WO2021010545A1 - 금 나노입자-형광체 하이브리드 물질과 그 제조방법 - Google Patents

금 나노입자-형광체 하이브리드 물질과 그 제조방법 Download PDF

Info

Publication number
WO2021010545A1
WO2021010545A1 PCT/KR2019/013699 KR2019013699W WO2021010545A1 WO 2021010545 A1 WO2021010545 A1 WO 2021010545A1 KR 2019013699 W KR2019013699 W KR 2019013699W WO 2021010545 A1 WO2021010545 A1 WO 2021010545A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid material
gold nanoparticle
quantum dots
carbon quantum
gold
Prior art date
Application number
PCT/KR2019/013699
Other languages
English (en)
French (fr)
Inventor
이혜진
고은서
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to CN201980098544.7A priority Critical patent/CN114127224A/zh
Priority to US17/627,429 priority patent/US20220259494A1/en
Publication of WO2021010545A1 publication Critical patent/WO2021010545A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots

Definitions

  • the present invention relates to a gold nanoparticle-phosphor hybrid material with improved fluorescence intensity and stability, and a method of manufacturing the same, and more particularly, a polyhedral gold nanoparticle surrounded by six squares, a carbon quantum dot, and a gold nanoparticle and a carbon quantum dot.
  • the present invention relates to a gold nanoparticle-phosphor hybrid material including a polyglycol to be connected, a method for manufacturing the same, and a biosensor and a light emitting device for a display using the same.
  • Fluorescent material is a generic term for a material that emits fluorescence, and when it receives light, it emits fluorescence in any phase. Fluorescent materials have been simply used in daily necessities such as CRT or fluorescent dyes, X-rays, and electron microscopes, and recently, electrons in the material absorb and emit light energy, and are also used in the field of light energy using photoelectrons that exhibit a luminous effect. . Research for controlling the optical properties of fluorescent materials is currently being actively conducted, and accordingly, the scope of use of fluorescent materials is expanding to bio, medical fields, etc. using fluorescent labeling materials.
  • Quantum dot one of these fluorescent materials, is a nanometer-level semiconductor crystal that can emit light on its own and can express colors in detail and precision, so it is widely used in display devices such as LCD, LED, and OLED.
  • display devices such as LCD, LED, and OLED.
  • Carbon dot is composed of carbon as the main element, unlike conventional quantum dots based on inorganic substances, and additionally contains hydrogen and oxygen as minor elements, and other elements such as nitrogen depending on the synthetic raw material.
  • organic material-based carbon nanomaterial in that it exhibits fluorescence and semiconductor properties similar to inorganic quantum dots, many applications have recently been made in the fields of bio-imaging, sensors, light-emitting diodes, lighting, organic solar cells, and photocatalysts.
  • carbon quantum dots do not have a certain shape and are very low in density, making it difficult to control, control, and handle.
  • the brightness and fluorescence yield of the carbon quantum dots decrease, resulting in optical properties. This may become unstable, and thus, it is limited in its application as a fluorescent material requiring uniform optical properties.
  • an object of the present invention is to provide a gold nanoparticle-phosphor hybrid material having a certain size and shape and improved optical properties.
  • It provides a gold nanoparticle-phosphor hybrid material comprising a; polyglycol connecting the gold nanoparticles and the carbon quantum dots.
  • It provides a method for producing a gold nanoparticle-phosphor hybrid material comprising a; a third step of forming gold nanoparticles connected to the carbon quantum dots by adding carbon quantum dots to the reactant.
  • It provides a display light emitting device using a gold nanoparticle-phosphor hybrid material.
  • the present invention shows a metal-enhanced fluorescence (MEF) effect between gold nanoparticles and carbon quantum dots by providing a gold nanoparticle-phosphor hybrid material and a method of manufacturing the same, and the distance between the gold nanoparticles and the carbon quantum dots or carbon quantum dots Depending on the concentration of the fluorescence amplification effect appears, and accordingly, there is an effect of controlling the fluorescence intensity of the hybrid material.
  • MEF metal-enhanced fluorescence
  • the hybrid material of the present invention has a longer lifespan than a conventional fluorescent material, has a simple synthesis process, does not exhibit toxicity, and is connected to a very stable gold nanoparticle, so that the storage period is long, so it is economical and has high optical properties. It has the effect of facilitating control, adjustment and handling of the product.
  • FIG. 1 shows a process of synthesizing a gold nanoparticle-phosphor hybrid material according to an embodiment of the present invention.
  • 2A is a graph showing the absorption spectra of gold nanoparticles (17 nm, 48 nm, 74 nm) according to an Example and a Comparative Example of the present invention.
  • 2B is a graph showing a comparison of absorption peak spectra between a gold nanoparticle-phosphor hybrid material (A-E) and a carbon quantum dot (F) according to an embodiment and a comparative example of the present invention.
  • 3A is a graph showing absorption and emission spectra of a gold nanoparticle-phosphor hybrid material (A-E) and a carbon quantum dot (F) according to an embodiment and a comparative example of the present invention.
  • Figure 3b shows the light emission intensity of the gold nanoparticle-phosphor hybrid material (A) according to an embodiment and a comparative example of the present invention.
  • 3C shows the light emission intensity of a gold nanoparticle-phosphor hybrid material (B) according to an embodiment and a comparative example of the present invention.
  • 3D shows the light emission intensity of a gold nanoparticle-phosphor hybrid material (C) according to an embodiment and a comparative example of the present invention.
  • Figure 3e shows the light emission intensity of the gold nanoparticle-phosphor hybrid material (D) according to a comparative example of the present invention.
  • 3F shows the light emission intensity of a gold nanoparticle-phosphor hybrid material (E) according to a comparative example of the present invention.
  • 4A is a TEM image of gold nanoparticles (17 nm) synthesized according to a comparative example of the present invention.
  • 4B is a TEM image of gold nanoparticles (48 nm) synthesized according to an embodiment of the present invention.
  • 4C is a TEM image of gold nanoparticles (74 nm) synthesized according to an embodiment of the present invention.
  • 4D is an HR-TEM image of a carbon quantum dot (F) synthesized according to a comparative example of the present invention.
  • 4E is a TEM image of a gold nanoparticle-phosphor hybrid material (A) according to an embodiment of the present invention.
  • 4F is a TEM image of a gold nanoparticle-phosphor hybrid material (D) according to a comparative example of the present invention.
  • 5A is an EDS mapping image showing the distribution of gold (Au, red) and carbon (C, green) among elemental components of a gold nanoparticle-phosphor hybrid material (A) according to an embodiment of the present invention.
  • 5B is an EDS mapping image showing the distribution of gold (Au, red) among elemental components of a gold nanoparticle-phosphor hybrid material (A) according to an embodiment of the present invention.
  • 5C is an EDS mapping image showing the distribution of carbon (C, green) among elemental components of a gold nanoparticle-phosphor hybrid material (A) according to an embodiment of the present invention.
  • 5D is an EDS mapping image showing the distribution of gold (Au, red) and carbon (C, green) among elemental components of a gold nanoparticle-polyglycol material according to an embodiment of the present invention.
  • 5E is an EDS mapping image showing the distribution of gold (Au, red) among elemental components of a gold nanoparticle-polyglycol material according to an embodiment of the present invention.
  • 5F is an EDS mapping image showing the distribution of carbon (C, green) among elemental components of a gold nanoparticle-polyglycol material according to an embodiment of the present invention.
  • the present invention relates to a gold nanoparticle-phosphor hybrid material having improved fluorescence intensity and stability, and a method of manufacturing the same.
  • the present invention is a polyhedral gold nanoparticles surrounded by six squares; Carbon quantum dots; And it provides a gold nanoparticle-phosphor hybrid material comprising; polyglycol connecting the gold nanoparticles and the carbon quantum dots.
  • the gold nanoparticles may be in the form of a polyhedron surrounded by one or more faces selected from the group consisting of a rectangle, a square, a rhombus, a trapezoid, a parallelogram, and a soft shape, and three faces meet at one vertex, and consist of six square faces.
  • It is a three-dimensional polyhedron (hexahedron), and may be a type of rectangular column with 12 corners and 8 vertices.
  • it is a three-dimensional regular polyhedron (cube, cube) consisting of six square faces in which three faces meet at one vertex, and may be a square column with 12 corners and 8 vertices. Can be referred to as.
  • the gold nanoparticles of the present invention may be a hexahedron in the form of a square column, and the length of one corner may be 20 to 100 nm, and preferably, the length of one corner may be 40 to 80 nm. If the length of one edge of the gold nanoparticle is less than 20 nm or exceeds 100 nm, the fluorescence intensity of the gold nanoparticle-phosphor hybrid material may decrease (quenching effect) than that of the original phosphor.
  • polyglycol may be added to connect the gold nanoparticles and the phosphor, and may be connected to the surface of the gold nanoparticles by a ligand exchange reaction, and form a covalent bond with the carbon quantum dots.
  • a gold nanoparticle-phosphor hybrid material can be formed. That is, it may serve as a link between the gold nanoparticles and the phosphor, a link for maintaining or adjusting the distance, and a spacer.
  • the polyglycol may have a thiol group (SH group) and a carboxyl group (COOH group) at both ends, and a ligand exchange reaction between the thiol group of the polyglycol and gold nanoparticles and a covalent bond between the carboxyl group and carbon quantum dots of the polyglycol ( Amide bond) to form the gold nanoparticle-phosphor hybrid material of the present invention.
  • SH group thiol group
  • COOH group carboxyl group
  • the molecular weight of the polyglycol is not limited if it is 100 or more in theory, but may preferably be 200 to 20,000 in the present invention.
  • the polyglycol may be in a form surrounding the gold nanoparticles, and the length is not only the length of the polyglycol itself according to the molecular weight, but also the polyglycol molecules on the surface of the gold nanoparticles. It may also vary depending on whether there is a distance ( D ) of as much.
  • the polyglycol having a molecular weight of 3000 used in an embodiment of the present invention has a repeating unit number of 66 and a molecular length of 20 nm theoretically, but the length surrounding the gold nanoparticles in an actual aqueous solution may be shorter than this. It can represent a length of 10 nm.
  • the polyglycol of the present invention is polyethylene glycol, polyoxyethylene, polyethylene oxide, ⁇ -mercapto- ⁇ -carboxy-polyethylene glycol, mercaptopolyethylene glycolic acid, mercaptopolyethylene glycol-carboxylic acid, mercaptopoly Oxyethylene-acetic acid, thiol-polyethylene glycol, thiol-polyethylene glycol-carboxylic acid, thiol-polyethylene glycolic acid, polypropylene glycol, polyalkylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, hexylene glycol, And it may be one or more selected from the group consisting of butylene glycol, more preferably polyethylene glycol, polyoxyethylene, polyethylene oxide, ⁇ -mercapto- ⁇ -carboxy-polyethylene glycol, mercapto polyethylene glycolic acid, mercapto polyethylene It may be at least one selected from glycol-carboxylic acid,
  • the carbon quantum dots can be manufactured in a bottom-up manner using citric acid and ethylenediamine as materials, and the carbon quantum dots thus prepared have a very large number of amine groups (- Since it contains NH 3 ), it can show a very high fluorescence quantum yield (QY) than a carbon quantum dot containing only carbon, and can have very bright fluorescence intensity and high water solubility.
  • QY fluorescence quantum yield
