WO2021168841A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2021168841A1
WO2021168841A1 PCT/CN2020/077297 CN2020077297W WO2021168841A1 WO 2021168841 A1 WO2021168841 A1 WO 2021168841A1 CN 2020077297 W CN2020077297 W CN 2020077297W WO 2021168841 A1 WO2021168841 A1 WO 2021168841A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
information
measurement
vehicle
measuring device
Prior art date
Application number
PCT/CN2020/077297
Other languages
English (en)
French (fr)
Inventor
伍勇
万蕾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/077297 priority Critical patent/WO2021168841A1/zh
Priority to EP20922097.9A priority patent/EP4095488A4/en
Priority to CN202080002469.2A priority patent/CN113574346A/zh
Publication of WO2021168841A1 publication Critical patent/WO2021168841A1/zh
Priority to US17/896,960 priority patent/US20220412746A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This application relates to the technical field of automatic driving or assisted driving, and in particular to a positioning method and device.
  • assisted driving With the rapid development of artificial intelligence, assisted driving and autonomous driving have emerged.
  • a moving vehicle When starting assisted driving or automatic driving functions, a moving vehicle needs to perceive the surrounding environment of the vehicle. For example, perceive information such as pedestrians, vehicles, lane lines, drivable areas, and obstacles on the driving path to avoid collisions with other vehicles, pedestrians, obstacles, or deviation from lane lines.
  • the present application provides a positioning method and device, which are used for vehicles to accurately obtain position information of measurement targets in the surrounding environment.
  • an embodiment of the present application provides a positioning method, including:
  • the information of the two-coordinate system includes translation information and rotation information mapped from the first coordinate system to the second coordinate system, wherein the translation information is determined according to the position of the measuring device in the second coordinate system, The rotation information is determined according to the posture of the measurement device in the second coordinate system; the position of the measurement target in the first coordinate system is acquired, and the position of the measurement target in the first coordinate system is the measurement device Obtained by measurement; according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system, the position of the measurement target in the second coordinate system is determined.
  • the method may be executed by a first device, and the first device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the first device may be a terminal device, a map server, a roadside unit, a vehicle, or a vehicle-mounted device.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, and a vehicle or a measurement device in the vehicle.
  • the first device after the first device obtains the information of the first coordinate system relative to the second coordinate system, and the position of the measurement target in the first coordinate system, it can be based on the first coordinate system relative to the second coordinate system.
  • Information converting the position of the measurement target in the first coordinate system to the position of the measurement target in the second coordinate system. Since the coordinate system used by the map is the second coordinate system, the position of the measurement target relative to other devices (such as autonomous vehicles) that use the map can be determined more accurately. Therefore, through the above method, the large positioning error caused by the offset error of the coordinate system can be avoided, and the higher-precision coordinate system can be fully utilized for positioning, and the safety of automatic driving can be improved.
  • the method of obtaining information of the first coordinate system relative to the second coordinate system may include:
  • the identification of the measuring device may include one or more of the following: the serial number of the measuring device in the second coordinate system, or the unique serial number of the measuring device. Therefore, the identification of the measuring device is used to determine the position information of the measuring device in the second coordinate system, and then the information of the first coordinate system relative to the second coordinate system is determined to distinguish the second coordinates used between the coordinate systems used by different maps. The system is different, and the information of the first coordinate system relative to the second coordinate system can be effectively distinguished, and the accuracy of the relative position of the measurement target relative to the own vehicle under different map coordinate systems can be improved.
  • the first device can obtain the information of the first coordinate system relative to the second coordinate system in the following manner:
  • the first device can read the information of the first coordinate system relative to the second coordinate system from the memory;
  • Example a1 the first device is a map server, and the map server stores information of the first coordinate system relative to the second coordinate system; the map server reads from the memory that the measurement device determines that the measurement target is in the first The position in a coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the first device is a measurement device (for example, a roadside unit or a vehicle is used as a measurement device), and the measurement device stores information of the first coordinate system relative to the second coordinate system; the measurement device reads from the memory Information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system.
  • the measurement device stores information of the first coordinate system relative to the second coordinate system; the measurement device reads from the memory Information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system.
  • Example c1 the first device is a vehicle-mounted device, and the vehicle-mounted device stores information about the first coordinate system relative to the second coordinate system; The position in the coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the method of obtaining the information of the first coordinate system relative to the second coordinate system from the memory by the first device is easy to obtain, and the obtaining speed is relatively fast, avoiding the network pairing of the first coordinate system relative to the first coordinate system caused by the signaling interaction.
  • the possible delay in the information of the two-coordinate system is easy to obtain, and the obtaining speed is relatively fast, avoiding the network pairing of the first coordinate system relative to the first coordinate system caused by the signaling interaction.
  • the first device may receive the information of the first coordinate system relative to the second coordinate system through a receiver.
  • the first device is a map server
  • the measurement device for example, a roadside unit or a vehicle as the measurement device
  • the map server obtains information from the measurement
  • the device receives the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system.
  • the map server may also send an information query request of the first coordinate system relative to the second coordinate system to the measuring device; the information query request of the first coordinate system relative to the second coordinate system is used to query the survey equipment.
  • the measuring device determines the position of the measuring target in the first coordinate system, the information of the first coordinate system relative to the second coordinate system; the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the first device request is used to send the information of the first coordinate system relative to the second coordinate system by the measuring device, which can prevent the measuring device from sending the information of the first coordinate system relative to the second coordinate system to irrelevant This equipment protects the privacy of the measurement equipment and reduces signaling overhead.
  • the first device is a measurement device (for example, a roadside unit or a vehicle is used as a measurement device), and the map server stores information about the first coordinate system relative to the second coordinate system; the measurement device receives information from the map server Information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system.
  • the measuring device may also send an information query request of the first coordinate system relative to the second coordinate system to the map server; the information query request of the first coordinate system relative to the second coordinate system is used to query the map server.
  • the measuring device determines the position of the measuring target in the first coordinate system, the information of the first coordinate system relative to the second coordinate system; the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the map server only sends the information of the first coordinate system relative to the second coordinate system by the first device request, which can prevent the map server from sending the information of the first coordinate system relative to the second coordinate system to unrelated This equipment protects the privacy of the measurement equipment and reduces signaling overhead.
  • the first device is a vehicle-mounted device
  • the map server stores information about the first coordinate system relative to the second coordinate system
  • the vehicle-mounted device receives from the map server that the measurement device is determining that the measurement target is in the first
  • the position in a coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device sends a query request for information of the first coordinate system relative to the second coordinate system to the map server.
  • the information query request of the first coordinate system relative to the second coordinate system is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the information request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device is a vehicle-mounted device
  • the measurement device for example, a roadside unit or a vehicle as the measurement device
  • the vehicle-mounted device receives the information from the measurement device Information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system.
  • the vehicle-mounted device sends a query request for information of the first coordinate system relative to the second coordinate system to the measuring device.
  • the information query request of the first coordinate system relative to the second coordinate system is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the information request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device can obtain the initial information of the first coordinate system relative to the second coordinate system, the initial information being determined according to the initial position and initial posture of the measuring device in the second coordinate system;
  • the measurement device measures the position change of the measurement target relative to the initial position, and acquires the change of the posture relative to the initial posture when the measurement device measures the measurement target; according to the initial information,
  • the position change and the posture change determine the information of the first coordinate system relative to the second coordinate system.
  • the first device can obtain the initial information of the first coordinate system relative to the second coordinate system based on the history, and when the measuring device determines the position of the measurement target in the first coordinate system, the first device of the measuring device can be determined.
  • Position change information (the position change of the position when the measuring device measures the measurement target relative to the initial position, and the position change of the position when the measurement device measures the measurement target relative to the initial position is acquired) ,
  • These two parts of information determine the information of the first coordinate system relative to the second coordinate system, and flexibly configure the acquisition method of the two parts of the information of the first coordinate system relative to the second coordinate system.
  • the interactive signaling between the first device and the measuring device can be adapted to more scenarios.
  • the first device is a map server, and the map server stores initial information of the first coordinate system relative to the second coordinate system; the map server receives the identification of the measuring device and the first Position change information; the first position change information includes at least one of the following: the measurement device measures the position change of the measurement target relative to the initial position, and the measurement device measures the measurement target The posture changes relative to the initial posture.
  • the first position change information of the measuring device is used to indicate the difference between the position information of the measuring device and the initial information when the measuring device determines the position of the measuring target in the first coordinate system; the measuring device The identifier is used by the map server to determine the initial information of the first coordinate system relative to the second coordinate system; the map server according to the first position change information of the measuring device and the first coordinate system relative to the second coordinate system The initial information determines the information of the first coordinate system relative to the second coordinate system.
  • the method of sending the initial information of the first coordinate system relative to the second coordinate system by the measuring device is compared with the method of sending the information of the first coordinate system relative to the second coordinate system, which enables the map server to effectively use the acquired information.
  • the initial position of the measuring device in the second coordinate system reduces the transmission of information.
  • the active sending by the measuring device eliminates the need for the first device to request, which can save signaling overhead.
  • the first device is a map server, and the measurement device (for example, a roadside unit or a vehicle is used as the measurement device) stores initial information of the first coordinate system relative to the second coordinate system;
  • the measurement device receives the initial information of the first coordinate system relative to the second coordinate system;
  • the map server receives the identification of the measurement device and the first position change information of the measurement device from the measurement device; wherein the first position change information of the measurement device is The location change information is used to indicate the difference between the location information of the measurement device and the initial information when the measurement device determines the location of the measurement target in the first coordinate system;
  • the identification of the measurement device is used for the map
  • the server determines the initial information of the first coordinate system relative to the second coordinate system;
  • the map server determines the first coordinate according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system
  • the system is relative to the information of the second coordinate system.
  • the measuring device can send to the map server the initial information of the first coordinate system relative to the second coordinate system and the first position change information of the measuring device, for example, the first coordinate system relative to the second coordinate system.
