WO2021010234A1 - 冷凍サイクルシステム - Google Patents
冷凍サイクルシステム Download PDFInfo
- Publication number
- WO2021010234A1 WO2021010234A1 PCT/JP2020/026622 JP2020026622W WO2021010234A1 WO 2021010234 A1 WO2021010234 A1 WO 2021010234A1 JP 2020026622 W JP2020026622 W JP 2020026622W WO 2021010234 A1 WO2021010234 A1 WO 2021010234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- refrigerant
- notification
- signal
- refrigeration cycle
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
- F24F11/526—Indication arrangements, e.g. displays giving audible indications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0292—Control issues related to reversing valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0293—Control issues related to the indoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0294—Control issues related to the outdoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
Definitions
- the present disclosure relates to a refrigeration cycle system, particularly a refrigeration cycle system provided with a notification unit for notifying a refrigerant leak when a refrigerant leak is detected.
- a refrigeration cycle system including a notification unit that notifies the refrigerant leakage with sound or light when the refrigerant leakage is detected may be used.
- the notification unit is required to operate normally when a refrigerant leak occurs.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2012-193884
- a test switch for checking whether the LED for notifying the refrigerant leakage and the buzzer operate normally, and operates the switch to operate the LED and the buzzer. It is disclosed to confirm the operation of. With such a configuration, it is possible to suppress the occurrence of a situation in which the LED or buzzer does not operate when it should operate.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2012-193884
- the refrigeration cycle system of the first aspect includes a refrigeration cycle device, an operation signal transmission unit, a detection unit, a notification unit, and a processing unit.
- the refrigeration cycle device has a refrigerant circuit.
- the operation signal transmission unit transmits an operation signal to the refrigeration cycle device.
- the detection unit detects the leakage of the refrigerant.
- the notification unit emits at least one of sound and light to notify the leakage of the refrigerant.
- the processing unit causes the notification unit to perform a test operation of emitting at least one of sound and light when the operation signal transmitting unit transmits an operation signal to the refrigeration cycle device.
- the refrigeration cycle system of the first aspect it is possible to check the operation of the notification unit when transmitting an operation signal to the refrigeration cycle device. Therefore, the administrator of the refrigeration cycle system can check the operation of the notification unit without performing any special operation, and the labor of managing the refrigeration cycle system can be reduced.
- the refrigeration cycle system of the second viewpoint is the refrigeration cycle system of the first viewpoint
- the operation signal transmission unit is a remote controller that transmits an operation signal to the refrigeration cycle device.
- the operation of the notification unit is checked when operating the refrigeration cycle device using the remote controller. Therefore, it is possible to routinely check whether or not the notification unit operates normally, and it is unlikely that the notification unit will not operate when an actual refrigerant leaks.
- the refrigeration cycle system of the third viewpoint is the refrigeration cycle system of the second viewpoint, and the remote controller has a notification unit.
- the refrigeration cycle system of the fourth aspect is any of the refrigeration cycle systems of any of the first to third aspects, and the operation signal is at least one of the start signal of the refrigeration cycle device and the stop signal of the refrigeration cycle device.
- the refrigeration cycle system of the fifth viewpoint is any of the refrigeration cycle systems of the first to fourth viewpoints, and the time during which the notification unit emits at least one of sound and light during the test operation is the detection unit. Is shorter than the time that the notification unit emits at least one of sound and light when the system detects the leakage of the refrigerant.
- the refrigeration cycle system of the sixth viewpoint is any of the refrigeration cycle systems of the first to fifth viewpoints, and the notification unit performs notification by sound.
- the volume of the sound emitted by the notification unit during the test operation is lower than the volume of the sound emitted by the notification unit when the detection unit detects the leakage of the refrigerant.
- the refrigeration cycle system of the seventh viewpoint is any of the refrigeration cycle systems of the first to sixth viewpoints, and further includes a determination unit and an output unit.
- the determination unit receives a detection signal according to the detection result of the refrigerant output by the detection unit, and determines the leakage of the refrigerant based on the received detection signal.
- the output unit outputs a test signal to the determination unit when the operation signal transmission unit transmits the operation signal to the refrigeration cycle device.
- the output unit is different from the detection unit.
- the determination unit determines that the refrigerant is leaking.
- the processing unit causes the notification unit to execute a test operation when the determination unit determines that the refrigerant has leaked in response to the test signal.
- the refrigeration cycle system of the seventh aspect not only the inspection of whether or not the notification unit operates, but also the comprehensive inspection of the leakage notification circuit including the refrigerant leakage judgment unit to the notification unit can be performed, and the refrigerant leakage notification can be performed. It is possible to realize a highly reliable refrigeration cycle system.
- the refrigeration cycle system of the eighth viewpoint is any of the refrigeration cycle systems of the first to seventh viewpoints, and the refrigerant is flammable.
- FIG. 1 An example of a flowchart of the operation of the refrigerant leakage notification device when the determination unit of the refrigerant leakage notification device of the air conditioning system of FIG. 1 receives a signal is shown.
- Another example of the flowchart of the operation of the refrigerant leakage notification device when the determination unit of the refrigerant leakage notification device of the air conditioning system of FIG. 1 receives a signal is shown.
- It is a block diagram of the air-conditioning system which concerns on modification A.
- It is a block diagram of the air-conditioning system of the modification F, and the signal flow at the time of the test of the leakage notification circuit in the refrigerant leakage notification device is shown by an arrow.
- the refrigeration cycle system of the present disclosure includes a refrigeration cycle device and a refrigerant leak notification device 80.
- a refrigeration cycle device is a device that cools or heats an object to be cooled or heated by utilizing a vapor compression refrigeration cycle.
- the refrigerant leakage notification device 80 is a device that detects the refrigerant by the refrigerant sensor 34 and notifies the leakage of the refrigerant with at least one of sound and light when the refrigerant leakage is detected.
- the refrigeration cycle system of the present embodiment is an air conditioner system 100 including an air conditioner 1 as an example of the refrigeration cycle device and a refrigerant leak notification device 80.
- the air conditioner 1 is a device having a refrigerant circuit 6 and performing air conditioning in the air conditioning target space.
- the air conditioning system 100 is only an example of a refrigeration cycle system, and the refrigeration cycle system of the present disclosure is not limited to the air conditioning system 100.
- the refrigerating cycle system of the present disclosure may be a refrigerating system or a refrigerating system having a refrigerating device or a freezing device for cooling the space in the refrigerator by utilizing the refrigerating cycle.
- the refrigeration cycle system of the present disclosure may be a hot water supply system or a floor heating system having a hot water supply device or a floor heating device for heating a liquid such as water by using the refrigeration cycle as a refrigeration cycle device.
- FIG. 1 is a block diagram of the air conditioning system 100.
- FIG. 2 is a schematic configuration diagram of the air conditioner 1 of the air conditioner system 100. Note that in FIG. 1, the drawings of the devices constituting the refrigerant circuit 6 and various devices of the air conditioner 1 such as the fans 15 and 33 are omitted.
- the air-conditioning device 1 is a device that cools and heats an air-conditioned space by performing a vapor compression refrigeration cycle.
- the air-conditioned space is, for example, a space inside a building such as an office building, a commercial facility, or a residence.
- the air conditioner 1 does not have to be a device used for both cooling and heating of the space to be air-conditioned, and may be a device used for only one purpose of cooling and heating.
- the air conditioner 1 mainly includes a heat source side unit 2, a user side unit 3, a liquid refrigerant connecting pipe 4, a gas refrigerant connecting pipe 5, and a remote controller 48.
- the heat source side unit 2 has a heat source side control device 42.
- the user-side unit 3 has a user-side control device 44.
- the remote controller 48 has a control device 48a.
- the heat source side control device 42, the user side control device 44, and the control device 48a cooperate to function as an air conditioning control unit that controls the operation of each part of the air conditioning device 1.
- the user-side control device 44 also functions as a controller for the refrigerant leakage notification device 80.
- the liquid-refrigerant connecting pipe 4 and the gas-refrigerant connecting pipe 5 are refrigerant connecting pipes that connect the heat source side unit 2 and the user side unit 3.
- the refrigerant circuit 6 is configured by connecting the heat source side unit 2 and the user side unit 3 via the refrigerant connecting pipes 4 and 5.
- the refrigerant sealed in the refrigerant circuit 6 is a flammable refrigerant.
- flammable refrigerants use the US ASHRAE34 Designation and safety classification of refrigerant standard or the ISO817 Refrigerants-Designation and safety classification standard for Class3 (high flame), Class2 (weak flame), and Subclass 2L (slightly flammable). Includes applicable refrigerant.
- R1234yf, R1234ze (E) R516A, R445A, R444A, R454C, R444B, R454A, R455A, R457A, R459B, R452B, R454B, R447B, R32, R447A, R446A, and R45 are adopted.
- R516A, R445A, R444A, R454C, R444B, R454A, R455A, R457A, R459B, R452B, R454B, R447B, R32, R447A, R446A, and R45 are adopted.
- the refrigerant used is R32.
- the configuration of the present disclosure is also useful when the refrigerant is not flammable.
- the air conditioner 1 has one heat source side unit 2 as shown in FIG. Further, the air conditioner 1 has one user-side unit 3 as shown in FIG. However, the air conditioner 1 may have a plurality of user-side units 3 connected in parallel to the heat source-side unit 2. Further, the air conditioner 1 may have a plurality of heat source side units 2.
- the heat source side unit 2 the user side unit 3, the refrigerant communication pipes 4 and 5, and the remote controller 48 will be further described below.
- the heat source side control device 42 will be described separately from the other configurations of the heat source side unit 2.
- the user-side control device 44 will be described separately from the other configurations of the user-side unit 3.
- the heat source side unit 2 is installed outside the air-conditioned space, for example, on the roof of a building or near the wall surface of a building.
- the heat source side unit 2 mainly includes an accumulator 7, a compressor 8, a flow direction switching mechanism 10, a heat source side heat exchanger 16, a heat source side expansion mechanism 12, a liquid side closing valve 13, and a gas side closing valve 14. It has a heat source side fan 15 (see FIG. 2).
- the heat source side unit 2 does not have to have a part of the equipment described here. For example, when the air conditioner 1 only cools the space subject to air conditioning, the heat source side unit 2 does not have to have the flow direction switching mechanism 10. Further, the heat source side unit 2 may have equipment other than those described here, if necessary.
- the heat source side unit 2 mainly includes a suction pipe 17, a discharge pipe 18, a first gas refrigerant pipe 19, a liquid refrigerant pipe 20, and a second gas refrigerant pipe 21 as refrigerant pipes for connecting various devices constituting the refrigerant circuit 6. (See FIG. 2).
- the suction pipe 17 connects the flow direction switching mechanism 10 and the suction side of the compressor 8.
- the suction pipe 17 is provided with an accumulator 7.
- the discharge pipe 18 connects the discharge side of the compressor 8 and the flow direction switching mechanism 10.
- the first gas refrigerant pipe 19 connects the flow direction switching mechanism 10 and the gas side of the heat source side heat exchanger 16.
- the liquid refrigerant pipe 20 connects the liquid side of the heat source side heat exchanger 16 and the liquid side closing valve 13.
- the liquid refrigerant pipe 20 is provided with a heat source side expansion mechanism 12.
- the second gas refrigerant pipe 21 connects the flow direction switching mechanism 10 and the gas side closing valve 14.
- the compressor 8 is a device that sucks the low-pressure refrigerant in the refrigeration cycle from the suction pipe 17, compresses the refrigerant with a compression mechanism (not shown), and discharges the compressed refrigerant to the discharge pipe 18.
- the flow direction switching mechanism 10 changes the state of the refrigerant circuit 6 between the first state and the second state by switching the flow direction of the refrigerant.
- the flow direction switching mechanism 10 is a four-way switching valve, but the present invention is not limited to this, and may be composed of a plurality of valves and piping.
- the heat source side heat exchanger 16 functions as a refrigerant radiator (condenser)
- the utilization side heat exchanger 32 functions as a refrigerant evaporator.
- the heat source side heat exchanger 16 functions as a refrigerant evaporator
- the utilization side heat exchanger 32 functions as a refrigerant radiator.
- the flow direction switching mechanism 10 sets the state of the refrigerant circuit 6 as the first state
- the flow direction switching mechanism 10 communicates the suction pipe 17 with the second gas refrigerant pipe 21 and connects the discharge pipe 18 to the first gas refrigerant pipe 19. (See the solid line in the flow direction switching mechanism 10 in FIG. 2).
- the flow direction switching mechanism 10 When the flow direction switching mechanism 10 sets the state of the refrigerant circuit 6 to the second state, the flow direction switching mechanism 10 communicates the suction pipe 17 with the first gas refrigerant pipe 19 and connects the discharge pipe 18 to the second gas refrigerant pipe 21. (See the broken line in the flow direction switching mechanism 10 in FIG. 2).
- the heat source side heat exchanger 16 is a device that exchanges heat between the refrigerant flowing inside and the air (heat source air) at the installation location of the heat source side unit 2.
- the heat source side heat exchanger 16 is not limited in type, but is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and fins (not shown).
- One end of the heat source side heat exchanger 16 is connected to the first gas refrigerant pipe 19.
- the other end of the heat source side heat exchanger 16 is connected to the liquid refrigerant pipe 20.
- the heat source side expansion mechanism 12 is arranged between the heat source side heat exchanger 16 and the utilization side heat exchanger 32 in the refrigerant circuit 6.
- the heat source side expansion mechanism 12 is arranged in the liquid refrigerant pipe 20 between the heat source side heat exchanger 16 and the liquid side closing valve 13.
- the heat source side expansion mechanism 12 adjusts the pressure and flow rate of the refrigerant flowing through the liquid refrigerant pipe 20.
- the heat source side expansion mechanism 12 is an electronic expansion valve having a variable opening degree.
- the heat source side expansion mechanism 12 may be a temperature-sensitive cylinder type expansion valve, a capillary tube, or the like.
- the accumulator 7 is a container having a gas-liquid separation function that separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. Further, the accumulator 7 is a container having a function of storing excess refrigerant generated in response to fluctuations in the operating load and the like.
- the liquid side closing valve 13 is a valve provided at a connection portion between the liquid refrigerant pipe 20 and the liquid refrigerant connecting pipe 4.
- the gas side closing valve 14 is a valve provided at a connection portion between the second gas refrigerant pipe 21 and the gas refrigerant connecting pipe 5.
- the liquid side closing valve 13 and the gas side closing valve 14 are open during the operation of the air conditioner 1.
- the heat source side fan 15 sucks the heat source air outside the heat source side unit 2 into the casing of the heat source side unit 2 (not shown) and supplies the heat source side heat exchanger 16 to heat exchange with the refrigerant in the heat source side heat exchanger 16. This is a fan for discharging the generated air to the outside of the casing of the heat source side unit 2.
- the heat source side fan 15 is, for example, a propeller fan. However, the fan type of the heat source side fan 15 is not limited to the propeller fan, and may be appropriately selected.
- FIG. 3 is a schematic vertical sectional view of the user-side unit 3 of the air conditioning system 100.
- the user side unit 3 is, for example, a unit installed in an air-conditioned space.
- the user-side unit 3 is a ceiling-embedded unit.
- the type of the user-side unit 3 may be a ceiling-hung type, a wall-mounted type, or a floor-standing type unit.
- the user side unit 3 may be installed outside the air-conditioned space.
- the user-side unit 3 may be installed in an attic, a machine room, or the like.
- an air passage is installed to supply the air that has exchanged heat with the refrigerant in the user-side heat exchanger 32 from the user-side unit 3 to the air-conditioned space.
- the air passage is, for example, a duct.
- the type of the air passage is not limited to the duct and may be appropriately selected.
- the user-side unit 3 mainly includes a user-side expansion mechanism 31, a user-side heat exchanger 32, a user-side fan 33, and a casing 35 (see FIGS. 2 and 3).
- the utilization side expansion mechanism 31 is arranged between the heat source side heat exchanger 16 and the utilization side heat exchanger 32 in the refrigerant circuit 6.
- the user-side expansion mechanism 31 is arranged in a refrigerant pipe that connects the user-side heat exchanger 32 and the liquid refrigerant communication pipe 4.
- the user-side expansion mechanism 31 adjusts the pressure and flow rate of the refrigerant flowing through the refrigerant pipe.
- the utilization side expansion mechanism 31 is an electronic expansion valve having a variable opening degree, but the present invention is not limited to this.
- the user-side heat exchanger 32 In the user side heat exchanger 32, heat is exchanged between the refrigerant flowing through the user side heat exchanger 32 and the air in the air conditioning target space.
- the user-side heat exchanger 32 is not limited in type, but is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and fins (not shown).
- One end of the user-side heat exchanger 32 is connected to the liquid refrigerant connecting pipe 4 via the refrigerant pipe.
- the other end of the user-side heat exchanger 32 is connected to the gas refrigerant connecting pipe 5 via the refrigerant pipe.
- the user-side fan 33 sucks the air in the air-conditioned space into the casing 35 of the user-side unit 3 and supplies it to the user-side heat exchanger 32, and air-conditions the air that has exchanged heat with the refrigerant in the user-side heat exchanger 32. It is a mechanism that blows out into the target space.
- the user side fan 33 is, for example, a turbo fan. However, the type of the user fan 33 is not limited to the turbo fan and may be appropriately selected.
- a user-side expansion mechanism 31, a user-side heat exchanger 32, and a user-side fan 33 are housed inside the casing 35.
- a decorative plate 36 is provided on the bottom of the casing 35.
- a user-side fan 33 is arranged in the central portion of the casing 35, and a user-side heat exchanger 32 is provided so as to surround the four sides of the user-side fan 33.
- a drain pan 38 that receives the condensed water in the user-side heat exchanger 32 is arranged below the user-side fan 33.
- a bell mouth 37 is provided so as to be surrounded by the drain pan 38.
- the air sucked from the suction port 36b passes through the bell mouth 37, is sucked into the user fan 33, and blows out in all directions.