  • the brightness of fluorescence may be adjusted by the concentration of the carbon quantum dots, the distance between the gold nanoparticles and the carbon quantum dots, or the size of the gold nanoparticles.
  • the carbon quantum dots are connected to and coated on the surface of the gold nanoparticles, so that they can have a uniform particle shape and have a uniform size, shape, shape, and density, which can be easily handled.
  • the hybrid material of the present invention is formed by including cube-shaped gold nanoparticles, carbon quantum dots, and polyglycol, so that metal-enhanced fluorescence between gold nanoparticles and carbon quantum dots (Metal-Enhanced Fluorescence; MEF, Surface Enhanced Fluorescence; SEF, Plasmon Enhanced) Fluorescence, Metal-induced Fluorescent Enhancement (MIFE) effects may be exhibited.
  • MEF Metal-Enhanced Fluorescence
  • SEF Surface Enhanced Fluorescence
  • MIFE Metal-induced Fluorescent Enhancement
  • the metal-enhanced fluorescence effect refers to a phenomenon in which the luminous efficiency increases when a specific metal and a phosphor are connected by a covalent or non-covalent bond with a certain distance between them and emits light that is brighter than the maximum value of its own brightness.
  • the cause of this effect may be various, but most commonly, it can be regarded as a phenomenon that occurs when the energy path of the light emission process changes due to the interaction between the metal and the
  • the hybrid material of the present invention can represent a new type of single nanoparticle sensing platform that deviates from this platform, and by using gold nanoparticles that are more chemically stable than silver, the synthesis process is convenient and the storage period is reduced. It is increased, economical, and can have a wide range of applications.
  • the distance between the gold nanoparticles and the carbon quantum dots in the hybrid material of the present invention may be 5 nm to 20 nm, and if the distance is less than 5 nm, fluorescence may decrease, and if the distance exceeds 20 nm, fluorescence emitted by the material
  • the intensity may be less than the maximum intensity that the hybrid material of the present invention can produce.
  • the gold nanoparticles and the carbon quantum dots may include 0.01 to 10 mg of carbon quantum dots per 1 optical density (OD) of the gold nanoparticles to form a hybrid material, preferably the optical density (OD) of the gold nanoparticles It may contain 0.01 to 1 mg of carbon quantum dots per one.
  • OD optical density
  • fluorescence may be quenched.
  • the present invention provides a first step of synthesizing a polyhedral gold nanoparticle surrounded by six squares; A second step of forming a reactant by adding and reacting polyglycol to the synthesized gold nanoparticles; It provides a method for producing a gold nanoparticle-phosphor hybrid material comprising a; a third step of forming gold nanoparticles connected to the carbon quantum dots by adding carbon quantum dots to the reactant.
  • gold nanoparticles are three-dimensional regular polyhedrons (cubes, cubes, cubes) consisting of six square faces, where three faces meet at one vertex, and the number of edges is 12 and the number of vertices is It can be 8 square pillars, and this shape can be referred to as a cube.
  • Such gold nanoparticles may be in the form of a polyhedron surrounded by one or more faces selected from the group consisting of a rectangle, a square, a rhombus, a trapezoid, a parallelogram, and a soft shape, and the length of one edge (line segment) is 20 to 100 nm.
  • the length of one edge may be 40 to 80 nm. If the length of one edge of the gold nanoparticle is less than 20 nm or exceeds 100 nm, the fluorescence intensity of the gold nanoparticle-phosphor hybrid material may decrease (quenching effect) than that of the original phosphor.
  • the polyglycol is polyethylene glycol, polyoxyethylene, polyethylene oxide, ⁇ -mercapto- ⁇ -carboxy-polyethylene glycol, mercaptopolyethylene glycolic acid, mercaptopolyethylene glycol-carboxylic acid.
  • Such polyglycol may be added to connect gold nanoparticles and phosphors, and may be connected to the surface of gold nanoparticles by ligand exchange, and form a gold nanoparticle-phosphor hybrid material by forming a covalent bond with carbon quantum dots. can do. That is, it may serve as a link between the gold nanoparticles and the phosphor, a link for maintaining or adjusting the distance, and a spacer.
  • the polyglycol may have a thiol group (SH group) and a carboxyl group (COOH group), and the ligand exchange reaction between the thiol group and the gold nanoparticles of the polyglycol and the covalent bond (amide bond) between the carboxyl group and carbon quantum dots of the polyglycol
  • the gold nanoparticle-phosphor hybrid material of the present invention can be formed.
  • the molecular weight of the polyglycol is not limited as long as it is 100 or more in theory, but may preferably be 200 to 20,000 in the present invention.
  • the polyglycol may be in a form surrounding gold nanoparticles, and the length is not only the length of the polyglycol itself according to the molecular weight, but also how many polyglycol molecules are placed on the surface of the gold nanoparticles. It may also change depending on whether there is a gap ( D ).
  • dicyclohexyl carbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, EDC), 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide, CMC), diisopropyl carbodiimide At least one crosslinking agent selected from the group consisting of bodyimide (diisopropyl carbodiimide, DIC), N-hydroxysuccinimide (N-Hydroxysuccinimide, NHS), and N-hydroxysulfosuccinimide (N-Hydroxysulfosuccinimide sodium salt, NHSS) Can
  • gold nanoparticles and polyglycol may undergo a ligand exchange reaction, and carbon quantum dots and polyglycol may form a covalent bond (amide bond), Bonding, distance maintenance, or distance control between gold nanoparticles and carbon quantum dots may be achieved by such bonding and reaction.
  • the distance between the gold nanoparticles and the carbon quantum dots in the hybrid material prepared by the method of manufacturing the hybrid material of the present invention may be 5 nm to 20 nm, and if the distance is less than 5 nm, fluorescence may decrease, and exceed 20 nm. In this case, the fluorescence intensity emitted by the material may decrease than the maximum intensity that the hybrid material of the present invention can produce.
  • the gold nanoparticles and the carbon quantum dots may include 0.01 to 10 mg of carbon quantum dots per 1 optical density (OD) of the gold nanoparticles to form a hybrid material, preferably the optical density (OD) of the gold nanoparticles It may contain 0.01 to 1 mg of carbon quantum dots per one.
  • OD optical density
  • fluorescence may be quenched.
  • the present invention provides a biosensor using a gold nanoparticle-phosphor hybrid material.
  • the description of the hybrid material used for the biosensor of the present invention is the same as or similar to the description of the gold nanoparticle-phosphor hybrid material of the present invention, and thus will be omitted.
  • the present invention provides a light emitting device for a display using a gold nanoparticle-phosphor hybrid material.
  • the description of the hybrid material used in the display light emitting device of the present invention is the same as or similar to the description of the gold nanoparticle-phosphor hybrid material of the present invention, and thus will be omitted.
  • a seed solution was prepared in order to synthesize gold nanoparticles having a length of 48 nm at one edge.
  • For the seed solution add 250 ⁇ l of 0.01 M Gold(III) chloride hydrate (HAuCl 4 ) solution to 7.5 ml of 0.1 M hexadecyltrimethylammonium bromide (CTAB) solution, and 600 ⁇ l of 0.01 M Sodium borohydride (NaBH 4 ) solution for 2 minutes. After stirring, it was prepared by aging in an oven at 30° C. for 1 hour.
  • Example 2 2 ml of a colloidal solution containing gold nanoparticles and polyglycol connected according to Example 2-1 was added to 8 ml of 0.05 M MES buffer at pH 6.0, and then 5 mg of 1- Ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and 11 mg of sulfo-N-hydroxysuccinimide (sulfo-NHS) were quickly added in order, and ultrasound was applied for 15 minutes (sonication).
  • EDC 1- Ethyl-3-[3-dimethylaminopropyl]carbodiimide
  • sulfo-NHS sulfo-N-hydroxysuccinimide
  • a gold nanoparticle-phosphor hybrid material (A) was prepared by adding 65 ⁇ l of mg and 5 M sodium hydroxide (NaOH) and applying ultrasonic waves for 2 hours to finally connect the gold nanoparticles and C-dots connected with the polyglycol. I did.
  • a seed solution was prepared to synthesize gold nanoparticles with a length of 74 nm at one edge.
  • 0.32 g of CTAC was dissolved in 5 ml of distilled water, 5 ml of 0.5 mM HAuCl 4 solution was added, 450 ⁇ l of 0.02 M NaBH 4 solution was added thereto, stirred for 2 minutes, and then in an oven at 30° C. for 1 hour. It was prepared by aging.
  • Example 3-1 gold nanoparticles of Example 3-1 and polyglycol were connected in the same manner as in Example 2-2, and a colloidal solution containing the same was formed.
  • BSPP bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt
  • Example 2 Thereafter, 65 mg of C-dots having an amine group as a functional group prepared according to Example 1 and 65 ⁇ l of 5 M sodium hydroxide (NaOH) were added to obtain gold nanoparticles linked to polyglycol in the same manner as in Example 2-3.
  • Example 2 by adding 504 ⁇ l of a 1.6 mM O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol (M w 5,000, HS-PEG 5,000 -COOH) solution.
  • a gold nanoparticle-phosphor hybrid material (C) was prepared in the same manner as in 1 to 2-3.
  • a gold nanoparticle-phosphor hybrid material (D) was prepared in the same manner as in Examples 2-1 to 2-3 above by adding 6.5 mg of C-dots and 45 ⁇ l of 5 M NaOH.
  • a 1-2 nm seed solution was first prepared. For 1-2 nm seed solution, add 250 ⁇ l of 0.01 M HAuCl 4 solution to 9.75 ml of 0.1 M CTAB solution, add 600 ⁇ l of 0.01 M NaBH 4 solution to it, stir for 3 minutes, and aged for 3 hours in an oven at 27°C. Was prepared.
  • Table 1 shows the length of one corner of gold nanoparticles, the molecular weight of PEG, and the amount of carbon quantum dots added in the hybrid material prepared according to Examples (A, B, C) and Comparative Examples (D, E, F). .
  • FIG. 1 shows a process of manufacturing a hybrid material according to the above Examples and Comparative Examples.
  • Gold nanoparticles synthesized according to Examples and Comparative Examples, hybrid materials and carbon quantum dots according to Examples A to C and Comparative Examples were placed in a cell, and absorbance was measured in a wavelength range of 190 nm to 1100 nm.
  • the gold nanoparticles synthesized according to the above Examples and Comparative Examples and the hybrid materials A and D according to the above were respectively placed on a templat and observed with a bio transmission electron microscope (Bio-TEM), and the comparison
  • the carbon quantum dots (F) according to the example were mounted on a temp grid and observed with a field emission transmission electron microscope (FE-TEM).
  • the gold nanoparticles (48 nm) synthesized according to the above Examples and Comparative Examples and the hybrid materials A and D according to the above examples were placed on a templat and observed with an energy dispersive spectrometry (EDS).
  • EDS energy dispersive spectrometry
  • 3B and 3E is 65 mg and 6.5 mg, respectively, and the amount of carbon quantum dots of F as a reference is 65 mg, even though the amount of carbon quantum dots is 10 times different, gold nano
  • D which forms a hybrid material with particles
  • A which is the same addition amount
  • it exhibits a fluorescence amplification effect of more than twice as compared to F, so that carbon quantum dots are gold-treated according to an embodiment of the present invention. It was confirmed that when a hybrid material is formed by connecting with nanoparticles, the fluorescence intensity and intensity of carbon quantum dots can be effectively increased.
  • the EDS image of the reactant obtained by adding and reacting polyglycol to gold nanoparticles (48 nm) synthesized according to Examples 2-1 to 2-2. Photographed and shown in FIGS. 5D to 5F.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 형광세기와 안정성이 향상된 금 나노입자-형광체 하이브리드 물질 및 그 제조방법에 관한 것으로, 보다 상세하게는 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자, 탄소 양자점 및 금 나노입자와 탄소 양자점을 연결하는 폴리글리콜을 포함하는 금 나노입자-형광체 하이브리드 물질과 그 제조방법 및 이를 이용한 바이오센서와 디스플레이용 발광소자에 관한 것이다. 본 발명은 금 나노입자-형광체 하이브리드 물질 및 그 제조방법을 제공함으로써 금 나노입자와 탄소 양자점 간의 금속증강형광(Metal-Enhanced Fluorescence; MEF) 효과를 나타내고, 금 나노입자와 탄소 양자점의 거리 또는 탄소 양자점의 농도에 따라 형광증폭효과가 나타나며 이에 따라 하이브리드 물질의 형광세기를 조절할 수 있는 효과가 있다. 또한, 본 발명의 하이브리드 물질은 종래의 형광물질에 비해 수명기간이 길며 합성과정이 간단하고, 독성을 나타내지 않으며, 화학적으로 매우 안정적인 금 나노입자와 연결되어 보관기간이 길어짐으로서 경제성이 높으며, 광학적 성질의 제어, 조절, 취급이 용이해지는 효과가 있다.