  • the initial information can be sent to the map server in advance, and the first position change information of the measuring device can be sent together with the position of the measurement target in the first coordinate system, or can be sent together to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send an initial information query request of the first coordinate system relative to the second coordinate system to the measurement device; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the measurement device
  • the position of the initial position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device request is used to send the initial information of the first coordinate system relative to the second coordinate system by the measuring device, which can prevent the measuring device from sending the initial information of the first coordinate system relative to the second coordinate system to Irrelevant equipment protects the privacy of measurement equipment and reduces signaling overhead.
  • the map server may send a first location change information query request of the measurement device to the measurement device; the first location change information query request of the measurement device is used to query the measurement device in determining whether the measurement target is in the first coordinate system Is the measurement position of the measurement device relative to the initial position; the first position change information query request of the measurement device includes the identification of the measurement device and/or the identification of the second coordinate system.
  • the measuring device sends the first position change information of the measuring device only when the map server requests it, which can prevent the measuring device from sending the first position change information of the measuring device to unrelated devices and protect the measuring device and the map.
  • the privacy of the coordinate system reduces signaling overhead.
  • the first device is a map server, and the vehicle-mounted device stores initial information of the first coordinate system relative to the second coordinate system; the map server receives the first coordinate system relative to the vehicle-mounted device The initial information in the second coordinate system; the map server receives the identification of the measurement device and the first position change information of the measurement device from the measurement device; wherein the measurement device (for example, a roadside unit or the vehicle where the on-board device is located)
  • the first position change information of a vehicle other than the measurement device is used to indicate the difference between the position information of the measurement device and the initial information when the measurement device determines the position of the measurement target in the first coordinate system;
  • the identification of the measuring device is used by the map server to determine the initial information of the first coordinate system relative to the second coordinate system; the map server is based on the first position change information of the measuring device and the first coordinate system relative to the first
  • the initial information of the two coordinate system determines the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device can send the initial information of the first coordinate system relative to the second coordinate system to the map server as needed, and the measuring device can send the first position change information of the measuring device to the map server as needed, for example, the first
  • the initial information of the coordinate system relative to the second coordinate system may be sent to the map server in advance, and the first position change information of the measuring device may be sent together with the position of the measurement target in the first coordinate system to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the initial position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device is a measurement device (for example, a roadside unit or a vehicle other than the vehicle where the on-board device is used as the measurement device), and the map server stores the first coordinate system relative to the second coordinate system
  • the initial information of the measurement device receives the initial information of the first coordinate system relative to the second coordinate system from the map server; the measurement device according to the first position change information of the measurement device and the first coordinate system relative to The initial information of the second coordinate system determines the information of the first coordinate system relative to the second coordinate system.
  • the measurement device does not need to store the initial information of the first coordinate system relative to the second coordinate system, which reduces the occupation of storage space and avoids the impact on the performance of the measurement device that may be caused by the occupation of additional storage space.
  • the measurement device may send an initial information query request of the first coordinate system relative to the second coordinate system to the map server; the initial information query request of the first coordinate system relative to the second coordinate system is used for querying
  • the initial position of the measuring device is the position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the position of the second coordinate system Logo.
  • the map server only sends the initial information of the first coordinate system relative to the second coordinate system by the request of the measuring device, which can prevent the map server from sending the initial information of the first coordinate system relative to the second coordinate system to the other party.
  • the related equipment protects the privacy of the measurement equipment and the map coordinate system and reduces the signaling overhead.
  • the first device is a measuring device (for example, a roadside unit or a vehicle other than the vehicle where the on-board device is located is used as a measuring device), and the measuring device stores the first coordinate system relative to the second coordinate system
  • the measurement device reads the initial information of the first coordinate system of the measurement device relative to the second coordinate system from the memory; the measurement device reads the first position change of the measurement device from the memory Information;
  • the measuring device determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system.
  • the measurement device separately stores the initial information of the first coordinate system relative to the second coordinate system and the first position change information of the measurement device.
  • the first coordinate system is relative to the first coordinate system.
  • the information of the two-coordinate system especially when there are multiple second coordinate systems, only needs to store the first position change information of one measuring device, which can effectively reduce the occupation of storage space.
  • the first device is a measuring device (for example, a roadside unit or a vehicle other than the vehicle where the on-board device is located as the measuring device), and the on-board device stores the first coordinate system relative to the second coordinate system
  • the initial information of the measurement device receives the initial information of the first coordinate system relative to the second coordinate system from the vehicle-mounted device; the measurement device is based on the first position change information of the measurement device and the first coordinate system relative to the
  • the initial information of the second coordinate system determines the information of the first coordinate system relative to the second coordinate system.
  • the measurement equipment may send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the initial position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device is a vehicle-mounted device, and the map server stores initial information of the first coordinate system relative to the second coordinate system; the vehicle-mounted device receives the measurement device (for example, by a roadside unit or a The first position change information of the measurement device sent by a vehicle other than the vehicle where the on-board device is located is the measurement device; wherein the first position change information of the measurement device is used to indicate that the measurement device is determining that the measurement target is located The difference between the position information of the measuring equipment and the initial information when the position is in the first coordinate system; the vehicle-mounted device receives the initial information of the first coordinate system relative to the second coordinate system from the map server; The in-vehicle device determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring equipment and the initial information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device receives the initial information of the first coordinate system relative to the second coordinate system through the map server, and receives the first position change information of the measuring equipment through the measuring equipment, which can make the transmission of information more flexible and avoid a large number of simultaneous transmissions.
  • Information may cause network congestion, so that the vehicle-mounted device may delay obtaining the location of the measurement target, which affects the performance of automatic driving.
  • the vehicle-mounted device sends an initial information query request of the first coordinate system relative to the second coordinate system to the map server; the first coordinate system is relative to the second coordinate system
  • the initial information query request of is used to query the initial position of the measurement device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measurement device, and/ Or the identification of the second coordinate system.
  • the first device is a vehicle-mounted device
  • the measurement device for example, a roadside unit or a vehicle other than the vehicle where the vehicle-mounted device is used as the measurement device
  • the in-vehicle device receives the first position change information of the measurement device sent by the measurement device; wherein, the first position change information of the measurement device is used to indicate that the measurement device is determining that the measurement target is in The difference between the position information of the measuring device and the initial information when the position is in the first coordinate system; the vehicle-mounted device receives the initial information of the first coordinate system relative to the second coordinate system from the measuring device; the vehicle-mounted device According to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system, the information of the first coordinate system relative to the second coordinate system is determined.
  • the vehicle-mounted device receives the initial information of the first coordinate system relative to the second coordinate system and the first position change information of the measurement device through the measuring device, which can make the transmission of information more flexible and avoid sending a large amount of information at the same time. It may cause network congestion, so that the vehicle-mounted device may delay obtaining the location of the measurement target, which affects the performance of automatic driving.
  • the vehicle-mounted device sends an initial information query request of the first coordinate system relative to the second coordinate system to the measuring device; the first coordinate system is relative to the second coordinate system
  • the initial information query request of is used to query the initial position of the measurement device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measurement device, and/ Or the identification of the second coordinate system.
  • the first device is a vehicle-mounted device, and the initial information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device;
  • the vehicle other than the vehicle where the vehicle-mounted device is located serves as at least one of the following items: the first position change information of the measuring device, the identification of the measuring device, the identification of the second coordinate system; the vehicle-mounted device is based on the measurement
  • the first position change information of the device and the initial information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device can effectively use the acquired initial position of the measuring device in the second coordinate system, reducing the transmission of information.
  • the measurement device or the map server actively sends the first position change information of the measurement device without a request from the vehicle-mounted device, which can save signaling overhead.
  • the vehicle-mounted device sends the first position change information query request of the measuring device to the measuring device; or, the vehicle-mounted device sends the first position of the measuring device to the map server Change information query request; the first position change information query request of the measuring device is used to query the difference between the measuring device and the initial position when determining the position of the measuring target in the first coordinate system; the first position of the measuring device
  • a position change information query request includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the vehicle-mounted device can actively initiate a query request to the map server or the measurement equipment, thereby making the transmission of information more flexible, and avoiding the map server or the measurement equipment from comparing the initial information of the first coordinate system with respect to the second coordinate system. Send it to unrelated devices, or avoid the map server or measurement device from sending the first position change information of the measurement device to unrelated devices, which protects the privacy of the measurement device and the map coordinate system and reduces signaling overhead.
  • the first device can obtain the historical information of the first coordinate system relative to the second coordinate system.
  • the historical information is determined according to the initial historical position and historical posture of the measuring device in the second coordinate system;
  • the second position change information includes: the position of the measuring device when the measuring device measures the measurement target relative to The position change of the initial position, and the posture change of the posture when the measuring device measures the measurement target relative to the initial posture.
  • the information of the first coordinate system relative to the second coordinate system is determined according to the historical information and the second position change information of the measuring device.
  • the first device can obtain the historical information of the first coordinate system relative to the second coordinate system based on the position of the historical target measured, and the first coordinate system determined by the measuring device when determining the position of the measurement target in the first coordinate system. Second, position changes. These two pieces of information determine the information of the first coordinate system relative to the second coordinate system.
  • the way in which the first device obtains the information of the first coordinate system relative to the second coordinate system can be flexibly configured, thereby flexibly configuring the information of the first coordinate system relative to the second coordinate system.
  • the interactive signaling between a device and a measurement device can also reduce the information sent by the measurement device when determining the position of the measurement target in the first coordinate system, so as to adapt to more scenarios.
  • the first device is a map server, and the map server stores historical information of the first coordinate system relative to the second coordinate system; the map server receives the measurement device (for example, by a roadside unit or a vehicle). As the identification of the measuring device) and the second position change information of the measuring device; wherein the second position change information of the measuring device is used to indicate that the measuring device determines the position of the measuring target in the first coordinate system when the measuring device The difference between the position information of the first coordinate system and the historical information of the second coordinate system when measuring the position of the historical target; the identifier of the measurement device is used by the map server to determine that the first coordinate system is relative to the second coordinate system Historical information of the coordinate system; the map server determines the information of the first coordinate system relative to the second coordinate system according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system.
