,2]-7-octene-2,3,5,6- tetracarboxylic dianhydride, BCDA), 비사이클로[2,2,2]헵텐 테트라카르복실산 이무수물(Bicyclo[2.2.1]heptene tetracarboxylic dianhydride, BHDA), 비사이클로[2,2,2]옥탄-2,3,5,6- 테트라카르복실산 이무수물 (Bicyclo[2.2.2]oct-2,3,5,6-tetracarboxylic dianhydride,BODA) 및 비사이클로[2,2,2]옥타-7-엔안-2,3,5,6- 테트라카르복실산 이무수물 (Bicyclo[2.2.2]oct-7-enane-2,3,5,6-tetracarboxylic dianhydride,BOEDA) 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 중합용매는 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈, m-크레졸, 테트라하이드로퓨란 및 클로로포름 중 하나 이상 포함할 수 있다.
한 구체예에서 제1 동박층(100) 일 표면에 제1 폴리아믹산 조성물을 도포 및 건조하여 제1 열가소성 폴리이미드 전구층을 형성하고, 상기 제1 열가소성 폴리이미드 전구체층의 일 표면에 제2 폴리아믹산 조성물을 도포 및 건조하여 열경화성 폴리이미드 전구체층을 형성할 수 있다.
다른 구체예에서 제1 동박층(100) 일 표면에 제1 폴리아믹산 조성물을 도포 및 건조하여 제1 열가소성 폴리이미드 전구층을 형성하고, 상기 제1 열가소성 폴리이미드 전구체층의 일 표면에 제2 폴리아믹산 조성물을 도포 및 건조하여 열경화성 폴리이미드 전구체층을 형성할 수 있다. 그 다음에, 상기 열경화성 폴리이미드 전구체층의 일 표면에 제1 폴리아믹산 조성물을 도포 및 건조하여 제2 열가소성 폴리이미드 전구체층을 형성하고, 열처리하여 절연층(200)을 형성할 수 있다.
한 구체예에서 상기 건조온도는 약 80~150℃이며, 상기 열처리는 약 150~400℃에서 실시될 수 있다.
한 구체예에서 제1 열가소성 폴리이미드층(210) 및 제2 열가소성 폴리이미드층(212)은 두께가 각각 약 5㎛ 내지 약 30㎛ 일 수 있다. 상기 범위로 형성시 동박층과의 부착력이 우수하며, 저유전특성, 내열성 및 굴곡성이 우수할 수 있다. 예를 들면 제1 열가소성 폴리이미드층(210) 및 제2 열가소성 폴리이미드층(212)은 두께가 각각 약 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 또는 30㎛ 일 수 있다.
한 구체예에서 상기 열경화성 폴리이미드층의 두께는 약 10㎛ 내지 약 80㎛일 수 있다. 상기 두께에서 치수안정성, 굴곡성 및 저유전특성이 우수할 수 있다. 예를 들면 약 12㎛ 내지 약 65㎛일 수 있다. 예를 들면 열경화성 폴리이미드층의 두께는 약 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 또는 80㎛일 수 있다.
상기 절연층은 하기 식 1에 의한 유전지수(DI)가 약 80 내지 약 135 이며, 상기 연성 동박 적층판은 하기 식 2에 의한 유전-굴곡지수(DMI)가 약 50,000 이상이다:
[식 1]
유전지수(DI) = 1/(Dk * Df)
(상기 식 1에서, Dk 는 10 GHz 에서 유전율이고, Df는 10 GHz 에서 측정된 유전손실계수임)
[식 2]
유전-굴곡지수(DMI) = (Ft)2 * (Fm)/(Df)2