- the air blown out from the user-side fan 33 in all directions passes through the user-side heat exchanger 32 arranged so as to surround the four sides of the user-side fan 33, and blows air from the air outlet 36a provided on the peripheral edge of the decorative plate 36. Blow out.
- the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are refrigerant communication pipes that connect the heat source side unit 2 and the user side unit 3.
- the liquid-refrigerant connecting pipe 4 and the gas-refrigerant connecting pipe 5 are pipes to be constructed locally.
- the heat source side control device 42 controls various devices of the heat source side unit 2.
- the heat source side control device 42 includes a microcontroller unit (MCU) and various electric circuits and electronic circuits (not shown).
- the MCU includes a CPU, a memory, an I / O interface, and the like.
- Various programs for execution by the CPU of the MCU are stored in the memory of the MCU.
- the various functions of the heat source side control device 42 described below may be realized by hardware, software, or by cooperation between hardware and software.
- the heat source side control device 42 is electrically connected to various devices of the heat source side unit 2 including the compressor 8, the flow direction switching mechanism 10, the heat source side expansion mechanism 12, and the heat source side fan 15 (see FIG. 2). Further, the heat source side control device 42 is electrically connected to a sensor (not shown) provided in the heat source side unit 2.
- the sensors include, but are not limited to, temperature sensors and pressure sensors provided on the discharge pipe 18 and the suction pipe 17, temperature sensors provided on the heat source side heat exchanger 16, and temperatures provided on the liquid refrigerant pipe 20. Includes sensors, temperature sensors that measure the temperature of heat source air, and the like.
- the heat source side control device 42 is connected to the user side control device 44 by the communication line 46.
- the heat source side control device 42 and the user side control device 44 exchange control signals of the air conditioner 1 via the communication line 46.
- the control signal of the air conditioner 1 is a signal for controlling various devices of the air conditioner 1.
- the heat source side control device 42 has a heat source side air conditioning control unit 42a as a functional unit that controls various devices of the heat source side unit 2.
- the heat source side air conditioning control unit 42a functions as an air conditioning control unit that controls the operation of the air conditioning device 1 together with the user side air conditioning control unit 44a and the control device 48a of the user side control device 44.
- the air-conditioning control unit controls the operation of various devices of the air-conditioning device 1 based on an instruction to the remote controller 48, measured values of various sensors provided on the heat source side unit 2 and the user side unit 3, and the like.
- the air conditioning control unit controls the operation of the flow direction switching mechanism 10 during the cooling operation, and the heat source side heat exchanger 16 functions as a refrigerant radiator to change the state of the refrigerant circuit 6, and the utilization side heat exchanger 32 acts as a refrigerant. Switch to the above-mentioned first state that functions as an evaporator of.
- the air conditioning control unit operates the compressor 8, the heat source side fan 15, and the user side fan 33.
- the air conditioning control unit uses the compressor 8, the heat source side fan 15, the user side fan 33, the motor rotation speed, the heat source side expansion mechanism 12, and the use, based on the measured values and set temperatures of various sensors.
- the opening degree of the electronic expansion valve which is an example of the side expansion mechanism 31, is adjusted to a predetermined opening degree.
- the air conditioning control unit controls the operation of the flow direction switching mechanism 10 during the heating operation, and the heat source side heat exchanger 16 functions as a refrigerant evaporator to change the state of the refrigerant circuit 6, and the utilization side heat exchanger 32 acts as a refrigerant. Switch to the above-mentioned second state that functions as a radiator of.
- the air conditioning control unit operates the compressor 8, the heat source side fan 15, and the user side fan 33.
- the air conditioning control unit uses the compressor 8, the heat source side fan 15, the user side fan 33 motor speeds, the heat source side expansion mechanism 12, and the use based on the measured values and set temperatures of various sensors.
- the opening degree of the electronic expansion valve which is an example of the side expansion mechanism 31, is adjusted to a predetermined opening degree.
- the heat source side air conditioning control unit 42a controls various devices of the heat source side unit 2 at the time of leakage.
- the leakage control performed by the heat source side air conditioning control unit 42a is, for example, a control that prohibits the start of the compressor 8 and the heat source side fan 15 of the stopped heat source side unit 2.
- the leakage control performed by the heat source side air conditioning control unit 42a is a control for stopping the compressor 8 and the heat source side fan 15 of the heat source side unit 2 during operation.
- the heat source side air conditioning control unit 42a When the compressor 8 and the heat source side fan 15 of the heat source side unit 2 during operation are stopped as control at the time of leakage, the heat source side air conditioning control unit 42a performs the compressor 8 and the heat source in the same manner as when the normal air conditioning operation is stopped.
- the side fan 15 may be stopped.
- the heat source side air conditioning control unit 42a may stop the compressor 8 and the heat source side fan 15 in a manner different from that when the normal air conditioning operation is stopped.
- the user-side control device 44 includes a microcontroller unit (MCU) and various electric circuits and electronic circuits (not shown).
- the MCU includes a CPU, a memory, an I / O interface, and the like.
- Various programs for execution by the CPU of the MCU are stored in the memory of the MCU.
- the various functions of the user-side control device 44 described below may be realized by hardware, software, or by cooperation between hardware and software.
- some of the various functions of the user-side control device 44 described below may be executed by a control device provided separately from the user-side control device 44.
- the function of the refrigerant leakage notification device 80 which will be described later, as a controller may be executed by a control device provided separately from the user-side control device 44.
- the user-side control device 44 is electrically connected to various devices of the user-side unit 3 including the user-side expansion mechanism 31 and the user-side fan 33 (see FIG. 2). Further, the user-side control device 44 is electrically connected to a sensor (not shown) provided in the user-side unit 3.
- the sensors include a temperature sensor provided in the user-side heat exchanger 32 and the liquid-side refrigerant pipe connected to the user-side heat exchanger 32, and a temperature for measuring the temperature of the air-conditioned space. Including sensors and the like.
- the user side control device 44 is connected to the heat source side control device 42 by the communication line 46 as described above. Further, the user side control device 44 is communicably connected to the remote controller 48 by the communication line 46.
- the user-side control device 44 is communicably connected to the refrigerant sensor 34 by a signal line 96.
- the user-side control device 44 receives the detection signal DS output by the refrigerant sensor 34 via the signal line 96.
- the user-side control device 44 has a storage unit 44g that stores various information as a functional unit. Further, the user-side control device 44 has a user-side air conditioning control unit 44a as a functional unit. Further, the user-side control device 44 has a notification control unit 44b, a determination unit 44c, a reception unit 44d, an output unit 44e, and a determination unit 44f, which function as a controller of the refrigerant leakage notification device 80, as functional units.
- the functional units 44b to 44f will be described later.
- the user-side air-conditioning control unit 44a controls the operation of various devices of the user-side unit 3.
- the user-side air-conditioning control unit 44a functions as an air-conditioning control unit that controls the air-conditioning device 1 together with the heat source-side air-conditioning control unit 42a and the control device 48a. Since the air conditioning control unit has been described above, the description thereof will be omitted.
- the user-side air-conditioning control unit 44a controls various devices of the user-side unit 3 at the time of leakage.
- the leakage control performed by the user-side air conditioning control unit 44a is, for example, a control that prohibits the activation of the user-side fan 33 of the user-side unit 3 that is stopped.
- the leakage control performed by the user-side air conditioning control unit 44a is a control that prohibits the activation of the user-side fan 33 of the user-side unit 3 during operation.
- the user-side air-conditioning control unit 44a may stop the user-side fan 33 in the same manner as when the normal air-conditioning operation is stopped. Alternatively, the user-side air-conditioning control unit 44a may stop the user-side fan 33 in a manner different from that when the normal air-conditioning operation is stopped.
- the remote controller 48 is an example of an operation signal transmission unit.
- the remote controller 48 is a device for operating the air conditioner 1.
- the remote controller 48 transmits various signals for operating the air conditioner 1 to the user side controller 44.
- the remote controller 48 is mounted on the wall of the air-conditioned space, for example, although the installation position is not limited.
- the remote controller 48 is communicably connected to the user-side control device 44 by a communication line 46.
- the remote controller 48 does not have to be fixed at a predetermined position such as a wall.
- the remote controller 48 is a portable remote controller, and may be configured to be able to communicate with the user-side control device 44 by wireless communication.
- the remote controller 48 includes a microcontroller unit (MCU) and a control device 48a having various electric circuits and electronic circuits (not shown).
- the MCU includes a CPU, a memory, an I / O interface, and the like.
- Various programs for execution by the CPU of the MCU are stored in the memory of the MCU.
- the various functions of the control device 48a described below may be realized by hardware, software, or by cooperation between hardware and software.
- the control device 48a functions as, for example, a determination unit 48a1 and a transmission unit 48a2.
- the remote controller 48 includes an operation unit 48d, a display unit 48b, and a speaker 48c.
- the display unit 48b and the speaker 48c function as a notification unit 70 of the refrigerant leakage notification device 80.
- the operation unit 48d is a functional unit for a person to perform various operations on the air conditioner 1.
- the operation unit 48d includes, for example, various switches.
- the operation unit 48d may include a touch panel provided on the display as the display unit 48b.
- the operation unit 48d may include a microphone for receiving a voice instruction.
- the operation unit 48d is not directly operated by a person, and may accept, for example, a signal transmitted by a person from a mobile terminal such as a smartphone as an operation for the air conditioner 1.
- the remote controller 48 transmits various signals to the air conditioner 1 in response to an operation on the operation unit 48d. Specifically, when an operation is performed on the operation unit 48d, the determination unit 48a1 of the control device 48a determines the operation content received by the operation unit 48d. Although not limited, the operation contents received by the operation unit 48d include, for example, an operation of starting the operation of the air conditioner 1, an operation of stopping the operation of the air conditioner 1, an operation of setting the wind direction and the air volume of the user unit 3, and the air conditioner 1. Including the setting operation of the set temperature of.
- the transmission unit 48a2 of the control device 48a transmits a signal according to the operation content determined by the determination unit 48a1 to the user side control device 44 via the communication line 46. For example, if the operation content determined by the determination unit 48a1 is the operation start operation of the air conditioner 1, the transmission unit 48a2 transmits the operation start instruction signal to the user side control device 44 via the communication line 46.
- the operation unit 48d is also used as a trigger for transmitting an output instruction signal instructing the refrigerant leakage notification device 80 to execute the test operation.
- the notification unit 70 causes at least sound and light. Perform a test action that emits one.
- the transmission unit 48a2 determines that the operation received by the operation unit 48d is a predetermined operation and transmits the operation signal C
- the transmission unit 48a2 gives an output instruction for testing the refrigerant leak notification device 80.
- the signal is also transmitted to the user side control device 44 via the communication line 46.
- the output instruction signal is a signal for causing the output unit 44e of the user-side control device 44 to output the test signal TS.
- the transmission unit 48a2 sends the user side control device 44 the operation signal C of the air conditioner 1. Sends an operation start instruction signal. At this time, the transmission unit 48a2 transmits an output instruction signal to the user-side control device 44.
- the transmission unit 48a2 sends the user side control device 44 to the operation signal C to operate the air conditioner 1. Send a stop instruction signal. At this time, the transmission unit 48a2 transmits an output instruction signal to the user-side control device 44.
- the transmission unit 48a2 is the user side control device.
- a signal instructing these setting changes is transmitted to 44 as an operation signal C.
- the transmission unit 48a2 transmits an output instruction signal to the user-side control device 44.
- the transmission unit 48a2 transmits an output instruction signal to the user-side control device 44, triggered by the operation on the operation unit 48d.
- the transmission unit 48a2 may transmit the output instruction signal regardless of the operation on the operation unit 48d.
- the remote controller 48 is configured to transmit the operation start instruction signal of the air conditioner 1 as the operation signal C at a predetermined timing by the timer setting
- the transmission unit 48a2 transmits the operation start instruction signal. At that time, an output instruction signal may be transmitted.
- the display unit 48b displays various settings of the air conditioner 1 and the state of the air conditioning target space. Further, in the present embodiment, the display unit 48b also functions as a notification unit 70 of the refrigerant leakage notification device 80, and by turning on or blinking a backlight (not shown), the leakage of the refrigerant is notified by light. Further, in the present embodiment, the display unit 48b also functions as a display unit of the refrigerant leakage notification device 80, and displays the content for notifying the leakage of the refrigerant by characters or figures.
- the speaker 48c functions as a notification unit 70 of the refrigerant leakage notification device 80, and notifies the refrigerant leakage by sound.
- the speaker 48c may output a sound according to the operation or operation of the air conditioner 1 in addition to notifying the leakage of the refrigerant by sound.
- the refrigerant leakage notification device 80 is a device that detects a refrigerant by a refrigerant sensor 34 and notifies the leakage of the refrigerant with at least one of sound and light when the refrigerant leakage is detected.
- the refrigerant leak notification device 80 mainly includes a refrigerant sensor 34, a notification unit 70, a controller, and a remote controller 48.
- the notification unit 70 is incorporated in the remote controller 48.
- a part of the user-side control device 44 of the air conditioner 1 functions as a controller.
- the user-side control device 44 has a notification control unit 44b, a determination unit 44c, a reception unit 44d, an output unit 44e, a determination unit 44f, and a storage unit 44g as functional units of the controller of the refrigerant leakage notification device 80.
- the refrigerant leak notification device 80 includes a test operation mode and a main operation mode as operation modes.
- the main difference between the test operation mode and the main operation mode is that the notification mode of the notification unit 70 differs between the test operation mode and the main operation mode.
- the notification unit 70 stops the notification by sound and light at the test operation mode time t1.
- the time t1 for the test operation mode is not limited, but is, for example, 1 second. Further, when the refrigerant leakage notification device 80 operates in the test operation mode, the notification unit 70 notifies with the sound of the first volume V1.
- the notification unit 70 continues the notification by sound and light longer than the test operation mode time t1. For example, when the refrigerant leakage notification device 80 operates in this operation mode, the notification unit 70 continues notification by sound and light until a notification release switch (not shown) is operated. However, the present invention is not limited to this, and when the refrigerant leakage notification device 80 operates in this operation mode, the notification unit 70 tests notification by sound and light even if the alarm release switch is not operated. It may end in the main operation mode time (for example, 10 minutes) longer than the working time t1. Further, when the refrigerant leakage notification device 80 operates in this operation mode, the notification unit 70 notifies with the sound of the second volume V2.
- the second volume V2 is a louder volume than the first volume V1.
- the determination unit 44c determines whether or not the refrigerant has leaked based on the detection signal DS (see the arrow A1 in FIG. 1) output by the refrigerant sensor 34.
- the notification control unit 44b transmits this operation control signal to the remote controller 48 so that the notification unit 70 performs a notification operation by sound and light (in FIG. 1). See the arrow in A2). Then, the notification unit 70 performs a notification operation when the refrigerant leakage notification device 80 operates in this operation mode.
- the output unit 44e transmits the test signal TS to the determination unit 44c (in FIG. 4). See the arrow in B2).
- the determination unit 44c determines that the refrigerant is leaking.
- the notification control unit 44b sends a test operation control signal to the remote controller 48 so that the notification unit 70 performs a notification operation with sound and light. (See arrow B3 in FIG. 4).
- the notification unit 70 performs a notification operation when the refrigerant leakage notification device 80 operates in the test operation mode.
- the determination unit 44c does not determine the type of the signal that the determination unit 44c has determined that the refrigerant received is leaking.
- the determination unit 44f determines whether the signal received by the determination unit 44c that the refrigerant is leaking is the detection signal DS or the test signal TS. Specifically, when the determination unit 44c determines that the refrigerant is leaking, the notification control unit 44b remotes either the main operation control signal or the test operation control signal according to the determination result of the determination unit 44f. It transmits to the controller 48.
- the refrigerant leakage notification device 80 determines that the refrigerant is leaking by the determination unit 44c, and the determination unit 44f determines that the refrigerant received by the determination unit 44c is leaking.
- the refrigerant leak notification device 80 determines that the refrigerant is leaking by the determination unit 44c, and the determination unit 44f determines that the refrigerant received by the determination unit 44c is leaking, which is the test signal TS. If it is determined to exist, it operates in the test operation mode.
- the display unit 48b determines that the determination unit 44c is leaking the refrigerant, and the determination unit 44f determines that the signal received by the determination unit 44c is leaking the refrigerant is the detection signal DS.
- the content of notifying the leakage of the refrigerant is displayed in characters or figures.
- the display unit 48b displays the content for notifying the leakage of the refrigerant in characters or figures.
- the display unit 48b determines that the determination unit 44c has determined that the refrigerant is leaking, and the determination unit 44f determines that the refrigerant received by the determination unit 44c is leaking is the test signal TS.
- the display unit 48b may indicate that the refrigerant leakage notification device 80 is being tested.
- the refrigerant sensor 34 is an example of a detection unit.
- the refrigerant sensor 34 is a sensor that detects the refrigerant.
- the refrigerant leakage notification device 80 has only one refrigerant sensor 34, but is not limited to this, and may have a plurality of refrigerant sensors 34.
- the refrigerant sensor 34 is provided, for example, in the casing 35 of the user-side unit 3. As shown in FIG. 3, the refrigerant sensor 34 is attached to the bottom surface of the drain pan 38 arranged below the user-side heat exchanger 32. The refrigerant sensor 34 may be attached to a place other than the drain pan 38, for example, the bottom surface of a member connecting between the bell mouth 37 and the drain pan 38, the bottom surface of the bell mouth 37, the inner surface of the casing 35, and the like. Further, the refrigerant sensor 34 may be installed outside the casing 35 of the user-side unit 3.
- the refrigerant sensor 34 is, for example, a semiconductor type sensor.
- the semiconductor-type refrigerant sensor 34 has a semiconductor-type detection element (not shown).