  • the method of sending the historical information of the first coordinate system relative to the second coordinate system by the surveying device is compared with the method of sending the information of the first coordinate system relative to the second coordinate system, so that the map server can effectively use the acquired information.
  • the historical position of the measuring device in the second coordinate system reduces the sending of information.
  • the active sending by the measuring device eliminates the need for the first device to request, which can save signaling overhead.
  • the first device is a map server, and the measurement device (for example, a roadside unit or a vehicle is used as a measurement device) stores historical information of the first coordinate system relative to the second coordinate system;
  • the measurement device receives the historical information of the first coordinate system relative to the second coordinate system;
  • the map server receives the identification of the measurement device and the second position change information of the measurement device from the measurement device; wherein the second position change information of the measurement device
  • the location change information is used to indicate the difference between the location information of the measurement device and the location information of the measurement device when the measurement device determines the location of the measurement target in the first coordinate system relative to the location of the measurement history target;
  • the identification of the measuring device is used by the map server to determine the historical information of the first coordinate system relative to the second coordinate system; the map server according to the second position change information of the measuring device and the first coordinate system relative to the second coordinate
  • the historical information of the system determines the information of the first coordinate system relative to the second coordinate system.
  • the measuring device can send to the map server the historical information of the first coordinate system relative to the second coordinate system and the second position change information of the measuring device, for example, the first coordinate system relative to the second coordinate system.
  • the historical information can be sent to the map server in advance, and the second position change information of the measuring device can be sent together with the position of the measurement target in the first coordinate system, or can be sent together to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send a historical information query request of the first coordinate system relative to the second coordinate system to the measurement device; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement device
  • the position information of the measuring device in the second coordinate system when measuring the position of the historical target; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the first device is a map server, and the vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the map server receives the relative information of the first coordinate system from the vehicle-mounted device Historical information in the second coordinate system; the map server receives the identification of the measurement device and the second measurement device’s second Position change information; wherein the second position change information of the measurement device is used to indicate that the position information of the measurement device is relative to the position of the measurement history target when the measurement device determines the position of the measurement target in the first coordinate system The difference of the position information of the measuring device; the identifier of the measuring device is used by the map server to determine the historical information of the first coordinate system relative to the second coordinate system; the map server changes according to the second position of the measuring device The information and the historical information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device can send historical information of the first coordinate system relative to the second coordinate system to the map server as needed, and the measuring device can send the second position change information of the measuring device to the map server as needed, for example, the first
  • the historical information of the coordinate system relative to the second coordinate system may be sent to the map server in advance, and the second position change information of the measuring device may be sent together with the position of the measurement target in the first coordinate system to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position information of the measuring device in the second coordinate system when measuring the position of the historical target; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the map server sends a second location change information query request of the measurement device to the measurement device; the second location change information query request of the measurement device is used to query the measurement device when determining that the measurement target is in the first coordinate system.
  • the measuring position of the measuring device relative to the historical position in the position; the second position change information query request of the measuring device includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the first device is a measurement device (for example, a roadside unit or a vehicle is used as a measurement device), and the map server stores historical information of the first coordinate system relative to the second coordinate system; the measurement device receives The second position change information of the measuring device sent by the map server; the measuring device determines that the first coordinate system is relative to the second coordinate system according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system Information about the second coordinate system.
  • the measurement device does not need to store the historical information of the first coordinate system relative to the second coordinate system, which reduces the occupation of storage space and avoids the impact on the performance of the measurement device that may be caused by the occupation of additional storage space.
  • the measuring device may send a historical information query request of the first coordinate system relative to the second coordinate system to the map server; the historical information query request of the first coordinate system relative to the second coordinate system is used for querying The position of the historical position of the measuring device in the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the position of the second coordinate system Logo.
  • the map server only sends the historical information of the first coordinate system relative to the second coordinate system by the first device request, which can prevent the map server from sending the historical information of the first coordinate system relative to the second coordinate system to Irrelevant equipment protects the privacy of measurement equipment and reduces signaling overhead.
  • the first device is a measurement device (for example, a roadside unit or a vehicle is used as a measurement device), and the measurement device stores historical information of the first coordinate system relative to the second coordinate system;
  • the memory reads the historical information of the first coordinate system of the measurement device relative to the second coordinate system;
  • the measurement device reads the second position change information of the measurement device from the memory;
  • the measurement device reads the information according to the measurement device
  • the second position change information of and the historical information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the measurement device separately stores the historical information of the first coordinate system relative to the second coordinate system and the second position change information of the measurement device.
  • the first coordinate system is relative to the first coordinate system.
  • the information of the two-coordinate system especially when there are multiple second coordinate systems, only needs to store the second position change information of one measuring device, which can effectively reduce the occupation of storage space.
  • the first device is a measurement device (for example, a roadside unit or a vehicle is used as a measurement device), and the vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the measurement device is from The vehicle-mounted device receives the historical information of the first coordinate system relative to the second coordinate system; the measurement equipment determines according to the second position change information of the measurement equipment and the historical information of the first coordinate system relative to the second coordinate system Information about the first coordinate system relative to the second coordinate system.
  • the measurement device does not need to store the historical information of the first coordinate system relative to the second coordinate system, which reduces the occupation of storage space and avoids the impact on the performance of the measurement device that may be caused by the occupation of additional storage space.
  • the measurement equipment may send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the historical position in the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device is a vehicle-mounted device
  • the map server stores historical information of the first coordinate system relative to the second coordinate system
  • the vehicle-mounted device receives the measurement equipment (for example, by a roadside unit or a
  • the second location change information of the measurement device sent by a vehicle other than the vehicle where the on-board device is located is used as the measurement device; wherein the second location change information of the measurement device is used to indicate that the measurement device is determining that the measurement target is located
  • the vehicle-mounted device receives the historical information of the first coordinate system relative to the second coordinate system from the map server;
  • the vehicle-mounted device determines the information of the first coordinate system relative to the second coordinate system according to the second position change information of the measuring equipment and the historical information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device receives the historical information of the first coordinate system relative to the second coordinate system through the map server, and receives the second position change information of the measuring equipment through the measuring equipment, which can make the transmission of information more flexible and avoid a large number of simultaneous transmissions.
  • Information may cause network congestion, so that the vehicle-mounted device may delay obtaining the location of the measurement target, which affects the performance of automatic driving.
  • the vehicle-mounted device sends a historical information query request of the first coordinate system relative to the second coordinate system to the map server; the first coordinate system is relative to the second coordinate system
  • the historical information query request of is used to query the historical position of the measurement device in the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measurement device, and/ Or the identification of the second coordinate system.
  • the first device is a vehicle-mounted device
  • the measurement device for example, a roadside unit or a vehicle other than the vehicle where the vehicle-mounted device is located as the measurement device
  • the in-vehicle device receives the second location change information of the measurement device sent by the measurement device; wherein the second location change information of the measurement device is used to indicate that the measurement device is determining the measurement target
  • the position in the first coordinate system is the difference between the position information of the measuring device and the position information of the measuring device when the position of the historical target is measured;
  • the vehicle-mounted device receives from the measuring device the difference between the first coordinate system and the second coordinate system Historical information;
  • the vehicle-mounted device determines the information of the first coordinate system relative to the second coordinate system according to the second position change information of the measuring equipment and the historical information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device separately receives the historical information of the first coordinate system relative to the second coordinate system and the second position change information of the measurement device through the measuring device, which can make the transmission of information more flexible and avoid sending a large amount of information at the same time. It may cause network congestion, so that the vehicle-mounted device may delay obtaining the location of the measurement target, which affects the performance of automatic driving.
  • the vehicle-mounted device sends a historical information query request of the first coordinate system relative to the second coordinate system to the measuring device; the first coordinate system is relative to the second coordinate system
  • the historical information query request of is used to query the historical position of the measurement device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measurement device, and/ Or the identification of the second coordinate system.
  • the first device is a vehicle-mounted device, and the vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the vehicle-mounted device receives the measurement equipment (for example, a roadside unit or a The vehicle other than the vehicle where the on-board device is located serves as at least one of the following items: the second position change information of the measurement device, the identification of the measurement device, the identification of the second coordinate system; The second position change information of the device and the historical information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device can effectively use the acquired historical position of the measuring device in the second coordinate system, and reduce the transmission of information.
  • the measurement device or the map server actively sends the second position change information of the measurement device without a request from the vehicle-mounted device, which can save signaling overhead.
  • the vehicle-mounted device sends a second location change information query request of the measurement device to the measurement device; or, the vehicle-mounted device sends the second location of the measurement device to the map server Change information query request; the second position change information query request of the measurement device is used to query the measurement device's relative historical position difference when determining the position of the measurement target in the first coordinate system; the second position of the measurement device 2.
  • the position change information query request includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the vehicle-mounted device can actively initiate a query request to the map server or measurement equipment, thereby making the transmission of information more flexible, and avoiding the map server or the measurement equipment from comparing the historical information of the first coordinate system with respect to the second coordinate system.
  • the vehicle-mounted device sends a second position change information query request of the measurement device to the map server; or, the vehicle-mounted device sends the second position change of the measurement device to the measurement device Information query request; wherein the second position change information query request of the measuring device is used to query the first position change information in the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the second position change information query request of the measuring device includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the vehicle-mounted device can actively initiate a query request to the map server or the measurement device, thereby making the transmission of information more flexible, and can also prevent the map server or the measurement device from sending the second position change information of the measurement device to unrelated devices.
  • the privacy of the measurement equipment and the map coordinate system is protected, and the signaling overhead is reduced.
  • a possible design, the way to obtain the position of the measurement target in the first coordinate system may be:
  • Manner 1 Obtain the position of the measurement target in the first coordinate system through sensor measurement.
  • Example A1 the measuring device is used as the first device for executing the positioning method, and the position of the measuring target in the first coordinate system is obtained through a sensor measurement.
  • Manner 2 Receive the position of the measurement target in the first coordinate system through a receiver.
  • Example A2 the first device is a map server, and the map server receives the position of the measurement target in the first coordinate system from the measurement device through the receiver.