(상기 식 2에서, Ft는 상기 연성 동박 적층판의 두께(mm)이고, Fm은 연성 동박 적층판의 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT) 횟수이며, Df는 10 GHz 에서 측정된 유전손실계수임).
상기 절연층의 식 1에 의한 유전지수(DI)가 약 80 미만인 경우 저유전 특성이 저하되고, 신호전송 손실이 증가하여 본 발명의 연성 동박 적층판에 사용하기 부적합하다. 예를 들면 상기 식 1에 의한 유전지수는 약 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134 또는 135 일 수 있다.
상기 유전-굴곡지수(DMI)가 약 50,000 미만인 경우 본 발명의 연성 동박 적층판에 요구되는 유전특성 및 내굴곡성 등의 기계적 물성을 달성하기 어려울 수 있다. 예를 들면 상기 유전-굴곡지수는 약 50,000 내지 약 1,000,000 일 수 있다.
한 구체예에서 상기 연성 동박 적층판은 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT)이 약 150 사이클 이상일 수 있다. 상기 내절곡성이 약 150 사이클 미만인 경우, 본 발명의 연성 동박 적층판에 요구되는 내굴곡성 등의 기계적 물성을 달성할 수 없다. 예를 들면, 약 150 사이클 내지 약 2600 사이클일 수 있다.
한 구체예에서 상기 절연층은 10 GHz 에서 유전율(Dk)이 약 3.2 이하일 수 있고, 10 GHz 에서 유전손실계수(Df)가 약 0.006 이하일 수 있다. 상기 범위에서 저유전손실 특성이 우수할 수 있다. 예를 들면, 상기 절연층은 10 GHz 에서 유전율(Dk)이 약 0 이상 약 3.2 이하, 다른 예를 들면 약 2.0 이상 약 3.2 이하일 수 있다. 예를 들면 상기 절연층은 10 GHz 에서 유전손실계수(Df)가 10 GHz 에서 약 0.001 이상 약 0.006 이하일 수 있다. 예를 들면 상기 절연층은 10 GHz 에서 유전율(Dk)이 약 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1 또는 3.2 일 수 있다. 예를 들면 상기 절연층은 유전손실계수(Df)가 10 GHz 에서 0, 0.001, 0.002, 0.003, 0.004, 0.005 또는 0.006 일 수 있다.
도 3은 본 발명의 또 다른 구체예에 따른 연성 동박 적층판을 나타낸 것이다. 상기 도 3을 참조하면, 연성 동박 적층판(3000)은 제1 동박층(100); 절연층(200); 및 제2 동박층(110)이 순차적으로 적층되고, 절연층(200)은 제1 열가소성 폴리이미드층(210); 열경화성 폴리이미드층(220); 및 제2 열가소성 폴리이미드층(212)이 순차적으로 적층되며, 상기 제1 열가소성 폴리이미드층(210) 및 제2 열가소성 폴리이미드층(212)은 각각 제1 동박층(100) 및 제2 동박층(110)과 접할 수 있다. 상기 구조로 형성시 저유전특성 및 내굴곡성이 우수하며, 생산성 및 경제성이 우수할 수 있다.
한 구체예에서 절연층(200)의 유전율 값은 10 GHz 에서 약 3.1 이하 및 유전정접(유전손실) 값이 10 GHz 에서 약 0.004 이하일 수 있다. 상기 범위에서 저유전손실 특성이 우수할 수 있다. 예를 들면, 상기 절연층의 유전율 값은 10 GHz 에서 약 0 이상 약 3.1 이하, 다른 예를 들면 약 2.0 이상 약 3.1 이하일 수 있다. 예를 들면 상기 절연층의 유전정접(유전손실) 값은 10 GHz 에서 약 0.001 이상 약 0.004 이하일 수 있다.
