WO2021008494A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2021008494A1
WO2021008494A1 PCT/CN2020/101660 CN2020101660W WO2021008494A1 WO 2021008494 A1 WO2021008494 A1 WO 2021008494A1 CN 2020101660 W CN2020101660 W CN 2020101660W WO 2021008494 A1 WO2021008494 A1 WO 2021008494A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
cycle
data
configuration information
information
Prior art date
Application number
PCT/CN2020/101660
Other languages
English (en)
French (fr)
Inventor
周铮
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20840182.8A priority Critical patent/EP3986000A4/en
Publication of WO2021008494A1 publication Critical patent/WO2021008494A1/zh
Priority to US17/576,618 priority patent/US20220140963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/62Establishing a time schedule for servicing the requests

Definitions

  • the embodiments of the present application relate to the field of automatic driving technology, and in particular, to a communication method and device.
  • sensors play a very important role in assisted driving and autonomous driving of smart cars.
  • a variety of sensors installed on the car such as millimeter wave radar, lidar, camera, ultrasonic radar, etc., can sense the surrounding environment at any time during the driving process of the car, collect data, identify and track moving objects, and stand still Scenarios such as the identification of lane lines and signs, combined with navigator and map data for path planning. Sensors can perceive possible dangers in advance and promptly help the driver even take necessary evasive measures autonomously, effectively increasing the safety and comfort of car driving.
  • the establishment of an environment model relies on data collected by different sensors.
  • the data collected by the sensor is generally reported to the data fusion unit according to a single reporting cycle through a standard interface, so that the data fusion unit can complete assisted driving based on the data.
  • the change cycle or update cycle of the data collected by the sensor is often different.
  • the sensor will report a large amount of useless data collected in a single cycle, which leads to a large amount of information redundancy and makes transmission Inefficient use of resources.
  • the embodiments of the present application provide a communication method and device, which improve the utilization efficiency of transmission resources.
  • an embodiment of the present application provides a communication method, including:
  • the first cycle is a transmission cycle of first data
  • the second cycle is a transmission cycle of second data
  • the first cycle and the second cycle are different.
  • the first period is pre-configured or determined based on the collection period of the first data.
  • the second period is pre-configured or determined based on the collection period of the second data.
  • the first data can be determined by the measurement period of the sensor, and the second data can be determined by the change period of the data source. Therefore, the transmission period of the first data and the transmission period of the second data are different .
  • the second device may be a fusion module that receives data reported by the sensor, or a data fusion module of the central processing unit.
  • the indication information includes configuration information of the first period and configuration information of the second period;
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the second device may send the instruction information first, and after receiving the instruction information, the sensor side sends the configuration information of the first cycle and the configuration information of the second cycle to the second device; The second device confirms the configuration information of the first cycle and the configuration information of the second cycle, and if the sensor side receives the confirmation information fed back by the second device, the configuration of the first cycle and the second cycle is completed.
  • period configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the sensor side can actively send periodic configuration information to the second device.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the sensor side can decide at any time whether to suspend sending the second data to the second device in the second cycle.
  • the sensor side can decide whether to suspend sending any reported data.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • an embodiment of the present application provides a communication method, including:
  • the transmission period of the first data is a first period
  • the transmission period of the second data is a second period
  • the first period and the second period are different.
  • the first device may be a sensor that collects various environmental data.
  • the indication information includes configuration information of the first period and configuration information of the second period; or
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the first device may receive instruction information from the second device, and the instruction information is used to instruct the first device to perform periodic configuration; the first device sends the first periodic configuration information and the second periodic configuration information to The second device, and then the second device feeds back confirmation information to the first device, so that the reporting period of each data can be determined in an interactive manner.
  • Period configuration information sent from the first device, where the period configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • Receiving third data from the first device, and a transmission period of the third data is a third period.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • an embodiment of the present application provides a first communication device, including:
  • Processing module for obtaining first data and second data
  • a sending module configured to send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle;
  • the first cycle is a transmission cycle of first data
  • the second cycle is a transmission cycle of second data
  • the first cycle and the second cycle are different.
  • the first period is pre-configured or determined based on the collection period of the first data.
  • the second period is pre-configured or determined based on the collection period of the second data.
  • the receiving module is configured to receive instruction information from the second device, where the instruction information is used to indicate the configuration information of the first period and the configuration information of the second period.
  • the indication information includes configuration information of the first period and configuration information of the second period; or
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the sending module is further configured to send period configuration information to the second device, where the period configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the processing module is further configured to suspend sending the second data to the second device in the second cycle.
  • the sending module is further configured to send third data to the second device according to the third cycle.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • an embodiment of the present application provides a second communication device, including:
  • a receiving module for receiving first data from a first device, and receiving second data from the first device
  • the transmission period of the first data is a first period
  • the transmission period of the second data is a second period
  • the first period and the second period are different.
  • the sending module is configured to send instruction information to the first device, where the instruction information is used to indicate the configuration information of the first cycle and the configuration information of the second cycle.
  • the indication information includes configuration information of the first period and configuration information of the second period; or
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the receiving module is further configured to receive period configuration information sent by the first device, where the period configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • an embodiment of the present application provides a communication device, including: a processor and a transceiver; the processor and the transceiver are configured to execute the communication method according to any one of the embodiments of the present application in the first aspect or the second aspect.
  • an embodiment of the present application provides a chip, including a memory and a processor, the memory is used to store program instructions, and the processor is used to call the program instructions in the memory to execute the first aspect or the second aspect described in the embodiments of the present application Communication method.
  • an embodiment of the present application provides a readable storage medium with a computer program stored on the readable storage medium; when the computer program is executed, the implementation of the first aspect or the second aspect of the embodiment of the present application The communication method mentioned.
  • an embodiment of the present application provides a program product, the program product includes a computer program, the computer program is stored in a readable storage medium, and at least one processor of a communication device can read from the readable storage medium Taking the computer program, the at least one processor executes the computer program to enable the communication device to implement the communication method according to any one of the embodiments of the present application in the first aspect or the second aspect.
  • the first data and the second data obtained can be sent in different transmission periods, thereby reducing information redundancy and improving the utilization of transmission resources effectiveness.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the application
  • FIG. 2 is a first flowchart of a communication method provided by an embodiment of this application.
  • FIG. 3 is a second flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a third flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a fourth flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a fifth flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a sixth flowchart of a communication method provided by an embodiment of this application.
  • 9 is a signaling interaction diagram 2 of the communication method provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a first communication device according to an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a second communication device according to an embodiment of this application.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the application. As shown in Fig. 1, the communication system includes a sensor and a fusion module.
  • a sensor refers to a vehicle-mounted sensor; there are many types of existing vehicle-mounted sensors, and each sensor has its own interface format. Even for the same type of sensors, different manufacturers have different interfaces. Therefore, a unified sensor interface is often needed for data abstraction processing to obtain abstract data.
  • Vehicle sensors can generally be divided into three categories: internal sensors, external sensors, and metadata sensors. As the name implies, internal sensors refer to sensors installed on or in the car, which are generally used to measure the dynamic state of various components inside the car; such as gyroscopes, accelerometers, steering angle sensors, wiper activity sensors, steering indicators, etc.
  • An external sensor refers to a sensor installed on or in a car to measure the surrounding environment of the vehicle or the internal environment of the car; such as radar, laser, ultrasonic sensor, camera, etc.
  • Metadata sensors usually refer to the measurement of data sources, such as cloud data, navigation map data, and so on.
  • Fusion module used to receive the data uploaded by the sensor, and then perform the fusion processing on the data, so that the on-board system can construct an approximate real environment model based on the fused data.
  • the fusion module can be integrated in the central processing unit or can exist independently.
  • the construction of the environment model relies on vehicle positioning data, vehicle dynamics data, object data in the environment, map grid data, lane data, and so on. When the vehicle is driving automatically, the driving decision made by the on-board system needs to rely on the built environment model.
  • multiple sensors establish a communication connection with the fusion module.
  • the sensor packs the measured data, and then sends the data packet to the fusion module according to the configured cycle.
  • the data packet can contain one type of data, or two or more types of data. When two or more types of data are transmitted, at least two types of data have different reporting periods.
  • FIG. 2 is a first flowchart of a communication method provided by an embodiment of this application. Referring to FIG. 2, the method in this embodiment includes:
  • Step S101 Acquire first data and second data.
  • Step S102 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle; wherein, the first cycle is the transmission cycle of the first data, and the second cycle is the second cycle.
  • the data transmission cycle is different between the first cycle and the second cycle.
  • the first device may obtain the first data and the second data, and then send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle; and
  • the first cycle is different from the second cycle.
  • the first device may be a sensor, such as radar, lidar, ultrasonic radar, camera, etc.
  • radar, lidar, and ultrasonic radar measure surrounding objects from different dimensions.
  • the conditions that each sensor senses and the attributes of the target are different.
  • radar is good at identifying the distance of moving targets, speed, and adaptation.
  • the weather conditions are relatively wide, and the camera can recognize the surrounding environment information through image collection, which is greatly affected by the light conditions.
  • the first device may be a single sensor, or multiple sensors of different types, or a combination device of multiple sensors of the same type.
  • the first device may be a first camera installed at the front end of the vehicle, and the first camera is used to collect moving objects on the road, road traffic signs, traffic light information, and so on.
  • the first device may be a combined device including multiple cameras.
  • it may include: a first camera installed at the front end of the vehicle, a second camera installed at the left side of the vehicle, a third camera installed at the right side of the vehicle, and a fourth camera installed at the rear end of the vehicle.
  • the first camera, the second camera, the third camera, and the fourth camera are used to capture 360-degree environmental images around the vehicle.
  • the first device may be a combined device including radar, lidar, and ultrasonic radar.
  • Radar, lidar, and ultrasonic radar may all be used to measure the distance to surrounding objects.
  • the measurement period or change period of the first data is the first period
  • the measurement period or change period of the second data is the second period; and the first period and the second period are different.
  • the minimum common divisor of the first period and the second period is set as the unified period for reporting the second device, there will be a lot of data redundancy.