  • the map server can obtain the position of the measurement target in the first coordinate system measured by the measuring device, which is convenient for the map server according to the position of the measurement target in the first coordinate system and the first coordinate system stored by the map server itself. Relative to the information in the second coordinate system, the position of the measurement target is converted to the second coordinate system to meet the vehicle's requirement for obtaining the position of the measurement target in the second coordinate system.
  • the map server may forward the location of the measurement target in the first coordinate system to the vehicle-mounted device according to the location of the measurement target in the first coordinate system sent by the measurement device, and the vehicle-mounted device is used as the first device to execute the positioning method. You can send relevant information more flexibly to adapt to more scenarios.
  • the map server may also send a location query request of the measurement target in the first coordinate system to the measurement device; the location query request of the measurement target in the first coordinate system is used to query the relationship between the measurement device and the measurement device.
  • the request for querying the position of the measurement target in the first coordinate system includes the identifier of the measurement device and/or the identifier of the second coordinate system.
  • the map server can actively initiate a query request to the measurement device, which makes the sending of information more flexible, and can also prevent the measurement device from sending the location of the measurement target in the first coordinate system to unrelated devices, thereby protecting the measurement target Privacy, reducing the sending of signaling.
  • Example B2 the first device is a vehicle-mounted device, and the vehicle-mounted device receives the position of the measurement target in the first coordinate system through a receiver.
  • Example B2.1 the vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the map server through the receiver.
  • the position of the measurement target in the first coordinate system can be flexibly obtained.
  • the diversion of resources is conducive to the effective use of resources.
  • the vehicle-mounted device may send a location query request in the first coordinate system of the object to be identified to the map server;
  • the object to be identified is an object within a preset range of the measuring equipment;
  • a location query request in a coordinate system is used to query the location information of the object to be identified in the first coordinate system;
  • the location query request of the object to be identified in the first coordinate system includes the identification of the measuring device;
  • the object to be identified The object is an object within a preset range of the measurement device;
  • the map server receives a target location query request from the vehicle-mounted device;
  • the map server determines the location information of the measurement device in the first coordinate system
  • the object to be identified includes at least the measurement target.
  • the vehicle-mounted device can actively initiate a location query request of the object to be identified in the first coordinate system to the map server, so that the map server can determine the object to be identified and the position of the measurement target corresponding to the object to be identified in the first coordinate system , To prevent the map server from sending the location of the measurement target in the first coordinate system to irrelevant devices.
  • Example B2.2 The vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the measurement device (the measurement device is, for example, a roadside unit or a measurement device in the vehicle) through a receiver.
  • the measurement device is, for example, a roadside unit or a measurement device in the vehicle.
  • the position of the measurement target in the first coordinate system can be directly obtained, which is beneficial to reduce time delay and improve the position of the measurement target in the first coordinate system The speed of information acquisition.
  • the vehicle-mounted device sends a request for querying the position of the object to be recognized in the first coordinate system to the measuring device; the request for the position of the object to be recognized in the first coordinate system is used to query the position of the object to be recognized in the first coordinate system Position information in the coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the first coordinate system includes the identification of the measuring device.
  • the measuring device receives a position query request of the object to be identified in the first coordinate system from the vehicle-mounted device; the measuring device determines that the object to be identified is at least Including the measurement target.
  • the vehicle-mounted device can actively initiate a position query request of the object to be identified in the first coordinate system to the measuring device, so that the measuring device can determine the object to be identified and the position of the measurement target corresponding to the object to be identified in the first coordinate system. , To prevent the measurement device from sending the position of the measurement target in the first coordinate system to unrelated devices.
  • the vehicle-mounted device may also receive the position of the measurement target in the second coordinate system through a receiver.
  • Example a The map server sends at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device to the vehicle-mounted device. Furthermore, the in-vehicle device receives at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measuring device sent by the map server.
  • the map server sends the location of the measurement target in the second coordinate system to the vehicle-mounted device, so that the vehicle-mounted device directly uses the map server to determine the location of the measurement target in the second coordinate system, without the need for the vehicle-mounted device to further determine the measurement target in the second coordinate system
  • the location reduces the processing complexity of the vehicle-mounted device, reduces the response time of the vehicle-mounted device, and improves the safety of the automatic driving of the vehicle-mounted device.
  • the vehicle-mounted device may send a request for querying the location of the object to be recognized in the second coordinate system to the map server; the request for the location of the object to be recognized in the second coordinate system is used to query the location of the object to be recognized in the second coordinate system
  • the location information under; the object to be identified is an object within the preset range of the measurement device; the location query request of the object to be identified in the second coordinate system includes the identification of the measurement device, and/or the second coordinates Department of identification.
  • the map server receives a location query request of the object to be identified in the second coordinate system from the vehicle-mounted device; the map server determines that the object to be identified at least includes the location information of the measurement target in the second coordinate system The measurement target.
  • the map server returns the position of the measurement target in the second coordinate system to the in-vehicle device.
  • the map server obtains the position of the measurement target in the second coordinate system.
  • the vehicle-mounted device can actively send the location query request of the object to be identified in the second coordinate system to the map server as needed, avoiding the delay in sending the location of the measurement target in the second coordinate system by the map server, resulting in the inability to check the target in time.
  • the corresponding driving operation is made relative to the distance of the self-vehicle, which affects the safety of automatic driving.
  • Example b The measurement device (the measurement device is, for example, a roadside unit or a measurement device in a vehicle) sends the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the vehicle-mounted device At least one item of the identification of the measuring device. Furthermore, the in-vehicle device receives at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measuring device sent by the measuring device.
  • the measurement device sends the location of the measurement target in the second coordinate system to the vehicle-mounted device, so that the vehicle-mounted device directly uses the measurement device to determine the location of the measurement target in the second coordinate system, without the need for the vehicle-mounted device to further determine the measurement target in the second coordinate system
  • the location reduces the processing complexity of the vehicle-mounted device, reduces the response time of the vehicle-mounted device, and improves the safety of the automatic driving of the vehicle-mounted device.
  • the vehicle-mounted device sends a position query request of the object to be identified in the second coordinate system to the measuring device; the position request of the object to be identified in the second coordinate system is used to query the object to be identified in the second coordinate system
  • the location information of the object; the object to be identified is an object within the preset range of the measuring device; the location query request of the object to be identified in the second coordinate system includes the identification of the measuring device, and/or the second coordinate system Of the logo.
  • the measuring device receives a request for querying the position of the object to be identified in the second coordinate system from the vehicle-mounted device; the measuring device determines that the object to be identified at least includes the position information of the measuring target in the second coordinate system The measurement target.
  • the measurement device returns the position of the measurement target in the second coordinate system to the in-vehicle device.
  • the measurement device For the specific method for the measurement device to obtain the position of the measurement target in the second coordinate system, reference may be made to the above-mentioned embodiment, which will not be repeated here.
  • the information of the first coordinate system relative to the second coordinate system includes at least one of the following:
  • the position information of the measurement target in the first coordinate system includes at least one of the following:
  • the position information of the measurement target in the first coordinate system includes at least one of the following: the coordinate position of the measurement target in the first coordinate system or the vertex of the outer edge of the measurement target in the first coordinate Position in the department;
  • the posture information of the measurement target in the first coordinate system includes at least one of the following: the yaw angle, pitch angle, or roll angle of the measurement target in the first coordinate system.
  • the rotation information includes: the rotation matrix from the second coordinate system to the first coordinate system, the rotation matrix from the first coordinate system to the second coordinate system, and the rotation matrix of the first coordinate system in the second coordinate system.
  • an embodiment of the present application provides a positioning device, including:
  • the acquiring unit is configured to acquire information of the first coordinate system relative to the second coordinate system, where the first coordinate system is a coordinate system used by a measuring device, the second coordinate system is a coordinate system used by a map, and the first coordinate system is a coordinate system used by a map.
  • the information of the coordinate system relative to the second coordinate system includes translation information and rotation information of the first coordinate system mapped to the second coordinate system, wherein the translation information is based on the measurement device in the second coordinate system If the position of the measurement target is determined, the rotation information is determined according to the posture of the measurement device in the second coordinate system; the position of the measurement target in the first coordinate system is acquired, and the position of the measurement target in the first coordinate system Measured by the measuring device;
  • the determining unit is configured to determine the position of the measurement target in the second coordinate system according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, and a vehicle or a measurement device in the vehicle.
  • the device is used in a map server, a roadside unit or a car.
  • the obtaining unit obtaining the information of the first coordinate system relative to the second coordinate system includes: reading the information of the first coordinate system relative to the second coordinate system from a memory; or, receiving the information of the first coordinate system. Information about a coordinate system relative to a second coordinate system.
  • the acquisition unit is specifically used for:
  • the information of the first coordinate system relative to the second coordinate system is determined.
  • the acquiring unit acquiring the position of the measurement target in the first coordinate system includes: obtaining the position of the measurement target in the first coordinate system through a sensor measurement; or, receiving the position of the measurement target in the first coordinate system. The location of the measurement target.
  • the rotation information includes: the rotation matrix from the second coordinate system to the first coordinate system, the rotation matrix from the first coordinate system to the second coordinate system, and the rotation matrix of the first coordinate system in the second coordinate system.
  • the acquiring unit of acquiring the information of the first coordinate system relative to the second coordinate system includes: acquiring an identifier of the measuring device; acquiring the first coordinate system relative to the first coordinate system according to the identifier of the measuring device; Information about the two-coordinate system.
  • an embodiment of the present application provides a positioning device applied to a map server.
  • the positioning device includes a processor for implementing the method described in the first aspect.
  • the device may also include a memory for storing programs and instructions.
  • the memory is coupled with a processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may further include an interface circuit for the device to communicate with other devices.
  • the interface circuit may be a transceiver, a circuit, a bus, a module, or other types of interface circuits.
  • the positioning device is a map server, or a chip set in the map server.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the map server, or if the positioning device is a chip set in the map server, the interface circuit is, for example, a communication interface in the chip. It is connected with the radio frequency transceiver component in the map server to realize the transmission and reception of information through the radio frequency transceiver component.