Description

금 나노입자-형광체 하이브리드 물질과 그 제조방법
본 발명은 형광세기와 안정성이 향상된 금 나노입자-형광체 하이브리드 물질 및 그 제조방법에 관한 것으로, 보다 상세하게는 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자, 탄소 양자점 및 금 나노입자와 탄소 양자점을 연결하는 폴리글리콜을 포함하는 금 나노입자-형광체 하이브리드 물질과 그 제조방법 및 이를 이용한 바이오센서와 디스플레이용 발광소자에 관한 것이다.
형광물질은 형광을 발하는 물질의 총칭으로 이 물질은 빛을 받으면 어떤 상에서든 형광을 발한다. 형광물질은 단순히 브라운관이나 형광염료 등의 일용품과 X선, 전자현미경 등에 쓰여왔으며, 최근에는 빛에너지를 물질 안의 전자가 흡수하고 방출하여 발광효과를 나타내는 광전자를 활용한 광에너지 분야에도 활용되고 있다. 형광물질은 그 광학적 성질을 제어할 수 있는 연구가 현재 활발히 진행되고 있으며, 이에 따라 형광표지물질을 사용하는 바이오, 의학 분야 등까지 그 활용 범위가 넓어지고 있다.
이러한 형광물질 중 하나인 양자점(quantum dot)은 자체적으로 발광이 가능한 나노미터 단위의 반도체 결정으로 색을 세밀하고 정교하게 표현이 가능하여 LCD, LED, OLED와 같은 디스플레이 장치에 많이 활용되고 있으나, 합성 시 환경오염의 문제가 있고, 독성으로 인해 생체시료에는 사용할 수 없으며, 그 합성과정 또한 복잡하다는 단점이 있다.
이러한 종래의 양자점(quantum dot, QD) 나노입자를 대체할 수 있는 물질로서, 최근 발광성, 광안정성, 전자 전이성 등의 특성을 갖는 탄소 양자점(carbon quantum dot 또는 carbon dot)이 주목을 받고 있다. 탄소 양자점(carbon dot, C-dot)은 기존의 양자점이 무기물 기반으로 이루어진 것과 달리 주원소가 탄소로 구성되어 있으며, 부원소로 수소와 산소, 그리고 합성원료에 따라서 질소 등의 기타 원소들이 추가적으로 함유된 유기물 기반의 탄소나노소재로서 무기계 양자점과 유사하게 형광 및 반도체적 특성을 나타낸다는 점에서 바이오 이미징, 센서, 발광다이오드, 조명, 유기태양전지 및 광촉매 등의 분야에서 최근 많은 응용이 이루어지고 있다.
그러나 탄소 양자점은 일정한 모양이 없고 밀도가 매우 낮아 제어, 조절, 취급이 어려우며, 탄소 양자점을 일정한 크기와 형태로 나타내기 위하여 다른 물질과 컨쥬게이션 할 경우 탄소 양자점의 밝기, 형광 수율이 감소하여 광학적 성질이 불안정해질 수 있어 균일한 광학적 성질이 요구되는 형광물질로서의 응용에 제한을 받고 있다.
이에 따라 '대한민국 공개특허 제 10-2019-0016354호'는 탄소 양자점 제조방법 및 탄소 양자점-은 나노입자 복합체 제조방법에 대하여 개시하고 있으며, 전기 화학적인 방법을 이용하여 탄소 양자점을 합성할 수 있고, 이를 은 나노입자와 연결하여 복합체를 합성할 수 있음을 개시하고 있으나, 전기 화학적 방법 또는 복합체 형성에 따른 탄소 양자점의 안정성, 형광 수율 등의 광학적 성질이 개선되는 효과에 대해서 전혀 나타나있지 않아 탄소 양자점을 형광물질로 사용하기 위한 개선 효과를 찾아볼 수 없다는 문제점이 있다.
상기 문제점을 해결하기 위하여 본 발명은 일정한 크기와 형태를 나타내며 광학적 성질이 개선된 금 나노입자-형광체 하이브리드 물질을 제공하는 것을 기술적 과제로 한다.
또한, 금 나노입자-형광체 하이브리드 물질의 제조방법을 제공하는 것을 기술적 과제로 한다.
또한, 금 나노입자-형광체 하이브리드 물질을 이용한 바이오센서를 제공하는 것을 기술적 과제로 한다.
또한, 금 나노입자-형광체 하이브리드 물질을 이용한 디스플레이 발광소자를 제공하는 것을 기술적 과제로 한다.
상기 과제를 해결하기 위하여 본 발명은
6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자;
탄소 양자점; 및
상기 금 나노입자와 탄소 양자점을 연결하는 폴리글리콜;을 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질을 제공한다.
상기 다른 과제를 해결하기 위하여 본 발명은
6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자를 합성하는 제 1 단계;
상기 합성된 금 나노입자에 티올기 및 카르복실기를 갖는 폴리글리콜을 첨가하고 반응시켜 반응물을 형성하는 제 2 단계; 및
상기 반응물에 탄소 양자점을 첨가하여 탄소 양자점이 연결된 금 나노입자를 형성하는 제 3 단계;를 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법을 제공한다.
상기 또 다른 과제를 해결하기 위하여 본 발명은
금 나노입자-형광체 하이브리드 물질을 이용한 바이오센서를 제공한다.
상기 또 다른 과제를 해결하기 위하여 본 발명은
금 나노입자-형광체 하이브리드 물질을 이용한 디스플레이 발광소자를 제공한다.
본 발명은 금 나노입자-형광체 하이브리드 물질 및 그 제조방법을 제공함으로써 금 나노입자와 탄소 양자점 간의 금속증강형광(Metal-Enhanced Fluorescence; MEF) 효과를 나타내고, 금 나노입자와 탄소 양자점의 거리 또는 탄소 양자점의 농도에 따라 형광증폭효과가 나타나며 이에 따라 하이브리드 물질의 형광세기를 조절할 수 있는 효과가 있다.
또한, 본 발명의 하이브리드 물질은 종래의 형광물질에 비해 수명기간이 길며 합성과정이 간단하고, 독성을 나타내지 않으며, 화학적으로 매우 안정적인 금 나노입자와 연결되어 보관기간이 길어짐으로서 경제성이 높으며, 광학적 성질의 제어, 조절, 취급이 용이해지는 효과가 있다.
도 1은 본 발명의 일 실시예에 따라 금 나노입자-형광체 하이브리드 물질이 합성되는 과정을 나타낸 것이다.
도 2a는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자 (17 nm, 48 nm, 74 nm)의 흡광 스펙트럼을 나타낸 그래프이다.
도 2b는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(A-E)과 탄소 양자점(F) 간의 흡광 피크 스펙트럼을 비교하여 나타낸 그래프이다.
도 3a는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(A-E) 및 탄소 양자점(F)의 흡광 및 발광 스펙트럼을 나타낸 그래프이다.
도 3b는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(A)의 발광 강도를 나타낸 것이다.
도 3c는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(B)의 발광 강도를 나타낸 것이다.
도 3d는 본 발명의 일 실시예 및 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(C)의 발광 강도를 나타낸 것이다.
도 3e는 본 발명의 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(D)의 발광 강도를 나타낸 것이다.
도 3f는 본 발명의 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(E)의 발광 강도를 나타낸 것이다.
도 4a는 본 발명의 일 비교예에 따라 합성된 금 나노입자(17 nm)의 TEM 이미지이다.
도 4b는 본 발명의 일 실시예에 따라 합성된 금 나노입자(48 nm)의 TEM 이미지이다.
도 4c는 본 발명의 일 실시예에 따라 합성된 금 나노입자(74 nm)의 TEM 이미지이다.
도 4d는 본 발명의 일 비교예에 따라 합성된 탄소 양자점(F)의 HR-TEM 이미지이다.
도 4e는 본 발명의 일 실시예에 따른 금 나노입자-형광체 하이브리드 물질(A)의 TEM 이미지이다.
도 4f는 본 발명의 일 비교예에 따른 금 나노입자-형광체 하이브리드 물질(D)의 TEM 이미지이다.
도 5a는 본 발명의 일 실시예에 따른 금 나노입자-형광체 하이브리드 물질(A)의 원소성분 중 금(Au, 빨간색)과 탄소(C, 초록색)의 분포를 나타낸 EDS mapping 이미지이다.
도 5b는 본 발명의 일 실시예에 따른 금 나노입자-형광체 하이브리드 물질(A)의 원소성분 중 금(Au, 빨간색)의 분포를 나타낸 EDS mapping 이미지이다.
도 5c는 본 발명의 일 실시예에 따른 금 나노입자-형광체 하이브리드 물질(A)의 원소성분 중 탄소(C, 초록색)의 분포를 나타낸 EDS mapping 이미지이다.
도 5d는 본 발명의 일 실시예에 따른 금 나노입자-폴리글리콜 물질의 원소성분 중 금(Au, 빨간색)과 탄소(C, 초록색)의 분포를 나타낸 EDS mapping 이미지이다.
도 5e는 본 발명의 일 실시예에 따른 금 나노입자-폴리글리콜 물질의 원소성분 중 금(Au, 빨간색)의 분포를 나타낸 EDS mapping 이미지이다.
도 5f는 본 발명의 일 실시예에 따른 금 나노입자-폴리글리콜 물질의 원소성분 중 탄소(C, 초록색)의 분포를 나타낸 EDS mapping 이미지이다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 그리고 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것이 아니다. 본 명세서에서 단수형은 문구에서 특별히 언급하지 않는한 복수형도 포함한다.
이하 본 발명에 대해 보다 상세히 설명한다.
본 발명은 형광세기와 안정성이 향상된 금 나노입자-형광체 하이브리드 물질 및 그 제조방법에 관한 것이다.
일측면에 따르면, 본 발명은 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자; 탄소 양자점; 및 상기 금 나노입자와 탄소 양자점을 연결하는 폴리글리콜;을 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질을 제공한다.
여기서 금 나노입자는 직사각형, 정사각형, 마름모, 사다리꼴, 평행사변형, 및 연꼴로 이루어진 군으로부터 선택된 하나 이상의 면으로 둘러싸인 다면체 형태일 수 있으며, 한 개의 꼭짓점에 3개의 면이 만나고, 6개의 사각형 면으로 이루어진 3차원 다면체(육면체)로 모서리의 수는 12개이고 꼭짓점의 수는 8개인 사각기둥의 한 종류일 수 있다. 바람직하게는 한 개의 꼭짓점에 3개의 면이 만나고, 6개의 정사각형 면으로 이루어진 3차원 정다면체(입방체, 정육면체)로 모서리의 수는 12개이고 꼭짓점의 수는 8개인 정사각기둥일 수 있으며, 이러한 형태를 큐브라고 지칭할 수 있다.