  • a camera mounted on a vehicle is taken as an example for detailed description.
  • the first data collected by the camera is information of moving objects on the road
  • the second data collected is traffic light information.
  • the acquisition cycle of moving objects on the road is very short, for example, an image containing moving objects needs to be collected every ten milliseconds; the change cycle of traffic lights is relatively slow, for example, the change cycle of traffic lights at common intersections is more than 30 seconds.
  • the traffic lights are more of the LED technology, the traffic lights are not always on, but there is a flashing change state. If the measurement period is short, for example, just in the flashing state, it will cause information false alarm.
  • the first period may be pre-configured or determined based on the collection period of the first data.
  • the first period may be configured according to the collection period of the first data collected by the sensor, or may be configured according to the change period of the first data.
  • the collection period of the first data by the first device may be pre-configured when it is installed or when it leaves the factory. If the first device is not configured with the first period in advance, the first period corresponding to the first data can be customized according to the collection period of the first data in the actual application scenario. For example, if the collection period of the first data is 2 seconds, the first period can be set to 2 seconds.
  • the second period may be pre-configured or determined based on the second data collection period.
  • the second period can be configured according to the collection period of the second data collected by the first device, or can be configured according to the change period of the second data.
  • the collection period of the second data by the first device can be pre-configured when it is installed or when it leaves the factory. If the first device has not configured the second period in advance, the second period corresponding to the second data can be customized according to the collection period of the second data in the actual application scenario. For example, if the change period of the second data is 60 seconds, the second period can be set to 60 seconds.
  • the duration of the second cycle may be set to be N times the duration of the first cycle, and N is a natural number greater than 1.
  • the second period can be set to 40 seconds at this time.
  • the data packet containing the first data and the second data is sent to the second device, and at the time node of 20*(2k+1) seconds, it is sent to the second device A data packet containing the first data but not the second data; where k is a natural number.
  • the number of types of data acquired by the first device is not limited in this embodiment, and the first device can acquire more than two types of data.
  • the first data transmission period is the first period
  • the second data transmission period is the second period
  • the third data transmission period is the third period
  • the period is twice the first period
  • the third period is three times the first period.
  • the first data is sent in the first period
  • the first data and the second data are sent in the second period
  • the first data and the third data are sent in the third period.
  • the reporting period can be set to an existing one according to the measurement period of the new data and/or the change period of the data source. N times the data, and N is a natural number greater than 1.
  • the first device packages the first data and sends it to the second device.
  • the packed data packet includes a count value of the first counter, and the count value is used to indicate the serial number of the data packet corresponding to the first data.
  • the sending period of the second data is configured as the second period.
  • the second period can be set to be N times the first period, and N is a natural number greater than 1 (for specific settings, the first period can also be set to be N times the second period, and N is a natural number greater than 1).
  • the first device sends a data packet containing the first data and the second data to the second device.
  • the data packet containing the first data and the second data may select the data packet sequence number indicated by the count value of the first counter or the second counter.
  • a counter is used to calculate the cycle time.
  • any device with a timing function can also be used to calculate the cycle time.
  • the acquired first data and second data are sent in different sending cycles, thereby reducing information redundancy and improving the utilization efficiency of transmission resources.
  • Fig. 3 is a second flowchart of a communication method provided by an embodiment of this application. Referring to Fig. 3, the method of this embodiment includes:
  • Step S201 Receive instruction information from the second device, where the instruction information is used to indicate the configuration information of the first cycle and the configuration information of the second cycle.
  • Step S202 Acquire first data and second data.
  • Step S203 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle; wherein, the first cycle is a transmission cycle of the first data, and the second cycle is a second cycle.
  • the data transmission cycle is different between the first cycle and the second cycle.
  • the second device in step S201 may be a fusion module that receives data reported by the first device, or a control unit that implements data fusion processing.
  • the second device sends the instruction information first, and after receiving the instruction information, the first device sends the configuration information of the first cycle and the configuration information of the second cycle to the second device; then the second device The configuration information of the first cycle and the configuration information of the second cycle are confirmed. If the first device receives the confirmation information fed back by the second device, the configuration of the first cycle and the second cycle is completed. At this time, the instruction information is used to instruct the first device to configure the first cycle and the second cycle.
  • the first device actively sends periodic configuration information to the second device, and the periodic configuration information includes configuration information of the first period and/or configuration information of the second period. Then, after receiving the period configuration information, the second device feeds back confirmation information to the first device.
  • the confirmation information is used to confirm the use of the configuration information of the first period and the configuration information of the second period. After the first device receives the confirmation information from the second device, it can send the first data and the second data to the second device in a corresponding period.
  • the periodic configuration of different data can be realized by the interactive signaling between the first device and the second device. It should be noted that the period configuration information can be modified after confirmation.
  • the road conditions of urban roads, highways, and closed parks are different, and the range and speed range of measurement will have different requirements according to different scenarios.
  • the measurement period of moving object information can be adjusted to expand the reporting period.
  • either the first device or the second device may initiate the change of the periodic configuration information.
  • step S202 and step S203 are similar to the implementation principle and implementation process of the method shown in FIG. 2 and will not be repeated here.
  • the period configuration information of different data can be determined through the signaling interaction between the communication devices. After the period configuration information is determined, the first device sends the acquired first data and second data in different sending periods. , Thereby reducing the redundancy of information and improving the utilization efficiency of transmission resources.
  • Fig. 4 is a third flowchart of a communication method provided by an embodiment of this application. Referring to Fig. 4, the method of this embodiment includes:
  • Step S301 Acquire first data and second data.
  • Step S302 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle; wherein, the first cycle is the transmission cycle of the first data, and the second cycle is the second cycle.
  • the data transmission cycle is different between the first cycle and the second cycle.
  • Step S303 Suspend sending second data to the second device in the second cycle.
  • step S301 and step S302 are similar to the implementation principle and implementation process of the method shown in FIG. 2 and will not be repeated here.
  • the first device may start at any sending time node in the second cycle and suspend sending the second data to the second device.
  • the sending of the second data needs to be suspended.
  • the first device packages the first data and sends it to the second device.
  • the packed data packet includes a count value of the first counter, and the count value is used to indicate the serial number of the data packet corresponding to the first data.
  • a counter is used to calculate the cycle time.
  • any device with a timing function can also be used to calculate the cycle time.
  • the first device may suspend sending the second data to the second device in the second period.
  • the first device may resume sending the second data to the second device in the second cycle after performing step S303.
  • the traffic light information of the intersection needs to be measured on the ordinary road. Therefore, after the vehicle enters the ordinary road through the toll gate exit, the first device can resume to the second cycle. The device sends the second data.
  • the number of types of data acquired by the first device is not limited in this embodiment, and the first device can acquire more than two types of data.
  • the first data transmission period is the first period
  • the second data transmission period is the second period
  • the third data transmission period is the third period
  • the period is twice the first period
  • the third period is three times the first period.
  • the first data is sent in the first period
  • the first data and the second data are sent in the second period
  • the first data and the third data are sent in the third period.
  • the first device may suspend sending the second data to the second device in the second cycle; or it may suspend sending the third data to the second device in the third cycle.
  • this embodiment does not limit the specific data to be suspended, and the first device can suspend reporting of any data.
  • the sending of the second data to the second device in the second cycle may be suspended as needed. Therefore, when the application scenario changes and a certain data is not needed, the reporting of the corresponding data can be suspended at any time, thereby reducing data redundancy.
  • FIG. 5 is a fourth flowchart of a communication method provided by an embodiment of this application. Referring to FIG. 5, the method in this embodiment includes:
  • Step S401 Acquire first data and second data.
  • Step S402 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle; wherein, the first cycle is the transmission cycle of the first data, and the second cycle is the second cycle.
  • the data transmission cycle is different between the first cycle and the second cycle.
  • Step S403 Send third data to the second device according to the third cycle.
  • step S401 and step S402 are similar to the implementation principle and implementation process of the method shown in FIG. 2, and will not be repeated here.
  • the sensor side may send third data to the second device in the third cycle.
  • the configuration of the third period is not limited in this embodiment.
  • any of the following methods can be used:
  • the second device sends the instruction information first, and after receiving the instruction information, the first device sends the configuration information of the third cycle to the second device; then the second device controls the configuration information of the third cycle Confirm. If the first device receives the confirmation information fed back by the second device, the configuration of the third cycle is completed. At this time, the instruction information is used to instruct the first device to configure the third cycle.
  • the first device actively sends periodic configuration information to the second device, and the periodic configuration information includes configuration information of the third period. Then, after receiving the period configuration information, the second device feeds back confirmation information to the first device, and the confirmation information is used to confirm the use of the configuration information of the third period. After the first device receives the confirmation information from the second device, it can send the third data to the second device in a corresponding period.
  • the periodic configuration of different data can be realized by the interactive signaling between the first device and the second device. It should be noted that the period configuration information can be modified after confirmation.
  • the duration of the third cycle may be configured to be N times the duration of the first cycle, and N is a natural number greater than 1.
  • configure the duration of the third cycle to be M times the duration of the second cycle, and M is a natural number greater than 1.
  • configuring the third period as a multiple of the first period or the second period can reduce data redundancy and improve the utilization of transmission resources. Theoretically, the more data types that a data packet can contain in the same period, the higher the transmission efficiency. Therefore, in practical applications, it can be configured as a multiple of other data periods according to the newly added third data collection period and/or the data source change period.
  • the period of the third data may also be configured to be the same as the period of the first data or the second data.
  • the reporting period of the third data when the collection period of the third data and/or the change period of the data source is close to the collection period of the first data and/or the change period of the data source, the reporting period of the third data can be set to be the same as that of the first data.
  • the data reporting cycle is the same.
  • the reporting period of the third data can be set to be the same as the reporting period of the second data .
  • the transmission period corresponding to the third data is first configured as the third period. It is assumed that the set third period is N times the first period, and N is a natural number greater than 1.
  • the first data and the third data are packaged and sent to the second device.
  • the packed data packet contains the count value of the first counter or the third counter, and the count value is used to indicate the serial number of the data packet corresponding to the first data.