  • an embodiment of the present application provides a positioning device, which is applied to a measurement device.
  • the measurement device includes a roadside unit, a measurement device in a roadside unit, a vehicle or a measurement device in a vehicle.
  • the measurement equipment may be a roadside unit, a chip used in a roadside unit, a measurement device in a roadside unit, or a chip used in a measurement device in a roadside unit.
  • the measuring device may also be a vehicle with the function of a measuring device and applied to a chip in a vehicle with the function of a measuring device, or the measuring device may also be a measuring device of a vehicle with the function of a measuring device, which is applied to the chip with the function of a measuring device.
  • the positioning device includes a processor for implementing the method described in the first aspect.
  • the device may also include a memory for storing programs and instructions.
  • the memory is coupled with a processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may further include an interface circuit for the device to communicate with other devices.
  • the interface circuit may be a transceiver, a circuit, a bus, a module, or other types of interface circuits.
  • the positioning device is a measuring device, or a chip provided in the measuring device.
  • the transceiver is realized by, for example, the antenna, feeder, and codec in the measuring device, or if the positioning device is a chip set in the measuring device, the interface circuit is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the measuring equipment to realize the transmission and reception of information through the radio frequency transceiving component.
  • an embodiment of the present application provides a positioning device, which is applied to a vehicle or a vehicle with an on-board device, and includes a processor for implementing the method described in the first aspect.
  • the device may also include a memory for storing programs and instructions.
  • the memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may further include an interface circuit for the device to communicate with other devices.
  • the interface circuit may be a transceiver, a circuit, a bus, a module, or other types of interface circuits.
  • the positioning device is a vehicle, or a chip installed in a ground vehicle.
  • the transceiver is realized by, for example, the antenna, feeder, and codec in the vehicle, or, if the positioning device is a chip set in the vehicle, the interface circuit is, for example, a communication interface in the chip, and the communication interface is connected to the vehicle.
  • the radio frequency transceiving component is connected to realize the sending and receiving of information through the radio frequency transceiving component.
  • a communication system which includes the positioning device described in the third aspect, the positioning device described in the fourth aspect, or the positioning device described in the fifth aspect.
  • a computer storage medium stores instructions that, when run on a processor, cause the positioning device to execute the first aspect or any one of the possible implementation manners. The method described in.
  • a computer program product containing instructions.
  • the computer program product stores instructions, which when run on a processor, cause the positioning device to execute the first aspect or any one of the possible implementations. The method described in the method.
  • FIGS. 1A-1B are schematic diagrams of an application architecture of an embodiment of this application.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the application
  • Figure 3 is a flowchart of a positioning method in an embodiment of the application.
  • Figure 4 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 5 is a flowchart of a positioning method in an embodiment of the application.
  • Fig. 6 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 7 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 8 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 9 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 10 is a flowchart of a positioning method in an embodiment of this application.
  • FIG. 11 is a flowchart of a positioning method in an embodiment of the application.
  • FIG. 12 is a flowchart of a positioning method in an embodiment of this application.
  • FIG. 13 is a structural block diagram of a positioning device provided by an embodiment of the application.
  • FIG. 14 is a structural block diagram of a positioning device provided by an embodiment of the application.
  • On-board devices such as on-board units (OBU) are generally installed on vehicles.
  • OBU on-board units
  • a roadside unit (RSU) is installed on the roadside, and the OBU can communicate with the RSU. For example, Communicate via microwave.
  • the OBU and RSU can use microwave to communicate.
  • the OBU adopts dedicated short-range communications (DSRC) technology to establish a microwave communication link with the RSU.
  • DSRC dedicated short-range communications
  • the in-vehicle device may also be another device installed on the vehicle.
  • the various terminal devices described below if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be regarded as an on-vehicle device, or called an on-vehicle device.
  • the in-vehicle system of the vehicle may at least include the vehicle, the in-vehicle network, and the in-vehicle device.
  • Vehicle-mounted devices include various sensors, GNNS receiving modules, and so on.
  • Terminal devices include devices that provide users with voice and/or data connectivity. For example, they may include handheld devices with a wireless connection function or processing devices connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • Roadside devices such as roadside units (RSU) can be fixed infrastructure entities that support vehicle-to-everything (V2X) applications, and can exchange messages with other entities that support V2X applications .
  • the roadside device may also be another device installed on the roadside or other places.
  • roadside units or other vehicles use sensors to detect the surrounding road environment, and to detect targets (including obstacles and traffic participants, such as vehicles and pedestrians) and their locations in the detected road environment. Notify the self-driving vehicles or vehicles with assisted driving functions, thereby enhancing these vehicles' ability to perceive surrounding targets and expanding the vehicle's detection range.
  • RSU can obtain a higher precision target position, thereby enhancing the perception accuracy of these vehicles, and other vehicles can also obtain the target position of the road ahead.
  • Electronic maps also known as digital maps, are maps that use computer technology to store and consult digitally. For example, navigation maps and high-precision maps.
  • Navigation map is map data for drivers. It is an electronic map (or digital map) that provides road-level navigation functions. It has the functions of map display, location positioning, and road guidance. Usually the accuracy reaches the meter level.
  • High-precision map is map data (including information such as lanes, roads, traffic signs, traffic lights, positioning layers, etc.) for autonomous vehicles. It is a kind of planning that provides high-precision positioning functions, road-level and lane-level And electronic map with guidance function. The accuracy of the high-precision map can reach the centimeter level.
  • the electronic map can be stored in a map server, or in a vehicle-mounted device or a roadside device, which is not limited here.
  • a map server storing high-precision maps can pass these target locations (or feature locations) to vehicles with automatic driving or driving assistance functions ("ego-car"), which can improve the vehicle's safe and smooth autonomous driving experience.
  • ego-car automatic driving or driving assistance functions
  • High-precision maps based on different drawing sources may have different coordinate systems, or the measurement accuracy in the high-precision map may be different.
  • the map data in the high-precision map may have incompatibility issues. Therefore, in this application,
  • the high-precision maps of the same drawing source can be distinguished by the identification of the high-precision maps of different drawing sources. For example, the identification of the first high-precision map of the first drawing source is denoted as M1, and the identification of the second high-precision map of the second drawing source is denoted as M2.
  • the corresponding coordinate systems based on different high-precision maps can also be identified.
  • the coordinate system identifier of the first high-precision map from the first drawing source is expressed as M1-CS
  • the coordinate system identifier of the second high-resolution map from the second drawing source is expressed as M2-CS.
  • the coordinate system of the electronic map can be the geocentric coordinate system (GCS), also known as the global absolute coordinate system.
  • GCS geocentric coordinate system
  • RECCS geocentric coordinate system
  • CGCS2000 China Geodetic Coordinate System 2000
  • BJZ54 Beijing 54 coordinate system
  • the embodiments of the present application do not limit the coordinate system adopted by the electronic map.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the first road and the second road are only used to distinguish different roads, but do not indicate the difference in priority or importance of the two roads.
  • the lateral transmission link SL is a short-distance communication method, and the general coverage distance is within 1000 meters, which can be realized between vehicles, vehicles and RSUs, vehicles and pedestrians/non-motorized vehicles, etc.
  • the Uu air interface is the communication interface between the vehicle and the network equipment or other entities, which can realize the communication between the vehicle and the network equipment.
  • the vehicle can communicate with the core network device through the access network device, the vehicle and the access network device can be connected through the Uu air interface, and the access network device and the core network device can be connected in a wired manner.
  • V2X includes vehicles and other vehicles (Vehicle-to-Vehicle, V2V), vehicles and roadside infrastructure (Vehicle-to-Infrastructure, V2I), vehicles and networks (Vehicle-to-Network, V2N), and vehicles and pedestrians (Vehicle-to-Pedestrian, V2P) communication involves real-time communication of value-added applications such as road safety, traffic efficiency, and intelligent transportation systems.
  • vehicles can exchange data with the surrounding environment, vehicles can interact with each other, vehicles can interact with portable UEs carried by pedestrians, and vehicles can also interact with surrounding infrastructure such as traffic lights within a certain range To interact.
  • the vehicle can obtain a series of information such as real-time road conditions, road information, pedestrian information, and make corresponding prompts/controls for the driving process according to the actual situation, such as forward collision warning, crossroads yielding, special vehicle yielding, traffic Congestion prompts, etc., thereby improving road safety and improving traffic efficiency.
  • a network architecture applicable to this embodiment of the present application includes: a first vehicle 101, a second vehicle 102, RSU 103, non-motor vehicle/pedestrian 104, vehicle networking V2X server 105 or network One or more of the devices 106.
  • the first vehicle 101 and the second vehicle 102 can be connected through a sidelink (SL), and the communication between the first vehicle 101 and the second vehicle 102 can be called vehicle to vehicle (vehicle to vehicle).
  • V2V vehicle to vehicle
  • the connection between the first vehicle 101 and the second vehicle 102 may be referred to as a V2V connection
  • V2V represents a connection between different vehicles.
  • the first vehicle 101 and RSU103 can be connected through SL, the communication between the first vehicle 101 and RSU103 can be called vehicle to infrastructure (V2I) communication, the connection between the first vehicle 101 and RSU103, It can be called a V2I connection.
  • V2I represents the connection of the vehicle to the road infrastructure, for example, the vehicle to the traffic light.
  • the first vehicle 101 and the non-motorized vehicle/pedestrian 104 can be connected by SL.
  • the communication between the first vehicle 101 and the non-motorized vehicle/pedestrian 104 can be called vehicle to pedestrian (V2P) communication.
  • the connection between the vehicle 101 and the non-motorized vehicle/pedestrian 104 is called a V2P connection, and V2P can represent the connection of the vehicle to the pedestrian or non-motorized vehicle.
  • the first vehicle 101 is connected to the V2X server 105 through the network device 106.
  • the first vehicle 101 and the network device 106 can be connected through a Uu air interface, and the network device 106 and the V2X server 105 can be connected through a wired or wireless manner.
  • the wired manner may be an ethernet network or a fiber optic network, etc., and the wireless manner It can be Uu air interface, etc., without limitation.