- the electrical conductivity of a semiconductor-type detection element changes depending on whether there is a refrigerant gas in the surroundings or a state in which the refrigerant gas is present. Therefore, when the refrigerant gas is present around the semiconductor type detection element, the refrigerant sensor 34 outputs a relatively large current as a detection signal DS. On the other hand, when there is no refrigerant gas around the semiconductor type detection element, the refrigerant sensor 34 outputs a relatively small current as a detection signal DS.
- the type of the refrigerant sensor 34 is not limited to the semiconductor type, and any sensor that can detect the refrigerant gas may be used.
- the refrigerant sensor 34 may be an infrared sensor and may be a sensor that outputs a detection signal DS according to the detection result of the refrigerant.
- the notification unit 70 notifies the leakage of the refrigerant at at least one of sound and light.
- the notification unit 70 is incorporated in the remote controller 48.
- the notification unit 70 has a display unit 48b that emits light and a speaker 48c that emits sound, and notifies the leakage of the refrigerant by both sound and light.
- the display unit 48b of the remote controller 48 notifies by light, but the remote controller 48 may have a lamp that emits light as the notification unit 70, in addition to the display unit 48b.
- the notification unit 70 When the test operation control signal is transmitted from the notification control unit 44b to the remote controller 48, the notification unit 70 performs a notification operation when the refrigerant leakage notification device 80 operates in the test operation mode. When this operation control signal is transmitted from the notification control unit 44b to the remote controller 48, the notification unit 70 performs a notification operation when the refrigerant leakage notification device 80 operates in the main operation mode.
- the notification unit 70 is incorporated in the remote controller 48, but the refrigerant leakage notification device 80 is an alarm device that functions as a notification unit and is independent of the remote controller 48, as shown in FIG. It may have 70a.
- the alarm 70a includes a lamp 72 and a speaker 74.
- the alarm device 70a is connected to the user side control device 44 by a signal line 47, and receives the main operation control signal and the test operation control signal of the notification control unit 44b via the signal line 47.
- the alarm device 70a notifies by light and sound according to the received main operation control signal and test operation control signal.
- the alarm 70a may be attached to the decorative plate 36 of the user-side unit 3. Further, the alarm 70a may be attached to the wall or ceiling of the air-conditioned space independently of the air-conditioning device 1.
- the notification control unit 44b controls the operation of the notification unit 70.
- the notification control unit 44b is an example of a processing unit.
- the notification control unit 44b causes the notification unit 70 to execute a test operation of emitting at least one of sound and light when the remote controller 48 transmits an operation signal C to the air conditioner 1.
- the notification control unit 44b refers to the remote controller 48. An operation control signal is transmitted (see FIG. 1).
- the notification control unit 44b is the refrigerant leakage notification device.
- the notification unit 70 is operated in the manner in which the 80 operates in this operation mode.
- the notification control unit 44b refers to the remote controller 48.
- the test operation control signal is transmitted (see FIG. 4).
- the notification control unit 44b is the refrigerant leakage notification device.
- the notification unit 70 is operated in the manner in which the 80 operates in the test operation mode.
- the test signal TS is a signal output to the determination unit 44c when the remote controller 48 transmits the operation signal C to the air conditioner 1. Therefore, in other words, the notification control unit 44b causes the notification unit 70 to execute a test operation when the remote controller 48 transmits the operation signal C to the air conditioner 1.
- the judgment unit 44c is a functional unit that determines the leakage of the refrigerant based on the input signal. For example, when a semiconductor-type refrigerant sensor is used as the refrigerant sensor 34, the determination unit 44c determines that the refrigerant is leaking when the magnitude of the current value of the input signal exceeds the reference value.
- the determination unit 44c determines that the refrigerant is leaking when the magnitude of the current value of the input detection signal DS exceeds the reference value.
- the determination unit 44c determines that the refrigerant is leaking when the test signal TS output by the output unit 44e is input. This is because the test signal TS is a signal whose magnitude of the current value exceeds the reference value. In other words, the test signal TS is a signal corresponding to the detection signal DS output by the refrigerant sensor 34 when the refrigerant leaks.
- the test signal TS is a signal input to the electric circuit connecting the refrigerant sensor 34 and the determination unit 44c.
- the determination unit 44c determines that the refrigerant is leaking, the determination unit 44c notifies the notification control unit 44b and the determination unit 44f that it is determined that the refrigerant is leaking.
- the reception unit 44d transmits from the remote controller 48 via the communication line 46 when a predetermined operation is performed for the operation unit 48d to control the operation of the air conditioner 1. Accepts the incoming output instruction signal.
- the output unit 44e outputs the test signal TS to the electric circuit connecting the refrigerant sensor 34 and the determination unit 44c so that the test signal TS is input to the determination unit 44c. To do.
- the output unit 44e outputs a test signal TS in which the magnitude of the current value is larger than the reference value as described above.
- the determination unit 44f determines whether the signal received by the determination unit 44c is the detection signal DS or the test signal TS.
- the signal received by the determination unit 44c means a signal received by the determination unit 44c and determined by the determination unit 44c that the refrigerant is leaking.
- the determination unit 44f determines whether the signal received by the determination unit 44c is the detection signal DS or the test signal TS.
- determination method of the determination unit 44f for example, the following determination method 1 or determination method 2 is used.
- the determination method of the determination unit 44f described here is only an example, and other determination methods may be used.
- the determination unit 44f receives the test signal TS as the signal received by the determination unit 44c. Is determined to be. Further, if the output unit 44e does not output the test signal TS within the first period before the determination unit 44c receives the signal, the determination unit 44f uses the detection signal DS as the signal received by the determination unit 44c. Judge that there is.
- the first period may be stored in advance in the storage unit 44g of the user-side control device 44, or may be configured to be set by the administrator of the refrigerant leakage notification device 80 or the like. The first period is, for example, 5 seconds, but is not limited.
- the determination unit 44f determines that the signal received by the determination unit 44c within the first period after the output unit 44e outputs the test signal TS is the test signal TS. Further, the determination unit 44f determines that the signal other than the signal received by the determination unit 44c within the first period after the output unit 44e outputs the test signal TS is the detection signal DS.
- the determination unit 44f detects the output timing of the test signal TS of the output unit 44e and acquires the elapsed time from that point. The process of step S1 is repeated until the determination unit 44f receives a notification that the determination unit 44c has determined that the refrigerant transmitted is leaking.
- step S1 it is determined whether or not the determination unit 44f has received the notification that the refrigerant transmitted by the determination unit 44c has been determined to be leaking.
- the determination unit 44f receives a notification that the refrigerant transmitted by the determination unit 44c has been determined to be leaking (YES in step S1)
- the process proceeds to step S2.
- the process of step S1 is repeated until the determination unit 44f receives a notification that the determination unit 44c has determined that the refrigerant transmitted is leaking.
- step S2 the determination unit 44f determines whether or not the time from when the output unit 44e outputs the test signal TS to when the determination unit 44c receives the signal is within the first period.
- the determination unit 44f determines that the signal received by the determination unit 44c is the test signal TS. To do. Then, the process proceeds to step S3.
- the determination unit 44f detects the signal received by the determination unit 44c and detects the signal DS. Is determined.
- the determination unit 44f has a first period of time from the output unit 44e outputting the test signal TS until the determination unit 44c receives the signal. It is determined that the signal is not within the range, and the signal received by the determination unit 44c is determined to be the detection signal DS. Then, the process proceeds to step S5.
- the determination unit 44f may make a determination as follows.
- the determination unit 44f acquires the time until the output unit 44e outputs the test signal TS and then the determination unit 44c determines that there is a refrigerant leak and outputs a signal for notifying the refrigerant leak, and the acquired time. Is shorter than the predetermined time, the signal received by the determination unit 44c is determined as the test signal TS. Further, when the time required for the determination unit 44f to notify that the determination unit 44c has determined that the refrigerant is leaking is longer than the predetermined time after the output unit 44e outputs the test signal TS, the determination unit 44c Determines that the signal received by is the detection signal DS.
- the determination unit 44f notifies that the determination unit 44c has determined that the refrigerant is leaking after the output unit 44e outputs the test signal TS. It is determined that the time until the determination is longer than the predetermined time, and the signal received by the determination unit 44c is determined to be the detection signal DS.
- the predetermined time may be determined in consideration of the above-mentioned first period and the time required for the determination unit 44c to determine the refrigerant leakage. When the time required for the determination unit 44c to determine the refrigerant leakage is very short as compared with the first period, the time required for the determination unit 44c to determine the refrigerant leakage may be ignored.
- step S3 the notification control unit 44b transmits a test operation control signal to the remote controller 48 having the notification unit 70 via the communication line 46. Then, the notification unit 70 receives the test operation control signal and performs the notification operation in the manner in which the refrigerant leakage notification device 80 operates in the test operation mode (step S4). In other words, the notification unit 70 lights or blinks the display unit 48b during the test operation mode time t1, and emits an alarm sound from the speaker 48c. At this time, the speaker 48c of the notification unit 70 emits an alarm sound at the first volume V1.
- step S5 the notification control unit 44b transmits the operation control signal to the remote controller 48 having the notification unit 70. Then, the notification unit 70 receives the operation control signal and performs the notification operation in the manner in which the refrigerant leakage notification device 80 operates in the main operation mode (step S6). In other words, the notification unit 70 lights or blinks the display unit 48b and emits an alarm sound from the speaker 48c until the alarm release switch (not shown) is operated. At this time, the speaker 48c of the notification unit 70 emits an alarm sound at a second volume V2 which is larger than the first volume V1.
- the determination unit 44f determines that the signal received by the determination unit 44c within the second period after the reception unit 44d receives the output instruction is the test signal TS.
- the determination unit 44f determines that the signals received by the determination unit 44c other than the signals received within the second period after the reception unit 44d receives the output instruction are the detection signal DS.
- the second period may be stored in advance in the storage unit 44g of the user-side control device 44, or may be configured to be configurable by the administrator of the refrigerant leakage notification device 80 or the like.
- the second period is, for example, 5 seconds, but is not limited.
- the determination unit 44f detects the timing when the reception unit 44d receives the output instruction signal, and acquires the elapsed time from that point.
- step S11 it is determined whether or not the determination unit 44f has received the notification that the refrigerant transmitted by the determination unit 44c has been determined to be leaking.
- the determination unit 44f receives a notification that the refrigerant transmitted by the determination unit 44c has been determined to be leaking (YES in step S11)
- the process proceeds to step S12.
- the process of step S11 is repeated until the determination unit 44f receives a notification that the determination unit 44c has determined that the refrigerant transmitted is leaking.
- step S12 the determination unit 44f determines whether or not the time from the reception unit 44d receiving the output instruction signal until the determination unit 44c receives the signal is within the second period.
- the determination unit 44f determines that the signal received by the determination unit 44c is the test signal TS. To do. Then, the process proceeds to step S13.
- the determination unit 44f detects the signal received by the determination unit 44c when the time from the reception unit 44d receiving the output instruction signal to the determination unit 44c receiving the signal is not within the second period. Is determined. Then, the process proceeds to step S15.
- steps S13 to S16 are the same as the processes of steps S3 to S6 in the flowchart of FIG. 6a, description thereof will be omitted here.
- the air-conditioning system 100 of the present embodiment includes an air-conditioning device 1, a remote controller 48, a refrigerant sensor 34, a notification unit 70, and a notification control unit 44b.
- the air conditioning system 100 is an example of a refrigeration cycle system.
- the air conditioner 1 is an example of a refrigeration cycle device.
- the remote controller 48 is an example of an operation signal transmission unit.
- the refrigerant sensor 34 is an example of a detection unit.
- the notification control unit 44b is an example of a processing unit.
- the air conditioner 1 has a refrigerant circuit 6.
- the remote controller 48 transmits an operation signal C to the air conditioner 1.
- the refrigerant sensor 34 detects the leakage of the refrigerant.
- the notification unit 70 When the refrigerant sensor 34 detects the leakage of the refrigerant, the notification unit 70 emits at least one of sound and light to notify the leakage of the refrigerant.
- the notification control unit 44b causes the notification unit 70 to execute a test operation of emitting at least one of sound and light when the remote controller 48 transmits the operation signal C to the air conditioner 1.
- the operation of the notification unit 70 can be checked. Therefore, the administrator of the air conditioning system 100 can execute the operation check of the notification unit 70 without performing a special operation, and the labor of managing the air conditioning system 100 can be reduced.
- the operation of the notification unit 70 is checked when the remote controller 48 is used to operate the air conditioning device 1. Therefore, it is possible to routinely check whether or not the notification unit 70 operates normally, and it is unlikely that the notification unit 70 will not operate when an actual refrigerant leaks.
- the remote controller 48 has a notification unit 70.
- the operation for the air-conditioning device 1 when the operation for the air-conditioning device 1 is transmitted from the remote controller 48, it can be confirmed at hand whether the notification unit 70 is operating normally, so that it is easy to check the operation of the notification unit 70. is there.
- the operation signal C is at least one of the start signal of the air conditioner 1 and the stop signal of the air conditioner 1.
- the air conditioning system 100 of the present embodiment it is possible to routinely check whether the notification unit 70 operates normally, and it is unlikely that the notification unit 70 will not operate when an actual refrigerant leaks.
- the notification unit 70 emits at least one of sound and light during the time when the refrigerant sensor 34 detects the leakage of the refrigerant. Shorter than the time it emits at least one of the lights.
- the user of the air-conditioning system 100 can check the notification unit 70 and the actual refrigerant. The possibility of misjudging that it is a leak can be reduced.
- the notification of the notification unit 70 since the notification of the notification unit 70 is completed in a short time at the time of the test, the discomfort given to the user of the air conditioning system 100 by the sound and light emitted by the notification unit 70 is likely to be suppressed.
- the notification unit 70 performs notification by sound.
- the volume of the sound emitted by the notification unit 70 during the test operation is lower than the volume of the sound emitted by the notification unit 70 when the refrigerant sensor 34 detects the leakage of the refrigerant.
- the volume of the alarm sound differs between the test operation and the main operation of notifying the actual refrigerant leakage, so that the user of the air conditioning system 100 checks the actual refrigerant leakage and the operation of the notification unit 70. It is possible to reduce the possibility of erroneously determining.
- the volume of the sound emitted by the notification unit 70 is suppressed to be small during the test, the discomfort that the sound emitted by the notification unit 70 gives to the user of the air conditioning system 100 is likely to be suppressed.
- the air conditioning system 100 of the present embodiment includes a determination unit 44c and an output unit 44e.
- the determination unit 44c receives the detection signal DS corresponding to the detection result of the refrigerant output by the refrigerant sensor 34, and determines the leakage of the refrigerant based on the received detection signal DS.
- the output unit 44e outputs the test signal TS to the determination unit 44c when the remote controller 48 transmits the operation signal C to the air conditioner 1.
- the output unit 44e is different from the refrigerant sensor 34.
- the test signal TS is a signal that, when received by the determination unit 44c, determines that the refrigerant is leaking.
- the notification control unit 44b causes the notification unit 70 to execute a test operation when the determination unit 44c determines the leakage of the refrigerant in response to the test signal TS.
- the air conditioning system 100 of the present embodiment not only the inspection of whether or not the notification unit 70 operates, but also the comprehensive inspection of the leakage notification circuit including the judgment unit 44c for determining the refrigerant leakage to the notification unit 70 can be performed. , It is possible to realize an air conditioning system 100 with high reliability regarding notification of refrigerant leakage.
- the refrigerant is flammable.
- the notification unit 70 is frequently inspected and has high reliability in notifying the refrigerant leakage, so that high safety can be realized even when a flammable refrigerant is used.
- the air conditioning system 100A may be configured as shown in FIG. The difference from the air conditioning system 100 shown in FIG. 4 will be described.
- the air conditioning system 100A does not have a reception unit 44d, an output unit 44e, and a determination unit 44f.
- the determination of refrigerant leakage based on the detection signal DS of the refrigerant sensor 34 by the determination unit 44c of the air conditioning system 100A is the same as that of the determination unit 44c of the air conditioning system 100 of the above embodiment.
- the test signal TS of the above embodiment is not input to the determination unit 44c of the air conditioning system 100A.
- the notification control unit 44b of the air conditioning system 100A has the notification unit 70 built in the remote controller 48 notify the refrigerant leakage by light and sound when the refrigerant sensor 34 detects the refrigerant leakage. Controls the operation of the notification unit 70.
- the test signal TS is not input to the determination unit 44c. Therefore, when the notification unit 70 is operated in a test, the notification control unit 44b notifies. The operation of unit 70 is not controlled.
- the air conditioning system 100A differs from the above embodiment in that the remote controller 48 has a processing unit 71.
- the processing unit 71 transmits the test operation control signal Ba to the notification unit 70 when the transmission unit 48a2 transmits the operation signal C to the user side control device 44 as a result of the determination of the operation content for the operation unit 48d by the determination unit 48a1. To do.
- the processing unit 71 transmits a test operation control signal Ba to the notification unit 70.
- the notification unit 70 executes the same operation as the test operation mode of the above embodiment.
- the test signal TS is not input to the judgment unit 44c, when checking the refrigerant leakage notification, a comprehensive inspection of the leakage notification circuit including the judgment unit 44c to the notification unit 70 is performed. I can't.
- the remote controller 48 transmits the operation signal C, the operation check regarding the lighting / blinking of the backlight of the display unit 48b and the sound output of the speaker 74 is performed.
- the notification unit 70 may have only one of the display unit 48b and the speaker 48c as a means for notifying the refrigerant leakage. Further, the notification unit 70 may further include a refrigerant leakage notification means other than the display unit 48b and the speaker 48c, for example, a vibration device.
- the operation signal transmission unit is not limited to the remote controller 48 that is directly operated by a person.
- the operation signal transmission unit may be a signal transmission unit that receives an instruction from an external device and transmits various signals to the air conditioner 1.
- the operation signal transmitter is connected to a mobile terminal or equipment management device so as to be able to communicate by wire or wirelessly.