한 구체예에서 상기 열경화성 폴리이미드층의 두께는 전체 절연층 중 약 20% 내지 약 80% 일 수 있다. 상기 조건에서 상기 절연층의 생산성, 경제성, 치수안정성, 저유전특성, 내열성 및 내굴곡성이 모두 우수할 수 있다. 예를 들면 약 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 또는 80% 일 수 있다.
제2 동박층
제2 동박층(110)은 구리(Cu) 및 이를 포함하는 합금을 포함하여 형성될 수 있다. 상기 제2 동박층은 통상의 방법으로 제조될 수 있다. 예를 들면 압연법, 증착법 또는 전해법으로 제조된 동박을 사용할 수 있다.
한 구체예에서 제2 동박층(110)은 절연층(200)의 제2 열가소성 폴리이미드층(212)의 표면에 적층되어 형성할 수 있다.
한 구체예에서 제2 동박층(110)은 두께가 약 5㎛ 내지 약 25㎛ 일 수 있다. 상기 조건에서 굴곡성과 기계적 물성이 우수할 수 있다. 예를 들면 약 5~18㎛ 일 수 있다. 예를 들면 상기 제2 동박층은 두께가 약 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 또는 25㎛일 수 있다.
한 구체예에서 상기 제1 동박층(100)과 제2 동박층(110)의 두께는 동일할 수 있다. 상기 조건에서 열팽창 계수 차로 인한 응력 변형을 방지할 수 있다.
한 구체예에서 상기 제1 동박층 및 제2 동박층 두께의 합은 약 10~36㎛ 일 수 있다. 상기 두께 범위에서 전기저항이 증가하거나, 내굴곡성 등의 기계적 물성의 저하를 방지할 수 있다. 예를 들면 상기 제1 동박층과 제2 동박층의 두께의 합은 약 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 또는 36㎛일 수 있다.
한 구체예에서 상기 제1 동박층 및 제2 동박층의 두께는, 각각 약 5~18㎛ 일 수 있다. 상기 조건에서 굴곡성과 기계적 물성이 우수할 수 있다. 상기 제1 동박층 및 제2 동박층의 두께는 동일할 수 있다. 상기 조건에서 열팽창 계수 차로 인한 응력 변형을 방지할 수 있다.
본 발명에 따른 연성 동박 적층판은 유전율 및 유전손실이 낮으면서, 굴곡 특성이 우수하고, 높은 굴곡성을 가짐으로써 예리한 각도로 접히는 경우 및/또는 장시간 접힌 상태로 유지되는 경우에도 회로가 손상되지 않으며, 필름 두께 및 접착제 두께 조절이 가능하므로, 제품 형태에 맞게 최적의 조합을 갖춘 연성인쇄회로기판을 제조할 수 있다.
따라서, 전자기기의 소형화, 경량화 및 신호전송 손실 감소에 대한 요구에 부응할 수 있을 뿐만 아니라, 연성 동박 적층필름의 파손으로 인한 전자기기의 상품성 및 신뢰성 저하를 방지할 수 있다.
이하, 본 발명의 바람직한 실시예를 통하여 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 및 비교예
실시예 1~5
산 이무수물 및 디아민을 포함하는 열경화성 폴리이미드 조성물을 도포 및 건조하여 열경화성 폴리이미드 전구체층을 형성하였다. 상기 열경화성 폴리이미드 전구체층의 일 표면에 산 이무수물 및 디아민을 포함하는 제1 열가소성 폴리이미드 조성물을 도포 및 건조하여 제1 열가소성 폴리이미드 전구체층을 형성한 다음, 상기 제1 열가소성 폴리이미드 전구체층의 일 표면에 제1 동박을 라미네이션하였다. 그 다음에, 상기 열경화성 폴리이미드 전구체층의 타 표면에 산 이무수물 및 디아민을 포함하는 제2 열가소성 폴리이미드 조성물을 도포 및 건조하여 제2 열가소성 폴리이미드 전구체층을 형성한 다음, 이를 열처리하여 표 1과 같은 두께를 갖는 절연층을 형성하였다. 그 다음에 상기 절연층의 제2 열가소성 폴리이미드층의 표면에 제2 동박을 라미네이션하여 표 1과 같은 두께를 갖는 연성 동박 적층판을 제조하였다.