  • the communication between the first vehicle 101 and the network device 106 can be referred to as vehicle to network (V2N) communication, and the connection between the first vehicle 101 and the network device 106 can be referred to as a V2N connection, and V2N can represent a vehicle Connection to the network.
  • V2N vehicle to network
  • the second vehicle 102 and the V2X server 105 may be connected through a network device 106.
  • the V2X server 105 can be connected to the RSU103 in a wired or wireless manner, and is used to manage and control the RSU103.
  • the V2X server 105 may be a high-precision map-based server for managing the location information of each object in the high-precision map (for example, the first vehicle 101, the second vehicle 102, and the RSU 103) in the high-precision map .
  • the V2X server 105 can obtain the position information of the measurement target (the object whose position information is to be determined) in the high-precision map by one of the following or any combination of the following methods: obtained by a sensing device set on the roadside The position information of the measurement target; wherein the sensing device is, for example, a sensor, etc., and the sensing device can obtain road information and/or information of objects on the road.
  • the sensing device may be a component of a roadside device or a vehicle-mounted device, such as a functional unit of a roadside device or a vehicle-mounted device, or the sensing device and a roadside device or a vehicle-mounted device may be different devices independent of each other. Roadside device or vehicle-mounted device communication.
  • the sensing device can be installed on the roadside device or the vehicle-mounted device, or the sensing device can also be installed independently of the roadside device or the vehicle-mounted device. Distributed settings on the roadside to collect more abundant information. Or, receive location information from at least one vehicle on the road.
  • the location information of the measurement target can also be obtained through a cloud server; the cloud server is, for example, a server installed in a traffic management department, etc., which is not specifically limited.
  • FIG. 1A is only an exemplary illustration, and is not intended as a limitation to the present application.
  • the RSU can be replaced with road infrastructure.
  • other numbers of vehicles, non-motorized vehicles/pedestrians, RSUs, etc. may also be included.
  • the V2X server can be directly connected to the first vehicle 101 and the second vehicle 102 through the Uu air interface, etc., which is not limited.
  • FIG. 1B shows another network architecture applicable to the embodiments of the present application, including: a V2X server 105, a network device 106, a measurement device 2021, and a vehicle-mounted device 2022.
  • the measuring device 2021 may be any one of the first vehicle 101, the second vehicle 102, and the RSU 103 in FIG. 1A.
  • the in-vehicle device 2022 may be any one of the first vehicle 101 and the second vehicle 102 in FIG. 1A.
  • the measurement device 2021 is used as a device for measuring the location of the target
  • the in-vehicle device 2022 is a device (for example, a vehicle) that requests the location information of the measurement target as an example for description.
  • Data transmission can be performed between the measuring device 2021 and the V2X server 105, and between the vehicle-mounted device 2022 and the V2X server 105 through the Uu air interface resource of the network device 106.
  • Data transmission can include downlink data transmission and/or uplink data transmission.
  • Downlink data (such as data carried in PDSCH) can refer to network equipment sending data to terminal equipment
  • uplink data (such as data carried in PUSCH) transmission can refer to terminal equipment to the network.
  • the device sends data.
  • Data can be data in a broad sense, such as user data, system information, broadcast information, or other information.
  • the measurement equipment 2021 and the vehicle-mounted device 2022 can also use sidelink (SL) resources for data transmission.
  • SL sidelink
  • the sidelink resources can also include time. At least one of domain resources, frequency domain resources, and code domain resources.
  • the physical channel used for data transmission by the vehicle-mounted device 2022 and the measuring device 2021 may include a physical sidelink shared channel (PSSCH) and/or a physical sidelink control channel (physical sidelink control channel, PSCCH).
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • SA scheduling assignment
  • the embodiments of this application can be applied to the fourth generation (4G) communication system, such as the long term evolution (LTE) system; the fifth generation (5G) communication system, such as the new A wireless (new radio, NR) system; or various evolving communication systems in the future, such as the Internet of Things, the Internet of Vehicles, and the 6th generation (6G) communication system, are not limited.
  • Figure 1B illustrates one network device and two devices.
  • the network architecture may also include multiple network devices and may include other numbers of devices within the coverage of one network device, which is not limited in the embodiment of the present application.
  • this application provides an application scenario: in an assisted driving or autonomous driving scenario, a driving vehicle needs to perceive the surrounding environment.
  • driving vehicles need to know the status information of surrounding vehicles, such as location information.
  • a moving vehicle can detect the location information of surrounding vehicles through vehicle sensors installed on the vehicle.
  • a driving vehicle can obtain location information of surrounding vehicles through V2X.
  • the driving vehicle can also obtain the location information of surrounding vehicles in the high-precision map through the V2X server.
  • the driving vehicle can plan a possible driving path for assisted driving or automatic driving functions based on the obtained information such as the distance of the surrounding environment, combined with related information such as the posture of the vehicle, and give corresponding control in combination with the vehicle dynamics model. Commands are handed over to the actuators to execute, so as to complete the functions of assisted driving and automatic driving.
  • the RSU103 may periodically report the location information of the measured measurement target to inform the vehicle-mounted device or the V2X server.
  • the measurement target can be any of vehicles, non-motorized vehicles/pedestrians, and RSUs.
  • the vehicle-mounted device or the V2X server can learn the location information of the measurement target, such as the real-time location, through the reported message, so as to perform path planning and control.
  • the RSU 103 can periodically report the measured location information of the first vehicle 101 to inform the second vehicle 102 and the V2X server 105.
  • the second vehicle 102 and the V2X server 105 can use the reported message
  • the location information of the first vehicle 101 can be learned.
  • the second vehicle 102 or the V2X server 105 can send the location information query request of the first vehicle 101 to the RSU103, so that the RSU103 measures the location of the first vehicle 101, and then obtains the location information of the first vehicle 101 relative to the RSU103 .
  • the vehicle-mounted device may be an adjacent vehicle of the measurement target.
  • the second vehicle 102 may measure the position of the first vehicle 101 relative to the second vehicle 101, and the second vehicle 102 may periodically report The position information of the first vehicle 101 relative to the second vehicle 101 is used to inform the V2X server 105 or the vehicle-mounted device.
  • the V2X server 105 or the vehicle-mounted device can learn the position of the first vehicle 101 relative to the second vehicle 101 through the message reported by the second vehicle 102 Information, so as to plan and control the vehicle-mounted device.
  • FIG. 2 it is a schematic diagram of a typical application scenario of the positioning method provided by an embodiment of the present invention, in which: the own vehicle 301 is a vehicle driving on road A, and it needs to know the precise position of the measured object 302 ahead Information so as to be provided to the autonomous driving system on the own vehicle 301 to perform decision-making and control.
  • the measured object 302 is typically other vehicles or pedestrians moving on the road A, and may also be other moving objects; the measuring device 303 is used for To measure the position of the measured object 302, the measuring device 303 is typically a roadside unit RSU, or other vehicles or other devices with measurement functions such as mobile terminals; the cloud map server 304 stores high-precision maps; the vehicle can be obtained The position information of 301 under the high-precision map.
  • the embodiment of the present invention uses the position information of the measured object 302 measured by the measuring device 303 Converting to the position information under the high-precision map, specifically, determining the conversion method based on the position and posture of the measuring device under the high-precision map.
  • the embodiment of the present invention can overcome the inconsistency between the vehicle positioning offset based on high-precision map positioning and the offset of the measured object 302 detected by the measuring device 303 that does not use the high-precision map, resulting in the vehicle positioning position and the target. There is a technical problem of large deviations in the estimation of the relative distance of the position.
  • the positioning method includes:
  • Step S301 The first device obtains the information of the first coordinate system relative to the second coordinate system.
  • the first coordinate system is a coordinate system used by a measuring device
  • the second coordinate system is a coordinate system used by a map
  • the information of the first coordinate system relative to the second coordinate system includes the first coordinate system
  • the posture of the second coordinate system is determined.
  • a possible design may obtain the identification of the measurement device, and then obtain the information of the first coordinate system relative to the second coordinate system according to the identification of the measurement device.
  • the identification of the measuring device may include one or more of the following: the serial number of the measuring device in the second coordinate system, or the unique serial number of the measuring device. Therefore, the identification of the measuring device is used to determine the position information of the measuring device in the second coordinate system, and then the information of the first coordinate system relative to the second coordinate system is determined to distinguish the second coordinates used between the coordinate systems used by different maps. The system is different, and the information of the first coordinate system relative to the second coordinate system can be effectively distinguished, and the accuracy of the relative position of the measurement target relative to the own vehicle under different map coordinate systems can be improved.
  • the first coordinate system can be the coordinate system established by the RSU relative to itself as the origin (RSU-LCS coordinate system), and the second coordinate system used by the map can be the first high-precision map coordinate Department (M1-CS). Therefore, the information of the first coordinate system relative to the second coordinate system may be the coordinate transformation information of the measurement device relative to the first high-precision map coordinate system when the measurement device determines the position of the measurement target in the first coordinate system.
  • the coordinate transformation information may be the coordinate transformation information of the LCS coordinate system where the measuring device is located relative to the first high-precision map coordinate system (M1-CS).
  • one of the center point of the RSU, the origin of the own coordinate system, or the vertex of the outer edge of the RSU may be used as the position point of the RSU in the coordinate system, and the position point of the RSU may be used as the origin of the RSU-LCS coordinate system.
  • the position information of the RSU in the RSU-LCS coordinate system may include one or more of the following: the coordinate information of the RSU in the RSU-LCS coordinate system, the initial rotation information of the RSU in the RSU-LCS coordinate system (for example, For the convenience of description, the horizontal angle, pitch angle, etc., the initial attitude of the RSU can be used as the coordinate axis of the RSU-LCS coordinate system, that is, the initial rotation information is 0). Since the coordinates of the RSU in the RSU-LCS coordinate system are the origin, the position information of the RSU in the RSU-LCS coordinate system is the origin position information of the RSU-LCS coordinate system.
  • the RSU-LCS coordinate system may not use the RSU as the origin to establish the coordinate system.