- the operation signal transmission unit is configured to receive instructions from the mobile terminal or the equipment management device and transmit various signals including the operation signal C to the air conditioner 1. Then, when the operation signal transmission unit transmits the operation signal C to the air conditioner 1, the operation signal transmission unit transmits an output instruction signal to the reception unit 44d, similarly to the remote controller 48 of the above embodiment. May be good.
- the refrigerant leakage notification device 80 has two operation modes, but is not limited to these.
- the refrigerant leakage notification device 80 has a single operation mode, and when the determination unit 44c determines that the refrigerant is leaking regardless of the type of the signal input to the determination unit 44c, the notification unit 70 is notified. The same notification operation may be performed.
- the refrigerant leakage notification device 80 since the refrigerant leakage notification device 80 has the main operation mode and the test operation mode, it is possible to reduce the possibility that the user mistakes the test as a refrigerant leakage.
- the remote controller 48 transmits an output instruction signal to the user side control device 44, and the output unit 44e of the user side control device 44 outputs the test signal TS.
- the air conditioning system and the refrigerant leakage notification device may be configured as, for example, the air conditioning system 200 and the refrigerant leakage notification device 280 shown in FIG.
- the differences between the air conditioning system 200 and the refrigerant leakage notification device 280 from the air conditioning system 100 and the refrigerant leakage notification device 80 will be mainly described, and the description of the same points will be omitted.
- the same reference numerals will be given to the same configurations as those in the above embodiment.
- the air-conditioning system 200 and the refrigerant leakage notification device 280 are different from the air-conditioning system 100 and the refrigerant leakage notification device 80 of the above-described embodiment in that a part of the function of the remote controller 248 and a part of the function of the user side control device 244 are different. ..
- the remote controller 248 does not transmit an output instruction signal to the user control device 244.
- the remote controller 248 mainly transmits a signal for controlling the air conditioner 1 to the user side controller 244.
- the control signal of the air conditioner 1 includes an operation signal C.
- the operation signal C is, for example, at least one of an operation start instruction signal of the air conditioner 1, an operation stop instruction signal of the air conditioner 1, a wind direction and an air volume of the user unit 3, and a setting change signal of the set temperature of the air conditioner 1. Including.
- the operation signal C may be a signal for controlling the air conditioner 1 other than these.
- the function of the reception unit 244d of the user side control device 244 is different from the function of the reception unit 44d of the user side control device 44 of the above embodiment. Specifically, the reception unit 244d receives operation signals for controlling various air conditioners 1.
- the user-side control device 244 has an identification unit 244h, unlike the user-side control device 44.
- the identification unit 244h identifies the control signals of various air conditioners 1 received from the remote controller 248 by the reception unit 244d.
- the identification unit 244h functions as a part of the air conditioning control unit of the air conditioner 1, and notifies the user side air conditioning control unit 44a that the control signal of the type of air conditioner 1 identified from the remote controller 248 has been transmitted. To do.
- the air conditioning control unit of the air conditioner 1 controls the operation of each unit of the air conditioner 1 based on the notification from the identification unit 244h.
- the operation of the output unit 244e is partially different from the operation of the output unit 44e of the user-side control device 44 of the above embodiment.
- the output unit 44e of the above embodiment outputs the test signal TS when the reception unit 44d receives the output instruction signal, whereas the output unit 244e has the reception unit 244d from the remote controller 248.
- the identification unit 244h identifies that the type of the received control signal for the air conditioner 1 is a predetermined type of operation signal C, the output instruction signal of the test signal TS is transmitted.
- the remote controller 48 transmits an output instruction signal to the user side control device 44, and the output unit 44e outputs the test signal TS.
- the air conditioning system and the refrigerant leakage notification device may be configured as, for example, the air conditioning system 300 and the refrigerant leakage notification device 380 shown in FIG.
- the differences between the air conditioning system 300 and the refrigerant leakage notification device 380 from the air conditioning system 100 and the refrigerant leakage notification device 80 will be mainly described, and the description of the same points will be omitted.
- the same reference numerals will be given to the same configurations as those in the above embodiment.
- the air conditioning system 300 and the refrigerant leakage notification device 380 differ from the air conditioning system 100 and the refrigerant leakage notification device 80 of the above embodiment in a part of the functions of the remote controller 348 and a part of the functions of the user side control device 344. ..
- the remote controller 348 does not transmit the output instruction signal to the user side control device 344, but directly outputs the test signal TS to the determination unit 44c of the user side control device 344.
- the remote controller 348 has an output unit 48a3 that outputs a test signal TS to the determination unit 44c.
- the output unit 48a3 transmits the test signal TS to the determination unit 44c when the determination unit 48a1 determines that the operation received by the operation unit 48d is a predetermined operation and the transmission unit 48a2 transmits the operation signal C. (See arrow B2 in FIG. 9).
- FIG. 9 depicts a mode in which the test signal TS is transmitted by a signal line different from the communication line 46, the communication line 46 may be used for transmitting the test signal TS.
- the user-side control device 344 does not have a reception unit 44d and an output unit 44e.
- the determination unit 44f determines, for example, whether the signal received by the determination unit 44c is the detection signal DS or the test signal TS by the same method as the determination method 1 described in the above embodiment.
- Air conditioner (refrigeration cycle device) 6 Refrigerant circuit 34 Refrigerant sensor (detector) 44b Notification control unit (processing unit) 44c Judgment unit 44e, 48a3, 244e Output unit 48 Remote controller (operation signal transmission unit) 70 Notification unit 70a Alarm (notification unit) 71 Processing unit 100, 100A, 200, 300 Air conditioning system (refrigeration cycle system) C Operation signal DS detection signal TS test signal
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- General Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
冷媒漏洩検知時に冷媒漏洩を報知する報知部を備える冷凍サイクルシステムであって、報知部の点検の手間を低減可能な冷凍サイクルシステムを提供する。空調システム(100)は、冷媒回路を有する空調装置(1)と、空調装置に対する操作信号(C)を送信するリモートコントローラ(48)と、冷媒の漏洩を検知する冷媒センサ(34)と、報知部(70)と、報知制御部(44b)と、を備える。警報器は、冷媒センサが冷媒の漏洩を検知すると、音及び光を発して冷媒の漏洩を報知する。報知制御部は、リモートコントローラが空調装置に対して操作信号を送信する時に、報知部に音及び光を発するテスト動作を実行させる。
Description
本開示は、冷凍サイクルシステム、特には、冷媒漏洩検知時に冷媒漏洩を報知する報知部を備えた冷凍サイクルシステムに関する。
冷凍サイクル装置からの冷媒漏洩対策のため、冷媒漏洩検知時に音や光で冷媒漏洩を報知する報知部を含む冷凍サイクルシステムが用いられる場合がある。報知部には、冷媒漏洩発生時に正常に動作することが求められる。
特許文献1(特開2012-193884号公報)には、冷媒漏洩の報知用のLED及びブザーが正常に動作するかを点検するため、テスト用スイッチを設け、このスイッチを操作してLEDやブザーの動作確認を行うことが開示されている。このような構成とすることで、LEDやブザーが動作すべき時に動作しない事態の発生を抑制できる。
しかし、特許文献1(特開2012-193884号公報)の構成では、報知部の点検するため、テスト用スイッチをわざわざ操作する必要がある。したがって、空調システムの管理者が意識してテスト用スイッチを操作しなければ、報知部が点検されないまま空調装置が運用され続けるおそれがある。
そこで、意識的な点検動作を行わなくても報知部の点検が可能な、点検動作の省力化が可能な空調システムが求められている。
第1観点の冷凍サイクルシステムは、冷凍サイクル装置と、操作信号送信部と、検知部と、報知部と、処理部と、を備える。冷凍サイクル装置は、冷媒回路を有する。操作信号送信部は、冷凍サイクル装置に対する操作信号を送信する。検知部は、冷媒の漏洩を検知する。報知部は、検知部が冷媒の漏洩を検知すると、音及び光の少なくとも一方を発して冷媒の漏洩を報知する。処理部は、操作信号送信部が冷凍サイクル装置に対して操作信号を送信する時に、報知部に音及び光の少なくとも一方を発するテスト動作を実行させる。
第1観点の冷凍サイクルシステムでは、冷凍サイクル装置に対する操作信号の送信の際に、報知部の動作点検を行うことができる。そのため、冷凍サイクルシステムの管理者等が、わざわざ特殊な操作を行うこと無く報知部の動作点検を実行でき、冷凍サイクルシステムの管理の手間を低減できる。
第2観点の冷凍サイクルシステムは、第1観点の冷凍サイクルシステムであって、操作信号送信部は、冷凍サイクル装置に操作信号を送信するリモートコントローラである。
第2観点の冷凍サイクルシステムでは、リモートコントローラを用いて冷凍サイクル装置に対する操作を行う時に報知部の動作点検が行われる。そのため、報知部が正常に動作するか否かを日常的に点検でき、実際の冷媒漏洩時に報知部が動作しない不具合が生じにくい。
第3観点の冷凍サイクルシステムは、第2観点の冷凍サイクルシステムであって、リモートコントローラは報知部を有する。
第3観点の冷凍サイクルシステムでは、冷凍サイクル装置に対する操作をリモートコントローラから送信する際に、報知部が正常に動作しているかを手元で確認できるので、報知部の動作点検が容易である。
第4観点の冷凍サイクルシステムは、第1観点から第3観点のいずれかの冷凍サイクルシステムであって、操作信号は、冷凍サイクル装置の起動信号及び冷凍サイクル装置の停止信号の少なくとも一方である。
第4観点の冷凍サイクルシステムでは、報知部が正常に動作するか日常的に点検でき、実際の冷媒漏洩時に報知部が動作しない不具合が起こりにくい。
第5観点の冷凍サイクルシステムは、第1観点から第4観点のいずれかの冷凍サイクルシステムであって、テスト動作の際に報知部が音及び光の少なくとも一方を発している時間は、検知部が冷媒の漏洩を検知している時に報知部が音及び光の少なくとも一方を発している時間より短い。
第5観点の冷凍サイクルシステムでは、報知動作とテスト動作とが異なるため、冷凍サイクルシステムのユーザが、実際の冷媒漏洩と報知部の動作点検とを誤判断する可能性を低減できる。
第6観点の冷凍サイクルシステムは、第1観点から第5観点のいずれかの冷凍サイクルシステムであって、報知部は、音による報知を行う。テスト動作の際に報知部が発する音の音量は、検知部が冷媒の漏洩を検知している際に報知部が発する音の音量よりも小さい。