본 발명의 금 나노입자는 사각기둥 형태의 육면체일 수 있으며, 모서리 하나의 길이가 20 내지 100 nm일 수 있으며, 바람직하게는 모서리 하나의 길이가 40 내지 80 nm일 수 있다. 금 나노입자의 모서리 하나의 길이가 20 nm 미만이거나 100 nm를 초과하게 되면 금 나노입자-형광체 하이브리드 물질의 형광 세기가 본래 형광체의 세기보다 감소(소광효과)할 수 있다.
본 발명의 금 나노입자-형광체 하이브리드 물질에서 폴리글리콜은 금 나노입자와 형광체를 연결하기 위해 첨가될 수 있으며, 리간드 교환반응에 의해 금 나노입자의 표면에 연결될 수 있고, 탄소 양자점과 공유결합을 형성하여 금 나노입자-형광체 하이브리드 물질을 형성할 수 있다. 즉, 금 나노입자와 형광체 사이의 결합, 거리유지 또는 거리조절을 위한 연결고리, 스페이서(spacer)로써 역할을 할 수 있다. 바람직하게 폴리글리콜은 양 끝부분에 티올기(SH기)와 카르복실기(COOH기)를 가질 수 있으며, 폴리글리콜의 티올기와 금 나노입자 간의 리간드 교환반응 및 폴리글리콜의 카르복실기와 탄소 양자점 간의 공유결합(아미드결합)에 의해 본 발명의 금 나노입자-형광체 하이브리드 물질이 형성될 수 있다.
이러한 폴리글리콜의 분자량은 이론상으로는 100 이상이라면 제한적이지 않으나 본 발명에서는 바람직하게 200 내지 20,000 일 수 있다. 본 발명의 금 나노입자-형광체 하이브리드 물질에서 폴리글리콜은 금 나노입자를 둘러싸고 있는 형태일 수 있으며, 그 길이는 분자량에 따른 폴리글리콜 자체의 길이 뿐만 아니라 금 나노입자 표면 상에서 폴리글리콜 분자들이 서로 간에 얼만큼의 간격(D)을 두고 있는지에 따라서도 달라질 수 있다.
D가 Rf 보다 클 경우, 폴리글리콜은 공처럼 뭉쳐진 형태를 띌 수 있으며, Rf 보다 작을 경우, 폴리글리콜은 상대적으로 직선으로 펼쳐진 형태를 띌 수 있다. 이때, Rf 는 Flory radius로서 폴리글리콜 분자가 원형의 형태를 띤다고 가정할 때 차지하는 부피를 나타내는 것으로, 수용액에서는 Rf = 3.5 Å3/5×n3/5으로 나타낼 수 있으며, 여기서 n은 폴리글리콜 한분자 당 반복되는 단위체(monomer) 수를 의미한다. 본 발명의 일 실시예에서 사용된 분자량 3000의 폴리글리콜은 반복되는 단위체 수가 66이며, 분자의 길이는 이론적으로 20 nm일 수 있으나, 실제 수용액에서 금 나노입자를 둘러싼 길이는 이보다 짧을 수 있으며, 약 10 nm의 길이를 나타낼 수 있다.
바람직하게 본 발명의 폴리글리콜은 폴리에틸렌글리콜, 폴리옥시에틸렌, 폴리에틸렌옥사이드, α-머캅토-ω-카르복시-폴리에틸렌글리콜, 머캅토폴리에틸렌글리콜산, 머캅토폴리에틸렌글라이콜-카르복실산, 머캅토폴리옥시에틸렌-아세트산, 티올-폴리에틸렌글리콜, 티올-폴리에틸렌글리콜-카르복실산, 티올-폴리에틸렌글리콜산, 폴리프로필렌글리콜, 폴리알킬렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 디프로필렌글리콜, 헥실렌글리콜, 및 부틸렌글리콜로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 더 바람직하게는 폴리에틸렌글리콜, 폴리옥시에틸렌, 폴리에틸렌옥사이드, α-머캅토-ω-카르복시-폴리에틸렌글리콜, 머캅토폴리에틸렌글리콜산, 머캅토폴리에틸렌글라이콜-카르복실산, 머캅토폴리옥시에틸렌-아세트산, 티올-폴리에틸렌글리콜, 티올-폴리에틸렌글리콜-카르복실산, 및 티올-폴리에틸렌글리콜산 중에서 선택되는 하나 이상일 수 있다.
본 발명의 금 나노입자-형광체 하이브리드 물질에서 탄소 양자점은 구연산(citric acid)와 에틸렌디아민(ethylenediamine)을 재료로 하여 bottom up 방식으로 제조될 수 있으며, 이렇게 제조된 탄소 양자점은 매우 많은 아민기(-NH3)를 함유하고 있어 단순히 탄소만을 포함한 탄소 양자점보다 매우 높은 형광 양자수율(quantum yield, QY)을 보일 수 있으며, 매우 밝은 형광세기와 높은 수용성을 가질 수 있다.
본 발명의 하이브리드 물질은 탄소 양자점의 농도, 금 나노입자와 탄소 양자점 간의 거리 또는 금 나노입자의 크기에 의해 형광의 밝기가 조절될 수 있다. 또한, 탄소 양자점이 금 나노입자의 표면에 연결되어 코팅됨으로써 일정한 파티클의 형태를 띄어 균일한 크기와 형태, 모양 및 밀도를 가질 수 있으며, 이를 통해 용이하게 취급할 수 있다.
종래의 탄소 양자점은 다른 물질 또는 입자와 연결되면 될수록 밝기 또는 형광 양자수율(QY)이 감소하여 광학적으로 불안정해질 수 있다고 알려져 있으며, 특히 금 나노입자는 형광체와 연결 또는 결합할 경우 에너지 전달로 인한 소광(quenching)이 일어나 형광체의 형광 감소를 유발할 수 있다고 알려져 있다.
그러나 본 발명의 하이브리드 물질은 큐브 형태의 금 나노입자, 탄소 양자점, 폴리글리콜을 포함하여 형성됨으로써 금 나노입자와 탄소 양자점간의 금속증강형광 (Metal-Enhanced Fluorescence; MEF, Surface Enhanced Fluorescence; SEF, Plasmon Enhanced Fluorescence, Metal-induced Fluorescent Enhancement; MIFE) 효과를 나타낼 수 있다. 금속증강형광 효과는 특정 금속과 형광체가 일정한 거리를 사이에 두고 공유 또는 비공유 결합으로 연결되어 있을 때 발광효율이 증가하여 형광체가 본래 가지고 있던 자체밝기의 최대치보다 더욱 밝은 빛을 방출하는 현상을 의미하며, 이러한 효과의 원인은 다양할 수 있으나 가장 공통적으로 금속과 형광체의 상호작용으로 인한 발광과정의 에너지 경로가 변하여 발생하는 현상으로 볼 수 있다.
종래에는 금속증강형광 효과를 위해 좁은 플라즈몬 띠와 높은 산란효율을 보이는 은을 많이 사용해왔으며, 통상적으로 Ag@SiO2(은 입자-실리콘 스페이서) 플랫폼이 주로 사용되고 있다. 본 발명의 하이브리드 물질은 이러한 플랫폼을 벗어난 새로운 형태의 단일 나노입자형 센싱 플랫폼(single nanoparticle sensing platform)을 나타낸다 할 수 있으며, 은 보다 화학적으로 안정적인 금 나노입자를 사용함으로써 합성과정이 편리하고 보관기간이 늘어나며, 경제성이 높고 넓은 응용범위를 가질 수 있다.
바람직하게 본 발명의 하이브리드 물질 내 금 나노입자와 탄소 양자점 간의 거리는 5 nm 내지 20 nm 일 수 있으며, 그 거리가 5 nm 미만일 경우 형광 감소를 유발할 수 있고, 20 nm를 초과할 경우 물질이 방출하는 형광세기는 본 발명의 하이브리드 물질이 낼 수 있는 최대 세기보다는 감소할 수 있다.
또한, 금 나노입자와 탄소 양자점은 금 나노입자의 optical density (OD) 1 당 0.01 내지 10 mg의 탄소 양자점을 포함하여 하이브리드 물질을 형성할 수 있으며, 바람직하게는 금 나노입자의 optical density (OD) 1 당 0.01 내지 1 mg의 탄소 양자점을 포함할 수 있다. 금 나노입자와 탄소 양자점의 결합비가 상기 범위를 벗어날 경우, 형광이 소광될 수 있다.
다른 측면에 따르면, 본 발명은 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자를 합성하는 제 1 단계; 상기 합성된 금 나노입자에 폴리글리콜을 첨가하고 반응시켜 반응물을 형성하는 제 2 단계; 상기 반응물에 탄소 양자점을 첨가하여 탄소 양자점이 연결된 금 나노입자를 형성하는 제 3 단계;를 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법을 제공한다.
본 발명의 하이브리드 물질의 제조방법에서 금 나노입자는 한 개의 꼭짓점에 3개의 면이 만나고, 6개의 정사각형 면으로 이루어진 3차원 정다면체(입방체, 정육면체, 큐브)로 모서리의 수는 12개이고 꼭짓점의 수는 8개인 정사각기둥일 수 있으며, 이러한 형태를 큐브라고 지칭할 수 있다. 이러한 금 나노입자는 직사각형, 정사각형, 마름모, 사다리꼴, 평행사변형, 및 연꼴로 이루어진 군으로부터 선택된 하나 이상의 면으로 둘러싸인 다면체 형태일 수 있으며, 이러한 면은 모서리(선분) 하나의 길이가 20 내지 100 nm일 수 있고, 바람직하게는 모서리 하나의 길이가 40 내지 80 nm일 수 있다. 금 나노입자의 모서리 하나의 길이가 20 nm 미만이거나 100 nm를 초과하게 되면 금 나노입자-형광체 하이브리드 물질의 형광 세기가 본래 형광체의 세기보다 감소(소광효과)할 수 있다.
본 발명의 하이브리드 물질의 제조방법에서 폴리글리콜은 폴리에틸렌글리콜, 폴리옥시에틸렌, 폴리에틸렌옥사이드, α-머캅토-ω-카르복시-폴리에틸렌글리콜, 머캅토폴리에틸렌글리콜산, 머캅토폴리에틸렌글라이콜-카르복실산, 머캅토폴리옥시에틸렌-아세트산, 티올-폴리에틸렌글리콜, 티올-폴리에틸렌글리콜-카르복실산, 티올-폴리에틸렌글리콜산, 폴리프로필렌글리콜, 폴리알킬렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 디프로필렌글리콜, 헥실렌글리콜, 및 부틸렌글리콜로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 더 바람직하게는 폴리에틸렌글리콜, 폴리옥시에틸렌, 폴리에틸렌옥사이드, α-머캅토-ω-카르복시-폴리에틸렌글리콜, 머캅토폴리에틸렌글리콜산, 머캅토폴리에틸렌글라이콜-카르복실산, 머캅토폴리옥시에틸렌-아세트산, 티올-폴리에틸렌글리콜, 티올-폴리에틸렌글리콜-카르복실산, 및 티올-폴리에틸렌글리콜산 중에서 선택되는 하나 이상일 수 있다. 이러한 폴리글리콜은 금 나노입자와 형광체를 연결하기 위해 첨가될 수 있으며, 리간드 교환반응에 의해 금 나노입자의 표면에 연결될 수 있고, 탄소 양자점과 공유결합을 형성하여 금 나노입자-형광체 하이브리드 물질을 형성할 수 있다. 즉, 금 나노입자와 형광체 사이의 결합, 거리유지 또는 거리조절을 위한 연결고리, 스페이서(spacer)로써 역할을 할 수 있다. 바람직하게 폴리글리콜은 티올기(SH기)와 카르복실기(COOH기)를 가질 수 있으며, 폴리글리콜의 티올기와 금 나노입자 간의 리간드 교환반응 및 폴리글리콜의 카르복실기와 탄소 양자점 간의 공유결합(아미드결합)에 의해 본 발명의 금 나노입자-형광체 하이브리드 물질을 형성할 수 있다.
또한, 폴리글리콜의 분자량은 이론상으로는 100 이상이라면 제한적이지 않으나 본 발명에서는 바람직하게 200 내지 20,000 일 수 있다. 본 발명의 하이브리드 물질의 제조방법에서 폴리글리콜은 금 나노입자를 둘러싸고 있는 형태일 수 있으며, 그 길이는 분자량에 따른 폴리글리콜 자체의 길이 뿐만 아니라 금 나노입자 표면 상에서 폴리글리콜 분자들이 서로 간에 얼만큼의 간격(D)을 두고 있는지에 따라서도 달라질 수 있다.