  • a counter is used to calculate the cycle time.
  • any device with a timing function can also be used to calculate the cycle time.
  • a third cycle can be added, and the third data is sent to the second device in the third cycle.
  • the reporting period and reporting data can be added conveniently, making the data reporting more flexible.
  • Fig. 6 is a flowchart 5 of a communication method provided by an embodiment of this application. Referring to Fig. 6, the method of this embodiment includes:
  • Step S501 The second device receives the first data from the first device, and receives the second data from the first device; wherein, the transmission period of the first data is the first period, and the transmission period of the second data is the second period. Period, the first period and the second period are different.
  • the second device is in communication connection with the first device, and the second device may be a fusion module or a control unit that implements data fusion processing.
  • the first device obtains the first data and the second data; then the first device sends the first data to the second device according to the first cycle, and sends the second data to the second device according to the second cycle.
  • the first data and the second data are received through different transmission cycles, thereby reducing information redundancy and improving the utilization efficiency of transmission resources.
  • the second device may further send instruction information to the first device, where the instruction information is used to indicate the configuration information of the first cycle and the configuration information of the second cycle.
  • the indication information includes configuration information of the first cycle and configuration information of the second cycle.
  • the second device may send the instruction information first. After receiving the instruction information, the first device sends the configuration information of the first cycle and the configuration information of the second cycle to the second device; then the second device The configuration information of the first cycle and the configuration information of the second cycle are confirmed. If the first device receives the confirmation information fed back by the second device, the configuration of the first cycle and the second cycle is completed. At this time, the instruction information is used to instruct the first device to configure the first cycle and the second cycle.
  • the indication information includes confirmation information
  • the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the first device may actively send periodic configuration information to the second device, and the periodic configuration information includes configuration information of the first period and/or configuration information of the second period. Then, after receiving the period configuration information, the second device feeds back confirmation information to the first device.
  • the confirmation information is used to confirm the use of the configuration information of the first period and the configuration information of the second period. After the first device receives the confirmation information from the second device, it can send the first data and the second data to the second device in a corresponding period.
  • the periodic configuration of different data can be realized by the interactive signaling between the first device and the second device. It should be noted that the period configuration information can be modified after confirmation.
  • the period configuration information of different data can be determined through the signaling interaction between the communication devices. After the period configuration information is determined, the sensor side sends the acquired first data and second data in different sending periods. Thereby reducing the redundancy of information and improving the utilization efficiency of transmission resources.
  • FIG. 7 is a sixth flowchart of a communication method provided by an embodiment of this application. Referring to FIG. 7, the method in this embodiment includes:
  • Step S601 The second device receives the first data from the first device, and receives the second data from the first device; wherein the transmission period of the first data is the first period, and the transmission period of the second data is the second period. Period, the first period and the second period are different.
  • Step S602 Receive the third data from the first device, and the transmission period of the third data is the third period.
  • the first device may send the third data to the second device in the third cycle, so that the second device receives the third data sent according to the third cycle.
  • the configuration of the third period is not limited in this embodiment.
  • any of the following methods can be used:
  • the second device sends the instruction information first, and after receiving the instruction information, the first device sends the configuration information of the third cycle to the second device; then the second device controls the configuration information of the third cycle Confirm. If the first device receives the confirmation information fed back by the second device, the configuration of the third cycle is completed. At this time, the instruction information is used to instruct the first device to configure the third cycle.
  • the first device actively sends periodic configuration information to the second device, and the periodic configuration information includes configuration information of the third period. Then, after receiving the period configuration information, the second device feeds back confirmation information to the first device, and the confirmation information is used to confirm the use of the configuration information of the third period. After the first device receives the confirmation information from the second device, it can send the third data to the second device in a corresponding period.
  • the periodic configuration of different data can be realized by the interactive signaling between the first device and the second device. It should be noted that the period configuration information can be modified after confirmation.
  • the duration of the third cycle may be configured to be N times the duration of the first cycle, and N is a natural number greater than 1.
  • configure the duration of the third cycle to be M times the duration of the second cycle, and M is a natural number greater than 1.
  • configuring the third period as a multiple of the first period or the second period can reduce data redundancy and improve the utilization of transmission resources. Theoretically, the more data types that a data packet can contain in the same period, the higher the transmission efficiency. Therefore, in practical applications, it can be configured as a multiple of other data periods according to the newly added third data collection period and/or the data source change period.
  • the period of the third data may also be configured to be the same as the period of the first data or the second data.
  • the reporting period of the third data when the collection period of the third data and/or the change period of the data source is close to the collection period of the first data and/or the change period of the data source, the reporting period of the third data can be set to be the same as that of the first data.
  • the data reporting cycle is the same.
  • the reporting period of the third data can be set to be the same as the reporting period of the second data .
  • a third cycle can be added, and the third data is sent to the second device in the third cycle.
  • the reporting period and reporting data can be added conveniently, making the data reporting more flexible.
  • FIG. 8 is a signaling interaction diagram 1 of the communication method provided by an embodiment of this application. Referring to FIG. 8, the method in this embodiment includes:
  • Step S701 The first device acquires first data and second data.
  • Step S702 The second device sends instruction information to the first device.
  • Step S703 The first device sends the first period configuration information and the second period configuration information to the second device according to the instruction information.
  • Step S704 The second device receives the first period configuration information and the second period configuration information, and feeds back confirmation information to the first device.
  • Step S705 The first device determines a first cycle for sending the first data and a second cycle for sending the second data according to the confirmation information; wherein the first cycle and the second cycle are different.
  • Step S706 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle.
  • Step S707 The first device suspends sending second data to the second device in the second cycle.
  • Step S708 The first device sends third data to the second device according to the third cycle.
  • the period configuration information of different data can be determined through the signaling interaction between the first device and the second device. After the period configuration information is determined, the first device sends the acquired data to different transmission periods. The second device reduces information redundancy and improves the utilization efficiency of transmission resources.
  • FIG. 9 is a signaling interaction diagram 2 of the communication method provided by an embodiment of this application. Referring to FIG. 9, the method in this embodiment includes:
  • Step S801 The first device acquires first data and second data.
  • Step S802 The first device sends the first period configuration information and the second period configuration information to the second device.
  • Step S803 The second device receives the first period configuration information and the second period configuration information, and feeds back confirmation information to the first device.
  • Step S804 The first device determines a first period for sending the first data and a second period for sending the second data according to the confirmation information; wherein the first period and the second period are different.
  • Step S805 Send the first data to the second device according to the first cycle, and send the second data to the second device according to the second cycle.
  • Step S806 The first device suspends sending second data to the second device in the second cycle.
  • Step S807 The first device sends third data to the second device according to the third cycle.
  • the period configuration information of different data can be determined through the signaling interaction between the first device and the second device. After the period configuration information is determined, the first device sends the acquired data to different transmission periods. The second device reduces information redundancy and improves the utilization efficiency of transmission resources.
  • FIG. 10 is a schematic structural diagram of a first communication device provided by an embodiment of this application.
  • the first device may be used to execute the method in the embodiments shown in FIGS. 2 to 5 above.
  • the first device Including: a processing module 11, a storage module 12, and a sending module 13, where the storage module 12 is used to couple with the processing module 11 to store program instructions and/or data;
  • the processing module 11 is used to obtain the first data and the second data
  • the sending module 13 is configured to send first data to the second device according to the first cycle, and to send second data to the second device according to the second cycle;
  • the first cycle is a transmission cycle of the first data
  • the second cycle is a transmission cycle of the second data
  • the first cycle and the second cycle are different.
  • the processing module 11 may be a processor, and the sending module 13 may be a transmitter.
  • the first device may be a sensor, such as radar, lidar, ultrasonic radar, camera, etc.
  • radar, lidar, and ultrasonic radar measure surrounding objects from different dimensions.
  • the conditions that each sensor senses and the attributes of the target are different.
  • radar is good at identifying the distance of moving targets, speed, and adaptation.
  • the weather conditions are relatively wide, and the camera can recognize the surrounding environment information through image collection, which is greatly affected by the light conditions.
  • the first device may be a single sensor, or multiple sensors of different types, or a combination device of multiple sensors of the same type.
  • the first device may be a first camera installed at the front end of the vehicle, and the first camera is used to collect moving objects on the road, road traffic signs, traffic light information, and so on.
  • the first device may be a combined device including multiple cameras.
  • it may include: a first camera installed at the front end of the vehicle, a second camera installed at the left side of the vehicle, a third camera installed at the right side of the vehicle, and a fourth camera installed at the rear end of the vehicle.
  • the first camera, the second camera, the third camera, and the fourth camera are used to capture 360-degree environmental images around the vehicle.
  • the first device may be a combined device including radar, lidar, and ultrasonic radar.
  • Radar, lidar, and ultrasonic radar may all be used to measure the distance to surrounding objects.
  • the second device may be a fusion module that receives data reported by the first device, or a control unit that implements data fusion processing.
  • the second device may be an independent device, or it may be integrated in the vehicle control system or the central processing unit. For example: on-board computer.
  • the first device may send the collected data to the fusion module or the data fusion module of the central processing unit through a standard data transmission interface.
  • the first device may also wirelessly send the collected data to the fusion module or the data fusion module of the central processing unit.
  • Wireless methods include: WIFI LAN, or Bluetooth for data reporting.
  • the first period is pre-configured or determined based on the collection period of the first data.
  • the second period is pre-configured or determined based on the second data collection period.
  • it also includes:
  • the receiving module 14 is configured to receive instruction information from the second device, where the instruction information is used to indicate the configuration information of the first cycle and the configuration information of the second cycle.
  • the receiving module 14 may be a receiver.
  • the indication information includes the configuration information of the first cycle and the configuration information of the second cycle;
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the sending module 13 is further configured to send periodic configuration information to the second device, where the periodic configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the processing module 11 is further configured to suspend sending second data to the second device in the second cycle.
  • the sending module 13 is further configured to send third data to the second device according to the third cycle.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the acquired first data and second data are sent in different sending cycles, thereby reducing information redundancy and improving the utilization efficiency of transmission resources.