비교예 1
상기 열경화성 폴리이미드 조성물을 도포 및 건조하여 열경화성 폴리이미드 전구체층을 형성하였다. 그 다음에 상기 열경화성 폴리이미드 전구체층의 일 표면에 상기 제1 동박을 라미네이션하여 제1 동박층을 형성하고, 상기 열경화성 폴리이미드 전구체층의 타면에 상기 제2 동박을 라미네이션 하여 제2 동박층을 형성한 다음, 이를 열처리하여 하기 표 1과 같은 두께를 갖는 연성 동박 적층판을 제조하였다.
비교예 2
시판되는 열경화성 폴리이미드층(일반 grade)을 적용한 것을 제외하고, 상기 비교예 1과 동일한 방법으로 연성 동박 적층판을 제조하였다.
비교예 3
하기 표 1 두께의 열경화성 폴리이미드층을 적용한 것을 제외하고, 상기 비교예 1과 동일한 방법으로 연성 동박 적층판을 제조하였다.
물성평가
(1) 내절곡성(MIT) 평가: 실시예 1~5 및 비교예 1~3의 연성 동박 적층판에 대하여, JIS C 6471 규격에 의거하여 내절곡성을 평가하였다. 상기 적층판 시편에 MIT 패턴을 형성한 다음, 커버레이 필름(1/2mm 폴리이미드 필름 + 접착제 25㎛)을 접착하여 측정용 시편을 각각 제조하였다. 그 다음에, 상기 실시예 및 비교예의 측정용 시편을 내절곡성 측정기기(제조사: Tyo seiki, 제품명: Type D)를 이용하여 측정하였다. 구체적으로 반지름: 0.38mm, 분당 회전수: 175rpm, 각도 135˚ 및 하중: 0.5kgf 조건으로 반복 절곡 후, 커버레이 필름이 단락될 때까지의 사이클 수를 측정하여 그 결과를 하기 표 1에 나타내었다.
(2) 유전율, 유전손실(유전정접) 계수, 유전지수(DI) 및 유전-굴곡지수(DMI) 평가: 실시예 1~5 및 비교예 1~3의 연성 동박 적층판의 동박층을 에칭(etching)하여 절연층 만을 남기고 제거하였다. 상기 절연층을 105℃에서 2시간 이상 건조하고, 25℃ 및 50RH% 조건에서 24시간 동안 방치한 다음, IEC 61189-2-721 규격(resonant cavity method)에 의거하여 측정기기(유전율 측정기, Split Post Dielectric Resonator: 제조사: QWED社, 제품명: SPDR)를 이용하여 측정 주파수: 10GHz 조건으로 측정하여 그 결과를 하기 표 1에 나타내었다. 또한, 상기 측정된 유전율 및 유전손실계수를 이용하여, 하기 식 1에 따른 유전지수를 계산하여 그 결과를 하기 표 1에 함께 나타내었다:
[식 1]
유전지수(DI) = 1/(Dk * Df)
(상기 식 1에서, Dk 는 10 GHz 에서 유전율이고, Df는 10 GHz 에서 측정된 유전손실계수임)
[식 2]
유전-굴곡지수(DMI) = (Ft)2 * (Fm)/(Df)2
(상기 식 2에서, Ft는 상기 연성 동박 적층판의 두께(mm)이고, Fm은 연성 동박 적층판의 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT) 횟수이며, Df는 10 GHz 에서 측정된 유전손실계수임).
[표 1]
Figure PCTKR2020009430-appb-I000001
상기 표 1의 결과를 참조하면, 본 발명에 따른 실시예 1~5의 경우, 유전지수(DI) 값이 80~135를 만족하였고, 유전-굴곡지수(DMI) 값이 50,000 이상을 만족하였으며, 본 발명의 조건을 벗어난 비교예 1~3 보다 내절곡성 및 저유전특성이 우수한 것을 알 수 있었다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (12)