第6観点の冷凍サイクルシステムでは、報知動作とテスト動作とが異なるため、冷凍サイクルシステムのユーザが、実際の冷媒漏洩と報知部の動作点検とを誤判断する可能性を低減できる。
第7観点の冷凍サイクルシステムは、第1観点から第6観点のいずれかの冷凍サイクルシステムであって、判断部と、出力部と、を更に備える。判断部は、検知部が出力する冷媒の検知結果に応じた検知信号を受信し、受信した検知信号に基づいて冷媒の漏洩を判断する。出力部は、操作信号送信部が冷凍サイクル装置に対して操作信号を送信する時、テスト信号を判断部に対して出力する。出力部は、検知部とは異なる。テスト信号は、判断部が受信すると、判断部が冷媒が漏洩していると判断する信号である。処理部は、テスト信号に応じて判断部が冷媒の漏洩を判断した時に、報知部にテスト動作を実行させる。
第7観点の冷凍サイクルシステムでは、報知部が動作するか否かの点検だけではなく、冷媒漏洩の判断部から報知部までを含めた漏洩報知回路の総合的な点検ができ、冷媒漏洩の報知に関し信頼性の高い冷凍サイクルシステムを実現できる。
第8観点の冷凍サイクルシステムは、第1観点から第7観点のいずれかの冷凍サイクルシステムであって、冷媒は可燃性である。
第8観点の冷凍サイクルシステムでは、報知部が頻繁に点検され冷媒漏洩の報知に関して高い信頼性を有するため、可燃性の冷媒が利用される場合であっても高い安全性を実現できる。
本開示の冷凍サイクルシステムの一実施形態について説明する。
(1)全体概要
本開示の冷凍サイクルシステムは、冷凍サイクル装置と、冷媒漏洩報知装置80と、を有する。冷凍サイクル装置は、蒸気圧縮式の冷凍サイクルを利用して、冷却又は加熱の対象を冷却又は加熱する装置である。冷媒漏洩報知装置80は、冷媒センサ34により冷媒を検知し、冷媒漏洩検知時に音及び光の少なくとも一方で冷媒の漏洩を報知する装置である。本実施形態の冷凍サイクルシステムは、冷凍サイクル装置の一例としての空調装置1と、冷媒漏洩報知装置80と、を有する空調システム100である。空調装置1は、冷媒回路6を有し、空調対象空間の空気調和を行う装置である。
本開示の冷凍サイクルシステムは、冷凍サイクル装置と、冷媒漏洩報知装置80と、を有する。冷凍サイクル装置は、蒸気圧縮式の冷凍サイクルを利用して、冷却又は加熱の対象を冷却又は加熱する装置である。冷媒漏洩報知装置80は、冷媒センサ34により冷媒を検知し、冷媒漏洩検知時に音及び光の少なくとも一方で冷媒の漏洩を報知する装置である。本実施形態の冷凍サイクルシステムは、冷凍サイクル装置の一例としての空調装置1と、冷媒漏洩報知装置80と、を有する空調システム100である。空調装置1は、冷媒回路6を有し、空調対象空間の空気調和を行う装置である。
なお、空調システム100は冷凍サイクルシステムの一例に過ぎず、本開示の冷凍サイクルシステムは空調システム100に限定されない。例えば、本開示の冷凍サイクルシステムは、冷凍サイクルを利用して庫内の空間を冷却する冷蔵装置又は冷凍装置を冷凍サイクル装置として有する冷蔵システム又は冷凍システムであってもよい。また、本開示の冷凍サイクルシステムは、冷凍サイクルを利用して水等の液体を加熱する給湯装置又は床暖房装置を冷凍サイクル装置として有する給湯システム又は床暖房システムであってもよい。
初めに、図1及び図2を参照しながら、本開示の冷凍サイクルシステムの一例である空調システム100について説明する。図1は、空調システム100のブロック図である。図2は、空調システム100の空調装置1の概略構成図である。なお、図1では、冷媒回路6を構成する機器やファン15,33等の空調装置1の各種機器の描画は省略している。
(2)詳細構成
以下に、空調装置1及び冷媒漏洩報知装置80の詳細について説明する。
以下に、空調装置1及び冷媒漏洩報知装置80の詳細について説明する。
(2-1)空調装置
空調装置1は、蒸気圧縮式の冷凍サイクルを行うことにより、空調対象空間の冷房及び暖房を行う装置である。空調対象空間は、例えば、オフィスビル、商業施設、住居等の建物内の空間である。なお、空調装置1は、空調対象空間の冷房及び暖房の両方の用途に用いられる装置でなくてもよく、冷房及び暖房の一方だけの用途に用いられる装置であってもよい。
空調装置1は、蒸気圧縮式の冷凍サイクルを行うことにより、空調対象空間の冷房及び暖房を行う装置である。空調対象空間は、例えば、オフィスビル、商業施設、住居等の建物内の空間である。なお、空調装置1は、空調対象空間の冷房及び暖房の両方の用途に用いられる装置でなくてもよく、冷房及び暖房の一方だけの用途に用いられる装置であってもよい。
空調装置1は、図2のように、主として、熱源側ユニット2と、利用側ユニット3と、液冷媒連絡配管4及びガス冷媒連絡配管5と、リモートコントローラ48と、を有する。熱源側ユニット2は、熱源側制御装置42を有する。利用側ユニット3は、利用側制御装置44を有する。リモートコントローラ48は、制御装置48aを有する。熱源側制御装置42、利用側制御装置44及び制御装置48aは、協働して空調装置1の各部の動作を制御する空調制御部として機能する。利用側制御装置44は、冷媒漏洩報知装置80のコントローラとしても機能する。液冷媒連絡配管4及びガス冷媒連絡配管5は、熱源側ユニット2と利用側ユニット3とを接続する冷媒連絡配管である。空調装置1では、熱源側ユニット2と利用側ユニット3とが冷媒連絡配管4、5を介して接続されることで、冷媒回路6が構成される。
限定するものではないが、冷媒回路6に封入されている冷媒は、可燃性の冷媒である。可燃性の冷媒には、米国のASHRAE34 Designation and safety classification of refrigerantの規格又はISO817 Refrigerants- Designation and safety classificationの規格でClass3(強燃性)、Class2(弱燃性)、Subclass2L(微燃性)に該当する冷媒を含む。
例えば、冷媒として、R1234yf、R1234ze(E)、R516A、R445A、R444A、R454C、R444B、R454A、R455A、R457A、R459B、R452B、R454B、R447B、R32、R447A、R446A、およびR459Aのいずれかが採用される。
本実施形態では、使用される冷媒はR32である。なお、本開示の構成は、冷媒が可燃性ではない場合にも有用である。
空調装置1は、図2のように熱源側ユニット2を1台有する。また、空調装置1は、図2のように、利用側ユニット3を1台有する。ただし、空調装置1は、熱源側ユニット2に対して互いに並列に接続される複数台の利用側ユニット3を有してもよい。また、空調装置1は、熱源側ユニット2を複数台有してもよい。
以下に、熱源側ユニット2と、利用側ユニット3と、冷媒連絡配管4,5と、リモートコントローラ48と、について更に説明する。なお、熱源側制御装置42については、熱源側ユニット2の他の構成と分けて説明する。また、利用側制御装置44については、利用側ユニット3の他の構成と分けて説明する。
(2-1-1)熱源側ユニット
熱源側制御装置42を除く熱源側ユニット2の構成の一例について、図2を参照しながら説明する。
熱源側制御装置42を除く熱源側ユニット2の構成の一例について、図2を参照しながら説明する。
熱源側ユニット2は、空調対象空間の外、例えば、建物の屋上や建物の壁面近傍等に設置される。
熱源側ユニット2は、主として、アキュムレータ7と、圧縮機8と、流向切換機構10と、熱源側熱交換器16と、熱源側膨張機構12と、液側閉鎖弁13及びガス側閉鎖弁14と、熱源側ファン15とを有している(図2参照)。なお、熱源側ユニット2は、ここで説明する機器の一部を有していなくてもよい。例えば、空調装置1が空調対象空間の冷房のみを行う場合、熱源側ユニット2は流向切換機構10を有していなくてもよい。また、熱源側ユニット2は、必要に応じ、ここで説明する以外の機器を有してもよい。
熱源側ユニット2は、冷媒回路6を構成する各種機器を接続する冷媒管として、吸入管17、吐出管18、第1ガス冷媒管19、液冷媒管20、及び第2ガス冷媒管21を主に有する(図2参照)。吸入管17は、流向切換機構10と圧縮機8の吸入側とを接続する。吸入管17には、アキュムレータ7が設けられている。吐出管18は、圧縮機8の吐出側と流向切換機構10とを接続する。第1ガス冷媒管19は、流向切換機構10と熱源側熱交換器16のガス側とを接続する。液冷媒管20は、熱源側熱交換器16の液側と液側閉鎖弁13とを接続する。液冷媒管20には、熱源側膨張機構12が設けられている。第2ガス冷媒管21は、流向切換機構10とガス側閉鎖弁14とを接続する。
圧縮機8は、吸入管17から冷凍サイクルにおける低圧の冷媒を吸入し、図示しない圧縮機構で冷媒を圧縮して、圧縮した冷媒を吐出管18へと吐出する機器である。
流向切換機構10は、冷媒の流向を切り換えることで、冷媒回路6の状態を、第1状態と、第2状態との間で変更する。本実施形態では、流向切換機構10は、四方切換弁であるが、これに限定されるものではなく、複数の弁と配管とにより構成されてもよい。冷媒回路6が第1状態にある時、熱源側熱交換器16が冷媒の放熱器(凝縮器)として機能し、利用側熱交換器32が冷媒の蒸発器として機能する。冷媒回路6が第2状態にある時、熱源側熱交換器16が冷媒の蒸発器として機能し、利用側熱交換器32が冷媒の放熱器として機能する。流向切換機構10が冷媒回路6の状態を第1状態とする場合には、流向切換機構10は、吸入管17を第2ガス冷媒管21と連通させ、吐出管18を第1ガス冷媒管19と連通させる(図2の流向切換機構10内の実線参照)。流向切換機構10が冷媒回路6の状態を第2状態とする場合には、流向切換機構10は、吸入管17を第1ガス冷媒管19と連通させ、吐出管18を第2ガス冷媒管21と連通させる(図2中の流向切換機構10内の破線参照)。
熱源側熱交換器16は、内部を流れる冷媒と熱源側ユニット2の設置場所の空気(熱源空気)との間で熱交換を行わせる機器である。熱源側熱交換器16は、タイプを限定するものではないが、例えば、図示しない複数の伝熱管とフィンとを有するフィン・アンド・チューブ型熱交換器である。熱源側熱交換器16の一端は、第1ガス冷媒管19と接続される。熱源側熱交換器16の他端は、液冷媒管20と接続される。
熱源側膨張機構12は、冷媒回路6において熱源側熱交換器16と利用側熱交換器32との間に配置される。熱源側膨張機構12は、熱源側熱交換器16と液側閉鎖弁13との間の液冷媒管20に配置されている。熱源側膨張機構12は、液冷媒管20を流れる冷媒の圧力や流量の調節を行う。本実施形態では、熱源側膨張機構12は開度可変の電子膨張弁である。ただし、熱源側膨張機構12は感温筒式の膨張弁やキャピラリチューブ等であってもよい。
アキュムレータ7は、流入する冷媒をガス冷媒と液冷媒とに分離する気液分離機能を有する容器である。また、アキュムレータ7は、運転負荷の変動等に応じて発生する余剰冷媒の貯留機能を有する容器である。
液側閉鎖弁13は、液冷媒管20と液冷媒連絡配管4との接続部に設けられている弁である。ガス側閉鎖弁14は、第2ガス冷媒管21とガス冷媒連絡配管5との接続部に設けられている弁である。液側閉鎖弁13及びガス側閉鎖弁14は、空調装置1の運転時には開かれている。
熱源側ファン15は、熱源側ユニット2の外部の熱源空気を図示しない熱源側ユニット2のケーシング内に吸入して熱源側熱交換器16に供給し、熱源側熱交換器16において冷媒と熱交換した空気を熱源側ユニット2のケーシング外に排出するためのファンである。熱源側ファン15は、例えばプロペラファンである。ただし、熱源側ファン15のファンのタイプは、プロペラファンに限定されず、適宜選択されればよい。
(2-1-2)利用側ユニット
利用側制御装置44を除く利用側ユニット3の構成の一例について、図2及び図3を参照しながら説明する。図3は、空調システム100の利用側ユニット3の概略縦断面図である。
利用側制御装置44を除く利用側ユニット3の構成の一例について、図2及び図3を参照しながら説明する。図3は、空調システム100の利用側ユニット3の概略縦断面図である。
利用側ユニット3は、例えば、空調対象空間に設置されるユニットである。本実施形態では、利用側ユニット3は、天井埋込式のユニットである。ただし、利用側ユニット3のタイプは、天井吊下式、壁掛式、又は床置式のユニットであってもよい。
また、利用側ユニット3は、空調対象空間の外に設置されてもよい。例えば、利用側ユニット3は、屋根裏、機械室等に設置されてもよい。この場合、利用側熱交換器32において冷媒と熱交換した空気を、利用側ユニット3から空調対象空間へと供給する空気通路が設置される。空気通路は、例えばダクトである。ただし、空気通路のタイプは、ダクトに限定されるものではなく適宜選択されればよい。
利用側ユニット3は、利用側膨張機構31、利用側熱交換器32、利用側ファン33、及びケーシング35を主に有する(図2及び図3参照)。
利用側膨張機構31は、冷媒回路6において熱源側熱交換器16と利用側熱交換器32との間に配置される。利用側膨張機構31は、利用側熱交換器32と液冷媒連絡配管4とを接続する冷媒配管に配置されている。利用側膨張機構31は、冷媒配管を流れる冷媒の圧力や流量の調節を行う。本実施形態では、利用側膨張機構31は開度可変の電子膨張弁であるが、これに限定されるものではない。
利用側熱交換器32では、利用側熱交換器32を流れる冷媒と、空調対象空間の空気との間で熱交換が行われる。利用側熱交換器32は、タイプを限定するものではないが、例えば、図示しない複数の伝熱管とフィンとを有するフィン・アンド・チューブ型熱交換器である。利用側熱交換器32の一端は、冷媒配管を介して液冷媒連絡配管4と接続される。利用側熱交換器32の他端は、冷媒配管を介してガス冷媒連絡配管5と接続される。
利用側ファン33は、利用側ユニット3のケーシング35内に空調対象空間内の空気を吸入して利用側熱交換器32に供給し、利用側熱交換器32において冷媒と熱交換した空気を空調対象空間へと吹き出す機構である。利用側ファン33は、例えばターボファンである。ただし、利用側ファン33のタイプは、ターボファンに限定されるものではなく適宜選択されればよい。
ケーシング35の内部には、利用側膨張機構31、利用側熱交換器32及び利用側ファン33が収容されている。ケーシング35の底部には、化粧板36が設けられている。ケーシング35内の中央部には、利用側ファン33が配置されており、利用側ファン33の四方を取り囲むように利用側熱交換器32が設けられている。利用側熱交換器32の下方には、利用側熱交換器32における凝縮水を受けるドレンパン38が配置されている。利用側ファン33の下方には、ドレンパン38に周囲を取り囲まれるようにベルマウス37が設けられている。利用側ファン33が運転されると、化粧板36の中央部に設けられた吸込口36bから空気が吸い込まれる。吸込口36bから吸い込まれた空気は、ベルマウス37を通過して利用側ファン33に吸い込まれ四方に吹き出す。利用側ファン33から四方に吹き出す空気は、利用側ファン33の四方を取り囲むように配置されている利用側熱交換器32を通過し、化粧板36の周縁に設けられた吹出口36aから空気を吹き出す。
(2-1-3)液冷媒連絡配管及びガス冷媒連絡配管
液冷媒連絡配管4及びガス冷媒連絡配管5は、熱源側ユニット2と利用側ユニット3とを接続する冷媒連絡配管である。液冷媒連絡配管4及びガス冷媒連絡配管5は、現地で施工される配管である。
液冷媒連絡配管4及びガス冷媒連絡配管5は、熱源側ユニット2と利用側ユニット3とを接続する冷媒連絡配管である。液冷媒連絡配管4及びガス冷媒連絡配管5は、現地で施工される配管である。
(2-1-4)熱源側制御装置
熱源側制御装置42は、熱源側ユニット2の各種機器の制御を行う。熱源側制御装置42は、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を有している(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。なお、以下で説明する熱源側制御装置42の各種機能は、ハードウェアで実現されても、ソフトウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。
熱源側制御装置42は、熱源側ユニット2の各種機器の制御を行う。熱源側制御装置42は、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を有している(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。なお、以下で説明する熱源側制御装置42の各種機能は、ハードウェアで実現されても、ソフトウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。
熱源側制御装置42は、圧縮機8、流向切換機構10、熱源側膨張機構12及び熱源側ファン15を含む、熱源側ユニット2の各種機器と電気的に接続されている(図2参照)。また、熱源側制御装置42は、熱源側ユニット2に設けられた図示しないセンサと電気的に接続されている。限定するものではないが、センサには、吐出管18及び吸入管17に設けられた温度センサや圧力センサ、熱源側熱交換器16に設けられた温度センサ、液冷媒管20に設けられた温度センサ、熱源空気の温度を計測する温度センサ等を含む。
さらに、熱源側制御装置42は、通信線46により利用側制御装置44と接続されている。熱源側制御装置42と利用側制御装置44とは、通信線46を介して、空調装置1の制御信号のやり取りを行う。空調装置1の制御信号とは、空調装置1の各種機器を制御するための信号である。
熱源側制御装置42は、図1のように、熱源側ユニット2の各種機器の制御を行う機能部として熱源側空調制御部42aを有する。熱源側空調制御部42aは、利用側制御装置44の利用側空調制御部44aや、制御装置48aと共に、空調装置1の動作を制御する空調制御部として機能する。空調制御部は、リモートコントローラ48に対する指示や、熱源側ユニット2や利用側ユニット3に設けられた各種センサの計測値等に基づき、空調装置1の各種機器の動作を制御する。
例えば、空調制御部は、冷房運転時に、流向切換機構10の動作を制御して、冷媒回路6の状態を熱源側熱交換器16が冷媒の放熱器として機能し利用側熱交換器32が冷媒の蒸発器として機能する前述の第1状態に切り換える。冷房運転時には、空調制御部は、圧縮機8、熱源側ファン15及び利用側ファン33を運転する。また、冷房運転時には、空調制御部は、各種センサの計測値や設定温度等に基づき、圧縮機8、熱源側ファン15及び利用側ファン33のモータの回転数や、熱源側膨張機構12及び利用側膨張機構31の例である電子膨張弁の開度を所定開度に調節する。また、空調制御部は、暖房運転時に、流向切換機構10の動作を制御して、冷媒回路6の状態を熱源側熱交換器16が冷媒の蒸発器として機能し利用側熱交換器32が冷媒の放熱器として機能する前述の第2状態に切り換える。暖房運転時には、空調制御部は、圧縮機8、熱源側ファン15及び利用側ファン33を運転する。また、暖房運転時には、空調制御部は、各種センサの計測値や設定温度等に基づき、圧縮機8、熱源側ファン15及び利用側ファン33のモータの回転数や、熱源側膨張機構12及び利用側膨張機構31の例である電子膨張弁の開度を所定の開度に調節する。
冷房運転時や暖房運転時の空調装置1の各種機器の動作の具体的な制御については、様々な制御の態様が一般に知られているため、説明が煩雑になるのを避けるため、ここでは説明を省略する。
また、熱源側空調制御部42aは、冷媒漏洩報知装置80の冷媒センサ34が冷媒の漏洩を検知すると、熱源側ユニット2の各種機器に対し漏洩時制御を行う。熱源側空調制御部42aの行う漏洩時制御は、例えば、停止中の熱源側ユニット2の圧縮機8及び熱源側ファン15の起動を禁止する制御である。また、熱源側空調制御部42aの行う漏洩時制御は、運転中の熱源側ユニット2の圧縮機8及び熱源側ファン15を停止する制御である。漏洩時制御として運転中の熱源側ユニット2の圧縮機8及び熱源側ファン15を停止する際、熱源側空調制御部42aは、通常の空調運転停止時と同様の態様で、圧縮機8及び熱源側ファン15を停止させてもよい。あるいは、熱源側空調制御部42aは、通常の空調運転停止時とは異なる態様で、圧縮機8及び熱源側ファン15を停止させてもよい。
(2-1-5)利用側制御装置
利用側制御装置44は、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を有している(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。なお、以下で説明する利用側制御装置44の各種機能は、ハードウェアで実現されても、ソフトウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。また、以下で説明する利用側制御装置44の各種機能の一部は、利用側制御装置44とは別に設けられた制御装置により実行されてもよい。例えば、後述する冷媒漏洩報知装置80のコントローラとしての機能は、利用側制御装置44とは別に設けられた制御装置により実行されてもよい。
利用側制御装置44は、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を有している(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。なお、以下で説明する利用側制御装置44の各種機能は、ハードウェアで実現されても、ソフトウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。また、以下で説明する利用側制御装置44の各種機能の一部は、利用側制御装置44とは別に設けられた制御装置により実行されてもよい。例えば、後述する冷媒漏洩報知装置80のコントローラとしての機能は、利用側制御装置44とは別に設けられた制御装置により実行されてもよい。