  • the specific implementation process and implementation principle please refer to the related descriptions in the embodiments shown in FIG. 2 to FIG. 5, which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a second communication device provided by an embodiment of this application.
  • the second device can be used to execute the methods in the embodiments shown in FIG. 6 and FIG. 7.
  • the second device Including: a processing module 21, a storage module 22, and a receiving module 23, where the storage module 22 is used to couple with the processing module 21 to store necessary program instructions and data;
  • the receiving module 23 is configured to receive first data from the first device, and to receive second data from the first device;
  • the sending period of the first data is the first period
  • the sending period of the second data is the second period
  • the first period and the second period are different.
  • it also includes:
  • the sending module 24 is configured to send instruction information to the first device, where the instruction information is used to indicate the configuration information of the first cycle and the configuration information of the second cycle.
  • the indication information includes the configuration information of the first cycle and the configuration information of the second cycle;
  • the indication information includes confirmation information, and the confirmation information is used to confirm the use of the configuration information of the first cycle and the configuration information of the second cycle.
  • the receiving module 23 is further configured to receive period configuration information sent by the first device, where the period configuration information includes configuration information of the first period and/or configuration information of the second period.
  • the duration of the second cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the receiving module 23 is also used for:
  • the third data sent by the first device according to the third cycle is received.
  • the duration of the third cycle is N times the duration of the first cycle, and N is a natural number greater than 1.
  • the first data and the second data sent according to different transmission periods are received, thereby reducing information redundancy and improving the utilization efficiency of transmission resources.
  • the specific implementation process and implementation principle please refer to the related descriptions in the embodiments shown in FIG. 6 and FIG. 7, which will not be repeated here.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions.
  • the computer executes the method performed by the terminal device in the foregoing embodiments of the present application.
  • the embodiments of the present application provide a computer-readable storage medium, and the computer-readable storage medium stores instructions. When the instructions are executed, the computer executes the method performed by the network device in the foregoing embodiments of the present application.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种通信方法和装置,以提高传输资源的利用效率,属于自动驾驶或智能驾驶技术领域。所述方法包括:获取第一数据和第二数据;根据第一周期向第二装置发送所述第一数据,以及,根据第二周期向所述第二装置发送所述第二数据;其中,所述第一周期为第一数据的发送周期,所述第二周期为第二数据的发送周期,所述第一周期和所述第二周期不同。所述第一周期可以是预先配置的,或者是基于所述第一数据的采集周期确定的。所述第二周期也可以是预先配置的,或者是基于所述第二数据的采集周期确定的。用于辅助驾驶和自动驾驶中的传感器数据上报。

Description

通信方法和装置
本申请要求于2019年07月16日提交中国专利局、申请号为201910639922.X、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动驾驶技术领域,尤其涉及一种通信方法和装置。
背景技术
随着社会的发展,智能汽车正在逐步进入人们的日常生活中。传感器在智能汽车的辅助驾驶和自动驾驶中发挥着十分重要的作用。安装在车上的各式各样的传感器,比如毫米波雷达,激光雷达,摄像头,超声波雷达等,在汽车行驶过程中随时感知周围的环境,收集数据,进行移动物体的辨识与追踪,以及静止场景如车道线、标示牌的识别,并结合导航仪及地图数据进行路径规划。传感器可以预先察觉到可能发生的危险并及时帮助驾驶员甚至自主采取必要的规避手段,有效增加了汽车驾驶的安全性和舒适性。
现有技术中,在自动驾驶的高级场景中,环境模型的建立依赖于不同传感器采集到的数据。传感器采集到的数据一般是通过标准接口,按照单一的上报周期统一上报给数据融合单元,以使得数据融合单元能够根据这些数据完成辅助驾驶。
但是,传感器采集到的数据的变化周期或者更新周期往往不相同,当采用单一的上报周期进行统一上报时,传感器会上报单一周期内采集的大量无用数据,从而导致大量的信息冗余,使得传输资源的利用效率低下。
发明内容
本申请实施例提供一种通信方法和装置,提高了传输资源的利用效率。
第一方面,本申请实施例提供一种通信方法,包括:
获取第一数据和第二数据;
根据第一周期向第二装置发送所述第一数据,以及,根据第二周期向所述第二装置发送所述第二数据;
其中,所述第一周期为第一数据的发送周期,所述第二周期为第二数据的发送周期,所述第一周期和所述第二周期不同。
基于第一方面,在一种可能的设计中,所述第一周期是预先配置的,或者是基于所述第一数据的采集周期确定的;和/或
所述第二周期是预先配置的,或者是基于所述第二数据的采集周期确定的。
本可能的设计中,第一数据可以是传感器的测量周期确定的,第二数据则可以是根据数据源的变化周期确定的,因此,第一数据的发送周期和第二数据的发送周期不相同。
基于第一方面,在一种可能的设计中,还包括:
接收来自所述第二装置的指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
本可能的设计中,第二装置可以是接收传感器上报数据的融合模块,或者是中央处理单元的数据融合模块。
基于第一方面,在一种可能的设计中,所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
本可能的设计中,可以是由第二装置先发送指示信息,传感器侧在收到该指示信息之后,向第二装置发送第一周期的配置信息和所述第二周期的配置信息;然后由第二装置对第一周期的配置信息和所述第二周期的配置信息进行确认,若传感器侧接收到第二装置反馈的确认信息,则完成对第一周期和第二周期的配置。
基于第一方面,在一种可能的设计中,还包括:
向所述第二装置发送周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
本可能的设计中,可以由传感器侧主动向第二装置发送周期配置信息。
基于第一方面,在一种可能的设计中,还包括:
所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
基于第一方面,在一种可能的设计中,还包括:
暂停在第二周期向所述第二装置发送所述第二数据。
本可能的设计中,传感器侧可以在任意时刻决定是否暂停在第二周期向第二装置发送第二数据。可选地,传感器侧可以决定任何上报数据是否暂停发送。
基于第一方面,在一种可能的设计中,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
第二方面,本申请实施例提供一种通信方法,包括:
接收来自第一装置的第一数据,以及,接收来自所述第一装置的第二数据;
其中,所述第一数据的发送周期为第一周期,所述第二数据的发送周期为第二周期,所述第一周期和所述第二周期不同。
基于第二方面,在一种可能的设计中,还包括:
向所述第一装置发送指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
本可能的设计中,第一装置可以是采集各种环境数据的传感器。
基于第二方面,在一种可能的设计中,
所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
本可能的设计中,可以是第一装置接收来自第二装置的指示信息,该指示信息用于指示第一装置进行周期配置;第一装置将第一周期配置信息和第二周期配置信息发 送给第二装置,然后第二装置向第一装置反馈确认信息,从而可以采用交互的方式确定各个数据的上报周期。
基于第二方面,在一种可能的设计中,还包括:
接收来自所述第一装置发送的周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