  1. 제1 동박층 및 절연층이 순차로 적층되며,
    상기 절연층은, 열경화성 폴리이미드층 및 상기 열경화성 폴리이미드층에 적층된 열가소성 폴리이미드층을 포함하는 연성 동박 적층판이고,
    상기 절연층은 하기 식 1에 의한 유전지수(DI)가 약 80 내지 약 135 이고,
    상기 연성 동박 적층판은 하기 식 2에 의한 유전-굴곡지수(DMI)가 약 50,000 이상인 연성 동박 적층판:
    [식 1]
    유전지수(DI) = 1/(Dk * Df)
    (상기 식 1에서, Dk 는 10 GHz 에서 유전율이고, Df는 10 GHz 에서 측정된 유전손실계수임)
    [식 2]
    유전-굴곡지수(DMI) = (Ft)2 * (Fm)/(Df)2
    (상기 식 2에서, Ft는 상기 연성 동박 적층판의 두께(mm)이고, Fm은 연성 동박 적층판의 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT) 횟수이며, Df는 10 GHz 에서 측정된 유전손실계수임).
  2. 제1항에 있어서, 상기 절연층은 10 GHz 에서 유전율이 약 2.0 내지 약 3.2 이고, 유전손실계수가 약 0.001 내지 약 0.006 인 연성 동박 적층판.
  3. 제1항에 있어서, 상기 연성 동박 적층판의 총 두께는 약 20㎛ 내지 약 150㎛인 것을 특징으로 하는 연성 동박 적층판.
  4. 제1항에 있어서, 상기 절연층의 총 두께는 약 15㎛ 내지 약 125㎛인 것을 특징으로 하는 연성 동박 적층판.
  5. 제1항에 있어서, 상기 연성 동박 적층판은,
    제1 동박층, 열가소성 폴리이미드층 및 열경화성 폴리이미드층이 순차적으로 적층된 것을 특징으로 하는 연성 동박 적층판.
  6. 제1항에 있어서, 상기 절연층의 일면에 적층된 제2 동박층을 더 포함하는 것을 특징으로 하는 연성 동박 적층판.
  7. 제7항에 있어서, 상기 절연층은 제1 열가소성 폴리이미드층; 열경화성 폴리이미드층; 및 제2 열가소성 폴리이미드층이 순차적으로 적층되며,
    상기 제1 열가소성 폴리이미드층 및 제2 열가소성 폴리이미드층은 각각 제1 동박층 및 제2 동박층과 접하는 것을 특징으로 하는 연성 동박 적층판.
  8. 제7항에 있어서, 상기 열경화성 폴리이미드층의 두께는 약 10㎛ 내지 약 80㎛ 이며,
    상기 제1 열가소성 폴리이미드층 및 제2 열가소성 폴리이미드층의 두께는 각각 약 5㎛ 내지 약 30㎛인 것을 특징으로 하는 연성 동박 적층판.
  9. 제6항에 있어서, 상기 제1 동박층 및 제2 동박층의 두께는 각각 약 5㎛ 내지 약 25㎛인 것을 특징으로 하는 연성 동박 적층판.
  10. 제1항에 있어서, 상기 열경화성 폴리이미드층의 두께는 전체 절연층 중 약 20% 내지 약 80%인 것을 특징으로 하는 연성 동박 적층판.
  11. 제7항에 있어서, 상기 절연층의 총 두께는 약 20㎛ 내지 약 125㎛ 이며,
    상기 제1 동박층 및 제2 동박층 두께의 합은 약 10㎛ 내지 약 36㎛ 이고,
    상기 절연층의 유전율 값은 10 GHz 에서 약 3.1 이하이고, 유전정접 값이 10 GHz 에서 약 0.004 이하인 것을 특징으로 하는 연성 동박 적층판.
  12. 제1항에 있어서, 상기 연성 동박 적층판은 JIS C 6471 규격에 의거하여 측정된 내절곡성(MIT)이 약 200 사이클 이상인 것을 특징으로 하는 연성 동박 적층판.
PCT/KR2020/009430 2019-07-17 2020-07-17 고굴곡 및 저유전성 연성 동박 적층판 WO2021010783A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190086190A KR20210009534A (ko) 2019-07-17 2019-07-17 고굴곡 및 저유전성 연성 동박 적층판
KR10-2019-0086190 2019-07-17
KR20200082984 2020-07-06
KR10-2020-0082984 2020-07-06
KR10-2020-0087531 2020-07-15
KR1020200087531A KR102435973B1 (ko) 2020-07-06 2020-07-15 고굴곡 및 저유전성 연성 동박 적층판