본 발명의 하이브리드 물질의 제조방법 제 3 단계에서 디시클로헥실 카르보디이미드 (dicyclohexyl carbodiimide, DCC), 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 하이드로클로라이드 (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC), 1-시클로헥실-3-(2-모르폴리노에틸) 카르보디이미드 (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide, CMC), 디이소프로필 카르보디이미드 (diisopropyl carbodiimide, DIC), N-하이드록시석신이미드 (N-Hydroxysuccinimide, NHS), 및 N-하이드록시술포석신이미드(N-Hydroxysulfosuccinimide sodium salt, NHSS)로 이루어진 군으로부터 선택된 하나 이상의 가교제를 첨가할 수 있으며, 바람직하게는 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 하이드로클로라이드 (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC), N-하이드록시석신이미드 (N-Hydroxysuccinimide, NHS), 및 N-하이드록시술포석신이미드(N-Hydroxysulfosuccinimide sodium salt, NHSS)로 이루어진 군으로부터 선택된 하나 이상의 가교제를 첨가할 수 있다.
폴리글리콜 또는 가교제의 첨가에 의해 본 발명의 하이브리드 물질의 제조방법에서 금 나노입자와 폴리글리콜은 리간드 교환반응을 할 수 있으며, 탄소 양자점과 폴리글리콜은 공유결합(아미드결합)을 형성할 수 있고, 이러한 결합과 반응에 의해 금 나노입자와 탄소 양자점 사이의 결합, 거리유지 또는 거리조절이 이루어질 수 있다.
본 발명의 하이브리드 물질의 제조방법에 의해 제조되는 하이브리드 물질 내 금 나노입자와 탄소 양자점 간의 거리는 5 nm 내지 20 nm 일 수 있으며, 그 거리가 5 nm 미만일 경우 형광 감소를 유발할 수 있고, 20 nm를 초과할 경우 물질이 방출하는 형광세기는 본 발명의 하이브리드 물질이 낼 수 있는 최대 세기보다는 감소 할 수 있다.
또한, 금 나노입자와 탄소 양자점은 금 나노입자의 optical density (OD) 1 당 0.01 내지 10 mg의 탄소 양자점을 포함하여 하이브리드 물질을 형성할 수 있으며, 바람직하게는 금 나노입자의 optical density (OD) 1 당 0.01 내지 1 mg의 탄소 양자점을 포함할 수 있다. 금 나노입자와 탄소 양자점의 결합비가 상기 범위를 벗어날 경우, 형광이 소광될 수 있다.
또 다른 측면에 따르면, 본 발명은 금 나노입자-형광체 하이브리드 물질을 이용한 바이오센서를 제공한다.
본 발명의 바이오센서에 이용하는 하이브리드 물질에 대한 설명은 본 발명의 금 나노입자-형광체 하이브리드 물질에 대하여 상술한 설명과 동일 또는 유사하므로, 생략하기로 한다.
또 다른 측면에 따르면, 본 발명은 금 나노입자-형광체 하이브리드 물질을 이용한 디스플레이용 발광소자를 제공한다.
본 발명의 디스플레이용 발광소자에 이용하는 하이브리드 물질에 대한 설명은 본 발명의 금 나노입자-형광체 하이브리드 물질에 대하여 상술한 설명과 동일 또는 유사하므로, 생략하기로 한다.
하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다. 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
<실시예>
실시예 1 - 탄소 양자점(C-dots) 합성
10 ml의 증류수에 citric acid 1.051 g, 50 w/w% ethylenediamine 335 ㎕를 첨가하여 teflon-lined stainless steel autoclave 반응기에 넣고 예열된 autoclave에서 5 시간 20분 동안 150 ℃로 가열한 후 감압증류하여 고체(가루)상태의 탄소 양자점을 합성하였다.
실시예 2-1 - 금 나노입자(AuNCs) 합성 (48 nm)
한 모서리의 길이가 48 nm인 금 나노입자를 합성하기 위하여 우선 seed 용액을 제조하였다. seed 용액은 0.1 M hexadecyltrimethylammonium bromide (CTAB) 용액 7.5 ml에 0.01 M Gold(III) chloride hydrate (HAuCl4) 용액 250 ㎕을 첨가하고, 여기에 0.01 M Sodium borohydride (NaBH4) 용액 600 ㎕을 넣어 2분간 교반한 후 30 ℃의 오븐에서 1시간 동안 숙성시켜 제조하였다.
이후 다른 바이알에 0.1 M CTAB 용액 6.4 ml을 넣고 32 ml의 증류수, 0.01 M HAuCl4 용액 800 ㎕, 0.1 M L-ascorbic acid 용액 3.8 ml을 첨가하였으며, 앞서 제조한 seed 용액을 10배로 희석한 희석액 20 ㎕을 마지막에 넣은 후 30 ℃의 오븐에서 12시간 동안 숙성시키는 과정을 거쳐 합성된 금 나노입자(48 nm)가 포함된 콜로이드 용액이 형성되었다.
실시예 2-2 - 금 나노입자의 리간드 교환 (CTAB, CTAC → PEG)
실시예 2-1에 따라 형성된 금 나노입자 콜로이드 용액에 들어있는 과량의 과량의 CTAB 또는 hexadecyltrimethylammonium chloride (CTAC)를 제거하기 위하여 40 ml의 금 나노입자 용액(optical density, OD 1.156 기준)을 6,000 g에서 20 분간 3번 원심분리하고 washing하여 최종 부피가 4 ml이 되도록 농축시켰다. 여기에 2 vol%의 Tween 20 용액 400 ㎕, 0.1 M의 bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) 용액 400 ㎕, 1.6 mM의 O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol (Mw 3,000, HS-PEG3,000-COOH) 용액 504 ㎕ 및 증류수 1200 ㎕를 차례대로 넣고 900 rpm으로 24시간 교반하였다. 이 후 원심분리기(6,000 g)에서 30 분간 증류수로 2회, pH 6.0의 0.05 M MES (2-morpholinoethanesulfonic acid, C6H13NO4S)) 버퍼로 6회 이상 washing하여 최종적으로 8 ml가 되도록 MES 버퍼에 분산시켰다. 이러한 과정을 통해 금 나노입자와 폴리글리콜을 연결하였으며, 이를 포함하는 콜로이드 용액을 형성하였다.
실시예 2-3 - 금 나노입자-형광체 하이브리드 물질(A) 제조
상기 실시예 2-1에 따라 연결된 금 나노입자와 폴리글리콜이 포함된 콜로이드 용액 2 ml를 pH 6.0의 0.05 M의 MES 버퍼 8 ml에 첨가한 후 200 ㎕의 MES 버퍼에 각각 녹인 5 mg의 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) 및 11 mg의 sulfo-N-hydroxysuccinimide (sulfo-NHS)를 순서대로 빠르게 첨가하여 15분 동안 초음파를 인가하였다(sonication). 금 나노입자와 반응 후 남은 EDC와 복합체 형성을 유도하기 위하여 14 ㎕의 2-mercaptoethanol를 첨가하여 10분 동안 초음파를 인가하였으며, 여기에 실시예 1에 따라 제조된 아민기를 작용기로 가지는 C-dots 65 mg 및 5 M의 Sodium hydroxide (NaOH) 65 ㎕ 를 첨가하여 2 시간 동안 초음파를 인가하여 최종적으로 폴리글리콜과 연결된 금 나노입자와 C-dots을 연결하여 금 나노입자-형광체 하이브리드 물질(A)을 제조하였다.
실시예 3-1 - 금 나노입자(AuNCs) 합성 (74 nm)
한 모서리의 길이가 74 nm인 금 나노입자를 합성하기 위하여 우선 seed 용액을 제조하였다. seed 용액은 0.32 g의 CTAC을 5 ml의 증류수에 녹인 후 0.5 mM HAuCl4 용액 5 ml을 첨가하고, 여기에 0.02 M NaBH4 용액 450 ㎕을 넣고 2분간 교반한 후 30 ℃의 오븐에서 1시간 동안 숙성시켜 제조하였다.
이후 다른 바이알 2개를 준비하여 0.32 g의 CTAC을 9.625 ml의 증류수에 녹인용액을 하나씩 넣은 후 각각(300 rpm의 일정한 속도로 교반하면서)의 바이알에 0.01 M HAuCl4 용액 250 ㎕, 0.01 M NaBr 용액 10 ㎕, 및 0.04 M L-ascorbic acid 용액 90 ㎕을 넣어주었다. 그 중 하나의 바이알에만 seed 용액 25 ㎕을 넣고 5초간 반응시켰으며, 반응 후 붉은색이 될 때 이 용액을 다른 바이알에 넣고 10초간 반응시키고 15분간 가만히 방치하여 최종적으로 합성된 금 나노입자(74 nm)가 포함된 콜로이드 용액이 형성되었다.
실시예 3-2 - 금 나노입자-형광체 하이브리드 물질(B) 제조
2 vol%의 Tween 20 용액 2400 ㎕, 0.1 M의 bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) 용액 2400 ㎕, 1.6 mM의 HS-PEG3,000-COOH 용액, 및 3024 ㎕ 및 증류수 7200 ㎕를 첨가하여 상기 실시예 2-2와 동일한 방법으로 상기 실시예 3-1의 금 나노입자와 폴리글리콜을 연결하였으며, 이를 포함하는 콜로이드 용액을 형성하였다. 이 후 상기 실시예 1에 따라 제조된 아민기를 작용기로 가지는 C-dots 65 mg 및 5 M의 Sodium hydroxide (NaOH) 65 ㎕ 를 첨가하여 상기 실시예 2-3과 동일한 방법으로 폴리글리콜과 연결된 금 나노입자와 C-dots을 연결한 금 나노입자-형광체 하이브리드 물질(B)을 제조하였다.
실시예 4 - 금 나노입자-형광체 하이브리드 물질(C) 제조
1.6 mM의 O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol (Mw 5,000, HS-PEG5,000-COOH) 용액 504 ㎕를 첨가하여 상기 실시예 2-1 내지 2-3과 동일한 방법으로 금 나노입자-형광체 하이브리드 물질(C)을 제조하였다.
비교예 1 - 금 나노입자-형광체 하이브리드 물질(D) 제조
C-dots 6.5 mg 및 5 M의 NaOH 45 ㎕ 를 첨가하여 상기 실시예 2-1 내지 2-3과 동일한 방법으로 금 나노입자-형광체 하이브리드 물질(D)을 제조하였다.
비교예 2-1 - 금 나노입자(AuNCs) 합성 (17 nm)