基于第二方面,在一种可能的设计中,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
基于第二方面,在一种可能的设计中,还包括:
接收来自所述第一装置的第三数据,所述第三数据的发送周期为第三周期。
基于第二方面,在一种可能的设计中,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
第三方面,本申请实施例提供一种通信的第一装置,包括:
处理模块,用于获取第一数据和第二数据;
发送模块,用于根据第一周期向第二装置发送所述第一数据,以及,根据第二周期向所述第二装置发送所述第二数据;
其中,所述第一周期为第一数据的发送周期,所述第二周期为第二数据的发送周期,所述第一周期和所述第二周期不同。
基于第三方面,在一种可能的设计中,
所述第一周期是预先配置的,或者是基于所述第一数据的采集周期确定的;和/或
所述第二周期是预先配置的,或者是基于所述第二数据的采集周期确定的。
基于第三方面,在一种可能的设计中,还包括:
接收模块,用于接收来自所述第二装置的指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
基于第三方面,在一种可能的设计中,
所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
基于第三方面,在一种可能的设计中,
所述发送模块,还用于向所述第二装置发送周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
基于第三方面,在一种可能的设计中,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
基于第三方面,在一种可能的设计中,
所述处理模块,还用于暂停在第二周期向所述第二装置发送所述第二数据。
基于第三方面,在一种可能的设计中,
所述发送模块,还用于根据第三周期,向所述第二装置发送第三数据。
基于第三方面,在一种可能的设计中,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
第四方面,本申请实施例提供一种通信的第二装置,包括:
接收模块,用于接收来自第一装置的第一数据,以及,接收来自所述第一装置的第二数据;
其中,所述第一数据的发送周期为第一周期,所述第二数据的发送周期为第二周期,所述第一周期和所述第二周期不同。
基于第四方面,在一种可能的设计中,还包括:
发送模块,用于向所述第一装置发送指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
基于第四方面,在一种可能的设计中,
所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
基于第四方面,在一种可能的设计中,
所述接收模块,还用于接收所述第一装置发送的周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
基于第四方面,在一种可能的设计中,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
基于第四方面,在一种可能的设计中,还包括:
接收所述第一装置按照第三周期发送的第三数据。
基于第四方面,在一种可能的设计中,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
第五方面,本申请实施例提供一种通信装置,包括:处理器和收发器;处理器和收发器用于执行第一方面或第二方面本申请实施例任一所述的通信方法。
第六方面,本申请实施例提供一种芯片,包括:存储器和处理器,存储器用于存储程序指令,处理器用于调用存储器中的程序指令执行第一方面或第二方面本申请实施例所述的通信方法。
第七方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序在被执行时,实现第一方面或第二方面本申请实施例所述的通信方法。
第八方面,本申请实施例提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施第一方面或第二方面本申请实施例任一所述的通信方法。
本申请中,由于数据的测量周期、数据源的变更周期不同,因此,可以将获取的第一数据和第二数据采用不同的发送周期进行发送,从而减少信息的冗余,提高传输资源的利用效率。
附图说明
图1为本申请实施例提供的通信系统的示意图;
图2为本申请实施例提供的通信的方法的流程图一;
图3为本申请实施例提供的通信的方法的流程图二;
图4为本申请实施例提供的通信的方法的流程图三;
图5为本申请实施例提供的通信的方法的流程图四;
图6为本申请实施例提供的通信的方法的流程图五;
图7为本申请实施例提供的通信的方法的流程图六;
图8为本申请实施例提供的通信的方法的信令交互图一;
图9为本申请实施例提供的通信的方法的信令交互图二;
图10为本申请实施例提供的一种通信的第一装置的结构示意图;
图11为本申请实施例提供的一种通信的第二装置的结构示意图。
具体实施方式
图1为本申请实施例提供的通信系统的示意图,如图1所示,通信系统包括传感器和融合模块。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解:
传感器:在本申请中,传感器是指车载传感器;现有的车载传感器的种类众多,而且每种传感器有自己的接口格式。即使是同种类的传感器,不同厂商也有不同的接口。因此往往需要一个统一的传感器接口进行数据抽象处理,得到抽象数据。车载传感器一般可以分为三大类:内部传感器、外部传感器,以及元数据传感器。顾名思义,内部传感器是指安装在汽车上或汽车内的传感器,一般用来测量汽车内部各个部件的动态状态;例如陀螺仪、加速度计、转向角传感器、雨刮器活动传感器、转向指示器等等。外部传感器是指安装在汽车上或汽车内,用于测量车辆周围环境,或测量汽车内部环境的传感器;例如雷达、激光器、超声波传感器、相机等等。元数据传感器通常是指数据源的测量,例如云数据、导航地图数据等等。
融合模块:用于接收传感器上传的数据,然后对数据进行融合处理,以使得车载系统能够根据融合后的数据构建近似真实的环境模型。融合模块可以集成在中央处理单元中,也可以独立存在。该环境模型的构建依赖于车辆定位数据、车辆动力学数据、环境中的对象数据、地图网格数据、车道数据等等。在车辆自动驾驶时,车载系统做出的驾驶决策就需要依赖构建的环境模型。
具体地,参见图1,多个传感器与融合模块建立通信连接。在一种可选的实施方式中,传感器将测量到的数据进行打包,然后按照配置的周期,向融合模块发送数据包。在数据包中可以包含一种数据,也可以包含两种或以上的数据,当传输两种或以上的数据时,至少存在两种数据的上报周期不相同。
下面采用具体的实施例对本申请的通信的方法进行详细说明,需要说明的是,下面几个具体实施例可以相互结合,对于相同或相似的内容,在不同的实施例中不再进行重复说明。
图2为本申请实施例提供的通信的方法的流程图一,参见图2,本实施例的方法包括:
步骤S101、获取第一数据和第二数据。
步骤S102、根据第一周期向第二装置发送第一数据,以及,根据第二周期向第二装置发送第二数据;其中,第一周期为第一数据的发送周期,第二周期为第二数据的发送周期,第一周期和第二周期不同。
本实施例中,可以由第一装置获取第一数据和第二数据,然后按照第一周期向第二装置发送该第一数据,按照第二周期向第二装置发送该第二数据;并且该第一周期和第二周期不同。
示例性的,第一装置可以是传感器,例如雷达、激光雷达、超声波雷达、摄像头等等。具体地,雷达、激光雷达、超声波雷达分别从不同的维度来对周围的物体进行测量,每种传感器感知的条件和目标的属性各有不同,如雷达擅长移动目标的距离,速度的识别,适应天气状况比较广,而摄像头可以通过图像采集来识别周围环境信息,受光线条件影响大。
需要说明的是,本实施例不限定第一装置的具体类型,第一装置可以是单一传感器,也可以是多个不同类型传感器,或者多个相同类型传感器的组合设备。
示例性的,第一装置可以是安装在车辆前端的第一摄像头,该第一摄像头用于采集道路上的移动物体、道路交通标识、红绿灯信息等等。
示例性的,第一装置可以是包含多个摄像头的组合设备。例如可以包括:安装在车辆前端的第一摄像头、安装在车辆左侧的第二摄像头、安装在车辆右侧的第三摄像头,以及安装在车辆后端的第四摄像头。本实施例中,第一摄像头、第二摄像头、第三摄像头、第四摄像头用于拍摄车辆周围360度的环境图像。
示例性的,第一装置可以是包含雷达、激光雷达、超声波雷达的组合设备,雷达、激光雷达、超声波雷达均可以用来测量与周围物体之间的距离。
进一步地,已知第一数据的测量周期或者变更周期为第一周期,第二数据的测量周期或者变更周期为第二周期;且第一周期和第二周期不同。此时,若设置第一周期和第二周期的最小公约数作为上报第二装置的统一周期,那么会存在大量的数据冗余。
具体地,以安装在车辆上的摄像头为例进行详细说明。假设摄像头采集的第一数据为道路上移动物体信息、采集的第二数据为红绿灯信息。但是道路移动物体的获取周期非常短,例如每隔十几毫秒就需要采集一张包含移动物体的图像;而红绿灯的变更周期比较缓慢,例如常见路口的红绿灯变更周期都在三十秒以上。另外,由于红绿灯更多的是采用LED技术,红绿灯并不是常亮,而是存在闪烁变换状态,如果测量周期较短,例如刚好处于闪灭状态,则会形成信息误报。因此在设置红绿灯的测量周期时,会根据实际应用场景设置一个稍微长一些的上报周期,从而减少信息误报的概率,以及减少无用信息的上报。反之,如果将移动物体信息和红绿灯信息按照统一的上报周期进行上报,则会造成大量的红绿灯信息冗余,从而占用了数据传输带宽,使得数据传输资源的利用率低下。应用图2所示实施例的方法,可以分别为移动物体信息、红绿灯信息配置不同的上报周期,从而提高传输资源的利用效率。
在步骤S102中,第一周期可以是预先配置的,或者是基于第一数据的采集周期确定的。
示例性的,第一周期可以根据传感器采集第一数据的采集周期进行配置,也可以 是根据第一数据的变更周期进行配置。第一装置对第一数据的采集周期可以在安装时,或者出厂时进行预先配置。若第一装置预先并未配置第一周期,那么可以根据实际应用场景中第一数据的采集周期,自定义设置与该第一数据对应的第一周期。例如,第一数据的采集周期为2秒,则可以将第一周期设置为2秒。
在步骤S102中,第二周期可以是预先配置的,或者是基于第二数据的采集周期确定的。
同理,第二周期可以根据第一装置的采集第二数据的采集周期进行配置,也可以是根据第二数据的变更周期进行配置。第一装置对第二数据的采集周期可以在安装时,或者出厂时进行预先配置。若第一装置预先并未配置第二周期,那么可以根据实际应用场景中第二数据的采集周期,自定义设置与该第二数据对应的第二周期。例如,第二数据的变更周期为60秒,则可以将第二周期设置为60秒。
示例性,在一种可能的实现方式中,可以设置第二周期的时长为第一周期的时长的N倍,N为大于1的自然数。
具体地,假设第一周期为20秒,此时可以设置第二周期为40秒。此时,在40秒以及其倍数的时间节点,向第二装置发送包含有第一数据和第二数据的数据包,而在20*(2k+1)秒的时间节点,向第二装置发送包含第一数据,且不包含第二数据的数据包;其中k为自然数。
需要说明的是,本实施例中不限定第一装置获取的数据种类数量,第一装置可以获取两种以上的数据。
具体地,以三种数据的情况为例,假设第一数据的发送周期为第一周期,第二数据发送的周期为第二周期,第三数据的发送周期为第三周期;其中,第二周期是第一周期的2倍,第三周期为第一周期的3倍。此时,在第一周期发送第一数据,在第二周期发送第一数据和第二数据;在第三周期发送第一数据和第三数据。
示例性的,当第一装置需要向第二装置发送新增的数据时,可以根据该新增数据的测量周期和/或数据源的变更周期,将其上报的周期设置为已有的某一数据的N倍,N为大于1的自然数。
具体地,当到达第一周期的时间节点时,第一装置将第一数据打包之后发送给第二装置。其中,打包的数据包中包含有第一计数器的计数值,该计数值用于表明第一数据对应的数据包的序号。进一步地,当第二数据的配置信息首次出现,配置第二数据的发送周期为第二周期。可选地,可以设置第二周期为第一周期的N倍,N为大于1的自然数(具体设置时,也可以设置第一周期为第二周期的N倍,N为大于1的自然数)。当到达第二周期的时间节点时,第一装置将包含第一数据和第二数据的数据包发送给第二装置。该包含第一数据和第二数据的数据包可以选择第一计数器或者第二计数器的计数值来表明的数据包序号。本实施例中,通过计数器来进行周期时间的计算,除此之外,还可以使用任何具备计时功能的器件进行周期计算。
本实施例中通过将获取的第一数据和第二数据采用不同的发送周期进行发送,从而减少信息的冗余,提高传输资源的利用效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图3为本申请实施例提供的通信的方法的流程图二,参见图3,本实施例的方法包括:
步骤S201、接收来自第二装置的指示信息,指示信息用于指示第一周期的配置信息和第二周期的配置信息。
步骤S202、获取第一数据和第二数据。
步骤S203、根据第一周期向第二装置发送第一数据,以及,根据第二周期向第二装置发送第二数据;其中,第一周期为第一数据的发送周期,第二周期为第二数据的发送周期,第一周期和第二周期不同。
本实施例中,步骤S201中的第二装置可以是接收第一装置上报数据的融合模块,或者是实现数据融合处理的控制单元。
第一种实施方式,由第二装置先发送指示信息,第一装置在收到该指示信息之后,向第二装置发送第一周期的配置信息和第二周期的配置信息;然后由第二装置对第一周期的配置信息和第二周期的配置信息进行确认,若第一装置接收到第二装置反馈的确认信息,则完成对第一周期和第二周期的配置。此时,该指示信息用于指示第一装置进行第一周期和第二周期的配置。
第二种实施方式,由第一装置主动向第二装置发送周期配置信息,该周期配置信息包括第一周期的配置信息和/或第二周期的配置信息。然后第二装置在接收到该周期配置信息之后,向第一装置反馈确认信息,该确认信息用于确认使用第一周期的配置信息和第二周期的配置信息。当第一装置接收到来自第二装置的确认信息之后,即可以按照对应的周期向第二装置发送第一数据和第二数据。
通过上述的过程,可以由第一装置和第二装置之间的交互信令实现不同数据的周期配置。需要说明的是,周期的配置信息可以在确定之后进行修改。
具体地,城市道路、高速公路和封闭园区的路况各不相同,测距范围和测速范围也会根据场景的不同有不同的需求,移动物体信息的测量周期可以进行调整,扩大上报周期。示例性的,当场车辆的实际场景发生变化时,第一装置或第二装置均可以发起周期配置信息的变更。
本实施例中,步骤S202、步骤S203的具体的实现原理和实现过程与图2所示方法的实现原理和实现过程类似,此处不再赘述。
本实施例中可以通过通信装置之间的信令交互来确定不同数据的周期配置信息,在确定周期配置信息之后,第一装置将获取的第一数据和第二数据采用不同的发送周期进行发送,从而减少信息的冗余,提高传输资源的利用效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图4为本申请实施例提供的通信的方法的流程图三,参见图4,本实施例的方法包括:
步骤S301、获取第一数据和第二数据。
步骤S302、根据第一周期向第二装置发送第一数据,以及,根据第二周期向第二 装置发送第二数据;其中,第一周期为第一数据的发送周期,第二周期为第二数据的发送周期,第一周期和第二周期不同。
步骤S303、暂停在第二周期向第二装置发送第二数据。
本实施例中,步骤S301、步骤S302的具体的实现原理和实现过程与图2所示方法的实现原理和实现过程类似,此处不再赘述。
示例性的,在步骤S303中,第一装置可以在第二周期的任何一个发送时间节点开始,暂停向第二装置发送第二数据。
具体地,当环境因素或者其他因素发生变化时,需要暂停第二数据的发送,此时,第一装置将第一数据打包之后发送给第二装置。其中,打包的数据包中包含有第一计数器的计数值,该计数值用于表明第一数据对应的数据包的序号。本实施例中,通过计数器来进行周期时间的计算,除此之外,还可以使用任何具备计时功能的器件进行周期计算。
具体地,当车辆从普通道路进入高速公路行驶时,由于高速公路上无需测量路口的红绿灯信息,因此原先与移动物体信息一同发送的红绿灯信息不适用于高速公路的路况场景。因此,当车辆通过收费口进入高速公路之后,第一装置可以在第二周期暂停向第二装置发送第二数据。
进一步地,第一装置也可以在执行步骤S303之后,重新恢复在第二周期向第二装置发送第二数据。
具体地,当车辆从高速公路进入普通道路行驶时,由于普通道路上需要测量路口的红绿灯信息,因此,当车辆通过收费口出口进入普通道路之后,第一装置可以恢复在第二周期向第二装置发送第二数据。
需要说明的是,本实施例中不限定第一装置获取的数据种类数量,第一装置可以获取两种以上的数据。
具体地,以三种数据的情况为例,假设第一数据的发送周期为第一周期,第二数据发送的周期为第二周期,第三数据的发送周期为第三周期;其中,第二周期是第一周期的2倍,第三周期为第一周期的3倍。此时,在第一周期发送第一数据,在第二周期发送第一数据和第二数据;在第三周期发送第一数据和第三数据。
进一步地,当车辆的行驶场景发生变化时,第一装置可以暂停在第二周期向第二装置发送第二数据;或者可以暂停在第三周期向第二装置发送第三数据。
需要说明的是,本实施例不限定暂停的具体数据,第一装置可以暂停任一数据的上报。
本实施例中可以根据需要暂停在第二周期向第二装置发送第二数据。因此,当应用场景发生变化,某一数据不被需要时,可以随时暂停对应数据的上报,从而降低数据的冗余。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图5为本申请实施例提供的通信的方法的流程图四,参见图5,本实施例的方法包括:
步骤S401、获取第一数据和第二数据。
步骤S402、根据第一周期向第二装置发送第一数据,以及,根据第二周期向第二装置发送第二数据;其中,第一周期为第一数据的发送周期,第二周期为第二数据的发送周期,第一周期和第二周期不同。
步骤S403、根据第三周期,向第二装置发送第三数据。
本实施例中,步骤S401、步骤S402的具体的实现原理和实现过程与图2所示方法的实现原理和实现过程类似,此处不再赘述。
示例性的,在步骤S403中,传感器侧可以在第三周期,向第二装置发送第三数据。
本实施例中不限定第三周期的配置方式。当需要新增第三周期,用以发送第三数据时,可以采用以下任一方式:
第一种实施方式,由第二装置先发送指示信息,第一装置在收到该指示信息之后,向第二装置发送第三周期的配置信息;然后由第二装置对第三周期的配置信息进行确认,若第一装置接收到第二装置反馈的确认信息,则完成对第三周期的配置。此时,该指示信息用于指示第一装置进行第三周期的配置。
第二种实施方式,由第一装置主动向第二装置发送周期配置信息,该周期配置信息包括第三周期的配置信息。然后第二装置在接收到该周期配置信息之后,向第一装置反馈确认信息,该确认信息用于确认使用第三周期的配置信息。当第一装置接收到来自第二装置的确认信息之后,即可以按照对应的周期向第二装置发送第三数据。
通过上述的过程,可以由第一装置和第二装置之间的交互信令实现不同数据的周期配置。需要说明的是,周期的配置信息可以在确定之后进行修改。
需要说明的是,本实施例不限定第三周期具体配置。
示例性的,可以配置第三周期的时长为第一周期的时长的N倍,N为大于1的自然数。或者配置第三周期的时长为第二周期的时长的M倍,M为大于1的自然数。
本实施例中,配置第三周期为第一周期或者第二周期的倍数关系,可以降低数据的冗余,提高传输资源的利用率。理论上,在相同周期内数据包可以包含的数据种类越多对应的传输效率也会变高。因此,在实际应用中,可以根据新增的第三数据的采集周期和/或数据源的变更周期,将其配置为其他数据周期的倍数关系。
示例性的,也可以配置第三数据的周期与第一数据或者第二数据的周期相同。
本实施例中,当第三数据的采集周期和/或数据源的变更周期,与第一数据的采集周期和/或数据源的变更周期相近时,可以设置第三数据的上报周期与第一数据的上报周期相同。当第三数据的采集周期和/或数据源的变更周期,与第二数据的采集周期和/或数据源的变更周期相近时,可以设置第三数据的上报周期与第二数据的上报周期相同。
具体地,当环境因素或者其他因素发生变化时,需要新增第三数据的发送,此时,首先配置第三数据对应的发送周期为第三周期。假设设置的第三周期为第一周期的N倍,N为大于1的自然数。此时,当到达第三周期的时间节点时,将第一数据和第三数据打包之后发送给第二装置。其中,打包的数据包中包含有第一计数器或者第三计数器的计数值,该计数值用于表明第一数据对应的数据包的序号。本实施例中,通过计数器来进行周期时间的计算,除此之外,还可以使用任何具备计时功能的器件进行周期计算。
本实施例中可以新增第三周期,在第三周期向第二装置发送第三数据。从而可以 便捷地新增上报周期和上报数据,使得数据的上报更加灵活。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图6为本申请实施例提供的通信的方法的流程图五,参见图6,本实施例的方法包括:
步骤S501、第二装置接收来自第一装置的第一数据,以及,接收来自第一装置的第二数据;其中,第一数据的发送周期为第一周期,第二数据的发送周期为第二周期,第一周期和第二周期不同。
本实施例中,第二装置与第一装置通信连接,第二装置可以是融合模块,或者是实现数据融合处理的控制单元。在执行步骤S501之前、第一装置获取第一数据和第二数据;然后第一装置根据第一周期向第二装置发送第一数据,以及,根据第二周期向第二装置发送第二数据。
本实施例中通过不同的发送周期接收第一数据和第二数据,从而减少信息的冗余,提高传输资源的利用效率。
示例性的,第二装置在执行步骤S501之前,还可以向第一装置发送指示信息,该指示信息用于指示第一周期的配置信息和第二周期的配置信息。
在第一种实施方式中,指示信息包括第一周期的配置信息和第二周期的配置信息。
本实施例中,可以由第二装置先发送指示信息,第一装置在收到该指示信息之后,向第二装置发送第一周期的配置信息和第二周期的配置信息;然后由第二装置对第一周期的配置信息和第二周期的配置信息进行确认,若第一装置接收到第二装置反馈的确认信息,则完成对第一周期和第二周期的配置。此时,该指示信息用于指示第一装置进行第一周期和第二周期的配置。
在第二种实施方式中,指示信息包括确认信息,确认信息用于确认使用第一周期的配置信息和第二周期的配置信息。
本实施例中,可以由第一装置主动向第二装置发送周期配置信息,该周期配置信息包括第一周期的配置信息和/或第二周期的配置信息。然后第二装置在接收到该周期配置信息之后,向第一装置反馈确认信息,该确认信息用于确认使用第一周期的配置信息和第二周期的配置信息。当第一装置接收到来自第二装置的确认信息之后,即可以按照对应的周期向第二装置发送第一数据和第二数据。
通过上述的过程,可以由第一装置和第二装置之间的交互信令实现不同数据的周期配置。需要说明的是,周期的配置信息可以在确定之后进行修改。
本实施例中可以通过通信装置之间的信令交互来确定不同数据的周期配置信息,在确定周期配置信息之后,传感器侧将获取的第一数据和第二数据采用不同的发送周期进行发送,从而减少信息的冗余,提高传输资源的利用效率。
图7为本申请实施例提供的通信的方法的流程图六,参见图7,本实施例的方法包括:
步骤S601、第二装置接收来自第一装置的第一数据,以及,接收来自第一装置的 第二数据;其中,第一数据的发送周期为第一周期,第二数据的发送周期为第二周期,第一周期和第二周期不同。
步骤S602、接收来自第一装置的第三数据,第三数据的发送周期为第三周期。
本实施例中,第一装置可以在第三周期,向第二装置发送第三数据,以使得第二装置接收到按照第三周期发送的第三数据。
本实施例中不限定第三周期的配置方式。当需要新增第三周期,用以发送第三数据时,可以采用以下任一方式:
第一种实施方式,由第二装置先发送指示信息,第一装置在收到该指示信息之后,向第二装置发送第三周期的配置信息;然后由第二装置对第三周期的配置信息进行确认,若第一装置接收到第二装置反馈的确认信息,则完成对第三周期的配置。此时,该指示信息用于指示第一装置进行第三周期的配置。
第二种实施方式,由第一装置主动向第二装置发送周期配置信息,该周期配置信息包括第三周期的配置信息。然后第二装置在接收到该周期配置信息之后,向第一装置反馈确认信息,该确认信息用于确认使用第三周期的配置信息。当第一装置接收到来自第二装置的确认信息之后,即可以按照对应的周期向第二装置发送第三数据。
通过上述的过程,可以由第一装置和第二装置之间的交互信令实现不同数据的周期配置。需要说明的是,周期的配置信息可以在确定之后进行修改。
需要说明的是,本实施例不限定第三周期具体配置。
示例性的,可以配置第三周期的时长为第一周期的时长的N倍,N为大于1的自然数。或者配置第三周期的时长为第二周期的时长的M倍,M为大于1的自然数。
本实施例中,配置第三周期为第一周期或者第二周期的倍数关系,可以降低数据的冗余,提高传输资源的利用率。理论上,在相同周期内数据包可以包含的数据种类越多对应的传输效率也会变高。因此,在实际应用中,可以根据新增的第三数据的采集周期和/或数据源的变更周期,将其配置为其他数据周期的倍数关系。
示例性的,也可以配置第三数据的周期与第一数据或者第二数据的周期相同。
本实施例中,当第三数据的采集周期和/或数据源的变更周期,与第一数据的采集周期和/或数据源的变更周期相近时,可以设置第三数据的上报周期与第一数据的上报周期相同。当第三数据的采集周期和/或数据源的变更周期,与第二数据的采集周期和/或数据源的变更周期相近时,可以设置第三数据的上报周期与第二数据的上报周期相同。