Publications (1)

Publication Number Publication Date
WO2021010783A1 true WO2021010783A1 (ko) 2021-01-21

Family

ID=74211131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009430 WO2021010783A1 (ko) 2019-07-17 2020-07-17 고굴곡 및 저유전성 연성 동박 적층판

Country Status (1)

Country Link
WO (1) WO2021010783A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050085558A (ko) * 2002-12-13 2005-08-29 가부시키가이샤 가네카 열가소성 폴리이미드 수지 필름, 적층체 및 그것을포함하는 인쇄 배선판의 제조 방법
CN102806723A (zh) * 2012-08-09 2012-12-05 广东生益科技股份有限公司 双面挠性覆铜板及其制作方法
US20130213696A1 (en) * 2010-10-25 2013-08-22 Daikin Industries, Ltd. Metal-clad laminate, method for producing same, and flexible printed board
JP2016192530A (ja) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 銅張積層板、プリント配線板及びその使用方法
KR20190055809A (ko) * 2016-09-29 2019-05-23 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 필름, 동장 적층판 및 회로 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050085558A (ko) * 2002-12-13 2005-08-29 가부시키가이샤 가네카 열가소성 폴리이미드 수지 필름, 적층체 및 그것을포함하는 인쇄 배선판의 제조 방법
US20130213696A1 (en) * 2010-10-25 2013-08-22 Daikin Industries, Ltd. Metal-clad laminate, method for producing same, and flexible printed board
CN102806723A (zh) * 2012-08-09 2012-12-05 广东生益科技股份有限公司 双面挠性覆铜板及其制作方法
JP2016192530A (ja) * 2015-03-31 2016-11-10 新日鉄住金化学株式会社 銅張積層板、プリント配線板及びその使用方法
KR20190055809A (ko) * 2016-09-29 2019-05-23 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 필름, 동장 적층판 및 회로 기판

Similar Documents

Publication Publication Date Title
WO2010114338A2 (ko) 폴리아믹산 용액, 폴리이미드 수지 및 이를 이용한 연성 금속박 적층판
US20160374208A1 (en) Metal clad laminate, preparation method thereof, and method for preparing flexible circuit board by using the same
WO2012053826A1 (en) Thick layer polyimide metal clad laminate
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2013162238A1 (en) Flexible metal clad laminate
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2020226243A1 (ko) 폴리이미드 필름 제조방법 및 이에 의해 제조된 폴리이미드 필름
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2021040127A1 (ko) 폴리이미드 필름 및 그 제조방법
WO2021054515A1 (ko) 폴리이미드 필름, 이의 제조방법, 및 이를 포함한 연성금속박적층판
WO2021095976A1 (ko) 고탄성 및 고내열 폴리이미드 필름 및 그 제조방법
WO2014098495A1 (en) Multi-layer flexible metal-clad laminate and manufacturing method thereof
WO2021010783A1 (ko) 고굴곡 및 저유전성 연성 동박 적층판
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2021107294A1 (ko) 폴리이미드 필름, 이의 제조 방법, 및 이를 포함한 연성 금속박 적층판
WO2021091012A1 (ko) 저유전 폴리이미드 필름 및 그 제조방법
KR102435973B1 (ko) 고굴곡 및 저유전성 연성 동박 적층판
WO2019124930A1 (ko) 터치 센서용 연성 금속 적층판
KR20210009534A (ko) 고굴곡 및 저유전성 연성 동박 적층판
WO2020096364A1 (ko) 전자파 차폐성능이 우수한 폴리이미드 복합 필름 및 이를 제조하는 방법
WO2020209555A1 (ko) 치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 제조방법
WO2021049707A1 (ko) 다층 폴리이미드 필름 및 이의 제조방법
WO2022055028A1 (ko) 동박적층판(ccl)용 저유전 복합필름 및 이를 포함하는 저유전 동박적층판(ccl)
WO2021060616A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840308

Country of ref document: EP

Kind code of ref document: A1