한 모서리의 길이가 17 nm인 금 나노입자를 합성하기 위하여 우선 1-2 nm seed 용액을 제조하였다. 1-2 nm seed 용액은 0.1 M CTAB 용액 9.75 ml에 0.01 M HAuCl4 용액 250 ㎕을 첨가하고, 여기에 0.01 M NaBH4 용액 600 ㎕을 넣어 3분간 교반한 후 27 ℃의 오븐에서 3시간 동안 숙성시켜 제조하였다.
그리고 다른 바이알에 0.2 M CTAC 용액 2 ml을 넣고 300 rpm의 일정한 속도로 교반하면서 0.1 M L-ascorbic acid 용액 1.5 ml, 1-2 nm seed 용액 50 ㎕, 및 0.5 mM HAuCl4 용액 2 ml를 차례대로 넣어 15분간 반응시켰으며, 원심분리기(20600 g)에서 30분간 증류수로 1회 washing하여 최종적으로 1 ml의 20 mM의 CTAC 용액에 분산시켰다.(10 nm seed 용액)
이후 또 다른 바이알에 0.1 M CTAC 용액 6 ml을 넣고 500 rpm의 속도로 교반하면서 120 mM의 sodium bromide (NaBr) 용액 30 ㎕, 10 nm seed 용액 300 ㎕, 10 mM L-ascorbic acid 용액 390 ㎕, 및 0.5 mM HAuCl4 용액 6 ml를 차례대로 넣은 후 25분간 반응시켜 최종적으로 합성된 금 나노입자(17 nm)가 포함된 콜로이드 용액이 형성되었다.
비교예 2-2 - 금 나노입자-형광체 하이브리드 물질(E) 제조
2 vol%의 Tween 20 용액 2800 ㎕, 0.1 M의 bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) 용액 2800 ㎕, 1.6 mM의 HS-PEG3,000-COOH 용액 3528 ㎕, 및 증류수 8400 ㎕를 첨가하여 상기 실시예 2-2과 동일한 방법으로 상기 비교예 2-1의 금 나노입자와 폴리글리콜을 연결하였으며, 이를 포함하는 콜로이드 용액을 형성하였다. 이 후 상기 실시예 1에 따라 제조된 아민기를 작용기로 가지는 C-dots 65 mg 및 5 M의 Sodium hydroxide (NaOH) 65 ㎕ 를 첨가하여 상기 실시예 2-3과 동일한 방법으로 폴리글리콜과 연결된 금 나노입자와 C-dots을 연결한 금 나노입자-형광체 하이브리드 물질(E)을 제조하였다.
비교예 3 - 탄소 양자점(F)
상기 실시예 1에 따라 합성된 탄소 양자점을 상기 실시예에 따른 하이브리드 물질 A 내지 E와 비교하기 위하여 65 mg을 사용하여 하기 실험예에 따라 비교 분석하였다.
상기 실시예(A, B, C) 및 비교예(D, E, F)에 따라 제조되는 하이브리드 물질 내 금 나노입자 한 모서리의 길이와 PEG의 분자량 및 탄소 양자점의 첨가량을 하기 표 1에 도시하였다.
A B C D E F
금 나노입자 48 nm 74 nm 48 nm 48 nm 17 nm -
PEG 3000 Mw 3000 Mw 5000 Mw 3000 Mw 3000 Mw -
C- dots 65 mg 65 mg 65 mg 6.5 mg 65 mg 65 mg
또한, 상기 실시예 및 비교예에 따라 하이브리드 물질이 제조되는 과정을 도 1에 도시하였다.
<실험예>
실험예 1 - UV spectrophotometer 측정
상기 실시예 및 비교예에 따라 합성된 금 나노입자와 상기 실시예 A 내지 C 및 비교예에 따른 하이브리드 물질 및 탄소 양자점을 셀에 넣고 190 nm - 1100 nm 파장 범위에서 흡광도를 측정하였다.
실험예 2 - PL emission 측정
상기 실시예 및 비교예에 따른 A 내지 E의 하이브리드 물질과 비교예의 탄소 양자점(F)을 각각 셀에 넣고 365 nm - 700 nm 파장 범위, 365 nm excitation에서 형광 emission을 측정하였다.
실험예 3 - TEM 측정
상기 실시예 및 비교예에 따라 합성된 금 나노입자와 상기 실시예에 따른 하이브리드 물질 A 및 D를 각각 템그리드에 올리고 바이오 투과전자현미경(bio transmission electron microscope, Bio-TEM)으로 관찰하였으며, 상기 비교예에 따른 탄소 양자점(F)를 템그리드에 올리고 전계방사형 투과전자현미경(field emission transmission electron microscope, FE-TEM)으로 관찰하였다.
실험예 4 - EDS 측정
상기 실시예 및 비교예에 따라 합성된 금 나노입자(48 nm)와 상기 실시예에 따른 하이브리드 물질 A 및 D를 템그리드에 올리고 에너지분산형 분광분석장비(energy dispersive spectrometry, EDS)로 관찰하였다.
<평가 및 결과>
결과 1 - UV spectrophotometer 측정
상기 실시예 및 비교예에 따라 합성된 금 나노입자(17 nm, 48 nm, 74 nm)과 상기 실시예와 비교예에 따른 하이브리드 물질 및 탄소 양자점을 상기 실험예 1에 따라 흡광도를 측정하여 도 2a 내지 도 2b에 도시하였다.
도 2a에서 금 나노입자(17 nm, 48 nm, 74 nm)는 모두 가시광선 영역에서 하나의 피크(최대 흡광)을 나타냈으며, 이러한 피크는 금 나노입자의 크기가 증가할수록 장파장의 영역대에서 나타났다.
도 2b에서 비교예의 탄소 양자점(F)를 제외하고 하이브리드 물질의 모든 흡광도 그래프에서 탄소 양자점의 흡광도와 비교하였을 때 blue shift를 보였으며, 모든 하이브리드 물질은 탄소 양자점과는 다르게 최대 흡광지점의 양쪽 모두의 근처에서 어깨피크를 나타냄을 확인할 수 있었다.
결과 2 - PL emission 그래프
상기 실시예 및 비교예에 따른 A 내지 F의 흡광 및 발광 스펙트럼을 상기 실험예 2를 통해 측정하여 도 3a에 도시하였다.
그 결과, 실시예에 따른 A 및 C(금 나노입자 크기 48 nm, 탄소 양자점 65 mg)에서 비교예에 따른 D(금 나노입자 크기 48 nm, 탄소 양자점 6.5 mg) 및 F(탄소 양자점 65 mg)보다 흡광 최대치(빨간피크) 대 발광 최대치(파란피크)의 비율이 감소한 것을 확인할 수 있었다. 이는 하이브리드 물질의 제조에 사용되는 금 나노입자의 크기와 탄소 양자점의 농도가 하이브리드 물질의 광학적 성질에 영향을 미치는 인자임을 의미하는 결과이다. 또한, PEG의 분자량이 서로 다른 A와 C의 흡광 최대치(빨간피크) 대 발광 최대치(파란피크)의 비율이 상이한 것을 확인할 수 있었으며, 이로써 금 나노입자와 탄소 양자점을 연결하는 링커(PEG)의 길이도 하이브리드 물질의 광학적 성질에 영향을 미치는 인자인 것을 알 수 있었다.
또한, 상기 실시예 및 비교예에 따른 A 내지 F의 형광 emission을 상기 실험예 2에 따라 측정하여 도 3b 내지 도 3f에 도시하였다. 도 3b 내지 도 3f의 그래프에서 형광 강도의 기준이 되는 1.0의 피크를 나타내는 점선 그래프는 상기 비교예에 따른 탄소 양자점 F의 그래프이다.
우선, 금 나노입자의 크기에 따른 하이브리드 물질의 형광증폭효과를 비교하기 위하여 도 3b, 도 3c, 및 도 3f를 비교한 결과, 동일한 분자량의 폴리글리콜 및 동일한 중량의 탄소 양자점을 첨가하였을 때, 금 나노입자의 크기가 48 nm일 때 형광증폭효과가 가장 높은 것으로 나타났으며, 그 다음으로 74 nm, 17 nm 순으로 나타났다. 특히, 17 nm의 금 나노입자의 경우에는 형광 강도가 기준인 F에 비해 급격히 감소한 것을 확인하였으며, 48 nm의 금 나노입자의 경우 형광 강도가 2배 이상 높아진 것을 확인하여 금 나노입자의 크기가 탄소 양자점의 형광 강도, 형광증폭효과에 영향을 미치는 것을 확인할 수 있었다.
다음으로 폴리글리콜(PEG)의 분자량에 따른 하이브리드 물질의 형광증폭효과를 비교하기 위하여 도 3b 및 도 3d를 비교한 결과, 동일한 금 나노입자의 크기 및 동일한 중량의 탄소 양자점을 첨가하였을 때, PEG 분자량이 클수록 형광 강도, 형광증폭효과가 더 높은 것으로 나타났다.
마지막으로 탄소 양자점의 첨가량에 따른 하이브리드 물질의 형광증폭효과를 비교하기 위하여 도 3b 및 도 3e를 비교한 결과, 동일한 PEG 분자량 및 동일한 크기의 금 나노입자를 가질 때, 탄소 양자점의 첨가량 즉, 농도가 높을수록 형광강도, 형광증폭효과가 더 높은 것으로 나타났다. 또한, 도 3b 및 도 3e의 탄소 양자점 첨가량이 각각 65 mg, 6.5 mg이며, 기준이 되는 F의 탄소 양자점 양이 65 mg임을 감안하였을 때 탄소 양자점의 첨가량이 10배 차이가 남에도 불구하고 금 나노입자와 하이브리드 물질을 형성한 D의 경우 F에 비해 0.2 정도의 형광 감소만을 나타내며, 동일한 첨가량인 A의 경우 F에 비해 2배 이상의 형광증폭효과를 나타내어 본 발명의 일 실시예에 따라 탄소 양자점을 금 나노입자와 연결하여 하이브리드 물질을 형성할 경우 탄소 양자점의 형광 강도, 세기를 효과적으로 증가시킬 수 있음을 확인할 수 있었다.
결과 3 - TEM 이미지
상기 실시예 및 비교예에 따라 합성된 금 나노입자(17 nm, 48 nm, 74 nm), 하이브리드 물질 A와 D 및 탄소 양자점(F)의 TEM 이미지를 촬영하여 도 4a 내지 도 4f에 도시하였다.
금 나노입자의 TEM 이미지를 확인한 결과, 각각 17 nm, 48 nm, 74 nm 길이의 선분을 나타내는 사각형으로 이루어진 육면체의 형태를 나타내는 것을 확인할 수 있었으며, 48 nm의 금 나노입자를 포함하여 형성한 하이브리드 물질의 TEM 이미지를 확인한 결과, 탄소 양자점의 첨가량이 많을수록 금 나노입자 연결되는 탄소 양자점의 양이 많아 금 나노입자 외부에 코팅층이 두껍게 형성되는 것을 확인할 수 있었다.
결과 4 - EDS 이미지
상기 실시예에 따라 합성된 하이브리드 물질 A의 EDS 이미지를 촬영하여 도 5a 내지 도 5c에 도시하였다.
그 결과, 하이브리드 물질의 중심에 금 나노입자가 있으며 주위에 탄소 양자점이 둘러싸는 형태를 확실하게 확인할 수 있었으며, 형광체와 금속과의 거리는 약 10 nm인 것을 알 수 있었다.
또한, 상기 실시예 2-1 내지 2-2에 따라 합성된 금 나노입자(48 nm)에 폴리글리콜을 첨가하고 반응시킨 반응물(하이브리드 물질 A가 만들어지는 전단계-탄소양자점을 붙이기 전)의 EDS 이미지를 촬영하여 도 5d 내지 도 5f에 도시하였다.
그 결과, 금 나노입자에 폴리글리콜만이 연결되어 있을 경우, 탄소 원소(C, 초록색)를 mapping 하였을 때 템그리드에 존재하는 background 탄소와 금 나노입자에 의한 noise만이 관찰될 뿐 5a, 5c와 같이 금 나노입자 주변에 일정한 간격으로 존재하는 더 진한 초록색 띠가 관찰되지 않아 금 나노입자에 탄소 양자점이 연결된 하이브리드 물질과의 명확한 차이를 확인할 수 있었다. 이는 금 나노입자와 탄소 양자점이 연결되어 하이브리드 물질을 이루고 있다는 것을 확실히 입증하는 결과이다.