利用側制御装置44は、利用側膨張機構31及び利用側ファン33を含む、利用側ユニット3の各種機器と電気的に接続されている(図2参照)。また、利用側制御装置44は、利用側ユニット3に設けられた図示しないセンサと電気的に接続されている。限定するものではないが、センサには、利用側熱交換器32や利用側熱交換器32に接続される液側の冷媒配管に設けられた温度センサや、空調対象空間の温度を計測する温度センサ等を含む。
利用側制御装置44は、上述のように通信線46により熱源側制御装置42と接続されている。また、利用側制御装置44は、通信線46によりリモートコントローラ48と通信可能に接続されている。
また、利用側制御装置44は、冷媒センサ34と、信号線96により通信可能に接続されている。利用側制御装置44は、冷媒センサ34の出力する検知信号DSを、信号線96を介して受信する。
利用側制御装置44は、機能部として各種情報を記憶する記憶部44gを有する。また、利用側制御装置44は、利用側空調制御部44aを機能部として有する。さらに、利用側制御装置44は、冷媒漏洩報知装置80のコントローラとして機能する、報知制御部44b、判断部44c、受付部44d、出力部44e、及び判定部44fを機能部として有する。機能部44b~44fについては、後述する。
利用側空調制御部44aは、利用側ユニット3の各種機器の動作を制御する。利用側空調制御部44aは、熱源側空調制御部42aや、制御装置48aと共に、空調装置1を制御する空調制御部として機能する。空調制御部については前述したため説明は省略する。
また、利用側空調制御部44aは、冷媒漏洩報知装置80の冷媒センサ34が冷媒漏洩を検知すると、利用側ユニット3の各種機器に対し漏洩時制御を行う。利用側空調制御部44aの行う漏洩時制御は、例えば、停止中の利用側ユニット3の利用側ファン33の起動を禁止する制御である。また、利用側空調制御部44aの行う漏洩時制御は、運転中の利用側ユニット3の利用側ファン33の起動を禁止する制御である。なお、漏洩時制御として運転中の利用側ファン33を停止する際、利用側空調制御部44aは、通常の空調運転停止時と同様の態様で、利用側ファン33を停止させてもよい。あるいは、利用側空調制御部44aは、通常の空調運転停止時とは異なる態様で、利用側ファン33を停止させてもよい。
(2-1-6)リモートコントローラ
リモートコントローラ48は、操作信号送信部の一例である。リモートコントローラ48は、空調装置1を操作するための機器である。リモートコントローラ48は、空調装置1の操作用の各種の信号を利用側制御装置44に対して送信する。リモートコントローラ48は、設置位置を限定するものではないが、例えば空調対象空間の壁に取り付けられている。リモートコントローラ48は、利用側制御装置44と、通信線46により通信可能に接続されている。
リモートコントローラ48は、操作信号送信部の一例である。リモートコントローラ48は、空調装置1を操作するための機器である。リモートコントローラ48は、空調装置1の操作用の各種の信号を利用側制御装置44に対して送信する。リモートコントローラ48は、設置位置を限定するものではないが、例えば空調対象空間の壁に取り付けられている。リモートコントローラ48は、利用側制御装置44と、通信線46により通信可能に接続されている。
なお、リモートコントローラ48は、壁等の所定の位置に固定されていなくてもよい。リモートコントローラ48は、携帯可能なリモートコントローラであって、利用側制御装置44と無線通信により通信可能に構成されていてもよい。
リモートコントローラ48は、マイクロコントローラユニット(MCU)や各種の電気回路及び電子回路(図示省略)を有する制御装置48aを備える。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。なお、以下で説明する制御装置48aの各種機能は、ハードウェアで実現されても、ソフトウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。制御装置48aは、例えば、判断部48a1及び送信部48a2として機能する。
また、リモートコントローラ48は、操作部48dと、表示部48bと、スピーカ48cと、を備える。表示部48b及びスピーカ48cは、冷媒漏洩報知装置80の報知部70として機能する。
操作部48dは、人が空調装置1に対する各種操作を行うための機能部である。操作部48dは、例えば、各種のスイッチを含む。操作部48dは、表示部48bとしてのディスプレイに設けられたタッチパネルを含んでもよい。また、空調装置1が音声操作式である場合には、操作部48dは音声指示を受け付けるマイクを含んでもよい。また、操作部48dは、人が直接操作するものではなく、例えば人がスマートフォン等の携帯端末から送信する信号を空調装置1に対する操作として受け付けてもよい。
リモートコントローラ48は、操作部48dに対する操作に応じて、空調装置1に対して各種の信号を送信する。具体的には、操作部48dに対する操作が行われると、制御装置48aの判断部48a1は、操作部48dが受けた操作内容を判断する。限定するものではないが、操作部48dの受ける操作内容には、例えば、空調装置1の運転開始操作、空調装置1の運転停止操作、利用側ユニット3の風向及び風量の設定操作、空調装置1の設定温度の設定操作等を含む。制御装置48aの送信部48a2は、判断部48a1が判断した操作内容に応じた信号を、通信線46を介して利用側制御装置44に送信する。例えば、判断部48a1が判断した操作内容が空調装置1の運転開始操作であれば、送信部48a2は、運転開始指示信号を、通信線46を介して利用側制御装置44に送信する。
また、操作部48dは、冷媒漏洩報知装置80にテスト動作の実行を指示する出力指示信号の送信のトリガにも用いられる。空調システム100では、操作部48dに対する操作に応じて、リモートコントローラ48が、空調装置1の操作用の信号として、所定の種類の操作信号Cを送信する際、報知部70は音及び光の少なくとも一方を発するテスト動作を実行する。
具体的には、送信部48a2は、操作部48dが受けた操作が所定の操作であると判断部48a1が判断し操作信号Cを送信する際、冷媒漏洩報知装置80のテストのための出力指示信号も、通信線46を介して利用側制御装置44に送信する。出力指示信号は、利用側制御装置44の出力部44eに、テスト信号TSを出力させるための信号である。
例を挙げれば、操作部48dが受けた操作が空調装置1の運転開始操作であると判断部48a1が判断すると、送信部48a2は、利用側制御装置44に、操作信号Cとして空調装置1の運転開始指示信号を送信する。この際、送信部48a2は、利用側制御装置44に出力指示信号を送信する。
また、例えば、操作部48dが受けた操作が空調装置1の運転停止操作であると判断部48a1が判断すると、送信部48a2は、利用側制御装置44に、操作信号Cとして空調装置1の運転停止指示信号を送信する。この際、送信部48a2は、利用側制御装置44に出力指示信号を送信する。
また、例えば、操作部48dが受けた操作が利用側ユニット3の風向及び風量の設定操作や、設定温度の設定操作等であると判断部48a1が判断すると、送信部48a2は、利用側制御装置44に、これらの設定変更を指示する信号を操作信号Cとして送信する。この際、送信部48a2は、利用側制御装置44に出力指示信号を送信する。
なお、ここでは、操作部48dに対する操作が行われたことをトリガとして、送信部48a2が利用側制御装置44に出力指示信号を送信する。しかし、送信部48a2は、操作部48dに対する操作によらず出力指示信号を送信してもよい。例えば、リモートコントローラ48がタイマ設定により所定のタイミングで操作信号Cとしての空調装置1の運転開始指示信号を送信するように構成されている場合に、送信部48a2は、運転開始指示信号の送信の際に出力指示信号を送信してもよい。
表示部48bは、空調装置1の各種設定や空調対象空間の状態を表示する。また、本実施形態では、表示部48bは、冷媒漏洩報知装置80の報知部70としても機能し、図示しないバックライトを点灯や点滅させることで、冷媒の漏洩を光で報知する。さらに、本実施形態では、表示部48bは、冷媒漏洩報知装置80の表示部としても機能し、冷媒の漏洩を報知する内容を文字や図形で表示する。
スピーカ48cは、冷媒漏洩報知装置80の報知部70として機能し、冷媒の漏洩を音で報知する。スピーカ48cは、冷媒の漏洩を音で報知する以外に、空調装置1の動作や操作に応じた音を出力してもよい。
(2-2)冷媒漏洩報知装置
冷媒漏洩報知装置80は、冷媒センサ34により冷媒を検知し、冷媒漏洩検知時に音及び光の少なくとも一方で冷媒の漏洩を報知する装置である。
冷媒漏洩報知装置80は、冷媒センサ34により冷媒を検知し、冷媒漏洩検知時に音及び光の少なくとも一方で冷媒の漏洩を報知する装置である。
冷媒漏洩報知装置80は、冷媒センサ34と、報知部70と、コントローラと、リモートコントローラ48と、を主に備える。本実施形態では、報知部70は、リモートコントローラ48に組み込まれている。本実施形態では、空調装置1の利用側制御装置44の一部がコントローラとして機能する。利用側制御装置44は、冷媒漏洩報知装置80のコントローラの機能部として、報知制御部44b、判断部44c、受付部44d、出力部44e、判定部44f及び記憶部44gを有する。
初めに冷媒漏洩報知装置80の各種機器、機能部の動作を概略的に説明する。
冷媒漏洩報知装置80は、動作モードとして、テスト動作モードと、本動作モードとを備える。テスト動作モードと本動作モードとの主な違いとして、テスト動作モードと本動作モードとでは、報知部70の報知の態様が異なる。
冷媒漏洩報知装置80がテスト動作モードで動作する時、報知部70は、音及び光による報知をテスト動作モード用時間t1で中止する。テスト動作モード用時間t1は、限定するものではないが、例えば1秒である。また、冷媒漏洩報知装置80がテスト動作モードで動作する時、報知部70は、第1音量V1の音で報知を行う。
冷媒漏洩報知装置80が本動作モードで動作する時、報知部70は、音及び光による報知をテスト動作モード用時間t1より長く継続する。例えば、冷媒漏洩報知装置80が本動作モードで動作する時、報知部70は、音及び光による報知を、図示しない発報解除スイッチが操作されるまで継続する。ただし、これに限定されるものではなく、冷媒漏洩報知装置80が本動作モードで動作する時、報知部70は、発報解除スイッチが操作されなくても、音及び光による報知をテスト動作モード用時間t1より長い本動作モード用時間(例えば10分)で終了してもよい。また、冷媒漏洩報知装置80が本動作モードで動作する時、報知部70は、第2音量V2の音で報知を行う。第2音量V2は、第1音量V1より大きな音量である。
冷媒漏洩報知装置80では、冷媒センサ34が出力する検知信号DS(図1中のA1の矢印参照)に基づいて、判断部44cが、冷媒の漏洩が発生しているかを判断する。判断部44cが冷媒が漏洩していると判断した時、報知制御部44bは、報知部70が音及び光で報知動作をするよう、リモートコントローラ48に本動作制御信号を送信する(図1中のA2の矢印参照)。そして、報知部70は、冷媒漏洩報知装置80が本動作モードで動作する時の報知動作を行う。
出力部44eは、受付部44dがリモートコントローラ48から送信されてくる出力指示信号を受け付けると(図4中のB1の矢印参照)、判断部44cに対してテスト信号TSを送信する(図4中のB2の矢印参照)。判断部44cは、テスト信号TSが信号として入力されると、冷媒が漏洩していると判断する。そして、テスト信号TSに基づいて判断部44cが冷媒が漏洩していると判断した時、報知制御部44bは、報知部70が音及び光で報知動作をするようリモートコントローラ48にテスト動作制御信号を送信する(図4中のB3の矢印参照)。そして、報知部70は、冷媒漏洩報知装置80がテスト動作モードで動作する時の報知動作を行う。
なお、ここでは、判断部44cは、判断部44cが受信している冷媒が漏洩していると判断した信号の種類を自ら判定しない。判断部44cが受信している冷媒が漏洩していると判断した信号が、検知信号DSであるか、テスト信号TSであるかは、判定部44fが判定する。報知制御部44bは、具体的には、判断部44cが冷媒が漏洩していると判断した際、判定部44fの判定結果に応じて、本動作制御信号及びテスト動作制御信号のいずれかをリモートコントローラ48に送信する。言い換えれば、冷媒漏洩報知装置80は、判断部44cが冷媒が漏洩していると判断し、判定部44fが判断部44cが受信している冷媒が漏洩していると判断した信号が検知信号DSであると判定すると、本動作モードで動作する。また、冷媒漏洩報知装置80は、判断部44cが冷媒が漏洩していると判断し、判定部44fが判断部44cが受信している冷媒が漏洩していると判断した信号がテスト信号TSであると判定すると、テスト動作モードで動作する。
表示部48bは、判断部44cが冷媒が漏洩していると判断し、判定部44fが判断部44cが受信している冷媒が漏洩していると判断した信号が検知信号DSであると判定する場合に、冷媒の漏洩を報知する内容を文字や図形で表示する。言い換えれば、冷媒漏洩報知装置80が本動作モードで動作する時、表示部48bは、冷媒の漏洩を報知する内容を文字や図形で表示する。
また、表示部48bは、判断部44cが冷媒が漏洩していると判断し、判定部44fが判断部44cが受信している冷媒が漏洩していると判断した信号がテスト信号TSであると判定する場合に、冷媒漏洩報知装置80がテスト中である旨を表示してもよい。言い換えれば、冷媒漏洩報知装置80がテスト動作モードで動作する時、表示部48bは、冷媒漏洩報知装置80がテスト中である旨を表示してもよい。
以下に、冷媒漏洩報知装置80の冷媒センサ34、報知部70及びコントローラについて詳細を説明する。
(2-2-1)冷媒センサ
冷媒センサ34は、検知部の一例である。冷媒センサ34は、冷媒を検知するセンサである。本実施形態では、冷媒漏洩報知装置80は、冷媒センサ34を1つだけ有するが、これに限定されるものではなく、複数の冷媒センサ34を有してもよい。
冷媒センサ34は、検知部の一例である。冷媒センサ34は、冷媒を検知するセンサである。本実施形態では、冷媒漏洩報知装置80は、冷媒センサ34を1つだけ有するが、これに限定されるものではなく、複数の冷媒センサ34を有してもよい。
冷媒センサ34は、例えば、利用側ユニット3のケーシング35内に設けられる。冷媒センサ34は、図3のように、利用側熱交換器32の下方に配置されるドレンパン38の底面に取り付けられる。なお、冷媒センサ34は、ドレンパン38以外の場所、例えばベルマウス37とドレンパン38との間を接続する部材の底面や、ベルマウス37の底面、ケーシング35の内面等に取り付けられてもよい。また、冷媒センサ34は、利用側ユニット3のケーシング35の外部に設置されてもよい。
冷媒センサ34は、例えば半導体式のセンサである。半導体式の冷媒センサ34は、図示しない半導体式の検知素子を有する。半導体式の検知素子は、周囲に冷媒ガスが無い状態と、冷媒ガスが有る状態とで電気伝導性が変化する。そのため、半導体式の検知素子の周囲に冷媒ガスが存在すると、冷媒センサ34は、比較的大きな電流を検知信号DSとして出力する。一方、半導体式の検知素子の周囲に冷媒ガスが存在しない時、冷媒センサ34は、比較的小さな電流を検知信号DSとして出力する。
なお、冷媒センサ34のタイプは、半導体式に限定されるものではなく、冷媒ガスを検知可能なセンサであればよい。例えば、冷媒センサ34は、赤外線式のセンサであって、冷媒の検知結果に応じて検知信号DSを出力するセンサであってもよい。
(2-2-2)報知部
報知部70は、音と光の少なくとも一方で冷媒の漏洩を報知する。本実施形態では、報知部70は、リモートコントローラ48に組み込まれている。報知部70は、光を発する表示部48b及び音を発するスピーカ48cを有し、音と光の両方で冷媒の漏洩を報知する。なお、本実施形態では、リモートコントローラ48の表示部48bが光で報知を行うが、リモートコントローラ48は、表示部48bとは別に、報知部70として光を発するランプを有してもよい。
報知部70は、音と光の少なくとも一方で冷媒の漏洩を報知する。本実施形態では、報知部70は、リモートコントローラ48に組み込まれている。報知部70は、光を発する表示部48b及び音を発するスピーカ48cを有し、音と光の両方で冷媒の漏洩を報知する。なお、本実施形態では、リモートコントローラ48の表示部48bが光で報知を行うが、リモートコントローラ48は、表示部48bとは別に、報知部70として光を発するランプを有してもよい。
報知部70は、報知制御部44bからリモートコントローラ48にテスト動作制御信号が送信されると、冷媒漏洩報知装置80がテスト動作モードで動作する時の報知動作を行う。報知部70は、報知制御部44bからリモートコントローラ48に本動作制御信号が送信されると、冷媒漏洩報知装置80が本動作モードで動作する時の報知動作を行う。
なお、本実施形態では、報知部70は、リモートコントローラ48に組み込まれているが、冷媒漏洩報知装置80は、図5のように、報知部として機能する、リモートコントローラ48とは独立した警報器70aを有してもよい。警報器70aは、ランプ72とスピーカ74とを含む。警報器70aは、利用側制御装置44と信号線47により接続され、信号線47を介して報知制御部44bの本動作制御信号やテスト動作制御信号を受信する。警報器70aは、受信した本動作制御信号やテスト動作制御信号に応じて、光及び音で報知を行う。警報器70aは、利用側ユニット3の化粧板36に取り付けられてもよい。また、警報器70aは、空調装置1とは独立して、空調対象空間の壁や天井に取り付けられてもよい。
(2-2-3)コントローラ
冷媒漏洩報知装置80のコントローラとして機能する、利用側制御装置44の、報知制御部44b、判断部44c、受付部44d、出力部44e、及び判定部44fについて詳細を説明する。
冷媒漏洩報知装置80のコントローラとして機能する、利用側制御装置44の、報知制御部44b、判断部44c、受付部44d、出力部44e、及び判定部44fについて詳細を説明する。
(2-2-3-1)報知制御部
報知制御部44bは、報知部70の動作を制御する。報知制御部44bは、処理部の一例である。報知制御部44bは、リモートコントローラ48が空調装置1に対する操作信号Cを送信する時に、報知部70に音及び光の少なくとも一方を発するテスト動作を実行させる。
報知制御部44bは、報知部70の動作を制御する。報知制御部44bは、処理部の一例である。報知制御部44bは、リモートコントローラ48が空調装置1に対する操作信号Cを送信する時に、報知部70に音及び光の少なくとも一方を発するテスト動作を実行させる。
報知制御部44bは、判断部44cが冷媒が漏洩していると判断し、かつ、判定部44fが判断部44cが受信した信号を検知信号DSと判定する場合に、リモートコントローラ48に対して本動作制御信号を送信する(図1参照)。言い換えれば、判断部44cが冷媒が漏洩していると判断し、かつ、判定部44fが判断部44cが受信した信号を検知信号DSと判定する場合に、報知制御部44bは、冷媒漏洩報知装置80が本動作モードで動作する時の態様で報知部70を動作させる。
また、報知制御部44bは、判断部44cが冷媒が漏洩していると判断し、かつ、判定部44fが判断部44cが受信した信号をテスト信号TSと判定する場合に、リモートコントローラ48に対してテスト動作制御信号を送信する(図4参照)。言い換えれば、判断部44cが冷媒が漏洩していると判断し、かつ、判定部44fが判断部44cが受信した信号をテスト信号TSと判定する場合に、報知制御部44bは、冷媒漏洩報知装置80がテスト動作モードで動作する時の態様で報知部70を動作させる。なお、テスト信号TSは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する際に、判断部44cに対して出力される信号である。そのため、言い換えれば、報知制御部44bは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する際に、報知部70にテスト動作を実行させる。
(2-2-3-2)判断部
判断部44cは、入力される信号に基づいて冷媒の漏洩を判断する機能部である。例えば、冷媒センサ34として半導体方式の冷媒センサが用いられる場合、判断部44cは、入力される信号の電流値の大きさが基準値を超える場合、冷媒が漏洩していると判断する。
判断部44cは、入力される信号に基づいて冷媒の漏洩を判断する機能部である。例えば、冷媒センサ34として半導体方式の冷媒センサが用いられる場合、判断部44cは、入力される信号の電流値の大きさが基準値を超える場合、冷媒が漏洩していると判断する。
判断部44cは、入力される検知信号DSの電流値の大きさが基準値を超える場合、冷媒が漏洩していると判断する。
また、判断部44cは、出力部44eが出力するテスト信号TSが入力されると、冷媒が漏洩していると判断する。これは、テスト信号TSが、電流値の大きさが基準値を超える信号であるためである。言い換えれば、テスト信号TSは、冷媒漏洩時に冷媒センサ34が出力する検知信号DSに相当する信号である。テスト信号TSは、冷媒センサ34と判断部44cとを接続する電路に入力される信号である。
判断部44cは、冷媒が漏洩していると判断すると、冷媒が漏洩していると判断されたことを報知制御部44bや、判定部44fに通知する。
(2-2-3-3)受付部
受付部44dは、操作部48dに対し空調装置1の動作を制御するため所定の操作が行われた際にリモートコントローラ48が通信線46を介して送信してくる出力指示信号を受け付ける。
受付部44dは、操作部48dに対し空調装置1の動作を制御するため所定の操作が行われた際にリモートコントローラ48が通信線46を介して送信してくる出力指示信号を受け付ける。
(2-2-3-4)出力部