本实施例中可以新增第三周期,在第三周期向第二装置发送第三数据。从而可以便捷地新增上报周期和上报数据,使得数据的上报更加灵活。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图8为本申请实施例提供的通信的方法的信令交互图一,参见图8,本实施例的方法包括:
步骤S701、第一装置获取第一数据和第二数据。
步骤S702、第二装置向第一装置发送指示信息。
步骤S703、第一装置根据该指示信息,向第二装置发送第一周期配置信息和第二周期 配置信息。
步骤S704、第二装置接收第一周期配置信息和第二周期配置信息,并向第一装置反馈确认信息。
步骤S705、第一装置根据该确认信息,确定发送第一数据的第一周期和发送第二数据的第二周期;其中,第一周期和第二周期不同。
步骤S706、根据第一周期向第二装置发送第一数据,以及根据第二周期向第二装置发送第二数据。
步骤S707、第一装置暂停在第二周期向第二装置发送第二数据。
步骤S708、第一装置根据第三周期,向第二装置发送第三数据。
本实施例中可以通过第一装置和第二装置之间的信令交互来确定不同数据的周期配置信息,在确定周期配置信息之后,第一装置将获取的第数据采用不同的发送周期发送给第二装置,从而减少信息的冗余,提高传输资源的利用效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图9为本申请实施例提供的通信的方法的信令交互图二,参见图9,本实施例的方法包括:
步骤S801、第一装置获取第一数据和第二数据。
步骤S802、第一装置向第二装置发送第一周期配置信息和第二周期配置信息。
步骤S803、第二装置接收第一周期配置信息和第二周期配置信息,并向第一装置反馈确认信息。
步骤S804、第一装置根据该确认信息,确定发送第一数据的第一周期和发送第二数据的第二周期;其中,第一周期和第二周期不同。
步骤S805、根据第一周期向第二装置发送第一数据,以及根据第二周期向第二装置发送第二数据。
步骤S806、第一装置暂停在第二周期向第二装置发送第二数据。
步骤S807、第一装置根据第三周期,向第二装置发送第三数据。
本实施例中可以通过第一装置和第二装置之间的信令交互来确定不同数据的周期配置信息,在确定周期配置信息之后,第一装置将获取的第数据采用不同的发送周期发送给第二装置,从而减少信息的冗余,提高传输资源的利用效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图10为本申请实施例提供的一种通信的第一装置的结构示意图,第一装置可以用于执行上述图2~图5所示实施例中方法,如图10所示,该第一装置包括:处理模块11,存储模块12,发送模块13,其中存储模块12用于与处理模块11耦合,保存程序指令和/或数据;
处理模块11,用于获取第一数据和第二数据;
发送模块13,用于根据第一周期向第二装置发送第一数据,以及,根据第二周期 向第二装置发送第二数据;
其中,第一周期为第一数据的发送周期,第二周期为第二数据的发送周期,第一周期和第二周期不同。
示例性的,处理模块11可以是处理器,发送模块13可以是发射器。
示例性的,第一装置可以是传感器,例如雷达、激光雷达、超声波雷达、摄像头等等。具体地,雷达、激光雷达、超声波雷达分别从不同的维度来对周围的物体进行测量,每种传感器感知的条件和目标的属性各有不同,如雷达擅长移动目标的距离,速度的识别,适应天气状况比较广,而摄像头可以通过图像采集来识别周围环境信息,受光线条件影响大。
需要说明的是,本实施例不限定第一装置的具体类型,第一装置可以是单一传感器,也可以是多个不同类型传感器,或者多个相同类型传感器的组合设备。
示例性的,第一装置可以是安装在车辆前端的第一摄像头,该第一摄像头用于采集道路上的移动物体、道路交通标识、红绿灯信息等等。
示例性的,第一装置可以是包含多个摄像头的组合设备。例如可以包括:安装在车辆前端的第一摄像头、安装在车辆左侧的第二摄像头、安装在车辆右侧的第三摄像头,以及安装在车辆后端的第四摄像头。本实施例中,第一摄像头、第二摄像头、第三摄像头、第四摄像头用于拍摄车辆周围360度的环境图像。
示例性的,第一装置可以是包含雷达、激光雷达、超声波雷达的组合设备,雷达、激光雷达、超声波雷达均可以用来测量与周围物体之间的距离。
示例性的,第二装置可以是接收第一装置上报数据的融合模块,或者是实现数据融合处理的控制单元。第二装置可以是独立设备,也可以集成在车载控制系统或者中央处理单元中。例如:车载计算机。
在一种可选的实施方式中,第一装置可以通过标准数据传输接口将采集到的数据发送给融合模块,或者中央处理单元的数据融合模块。
在另一种可选的实施方式中,第一装置还可以通过无线方式将采集到的数据发送给融合模块,或者中央处理单元的数据融合模块。无线方式包括:WIFI局域网,或者是蓝牙进行数据上报。
在一种可能的设计中,
第一周期是预先配置的,或者是基于第一数据的采集周期确定的;和/或
第二周期是预先配置的,或者是基于第二数据的采集周期确定的。
在一种可能的设计中,还包括:
接收模块14,用于接收来自第二装置的指示信息,指示信息用于指示第一周期的配置信息和第二周期的配置信息。
示例性的,接收模块14可以是接收器。
在一种可能的设计中,
指示信息包括第一周期的配置信息和第二周期的配置信息;或者
指示信息包括确认信息,确认信息用于确认使用第一周期的配置信息和第二周期的配置信息。
在一种可能的设计中,
发送模块13,还用于向第二装置发送周期配置信息,周期配置信息包括第一周期的配置信息和/或第二周期的配置信息。
在一种可能的设计中,第二周期的时长为第一周期的时长的N倍,N为大于1的自然数。
在一种可能的设计中,
处理模块11,还用于暂停在第二周期向第二装置发送第二数据。
在一种可能的设计中,
发送模块13,还用于根据第三周期,向第二装置发送第三数据。
在一种可能的设计中,第三周期的时长为第一周期的时长的N倍,N为大于1的自然数。
本实施例中通过将获取的第一数据和第二数据采用不同的发送周期进行发送,从而减少信息的冗余,提高传输资源的利用效率。其具体实现过程和实现原理请参见图2~图5所示实施例中的相关描述,此处不再赘述。
图11为本申请实施例提供的一种通信的第二装置的结构示意图,第二装置可以用于执行上述图6与图7所示实施例中方法,如图11所示,该第二装置包括:处理模块21,存储模块22,接收模块23,其中存储模块22用于与处理模块21藕合,保存必要的程序指令和数据;
接收模块23,用于接收来自第一装置的第一数据,以及,接收来自第一装置的第二数据;
其中,第一数据的发送周期为第一周期,第二数据的发送周期为第二周期,第一周期和第二周期不同。
在一种可能的设计中,还包括:
发送模块24,用于向第一装置发送指示信息,指示信息用于指示第一周期的配置信息和第二周期的配置信息。
在一种可能的设计中,
指示信息包括第一周期的配置信息和第二周期的配置信息;或者
指示信息包括确认信息,确认信息用于确认使用第一周期的配置信息和第二周期的配置信息。
在一种可能的设计中,
接收模块23,还用于接收第一装置发送的周期配置信息,周期配置信息包括第一周期的配置信息和/或第二周期的配置信息。
在一种可能的设计中,第二周期的时长为第一周期的时长的N倍,N为大于1的自然数。
在一种可能的设计中,接收模块23,还用于:
接收第一装置按照第三周期发送的第三数据。
在一种可能的设计中,第三周期的时长为第一周期的时长的N倍,N为大于1的自然数。
本实施例中通过接收按照不同发送周期发送的第一数据和第二数据,从而减少信 息的冗余,提高传输资源的利用效率。其具体实现过程和实现原理请参见图6与图7所示实施例中的相关描述,此处不再赘述。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有指令,当指令被执行时,使得计算机执行如本申请上述实施例中终端设备执行的方法。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有指令,当指令被执行时,使得计算机执行如本申请上述实施例中网络设备执行的方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、 光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (33)

  1. 一种通信方法,其特征在于,所述方法包括:
    获取第一数据和第二数据;
    根据第一周期向第二装置发送所述第一数据,以及,根据第二周期向所述第二装置发送所述第二数据;
    其中,所述第一周期为第一数据的发送周期,所述第二周期为第二数据的发送周期,所述第一周期和所述第二周期不同。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一周期是预先配置的,或者是基于所述第一数据的采集周期确定的;和/或
    所述第二周期是预先配置的,或者是基于所述第二数据的采集周期确定的。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    接收来自所述第二装置的指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
  4. 根据权利要求3所述的方法,其特征在于,
    所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
    所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
  5. 根据权利要求3或4所述的方法,其特征在于,还包括:
    向所述第二装置发送周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    暂停在第二周期向所述第二装置发送所述第二数据。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,还包括:
    根据第三周期,向所述第二装置发送第三数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  10. 一种通信方法,其特征在于,所述方法包括:
    接收来自第一装置的第一数据,以及,接收来自所述第一装置的第二数据;
    其中,所述第一数据的发送周期为第一周期,所述第二数据的发送周期为第二周期,所述第一周期和所述第二周期不同。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    向所述第一装置发送指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
  12. 根据权利要求10所述的方法,其特征在于,
    所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
    所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信 息和所述第二周期的配置信息。
  13. 根据权利要求11或12所述的方法,其特征在于,还包括:
    接收来自所述第一装置发送的周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,还包括:
    接收来自所述第一装置的第三数据,所述第三数据的发送周期为第三周期。
  16. 根据权利要求15所述的方法,其特征在于,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  17. 一种通信的第一装置,其特征在于,包括:
    处理模块,用于获取第一数据和第二数据;
    发送模块,用于根据第一周期向第二装置发送所述第一数据,以及,根据第二周期向所述第二装置发送所述第二数据;
    其中,所述第一周期为第一数据的发送周期,所述第二周期为第二数据的发送周期,所述第一周期和所述第二周期不同。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第一周期是预先配置的,或者是基于所述第一数据的采集周期确定的;和/或
    所述第二周期是预先配置的,或者是基于所述第二数据的采集周期确定的。
  19. 根据权利要求17所述的装置,其特征在于,还包括:
    接收模块,用于接收来自所述第二装置的指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
  20. 根据权利要求19所述的装置,其特征在于,
    所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