Claims (11)

  1. 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자;
    탄소 양자점; 및
    상기 금 나노입자와 탄소 양자점을 연결하는 폴리글리콜;을 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질.
  2. 제 1 항에 있어서,
    상기 금 나노입자는 직사각형, 정사각형, 마름모, 사다리꼴, 평행사변형, 및 연꼴로 이루어진 군으로부터 선택된 하나 이상의 사각형 면으로 둘러싸인 다면체 형태인 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질.
  3. 제 1 항에 있어서,
    상기 폴리글리콜은 분자량이 200 내지 20,000인 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질.
  4. 제 1 항에 있어서,
    상기 하이브리드 물질은 탄소 양자점의 농도 또는 금 나노입자와 탄소 양자점 간의 거리에 의해 형광의 밝기가 조절되는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질.
  5. 6개의 사각형으로 둘러싸인 다면체 형태의 금 나노입자를 합성하는 제 1 단계;
    상기 합성된 금 나노입자에 티올기 및 카르복실기를 갖는 폴리글리콜을 첨가하고 반응시켜 반응물을 형성하는 제 2 단계; 및
    상기 반응물에 탄소 양자점을 첨가하여 탄소 양자점이 연결된 금 나노입자를 형성하는 제 3 단계;를 포함하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법.
  6. 제 5 항에 있어서,
    상기 금 나노입자는 직사각형, 정사각형, 마름모, 사다리꼴, 평행사변형, 및 연꼴로 이루어진 군으로부터 선택된 하나 이상의 사각형 면으로 둘러싸인 다면체 형태인 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법.
  7. 제 6 항에 있어서,
    상기 사각형 면은 모서리 하나의 길이가 20 내지 100 nm인 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법.
  8. 제 5 항에 있어서,
    상기 폴리글리콜은 분자량이 200 내지 20,000인 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법.
  9. 제 5 항에 있어서,
    상기 제 3 단계에서 디시클로헥실 카르보디이미드 (dicyclohexyl carbodiimide, DCC), 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 하이드로클로라이드 (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC), 1-시클로헥실-3-(2-모르폴리노에틸) 카르보디이미드 (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide, CMC), 디이소프로필 카르보디이미드 (diisopropyl carbodiimide, DIC), N-하이드록시석신이미드 (N-Hydroxysuccinimide, NHS), 및 N-하이드록시술포석신이미드(N-Hydroxysulfosuccinimide sodium salt, NHSS)로 이루어진 군으로부터 선택된 하나 이상의 가교제를 첨가하는 것을 특징으로 하는 금 나노입자-형광체 하이브리드 물질의 제조방법.
  10. 제 1 항 내지 제 4 항 중 어느 한 항에 따른 금 나노입자-형광체 하이브리드 물질을 이용한 바이오센서.
  11. 제 1 항 내지 제 4 항 중 어느 한 항에 따른 금 나노입자-형광체 하이브리드 물질을 이용한 디스플레이용 발광소자.
PCT/KR2019/013699 2019-07-17 2019-10-18 금 나노입자-형광체 하이브리드 물질과 그 제조방법 WO2021010545A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980098544.7A CN114127224A (zh) 2019-07-17 2019-10-18 金纳米粒子-荧光体杂化物质及其制备方法
US17/627,429 US20220259494A1 (en) 2019-07-17 2019-10-18 Gold nanoparticle-phosphor hybrid material and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0086557 2019-07-17
KR1020190086557A KR102064326B1 (ko) 2019-07-17 2019-07-17 금 나노입자-형광체 하이브리드 물질과 그 제조방법