出力部44eは、判断部44cにテスト信号TSが入力されるように、冷媒センサ34と判断部44cとを接続する電路に対してテスト信号TSを出力する。出力部44eは、受付部44dが出力指示信号を受け付けると、前述のように電流値の大きさが基準値より大きなテスト信号TSを出力する。
出力部44eは、判断部44cにテスト信号TSが入力されるように、冷媒センサ34と判断部44cとを接続する電路に対してテスト信号TSを出力する。出力部44eは、受付部44dが出力指示信号を受け付けると、前述のように電流値の大きさが基準値より大きなテスト信号TSを出力する。
(2-2-3-5)判定部
判定部44fは、判断部44cが受信している信号が、検知信号DSであるか、テスト信号TSであるかを判定する。なお、ここで判断部44cが受信している信号とは、判断部44cが受信し、判断部44cが冷媒が漏洩としていると判断している信号を意味する。要するに、判定部44fは、判断部44cが冷媒が漏洩していると判断した際、判断部44cが受信した信号が、検知信号DSであるか、テスト信号TSであるかを判定する。
判定部44fは、判断部44cが受信している信号が、検知信号DSであるか、テスト信号TSであるかを判定する。なお、ここで判断部44cが受信している信号とは、判断部44cが受信し、判断部44cが冷媒が漏洩としていると判断している信号を意味する。要するに、判定部44fは、判断部44cが冷媒が漏洩していると判断した際、判断部44cが受信した信号が、検知信号DSであるか、テスト信号TSであるかを判定する。
判定部44fの判定方法としては、例えば、以下の、判定方法1又は判定方法2が用いられる。なお、ここで説明する判定部44fの判定手法は一例に過ぎず、他の判定方法が用いられてもよい。
<判定方法1>
判定方法1では、判定部44fは、判断部44cが信号を受信する前の第1期間以内に、出力部44eがテスト信号TSを出力した場合に、判断部44cが受信した信号はテスト信号TSであると判定する。また、判定部44fは、判断部44cが信号を受信する前の第1期間以内に、出力部44eがテスト信号TSを出力していなかった場合、判断部44cが受信した信号は検知信号DSであると判定する。第1期間は、利用側制御装置44の記憶部44gに予め記憶されていてもよいし、冷媒漏洩報知装置80の管理者等により設定可能に構成されてもよい。第1期間は、限定するものではないが、例えば5秒である。
判定方法1では、判定部44fは、判断部44cが信号を受信する前の第1期間以内に、出力部44eがテスト信号TSを出力した場合に、判断部44cが受信した信号はテスト信号TSであると判定する。また、判定部44fは、判断部44cが信号を受信する前の第1期間以内に、出力部44eがテスト信号TSを出力していなかった場合、判断部44cが受信した信号は検知信号DSであると判定する。第1期間は、利用側制御装置44の記憶部44gに予め記憶されていてもよいし、冷媒漏洩報知装置80の管理者等により設定可能に構成されてもよい。第1期間は、限定するものではないが、例えば5秒である。
言い換えれば、判定方法1では、判定部44fは、出力部44eがテスト信号TSを出力してから第1期間以内に判断部44cが受信する信号をテスト信号TSと判定する。また、判定部44fは、出力部44eがテスト信号TSを出力してから第1期間以内に判断部44cが受信した信号以外を、検知信号DSと判定する。
判定部44fが、判定方法1に基づいて判定を行う場合の、冷媒漏洩報知装置80の動作について、図6aのフローチャートを参照しながら説明する。
なお、説明の前提として、判定部44fは、出力部44eのテスト信号TSの出力タイミングを検知し、その時点からの経過時間を取得している。ステップS1の処理は、判定部44fが、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を受けるまで繰り返し行われる。
図6aのフローチャートにおいて、ステップS1では、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を判定部44fが受けたか否かが判定される。判定部44fが、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を受けた場合(ステップS1でYES)、処理はステップS2に進む。ステップS1の処理は、判定部44fが、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を受けるまで繰り返し行われる。
ステップS2では、判定部44fが、出力部44eがテスト信号TSを出力した後に判断部44cが信号を受信するまでの時間が、第1期間以内か否かを判定する。
判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが信号を受信するまでの時間が、第1期間以内である場合、判断部44cが受信した信号をテスト信号TSと判定する。そして、処理はステップS3に進む。
一方、判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが信号を受信するまでの時間が、第1期間以内ではない場合、判断部44cが受信した信号を検知信号DSと判定する。出力部44eが直近にテスト信号TSを出力していない場合には、判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが信号を受信するまでの時間が、第1期間以内ではないと判断して、判断部44cが受信した信号が検知信号DSであると判断する。そして、処理はステップS5に進む。
なお、他の形態では、ステップS2において、判定部44fは、以下のように判定を行ってもよい。この形態では、判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが冷媒漏洩があると判断し冷媒漏洩を報知する信号を出力するまでの時間を取得し、取得した時間が所定時間より短い場合、判断部44cが受信した信号をテスト信号TSと判定する。また、判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが冷媒が漏洩していると判断した旨の通知を行うまでの時間が、所定時間より長い場合、判断部44cが受信した信号が検知信号DSであると判定する。出力部44eが直近にテスト信号TSを出力していない場合には、判定部44fは、出力部44eがテスト信号TSを出力した後に判断部44cが冷媒が漏洩していると判断した旨の通知を行うまでの時間が所定時間より長いと判断して、判断部44cが受信した信号を検知信号DSと判定する。なお、所定時間は、前述の第1期間と、判断部44cが冷媒漏洩の判断に要する時間と、を考慮して決定されればよい。判断部44cが冷媒漏洩の判断に要する時間が、第1期間に比べてごく短い場合には、判断部44cが冷媒漏洩の判断に要する時間は無視されてもよい。
冷媒漏洩報知装置80の動作に関する説明に戻る。
ステップS3では、報知制御部44bは、通信線46を介して、報知部70を有するリモートコントローラ48に、テスト動作制御信号を送信する。そして、報知部70は、テスト動作制御信号を受けて、冷媒漏洩報知装置80がテスト動作モードで動作する際の態様で報知動作を行う(ステップS4)。言い換えれば、報知部70は、テスト動作モード用時間t1の間、表示部48bを点灯又は点滅させ、スピーカ48cから警報音を発する。この時、報知部70のスピーカ48cは、第1音量V1で警報音を発する。
一方、ステップS5では、報知制御部44bは、報知部70を有するリモートコントローラ48に、本動作制御信号を送信する。そして、報知部70は、本動作制御信号を受けて、冷媒漏洩報知装置80が本動作モードで動作する際の態様で報知動作を行う(ステップS6)。言い換えれば、報知部70は、図示しない発報解除スイッチが操作されるまで、表示部48bを点灯又は点滅させ、スピーカ48cから警報音を発する。この時、報知部70のスピーカ48cは、第1音量V1より大きな第2音量V2で警報音を発する。
<判定方法2>
判定方法2では、判定部44fは、受付部44dが出力指示を受け付けてから第2期間以内に判断部44cが受信する信号はテスト信号TSであると判定する。一方、判定部44fは、判断部44cが受信した信号のうち、受付部44dが出力指示を受け付けてから第2期間以内に受信した信号以外は、検知信号DSであると判定する。第2期間は、利用側制御装置44の記憶部44gに予め記憶されていてもよいし、冷媒漏洩報知装置80の管理者等により設定可能に構成されてもよい。第2期間は、限定するものではないが、例えば5秒である。
判定方法2では、判定部44fは、受付部44dが出力指示を受け付けてから第2期間以内に判断部44cが受信する信号はテスト信号TSであると判定する。一方、判定部44fは、判断部44cが受信した信号のうち、受付部44dが出力指示を受け付けてから第2期間以内に受信した信号以外は、検知信号DSであると判定する。第2期間は、利用側制御装置44の記憶部44gに予め記憶されていてもよいし、冷媒漏洩報知装置80の管理者等により設定可能に構成されてもよい。第2期間は、限定するものではないが、例えば5秒である。
判定部44fが、判定方法2に基づいて判定を行う場合の、冷媒漏洩報知装置80の動作について、図6bのフローチャートを参照しながら説明する。
なお、説明の前提として、判定部44fは、受付部44dが出力指示信号を受け付けたタイミングを検知し、その時点からの経過時間を取得している。
図6bのフローチャートにおいて、ステップS11では、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を判定部44fが受けたか否かが判定される。判定部44fが、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を受けた場合(ステップS11でYES)、処理はステップS12に進む。ステップS11の処理は、判定部44fが、判断部44cが送信する冷媒が漏洩していると判断した旨の通知を受けるまで繰り返し行われる。
ステップS12では、判定部44fが、受付部44dが出力指示信号を受け付けた後、判断部44cが信号を受信するまでの時間が、第2期間以内か否かを判定する。
判定部44fは、受付部44dが出力指示信号を受け付けた後に判断部44cが信号を受信するまでの時間が、第2期間以内である場合、判断部44cが受信した信号をテスト信号TSと判定する。そして、処理はステップS13に進む。
一方、判定部44fは、受付部44dが出力指示信号を受け付けた後に判断部44cが信号を受信するまでの時間が、第2期間以内ではない場合、判断部44cが受信した信号を検知信号DSと判定する。そして、処理はステップS15に進む。
ステップS13~S16の処理は、図6aのフローチャートのステップS3~S6の処理とそれぞれ同様であるため、ここでは説明を省略する。
(3)特徴
(3-1)
本実施形態の空調システム100は、空調装置1と、リモートコントローラ48と、冷媒センサ34と、報知部70と、報知制御部44bと、を備える。空調システム100は、冷凍サイクルシステムの一例である。空調装置1は、冷凍サイクル装置の一例である。リモートコントローラ48は、操作信号送信部の一例である。冷媒センサ34は、検知部の一例である。報知制御部44bは、処理部の一例である。空調装置1は、冷媒回路6を有する。リモートコントローラ48は、空調装置1に対する操作信号Cを送信する。冷媒センサ34は、冷媒の漏洩を検知する。報知部70は、冷媒センサ34が冷媒の漏洩を検知すると、音及び光の少なくとも一方を発して冷媒の漏洩を報知する。報知制御部44bは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する時に、報知部70に音及び光の少なくとも一方を発するテスト動作を実行させる。
(3-1)
本実施形態の空調システム100は、空調装置1と、リモートコントローラ48と、冷媒センサ34と、報知部70と、報知制御部44bと、を備える。空調システム100は、冷凍サイクルシステムの一例である。空調装置1は、冷凍サイクル装置の一例である。リモートコントローラ48は、操作信号送信部の一例である。冷媒センサ34は、検知部の一例である。報知制御部44bは、処理部の一例である。空調装置1は、冷媒回路6を有する。リモートコントローラ48は、空調装置1に対する操作信号Cを送信する。冷媒センサ34は、冷媒の漏洩を検知する。報知部70は、冷媒センサ34が冷媒の漏洩を検知すると、音及び光の少なくとも一方を発して冷媒の漏洩を報知する。報知制御部44bは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する時に、報知部70に音及び光の少なくとも一方を発するテスト動作を実行させる。
本実施形態の空調システム100では、空調装置1に対する操作信号Cの送信する際に、報知部70の動作点検を行うことができる。そのため、空調システム100の管理者等が、わざわざ特殊な操作を行うこと無く報知部70の動作点検を実行でき、空調システム100の管理の手間を低減できる。
また、本実施形態の空調システム100では、リモートコントローラ48を用いて空調装置1に対する操作を行う際に報知部70の動作点検が行われる。そのため、報知部70が正常に動作するか否かを日常的に点検でき、実際の冷媒漏洩時に報知部70が動作しない不具合が生じにくい。
(3-2)
本実施形態の空調システム100では、リモートコントローラ48は、報知部70を有する。
本実施形態の空調システム100では、リモートコントローラ48は、報知部70を有する。
本実施形態の空調システム100では、空調装置1に対する操作をリモートコントローラ48から送信する際に、報知部70が正常に動作しているかを手元で確認できるので、報知部70の動作点検が容易である。
(3-3)
本実施形態の空調システム100では、操作信号Cは、空調装置1の起動信号及び空調装置1の停止信号の少なくとも一方である。
本実施形態の空調システム100では、操作信号Cは、空調装置1の起動信号及び空調装置1の停止信号の少なくとも一方である。
本実施形態の空調システム100では、報知部70が正常に動作するか日常的に点検でき、実際の冷媒漏洩時に報知部70が動作しない不具合が起こりにくい。
(3-4)
本実施形態の空調システム100では、テスト動作の際に報知部70が音及び光の少なくとも一方を発している時間は、冷媒センサ34が冷媒の漏洩を検知している時に報知部70が音及び光の少なくとも一方を発している時間より短い。
本実施形態の空調システム100では、テスト動作の際に報知部70が音及び光の少なくとも一方を発している時間は、冷媒センサ34が冷媒の漏洩を検知している時に報知部70が音及び光の少なくとも一方を発している時間より短い。
本実施形態の空調システム100では、テスト動作と実際の冷媒の漏洩を報知する本動作とで報知部70の動作時間が異なるため、空調システム100のユーザが、報知部70の点検と実際の冷媒漏洩とを誤判断する可能性を低減できる。
また、本実施形態の空調システム100では、テスト時には報知部70の報知が短時間で終了するため、報知部70の発する音や光が空調システム100の利用者に与える不快感が抑制されやすい。
(3-5)
本実施形態の空調システム100では、報知部70は、音による報知を行う。テスト動作の際に報知部70が発する音の音量は、冷媒センサ34が冷媒の漏洩を検知している時に報知部70が発する音の音量よりも小さい。
本実施形態の空調システム100では、報知部70は、音による報知を行う。テスト動作の際に報知部70が発する音の音量は、冷媒センサ34が冷媒の漏洩を検知している時に報知部70が発する音の音量よりも小さい。
本実施形態の空調システム100では、テスト動作と実際の冷媒の漏洩を報知する本動作とで警報音の音量が異なるため、空調システム100のユーザが、実際の冷媒漏洩と報知部70の動作点検とを誤判断する可能性を低減できる。
また、本実施形態の空調システム100では、テスト時に報知部70の発する音の音量が小さく抑えられるため、報知部70の発する音が空調システム100の利用者に与える不快感が抑制されやすい。
(3-6)
本実施形態の空調システム100では、判断部44cと、出力部44eと、を備える。判断部44cは、冷媒センサ34が出力する冷媒の検知結果に応じた検知信号DSを受信し、受信した検知信号DSに基づいて冷媒の漏洩を判断する。出力部44eは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する時、テスト信号TSを判断部44cに対して出力する。出力部44eは、冷媒センサ34とは異なる。テスト信号TSは、判断部44cが受信すると、判断部44cが冷媒が漏洩していると判断する信号である。報知制御部44bは、テスト信号TSに応じて判断部44cが冷媒の漏洩を判断した時に、報知部70にテスト動作を実行させる。
本実施形態の空調システム100では、判断部44cと、出力部44eと、を備える。判断部44cは、冷媒センサ34が出力する冷媒の検知結果に応じた検知信号DSを受信し、受信した検知信号DSに基づいて冷媒の漏洩を判断する。出力部44eは、リモートコントローラ48が空調装置1に対して操作信号Cを送信する時、テスト信号TSを判断部44cに対して出力する。出力部44eは、冷媒センサ34とは異なる。テスト信号TSは、判断部44cが受信すると、判断部44cが冷媒が漏洩していると判断する信号である。報知制御部44bは、テスト信号TSに応じて判断部44cが冷媒の漏洩を判断した時に、報知部70にテスト動作を実行させる。
本実施形態の空調システム100では、報知部70が動作するか否かの点検だけではなく、冷媒漏洩を判断する判断部44cから報知部70までを含めた漏洩報知回路の総合的な点検ができ、冷媒漏洩の報知に関し信頼性の高い空調システム100を実現できる。
(3-7)
本実施形態の空調システム100では、冷媒は可燃性である。
本実施形態の空調システム100では、冷媒は可燃性である。
本実施形態の空調システム100では、報知部70が頻繁に点検され冷媒漏洩の報知に関して高い信頼性を有するため、可燃性の冷媒が利用される場合であっても高い安全性を実現できる。
(4)変形例
上記実施形態の変形例を示す。なお、各変形例の一部又は全部は、互いに矛盾のない限り、他の変形例の一部又は全部と組み合わされてもよい。
上記実施形態の変形例を示す。なお、各変形例の一部又は全部は、互いに矛盾のない限り、他の変形例の一部又は全部と組み合わされてもよい。
(4-1)変形例A
上記実施形態では、出力部44eが判断部44cに対してテスト信号TSを出力し、判断部44cが冷媒の漏洩を判断した場合に、報知制御部44bが報知部70にテスト動作を実行させている。
上記実施形態では、出力部44eが判断部44cに対してテスト信号TSを出力し、判断部44cが冷媒の漏洩を判断した場合に、報知制御部44bが報知部70にテスト動作を実行させている。
しかし、例えば、図7のように空調システム100Aが構成されてもよい。図4に示した空調システム100との違いについて説明する。
空調システム100Aは、受付部44d、出力部44e、及び判定部44fは有していない。
空調システム100Aの判断部44cの、冷媒センサ34の検知信号DSに基づく冷媒漏洩の判断については、上記実施形態の空調システム100の判断部44cと同様である。ただし、上記実施形態の空調システム100とは異なり、空調システム100Aの判断部44cには、上記実施形態のテスト信号TSは入力されない。
空調システム100Aの報知制御部44bは、上記実施形態と同様に、冷媒センサ34が冷媒漏洩を検知した際に、リモートコントローラ48に内蔵された報知部70が光及び音で冷媒漏洩を報知するように報知部70の動作を制御する。一方で、空調システム100Aでは、上記実施形態の空調システム100とは異なり、判断部44cに対してテスト信号TSが入力されないため、報知部70をテスト動作させる際には、報知制御部44bは報知部70の動作を制御しない。
空調システム100Aは、リモートコントローラ48が処理部71を有する点で上記実施形態と相違する。処理部71は、判断部48a1による操作部48dに対する操作内容の判断の結果、送信部48a2が利用側制御装置44に操作信号Cを送信する際に、報知部70にテスト動作制御信号Baを送信する。言い換えれば、処理部71は、判断部48a1が操作部48dに対する操作が所定の操作であると判断した場合、報知部70にテスト動作制御信号Baを送信する。報知部70は、テスト動作制御信号Baを受信すると、上記実施形態のテスト動作モードと同様の動作を実行する。
空調システム100Aでは、テスト信号TSが判断部44cに入力されないことから、冷媒漏洩の報知の点検を行う際に、判断部44cから報知部70までを含めた漏洩報知回路の総合的な点検は行われない。空調システム100Aでは、リモートコントローラ48が操作信号Cを送信する際に、表示部48bのバックライトの点灯・点滅や、スピーカ74の音出力に関する動作点検が行われる。
(4-2)変形例B
報知部70は、冷媒漏洩を報知する手段として、表示部48b及びスピーカ48cのいずれか一方だけを有してもよい。また、報知部70は、表示部48b及びスピーカ48c以外の冷媒漏洩報知手段、例えば振動装置を更に有してもよい。
報知部70は、冷媒漏洩を報知する手段として、表示部48b及びスピーカ48cのいずれか一方だけを有してもよい。また、報知部70は、表示部48b及びスピーカ48c以外の冷媒漏洩報知手段、例えば振動装置を更に有してもよい。
(4-3)変形例C
操作信号送信部は、人が直接操作をするリモートコントローラ48に限定されるものではない。操作信号送信部は、外部機器から指示を受けて、空調装置1に対する各種の信号を送信する信号送信部であってもよい。
操作信号送信部は、人が直接操作をするリモートコントローラ48に限定されるものではない。操作信号送信部は、外部機器から指示を受けて、空調装置1に対する各種の信号を送信する信号送信部であってもよい。