    所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述发送模块,还用于向所述第二装置发送周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
  22. 根据权利要求17-20中任一项所述的装置,其特征在于,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  23. 根据权利要求17所述的装置,其特征在于,
    所述处理模块,还用于暂停在第二周期向所述第二装置发送所述第二数据。
  24. 根据权利要求17-23中任一项所述的装置,其特征在于,
    所述发送模块,还用于根据第三周期,向所述第二装置发送第三数据。
  25. 根据权利要求24所述的装置,其特征在于,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  26. 一种通信的第二装置,其特征在于,包括:
    接收模块,用于接收来自第一装置的第一数据,以及,接收来自所述第一装置的第二数据;
    其中,所述第一数据的发送周期为第一周期,所述第二数据的发送周期为第二周期,所述第一周期和所述第二周期不同。
  27. 根据权利要求26所述的装置,其特征在于,还包括:
    发送模块,用于向所述第一装置发送指示信息,所述指示信息用于指示所述第一周期的配置信息和所述第二周期的配置信息。
  28. 根据权利要求27所述的装置,其特征在于,
    所述指示信息包括所述第一周期的配置信息和所述第二周期的配置信息;或者
    所述指示信息包括确认信息,所述确认信息用于确认使用所述第一周期的配置信息和所述第二周期的配置信息。
  29. 根据权利要求27或28所述的装置,其特征在于,
    所述接收模块,还用于接收所述第一装置发送的周期配置信息,所述周期配置信息包括所述第一周期的配置信息和/或所述第二周期的配置信息。
  30. 根据权利要求26-29中任一项所述的装置,其特征在于,所述第二周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  31. 根据权利要求26-30中任一项所述的装置,其特征在于,所述接收模块,还用于:
    接收所述第一装置按照第三周期发送的第三数据。
  32. 根据权利要求31所述的装置,其特征在于,所述第三周期的时长为所述第一周期的时长的N倍,N为大于1的自然数。
  33. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序被执行时,实现如权利要求1-9或者10-16任一项所述的通信方法。
PCT/CN2020/101660 2019-07-16 2020-07-13 通信方法和装置 WO2021008494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20840182.8A EP3986000A4 (en) 2019-07-16 2020-07-13 COMMUNICATION METHOD AND DEVICE
US17/576,618 US20220140963A1 (en) 2019-07-16 2022-01-14 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910639922.XA CN112238829B (zh) 2019-07-16 2019-07-16 通信方法和装置
CN201910639922.X 2019-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,618 Continuation US20220140963A1 (en) 2019-07-16 2022-01-14 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021008494A1 true WO2021008494A1 (zh) 2021-01-21

Family

ID=74166780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101660 WO2021008494A1 (zh) 2019-07-16 2020-07-13 通信方法和装置

Country Status (4)

Country Link
US (1) US20220140963A1 (zh)
EP (1) EP3986000A4 (zh)
CN (1) CN112238829B (zh)
WO (1) WO2021008494A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114491A (zh) * 2016-08-03 2016-11-16 奇瑞汽车股份有限公司 一种辅助驾驶方法、辅助驾驶系统及汽车
CN107819799A (zh) * 2016-09-13 2018-03-20 北京百度网讯科技有限公司 用于无人驾驶车辆的数据获取方法和装置
WO2018134941A1 (ja) * 2017-01-19 2018-07-26 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
CN108712733A (zh) * 2017-03-30 2018-10-26 Lg电子株式会社 用于车辆的通信设备和车辆
CN109204307A (zh) * 2018-10-30 2019-01-15 吉林大学 获取自适应防碰撞预警距离的方法、存储介质及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780967B2 (en) * 2013-03-14 2017-10-03 Telogis, Inc. System for performing vehicle diagnostic and prognostic analysis
US9224297B2 (en) * 2013-04-23 2015-12-29 Ford Global Technologies, Llc Park assist object distance measurement clock control
CN104605939B (zh) * 2015-02-05 2019-07-16 腾讯科技(深圳)有限公司 生理信息处理方法及信息处理装置
US10101747B2 (en) * 2015-12-11 2018-10-16 Uber Technologies, Inc. Formatting sensor data for use in autonomous vehicle communications platform
CN105610662B (zh) * 2015-12-29 2019-01-22 北京理工大学 电动汽车的反馈式综合动态调度网络化控制装置
US11072356B2 (en) * 2016-06-30 2021-07-27 Transportation Ip Holdings, Llc Vehicle control system
CN108156186B (zh) * 2016-12-02 2021-10-26 中移(杭州)信息技术有限公司 一种信息采集方法及装置
US10681639B2 (en) * 2017-06-15 2020-06-09 HyperTrack Inc. Systems and methods for receiving sensor data from a mobile device
US11218851B2 (en) * 2017-09-29 2022-01-04 Lg Electronics Inc. Device and method for V2X communication
US10306430B1 (en) * 2018-04-27 2019-05-28 Lyft, Inc. Vehicle-to-infrastructure communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114491A (zh) * 2016-08-03 2016-11-16 奇瑞汽车股份有限公司 一种辅助驾驶方法、辅助驾驶系统及汽车
CN107819799A (zh) * 2016-09-13 2018-03-20 北京百度网讯科技有限公司 用于无人驾驶车辆的数据获取方法和装置
WO2018134941A1 (ja) * 2017-01-19 2018-07-26 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
CN108712733A (zh) * 2017-03-30 2018-10-26 Lg电子株式会社 用于车辆的通信设备和车辆
CN109204307A (zh) * 2018-10-30 2019-01-15 吉林大学 获取自适应防碰撞预警距离的方法、存储介质及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3986000A4

Also Published As

Publication number Publication date
US20220140963A1 (en) 2022-05-05
CN112238829A (zh) 2021-01-19
EP3986000A4 (en) 2022-08-10
EP3986000A1 (en) 2022-04-20
CN112238829B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN109817022B (zh) 一种获取目标对象位置的方法、终端、汽车及系统
EP3620959B1 (en) Image data acquisition logic of an autonomous driving vehicle for capturing image data using cameras
US10567923B2 (en) Computation service for mobile nodes in a roadway environment
WO2021196052A1 (zh) 驾驶数据采集方法及装置
WO2020048350A1 (zh) 路况信息处理方法、装置及系统
CN111724616B (zh) 基于人工智能的数据获取及共享的方法与装置
KR20180034268A (ko) V2v 센서 공유 방법에 기초한 동적 교통 안내
WO2022057645A1 (zh) 辅助驾驶提醒、地图辅助驾驶提醒方法、装置和地图
US11456890B2 (en) Open and safe monitoring system for autonomous driving platform
JP2020095481A (ja) 車両の制御装置及び自動運転システム
CN112738171A (zh) 车辆的控制方法、装置、系统、设备及存储介质
CN110634286A (zh) 应用于v2x场景的信息处理方法及设备
CN111516690B (zh) 智能汽车的控制方法、装置及存储介质
WO2011024237A1 (ja) 移動無線通信装置および車車間通信方法
WO2022226689A1 (zh) 数据管理方法、装置和终端设备
US11956693B2 (en) Apparatus and method for providing location
WO2021008494A1 (zh) 通信方法和装置
WO2023083043A1 (zh) 一种不可通行区域确认方法、装置、设备及可读存储介质
WO2020248136A1 (zh) 用于驾驶控制的方法、装置、设备、介质和系统
US20220410904A1 (en) Information processing device, information processing system and information processing method
WO2021168841A1 (zh) 定位方法及装置
WO2024114756A1 (zh) 一种车辆测试方法及相关装置
WO2023087248A1 (zh) 一种信息处理方法及装置
US20240135809A1 (en) Information processing method and device
US20230298412A1 (en) Information prompt system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840182

Country of ref document: EP

Effective date: 20220114