Publications (1)

Publication Number Publication Date
WO2021010545A1 true WO2021010545A1 (ko) 2021-01-21

Family

ID=69154895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013699 WO2021010545A1 (ko) 2019-07-17 2019-10-18 금 나노입자-형광체 하이브리드 물질과 그 제조방법

Country Status (4)

Country Link
US (1) US20220259494A1 (ko)
KR (1) KR102064326B1 (ko)
CN (1) CN114127224A (ko)
WO (1) WO2021010545A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220072959A (ko) 2020-11-25 2022-06-03 삼성디스플레이 주식회사 디스플레이 장치
KR102393356B1 (ko) * 2021-02-19 2022-04-29 전북대학교산학협력단 탄소 양자점을 이용한 금속 나노입자의 제조방법, 그로부터 제조된 금속 나노입자 및 그를 포함하는 센서
CN113376372A (zh) * 2021-06-16 2021-09-10 郑州凌思生物科技有限责任公司 一种免疫荧光胶体金纳米微球材料
CN115197699B (zh) * 2022-08-30 2023-12-05 广东先导稀材股份有限公司 蓝紫色磷光碳量子点及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300253A (ja) * 2003-03-31 2004-10-28 Nof Corp ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
KR20140059368A (ko) * 2012-11-07 2014-05-16 에스케이이노베이션 주식회사 탄소 양자점-금속 나노입자 복합체, 이의 제조방법, 및 이를 포함하는 광전자 소자
KR20160120413A (ko) * 2015-04-07 2016-10-18 서울대학교산학협력단 도광판, 광학시트 및 백라이트 유닛.
KR101839700B1 (ko) * 2016-09-20 2018-03-16 성균관대학교산학협력단 표면 개질된 금속 나노입자, 이를 포함하는 복합체 및 복합체의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764005B1 (ko) 2015-07-10 2017-08-02 가천대학교 산학협력단 도파민 검출 방법
CN106983874B (zh) * 2017-04-11 2020-04-10 中国科学院理化技术研究所 一种金纳米棒/聚乙二醇/碳点纳米杂化成像造影材料及其制备方法和应用
CN109946255B (zh) * 2019-04-09 2021-04-09 中国科学院电子学研究所 一种砷离子检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300253A (ja) * 2003-03-31 2004-10-28 Nof Corp ポリエチレングリコール修飾半導体微粒子、その製造法及び生物学的診断用材料
KR20140059368A (ko) * 2012-11-07 2014-05-16 에스케이이노베이션 주식회사 탄소 양자점-금속 나노입자 복합체, 이의 제조방법, 및 이를 포함하는 광전자 소자
KR20160120413A (ko) * 2015-04-07 2016-10-18 서울대학교산학협력단 도광판, 광학시트 및 백라이트 유닛.
KR101839700B1 (ko) * 2016-09-20 2018-03-16 성균관대학교산학협력단 표면 개질된 금속 나노입자, 이를 포함하는 복합체 및 복합체의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIU YUEFANG, LING GUO, WANG LI, GUAN SHANYUE, XIE ZHENG, BARNOY ERAN, ZHOU SHUYUN, FIXLER DROR: "Gold Rod-Polyethylene Glycol-Carbon Dot Nanohybrids as Phototheranostic Probes", NANOMATERIALS, vol. 8, no. 9, 10 September 2018 (2018-09-10), pages 706, XP055789125 *

Also Published As

Publication number Publication date
KR102064326B1 (ko) 2020-01-09
CN114127224A (zh) 2022-03-01
US20220259494A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2021010545A1 (ko) 금 나노입자-형광체 하이브리드 물질과 그 제조방법
Chan et al. Incorporation of luminescent nanocrystals into monodisperse core–shell silica microspheres
JP4366502B2 (ja) 半導体超微粒子蛍光体および発光デバイス
CN108034418B (zh) 一种全无机铅卤钙钛矿纳米复合发光材料及制备方法和应用
CN107384386B (zh) 一种钙钛矿CsPbX3量子线的合成方法
US20080277625A1 (en) Phosphor And Production Process Of Same
Yoon et al. Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots
Shu et al. Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging
KR101585430B1 (ko) 형광체용 나노하이브리드 복합체, 그를 이용한 광학 모듈 및 그의 제조방법
CN108410467B (zh) 量子点、其制备方法及其应用
US8287758B2 (en) Semiconductor ultrafine particles, fluorescent material, and light-emitting device
WO2007034877A1 (ja) 半導体ナノ粒子分散ガラス微粒子及びその作製方法
Wang et al. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging
KR20170097824A (ko) 고 비표면적의 나노 금속산화물 지지체를 이용한 양자점 제조 방법 및 그에 의해 제조된 양자점
Zhang et al. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection
Long et al. All-inorganic halide perovskite (CsPbX3, X= Cl, Br, I) quantum dots synthesized via fast anion hot injection by using trimethylhalosilanes
CN114015441A (zh) 一种绿色固态荧光碳点及其制备方法
Yadav et al. Synthesis, properties, and applications of II–VI semiconductor core/shell quantum dots
Wei et al. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range
WO2016006777A1 (ko) 이방성 금속 나노입자-유전체 코어-쉘 나노구조체를 포함하는 발광소자
KR102103009B1 (ko) 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자
Li et al. Preparation and characterization of glass embedding photoluminescent CdTe nanocrystals
KR20150045196A (ko) Zn2+이 도핑된 AgInS2 양자점, 이의 조성물 및 이의 제조방법
TWI440695B (zh) Preparation of Manganese Activated Zinc - Aluminum Spinel Green Fluorescent Nanometer Powder by Sol - Gel Technique and Its
CN114106834B (zh) 一种HgTe/ZnSe核壳量子点及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937986

Country of ref document: EP

Kind code of ref document: A1