  • the coordinate information of the RSU in the RSU-LCS coordinate system is not the origin.
  • the establishment of the RSU coordinate system can include multiple methods, which are not limited here.
  • the position information of the RSU may include the coordinate position information of the RSU in the second coordinate system of the M1-CS, and the second coordinate system of the RSU in the M1-CS. Rotation information in the coordinate system.
  • the coordinate position information of the RSU in the M1-CS coordinate system can be expressed as the coordinate position information of the origin of the RSU-LCS coordinate system in the M1-CS coordinate system
  • the rotation information of the RSU in the M1-CS coordinate system can be It is expressed as the rotation information of the origin of the RSU-LCS coordinate system in the M1-CS coordinate system, that is, the rotation information of the RSU-LCS coordinate axis relative to the M1-CS coordinate axis.
  • the coordinate transformation between the first coordinate system (RSU-LCS) and the second coordinate system (of the first high-precision map M1-CS) can be realized by translation transformation and/or rotation transformation. That is, the coordinate transformation information of the RSU-LCS coordinate system relative to the M1-CS coordinate system may include at least one of the following: RSU-LCS coordinate system relative to M1-CS coordinate system translation transformation information, RSU-LCS coordinate system relative to M1- Rotation transformation information of the CS coordinate system.
  • the translation transformation information of the RSU-LCS coordinate system in M1-CS can be expressed as: the coordinate position of the origin of the RSU-LCS coordinate system in the M1-CS coordinate system (p RSU ) M1-CS , or the RSU-LCS coordinate system The translation vector to the M1-CS coordinate system.
  • the translation transformation information of the origin of the LCS coordinate system relative to the M1-CS coordinate system It is a fixed value. Therefore, the fixed value can be referred to as the initial translation transformation information of the origin of the LCS coordinate system relative to the M1-CS coordinate system, and the initial translation transformation information is stored in the server or in advance as one of the initial information of the measuring device Among the measuring equipment, other equipment may be obtained by sending the initial position query request of the measuring equipment on the first high-precision map to the server or the measuring equipment.
  • the LCS coordinate system is under M1-CS
  • the translation transformation information of the measurement device changes with the movement of the measurement device. Therefore, the measurement device needs to report the LCS coordinate system when the measurement device obtains the measurement value of the measurement target.
  • the measurement device determines the position of the measurement target in the first coordinate system
  • the translation transformation information of the LCS relative to the M1-CS coordinate system can be used as one of the measurement values of the measurement target, and it can be sent together with the measurement information reported by the RSU, or it can be sent separately, which is not limited here.
  • the rotation transformation information of the LCS coordinate system relative to the M1-CS coordinate system may include at least one of the following: the Euler angle ( ⁇ , ⁇ , ⁇ ) of the LCS coordinate system relative to the M1-CS coordinate system, or the LCS coordinate system to M1- The rotation quaternion of the CS coordinate system; or the rotation vector from the LCS coordinate system to the M1-CS coordinate system, or the rotation matrix from the LCS coordinate system to the M1-CS coordinate system
  • Another way of expression can be the Euler angle ( ⁇ , ⁇ , ⁇ ) of the M1-CS coordinate system relative to the LCS coordinate system, or the rotation vector from the M1-CS coordinate system to the LCS coordinate system, or the M1-CS coordinate system to Rotation quaternion of LCS coordinate system; or rotation matrix from M1-CS coordinate system to LCS coordinate system
  • Euler angle a set of 3 independent angle parameters ( ⁇ , ⁇ , ⁇ ) used to determine the position of a fixed-point rotating rigid body, consisting of nutation angle, precession angle and rotation angle.
  • Rotation matrix from the Euler angle of the LCS coordinate system relative to the M1-CS coordinate system, the rotation matrix from the LCS coordinate system to the coordinate system M1-CS coordinate system, or the rotation from the M1-CS coordinate system to the coordinate system LCS coordinate system can be obtained matrix.
  • the rotation matrix can be represented by a rotation quaternion.
  • the rotation matrix can be represented by a rotation vector.
  • the rotation vector can be expressed as consisting of the rotation axis n (n is a vector) and the rotation angle ⁇ , that is, the rotation vector is ⁇ n; the rotation vector and the rotation matrix The relationship is as follows:
  • n T represents the transposition of n.
  • n [n1,n2,n3] T ,
  • n is the eigenvector corresponding to the largest eigenvalue of R.
  • the rotation matrix can be calculated
  • the rotation transformation information of the LCS coordinate system under M1-CS is a fixed value, and this fixed value can be used as the initial rotation information in the initial information of the measuring device
  • the following can be used to establish the coordinate transformation information of the LCS coordinate system relative to the M1-CS coordinate system, and the measuring device is in M1
  • the posture information in the coordinate system of CS is called the initial rotation information of the measuring device in the coordinate system of M1-CS.
  • the initial rotation information of the measuring device in the M1-CS coordinate system can be pre-stored in the map server or the measuring device as one of the initial information of the measuring device.
  • the measuring device In a scenario where the attitude of the measuring device is not fixed, the rotation transformation information of the LCS coordinate system under M1-CS changes with the position of the measuring device to measure the target. Therefore, the measuring device is required to obtain the measurement When the measured value of the target, it is also necessary to report the rotation transformation information of the measuring device when the measuring device determines the position of the measuring target in the first coordinate system. For example, when determining the position of the measuring target in the first coordinate system, the measuring device The rotation information or the rotation difference information of the measuring device.
  • the rotation information of the measuring device may be the rotation transformation information of the LCS coordinate system in M1-CS when the position of the measurement target in the first coordinate system is determined.
  • the rotation difference information may be the rotation information of the LCS coordinate system relative to the corresponding LCS coordinate system when the measuring device is in the initial position when determining the position of the measuring target in the first coordinate system, and further, the coordinates of the measuring device in the M1-CS
  • the initial rotation information in the system and the rotation difference information of the measuring device determine the rotation information of the measuring device in the M1-CS coordinate system. For example, when the LCS coordinate system is at the initial position, the Euler angle corresponding to the initial rotation information is [0,0,90].
  • the measuring device determines the position of the measurement target in the first coordinate system
  • the horizontal direction is rotated counterclockwise 30 degrees
  • the Euler angle of the measurement device relative to the initial position the rotation angle increases by 30 degrees, that is, the Euler angle corresponding to the rotation difference information is [0,0,30]
  • the rotation information of the measurement device can be based on the initial rotation
  • the information and the rotation difference information are determined, that is, the Euler angle corresponding to the rotation information of the measuring device is [0,0,120].
  • the rotation difference information of the measuring device may be the rotation difference information of the measuring device relative to the last reported attitude information.
  • the last rotation information of the measuring device in the M1-CS coordinate system can be determined by the rotation difference information reported by the measuring device last time; according to the last rotation information of the measuring device in the M1-CS coordinate system, the current measurement device The reported rotation difference information determines the rotation information of the origin of the LCS coordinate system in the M1-CS coordinate system. For example, when the LCS coordinate system reported position information last time, the Euler angle corresponding to the rotation information was [0,0,120]. When the measuring device determined the position of the measurement target in the first coordinate system, the horizontal direction was rotated counterclockwise. 30 degrees.
  • the Euler angle of the measuring device increases by 30 degrees, that is, the Euler angle corresponding to the rotation difference information is [0,0,30], and the rotation information of the measuring device can be based on the previous
  • the reported rotation information and rotation difference information are determined, that is, the Euler angle corresponding to the rotation information of the measuring device is [0,0,150].
  • the position information of the measurement target measured in the LCS coordinate system can be converted to the position information of the measurement target in the M1-CS coordinate system.
  • Step S302 The first device obtains the position of the measurement target in the first coordinate system.
  • the position of the measurement target in the first coordinate system is measured by the measurement device, that is, the position information (q target ) LCS of the measurement target relative to the measurement device is obtained.
  • Step S303 The first device determines the position of the measurement target in the second coordinate system according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system.
  • the position information (q target ) LCS of the measurement target measured by the measuring device in the LCS coordinate system can be converted into the position information (p target ) M1-CS of the measurement target under M1-CS according to the coordinate transformation.
  • the coordinate conversion can be performed according to the following method:
  • the rotation matrix is determined according to the initial rotation matrix of the measuring device in the first high-precision map and the rotation difference information of the measuring device when determining the position of the measuring target in the first coordinate system, Alternatively, the rotation matrix is determined according to the rotation information of the measuring device in the first high-precision map.
  • the first vehicle V1 performs vehicle positioning based on the high-precision map. For example, based on the positioning layer information provided by the first high-precision map in the first high-precision map coordinate system (M1-CS) and the surrounding environment information collected by the first vehicle V1, visual positioning is performed, and it is estimated that the high-precision The positioning position p ego-car of the first vehicle V1 in the map coordinate system (M1-CS).
  • the ground object is in the first high
  • the position of road A in the first high-precision map in the first high-precision map is 0.5m to 1m to the right relative to the real position of road A
  • the RSU in the first high-precision map is in the first high-precision map.
  • the position in the high-precision map is offset from the true position of the RSU by 0.5m to 1m to the right.
  • the first vehicle positioning precision based on the first map localization position p ego-car V1 will produce at least an absolute measurement error ⁇ 0 offset.
  • the position q target of the second vehicle V2 relative to the RSU detected by the RSU based on its own coordinate system will also have an offset ⁇ '.
  • the relative position error between the positioning position p ego-car of the first vehicle V1 and the position q target of the second vehicle V2 relative to the RSU will at least include: ⁇ 0 and ⁇ ', and further, the first The relative position error between the positioning position p ego-car of the vehicle V1 and the position p target of the second vehicle V2 at least includes: 2 ⁇ 0 + ⁇ ', therefore, the relative position of the first vehicle V1 and the second vehicle V2 is increased
  • the estimated error is not conducive to the safe and smooth autonomous driving experience of the first vehicle.