例えば、操作信号送信部は、携帯端末や設備管理装置と、有線又は無線で通信可能に接続されている。操作信号送信部は、携帯端末や設備管理装置から指示を受けて、空調装置1に対して操作信号Cを含む各種信号を送信するように構成される。そして、操作信号送信部が空調装置1に対して操作信号Cを送信する際に、上記実施形態のリモートコントローラ48と同様に、操作信号送信部が、受付部44dに出力指示信号を送信してもよい。
(4-4)変形例D
上記実施形態では、冷媒漏洩報知装置80は2つの動作モードを有するが、これに限定されるものではない。例えば、冷媒漏洩報知装置80は、単一の動作モードを有し、判断部44cに入力される信号の種類によらず、判断部44cが冷媒が漏洩していると判断すると、報知部70に同じ報知動作を行わせてもよい。ただし、冷媒漏洩報知装置80が本動作モードとテスト動作モードとを有することで、ユーザがテストを冷媒漏洩と誤認する可能性を低減できる。
上記実施形態では、冷媒漏洩報知装置80は2つの動作モードを有するが、これに限定されるものではない。例えば、冷媒漏洩報知装置80は、単一の動作モードを有し、判断部44cに入力される信号の種類によらず、判断部44cが冷媒が漏洩していると判断すると、報知部70に同じ報知動作を行わせてもよい。ただし、冷媒漏洩報知装置80が本動作モードとテスト動作モードとを有することで、ユーザがテストを冷媒漏洩と誤認する可能性を低減できる。
(4-5)変形例E
上記実施形態では、リモートコントローラ48から利用側制御装置44に出力指示信号が送信され、利用側制御装置44の出力部44eがテスト信号TSを出力する。
上記実施形態では、リモートコントローラ48から利用側制御装置44に出力指示信号が送信され、利用側制御装置44の出力部44eがテスト信号TSを出力する。
これに代えて、空調システム及び冷媒漏洩報知装置は、例えば図8に示す空調システム200及び冷媒漏洩報知装置280のように構成されてもよい。ここでは、空調システム200及び冷媒漏洩報知装置280の、空調システム100及び冷媒漏洩報知装置80との相違点について主に説明し、同様な点についての説明は省略する。以下の説明では、上記実施形態と同様の構成には同じ参照符号を付す。
空調システム200及び冷媒漏洩報知装置280は、上記実施形態の空調システム100及び冷媒漏洩報知装置80と、リモートコントローラ248の機能の一部と、利用側制御装置244の機能の一部と、が異なる。
リモートコントローラ248は、利用側制御装置244に出力指示信号を送信しない。リモートコントローラ248は、利用側制御装置244に、主に空調装置1の制御用の信号を送信する。空調装置1の制御用の信号には、操作信号Cを含む。操作信号Cは、例えば、空調装置1の運転開始指示信号、空調装置1の運転停止指示信号、利用側ユニット3の風向及び風量や、空調装置1の設定温度の設定変更信号の少なくとも1つを含む。ただし、操作信号Cは、これら以外の空調装置1の制御用の信号であってもよい。
利用側制御装置244の受付部244dの機能は、上記実施形態の利用側制御装置44の受付部44dの機能と異なる。具体的には、受付部244dは、各種の空調装置1の制御用の操作信号を受信する。
利用側制御装置244は、利用側制御装置44とは異なり、識別部244hを有する。識別部244hは、受付部244dがリモートコントローラ248から受信した各種の空調装置1の制御用の信号を識別する。識別部244hは、空調装置1の空調制御部の一部として機能し、リモートコントローラ248から識別した種類の空調装置1の制御用の信号が送信されてきたことを利用側空調制御部44aに通知する。空調装置1の空調制御部は、識別部244hからの通知に基づいて、空調装置1の各部の動作を制御する。
また、利用側制御装置244では、出力部244eの動作が、上記実施形態の利用側制御装置44の出力部44eの動作と一部異なる。具体的には、上記実施形態の出力部44eは、受付部44dが出力指示信号を受け付けた時にテスト信号TSを出力しているのに対し、出力部244eは、受付部244dがリモートコントローラ248から受信した空調装置1の制御用の信号の種類が所定の種類の操作信号Cであると識別部244hが識別した場合に、テスト信号TSの出力指示信号を送信する。
(4-6)変形例F
上記実施形態では、リモートコントローラ48から利用側制御装置44に出力指示信号が送信され、出力部44eがテスト信号TSを出力する。
上記実施形態では、リモートコントローラ48から利用側制御装置44に出力指示信号が送信され、出力部44eがテスト信号TSを出力する。
これに代えて、空調システム及び冷媒漏洩報知装置は、例えば、図9に示す空調システム300及び冷媒漏洩報知装置380のように構成されてもよい。ここでは、空調システム300及び冷媒漏洩報知装置380の、空調システム100及び冷媒漏洩報知装置80との相違点について主に説明し、同様な点についての説明は省略する。以下の説明では、上記実施形態と同様の構成には、同じ参照符号を付す。
空調システム300及び冷媒漏洩報知装置380は、上記実施形態の空調システム100及び冷媒漏洩報知装置80と、リモートコントローラ348の機能の一部と、利用側制御装置344の機能の一部と、が異なる。
リモートコントローラ348は、利用側制御装置344に出力指示信号は送信せず、利用側制御装置344の判断部44cに対してテスト信号TSを直接出力する。リモートコントローラ348は、判断部44cに対してテスト信号TSを出力する出力部48a3を有する。出力部48a3は、操作部48dが受けた操作が所定の操作であると判断部48a1が判断して、送信部48a2が操作信号Cを送信する際に、テスト信号TSを判断部44cに送信する(図9中の矢印B2を参照)。なお、図9には、通信線46と別の信号線でテスト信号TSが送信される態様を描画しているが、テスト信号TSの送信には通信線46が利用されてもよい。
利用側制御装置344は、受付部44d及び出力部44eを有さない。判定部44fは、例えば上記実施形態で説明した判定方法1と同様な方法で、判断部44cが受信している信号が、検知信号DSであるか、テスト信号TSであるかを判定する。
<付記>
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
冷媒漏洩の報知部の点検の手間を低減可能な冷凍サイクルシステムとして有用である。
1 空調装置(冷凍サイクル装置)
6 冷媒回路
34 冷媒センサ(検知部)
44b 報知制御部(処理部)
44c 判断部
44e,48a3,244e 出力部
48 リモートコントローラ(操作信号送信部)
70 報知部
70a 警報器(報知部)
71 処理部
100,100A,200,300 空調システム(冷凍サイクルシステム)
C 操作信号
DS 検知信号
TS テスト信号
6 冷媒回路
34 冷媒センサ(検知部)
44b 報知制御部(処理部)
44c 判断部
44e,48a3,244e 出力部
48 リモートコントローラ(操作信号送信部)
70 報知部
70a 警報器(報知部)
71 処理部
100,100A,200,300 空調システム(冷凍サイクルシステム)
C 操作信号
DS 検知信号
TS テスト信号
Claims (8)
- 冷媒回路(6)を有する冷凍サイクル装置(1)と、
前記冷凍サイクル装置に対する操作信号(C)を送信する操作信号送信部(48)と、
冷媒の漏洩を検知する検知部(34)と、
前記検知部が前記冷媒の漏洩を検知すると、音及び光の少なくとも一方を発して前記冷媒の漏洩を報知する報知部(70,70a)と、
前記操作信号送信部が前記冷凍サイクル装置に対して前記操作信号を送信する時に、前記報知部に音及び光の少なくとも一方を発するテスト動作を実行させる処理部(44b,71)と、
を備える冷凍サイクルシステム(100,100A,200,300)。 - 前記操作信号送信部は、前記冷凍サイクル装置に前記操作信号を送信するリモートコントローラである、
請求項1に記載の冷凍サイクルシステム。 - 前記リモートコントローラは前記報知部を有する
請求項2に記載の冷凍サイクルシステム。 - 前記操作信号は、前記冷凍サイクル装置の起動信号及び前記冷凍サイクル装置の停止信号の少なくとも一方である、
請求項1から3のいずれか1項に記載の冷凍サイクルシステム。 - 前記テスト動作の際に前記報知部が音及び光の少なくとも一方を発している時間は、前記検知部が前記冷媒の漏洩を検知している時に前記報知部が音及び光の少なくとも一方を発している時間より短い、
請求項1から4のいずれか1項に記載の冷凍サイクルシステム。 - 前記報知部は、音による報知を行い、
前記テスト動作の際に前記報知部が発する音の音量は、前記検知部が前記冷媒の漏洩を検知している時に前記報知部が発する音の音量よりも小さい、
請求項1から5のいずれか1項に記載の冷凍サイクルシステム。 - 前記検知部が出力する前記冷媒の検知結果に応じた検知信号(DS)を受信し、受信した前記検知信号に基づいて前記冷媒の漏洩を判断する判断部(44c)と、
前記操作信号送信部が前記冷凍サイクル装置に対して前記操作信号を送信する時、テスト信号(TS)を前記判断部に対して出力する、前記検知部とは異なる出力部(44e,48a3,244e)と、
を更に備え、
前記テスト信号は、前記判断部が受信すると、前記判断部が前記冷媒が漏洩していると判断する信号であり、
前記処理部は、前記テスト信号に応じて前記判断部が前記冷媒の漏洩を判断した時に、前記報知部に前記テスト動作を実行させる、
請求項1から6のいずれか1項に記載の冷凍サイクルシステム。 - 前記冷媒は可燃性である、
請求項1から7のいずれか1項に記載の冷凍サイクルシステム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES20840391T ES2976047T3 (es) | 2019-07-12 | 2020-07-08 | Sistema de ciclo de refrigeración |
EP20840391.5A EP3998442B1 (en) | 2019-07-12 | 2020-07-08 | Refrigeration cycle system |
CN202080050629.0A CN114096793A (zh) | 2019-07-12 | 2020-07-08 | 冷冻循环系统 |
US17/570,974 US12044422B2 (en) | 2019-07-12 | 2022-01-07 | Refrigeration cycle system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-130643 | 2019-07-12 | ||
JP2019130643A JP6866906B2 (ja) | 2019-07-12 | 2019-07-12 | 冷凍サイクルシステム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/570,974 Continuation US12044422B2 (en) | 2019-07-12 | 2022-01-07 | Refrigeration cycle system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021010234A1 true WO2021010234A1 (ja) | 2021-01-21 |
Family
ID=74210657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026622 WO2021010234A1 (ja) | 2019-07-12 | 2020-07-08 | 冷凍サイクルシステム |
Country Status (6)
Country | Link |
---|---|
US (1) | US12044422B2 (ja) |
EP (1) | EP3998442B1 (ja) |
JP (1) | JP6866906B2 (ja) |
CN (1) | CN114096793A (ja) |
ES (1) | ES2976047T3 (ja) |
WO (1) | WO2021010234A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113432240A (zh) * | 2021-06-30 | 2021-09-24 | 海信(广东)空调有限公司 | 检测冷媒泄露的方法及装置、空调器和存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023135630A1 (ja) * | 2022-01-11 | 2023-07-20 | 三菱電機株式会社 | 空気調和装置 |
WO2023199499A1 (ja) * | 2022-04-15 | 2023-10-19 | 三菱電機株式会社 | 空気調和機の監視システム |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259866A (ja) * | 1984-05-14 | 1985-12-21 | キヤリア・コーポレイシヨン | 冷凍システム運転方法および冷凍システム制御システム |
US6279332B1 (en) * | 1999-08-05 | 2001-08-28 | Samsung Electronics Co., Ltd. | Performance testing method of air conditioner |
JP2012193884A (ja) | 2011-03-16 | 2012-10-11 | Fuji Koki Corp | 冷媒漏れ検出器 |
WO2017002213A1 (ja) * | 2015-06-30 | 2017-01-05 | 三菱電機株式会社 | 冷媒漏洩検知装置 |
JP2017009268A (ja) * | 2015-06-26 | 2017-01-12 | ダイキン工業株式会社 | 空気調和システム |
JP2017009267A (ja) * | 2015-06-26 | 2017-01-12 | ダイキン工業株式会社 | 空気調和システム |
JP2017053571A (ja) * | 2015-09-10 | 2017-03-16 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 冷媒漏えい検知器の点検システム、および空調システム |
JP2017076268A (ja) * | 2015-10-15 | 2017-04-20 | 新コスモス電機株式会社 | 警報器、及び、警報器とエアコンとの連動システム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5139481B2 (ja) * | 2010-07-20 | 2013-02-06 | 東京瓦斯株式会社 | 警報器 |
CN102759176B (zh) * | 2012-07-18 | 2014-12-10 | 广东志高空调有限公司 | 一种空调器的智能自检方法 |
JP6168113B2 (ja) * | 2015-08-11 | 2017-07-26 | ダイキン工業株式会社 | 空調室内機 |
JP6656406B2 (ja) * | 2016-11-16 | 2020-03-04 | 三菱電機株式会社 | 空気調和装置および冷媒漏洩検知方法 |
CN107477791B (zh) * | 2017-08-23 | 2019-08-30 | 四川虹美智能科技有限公司 | 一种空调漏氟检测方法、装置及空调系统 |
-
2019
- 2019-07-12 JP JP2019130643A patent/JP6866906B2/ja active Active
-
2020
- 2020-07-08 ES ES20840391T patent/ES2976047T3/es active Active
- 2020-07-08 EP EP20840391.5A patent/EP3998442B1/en active Active
- 2020-07-08 WO PCT/JP2020/026622 patent/WO2021010234A1/ja unknown
- 2020-07-08 CN CN202080050629.0A patent/CN114096793A/zh active Pending
-
2022
- 2022-01-07 US US17/570,974 patent/US12044422B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60259866A (ja) * | 1984-05-14 | 1985-12-21 | キヤリア・コーポレイシヨン | 冷凍システム運転方法および冷凍システム制御システム |
US6279332B1 (en) * | 1999-08-05 | 2001-08-28 | Samsung Electronics Co., Ltd. | Performance testing method of air conditioner |
JP2012193884A (ja) | 2011-03-16 | 2012-10-11 | Fuji Koki Corp | 冷媒漏れ検出器 |
JP2017009268A (ja) * | 2015-06-26 | 2017-01-12 | ダイキン工業株式会社 | 空気調和システム |
JP2017009267A (ja) * | 2015-06-26 | 2017-01-12 | ダイキン工業株式会社 | 空気調和システム |
WO2017002213A1 (ja) * | 2015-06-30 | 2017-01-05 | 三菱電機株式会社 | 冷媒漏洩検知装置 |
JP2017053571A (ja) * | 2015-09-10 | 2017-03-16 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | 冷媒漏えい検知器の点検システム、および空調システム |
JP2017076268A (ja) * | 2015-10-15 | 2017-04-20 | 新コスモス電機株式会社 | 警報器、及び、警報器とエアコンとの連動システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3998442A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113432240A (zh) * | 2021-06-30 | 2021-09-24 | 海信(广东)空调有限公司 | 检测冷媒泄露的方法及装置、空调器和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3998442A1 (en) | 2022-05-18 |
ES2976047T3 (es) | 2024-07-22 |
US12044422B2 (en) | 2024-07-23 |
EP3998442A4 (en) | 2022-08-31 |
CN114096793A (zh) | 2022-02-25 |
JP2021014960A (ja) | 2021-02-12 |
JP6866906B2 (ja) | 2021-04-28 |
US20220128254A1 (en) | 2022-04-28 |
EP3998442B1 (en) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021010233A1 (ja) | 冷媒漏洩報知装置及び冷媒漏洩報知装置を備えた冷凍サイクルシステム | |
US11268718B2 (en) | Refrigeration apparatus | |
WO2021010234A1 (ja) | 冷凍サイクルシステム | |
JP6849021B2 (ja) | 冷凍サイクルシステム | |
JP6929747B2 (ja) | 空気調和機 | |
WO2018220810A1 (ja) | 空気調和装置 | |
WO2023140145A1 (ja) | 冷凍装置、冷媒漏洩検知装置、および冷媒漏洩検知方法 | |
US20220260293A1 (en) | Air conditioning apparatus | |
US20220349601A1 (en) | Air-conditioning system | |
US20220373205A1 (en) | Air-conditioning system | |
JP2022170278A (ja) | 空調システム | |
JP2021085642A (ja) | 空気調和装置 | |
US12031732B2 (en) | Air conditioning system, operation control method therefor, and operation control device for air conditioning system | |
US20220390159A1 (en) | Air-conditioning management system and refrigerant recovery management apparatus | |
JP2022170267A (ja) | 空調システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20840391 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020840391 Country of ref document: EP Effective date: 20220214 |