  • the current vehicle needs to use information such as the position of each object in the environment, for example, to determine the relative position between the first vehicle and the second vehicle, and obtain the result through coordinate conversion
  • the position information (p target ) of the measurement target under the M1-CS M1-CS is compatible with the first high-precision map M1-CS coordinate system, which can effectively reduce the estimation error of the relative position between the vehicle-mounted device and the measurement target.
  • the first device may be the own vehicle 301 or a component of the own vehicle 301 in FIG. 2; the first device may also be the measurement device 303 in FIG. 2, for example, a roadside unit RSU, other vehicles Or components in other vehicles; the first device may also be the map server 304 in FIG. 2.
  • the first device obtains the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system, it can change the first coordinate system to the information of the first coordinate system relative to the second coordinate system.
  • the position of the measurement target in the second coordinate system is converted to the position of the measurement target in the second coordinate system.
  • the above method can determine the position of the measurement target and the position of the vehicle in the second coordinate system, so that the vehicle can obtain the relative position of the measurement target relative to its own vehicle. Due to the coordinate system used by the measurement device used by the measurement target and the coordinate system of the map used by the vehicle, the relative position error of the measurement target relative to the own vehicle is relatively large, which affects the safety of automatic driving.
  • the process of the positioning method is provided, and the execution subject of the process can be a surveying device, a vehicle-mounted device, or a map server.
  • the map server may be the V2X server in the foregoing embodiment, or may be another server storing high-precision maps, or may be a server for navigation planning, which is not limited here.
  • the measurement equipment in the method includes a sensing device, and the measurement equipment is a device that measures the location information of the target.
  • the measurement equipment may be the RSU 103, the first vehicle 101, or the second vehicle 102 in FIG. 1A.
  • the in-vehicle device 302 may be a device that requests location information of a measurement target, and may be the first vehicle 101 or the second vehicle 102 in FIG.
  • the measurement target may be an object to be recognized that the vehicle corresponding to the vehicle-mounted device needs to acquire, where the object to be recognized may be an object within a preset range, a pedestrian, etc., such as the first vehicle 101 or the second vehicle in FIG. 1A. 102.
  • the map server may save the location information of the measuring device in the high-precision map coordinate system, where the location information may include: initial information, historical information, and so on.
  • the initial information includes: the initial translation transformation information of the measuring device in the high-precision map coordinate system, and the initial rotation information of the measuring device in the high-precision map coordinate system.
  • the high-precision map coordinate system includes at least the first high-precision map coordinate system.
  • the map server may save the initial information of the measuring device in the first high-precision map coordinate system (M1-CS), where the initial information includes: the initial translation transformation information of the measuring device in the M1-CS coordinate system, and the measurement The initial rotation information of the device in the M1-CS coordinate system.
  • M1-CS first high-precision map coordinate system
  • the map server can also save the identification of the measuring device in the M1-CS, such as RSU-M1-ID.
  • the map server may also save the initial information of the measuring device in the second high-precision map coordinate system (M2-CS), where the initial information includes: the initial translation transformation information of the measuring device in the M2-CS coordinate system, and the measuring device Initial rotation information in the M2-CS coordinate system.
  • the map server can also save the identification of the measuring device in the M2-CS, such as RSU-M2-ID.
  • the process includes:
  • Step 401 The map server obtains the information of the first coordinate system relative to the second coordinate system.
  • the map server may store information about the first coordinate system relative to the second coordinate system stored in the map server; that is, the position information of the measuring device in the high-precision map coordinate system, where the position information may include: position information, initial Information, historical information, etc. Furthermore, the map server can read the location information of the measuring device in the high-precision map coordinate system from the memory.
  • the map server may receive the position change information of the measuring device periodically reported by the measuring device.
  • the measuring device determines the position of the measuring target in the first coordinate system in the first coordinate system
  • the measuring device is in the first high-precision map
  • the position change information of includes at least one of the following: translation transformation information of the measuring device on the first high-precision map, rotation information of the measuring device on the first high-precision map, or rotation difference information of the measuring device on the first high-precision map; It is explained that the measurement equipment with a fixed position may not report translation transformation information (position change), and the measurement equipment with a fixed posture may not report rotation information or rotation difference information (posture change). At this time, the rotation information of the measuring equipment is the measurement The initial rotation information of the device.
  • the position change information of the measuring device can be determined according to the positioning information obtained by the measuring device in the first high-precision map, or can be determined according to the sensing device of the measuring device, which is not limited here.
  • the map server can determine the location information of the measuring device based on the initial information or historical information.
  • the initial information includes: initial translation transformation information of the measuring device in the high-precision map coordinate system, and initial rotation information of the measuring device in the high-precision map coordinate system.
  • the historical information may be determined according to the position change information of the measuring device when determining the position of the measurement target in the first coordinate system, and the specific determination method may refer to the foregoing embodiment.
  • the map server stores initial information of the first coordinate system relative to the second coordinate system; the map server receives the identification of the measuring device and the first position change information of the measuring device; wherein the first position of the measuring device A position change information is used to indicate the difference between the position information of the measuring device and the initial information when the measuring device determines the position of the measuring target in the first coordinate system; the identification of the measuring device is used for the
  • the map server determines the initial information of the first coordinate system relative to the second coordinate system; the map server determines the first coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system. Information about the coordinate system relative to the second coordinate system.
  • the high-precision map coordinate system includes at least the first high-precision map coordinate system.
  • the map server saves the initial information of the measurement device in the first high-precision map coordinate system (M1-CS) (the initial information of the first coordinate system relative to the second coordinate system), where the initial information includes: the measurement device is in M1 -The initial translation transformation information in the CS coordinate system, and the initial rotation information of the measuring device in the M1-CS coordinate system.
  • the server may also save the initial information of the measuring device in the second high-precision map coordinate system (M2-CS), where the initial information includes: the initial translation transformation information of the measuring device in the M2-CS coordinate system, and the Initial rotation information in the M2-CS coordinate system.
  • the server may also save the identification of the measuring device.
  • the server may also save the identification of the measuring device in the M1-CS, such as RSU-M1-ID.
  • the server may also store the identification of the measuring device in the M2-CS, such as RSU-M2-ID, or the unique identification (L-ID) of the measuring device.
  • the map server may send a first location change information query request of the measurement device to the measurement device; the first location change information query request of the measurement device is used to query the measurement device in determining whether the measurement target is in the first coordinate system Is the measurement position of the measurement device relative to the initial position; the first position change information query request of the measurement device includes the identification of the measurement device and/or the identification of the second coordinate system.
  • the measuring device sends the first position change information of the measuring device only when the map server requests it, which can prevent the measuring device from sending the first position change information of the measuring device to unrelated devices and protect the measuring device and the map.
  • the privacy of the coordinate system reduces signaling overhead.
  • the map server stores historical information of the first coordinate system relative to the second coordinate system; the map server receives the identification of the measurement device and the second position change information of the measurement device; wherein the first coordinate system of the measurement device 2.
  • the position change information is used to indicate the difference between the position information of the measurement device and the position information of the measurement device when the measurement device determines the position of the measurement target in the first coordinate system relative to the position of the measurement history target;
  • the identification of the measuring device is used by the map server to determine the historical information of the first coordinate system relative to the second coordinate system; the map server according to the second position change information of the measuring device and the first coordinate system relative to the second
  • the historical information of the coordinate system determines the information of the first coordinate system relative to the second coordinate system.
  • the map server saves the historical information of the measurement equipment in the first high-precision map coordinate system (M1-CS), where the historical information includes: the historical translation transformation information of the measurement equipment in the M1-CS coordinate system, and the measurement equipment Historical rotation information in the M1-CS coordinate system.
  • the historical information can be the location information determined by the measurement device when it measured the last measurement target, or it can be the location information of the measurement history target corresponding to the last measurement target reported by the measurement device to the map server, which can be updated according to the map server's update needs. To determine historical information, it is not limited here.
  • the server may also store the historical information of the measurement equipment in the second high-precision map coordinate system (M2-CS), where the historical information includes: historical translation transformation information of the measurement equipment in the M2-CS coordinate system, and the measurement equipment in the M2-CS coordinate system. Historical rotation information in the M2-CS coordinate system.
  • M2-CS second high-precision map coordinate system
  • the map server may send a second location change information query request of the measurement device to the measurement device; the second location change information query request of the measurement device is used to query whether the measurement device determines that the measurement target is in the first coordinate system. Is the measurement position of the measurement device relative to the historical position; the second position change information query request of the measurement device includes the identification of the measurement device and/or the identification of the second coordinate system.
  • the measuring device sends the second position change information of the measuring device only after the request of the map server, which can prevent the measuring device from sending the second position change information of the measuring device to unrelated equipment, thus protecting the measuring device and the map.
  • the privacy of the coordinate system reduces signaling overhead.
  • Step 402 The measurement device sends the location information of the measurement target in the first coordinate system to the map server, and further, the map server receives the location information of the measurement target in the first coordinate system sent by the measurement device.
  • the measurement device actively reports the position information of the measurement target of the measurement device in the first coordinate system to the server, and the position information of the measurement target in the first coordinate system includes at least one of the following: the measurement target is in the first LCS Position information in the coordinate system; the identification of the measuring device.
  • the position information of the measurement target in the first coordinate system LCS may include at least one of the following:
  • the coordinate information of the center of the measurement target in the LCS coordinate system, the coordinate information of the origin of the TCS coordinate system established with the measurement target as the position point as the origin in the LCS, the rotation information of the measurement target TCS coordinate system under the LCS, and the measurement target The vertex coordinates of the outer line (circumscribed rectangle or polygon) in the LCS coordinate system, etc.
  • the vehicle-mounted device may also send a position query request of the object to be identified in the second coordinate system to the server.
  • the server can determine the measurement device corresponding to the object to be identified according to the location query request of the object to be identified in the second coordinate system, and then send the location query request of the object to be identified to the measurement device, and the measurement device can query according to the location of the object to be identified Request, determine the measurement target, and measure the position of the measurement target.
  • the request for querying the position of the object to be identified on the first high-precision map may include: the identification of the measuring device, and the identification of the second coordinate system (or, the high-precision map).
  • the identification of the measurement device is a unique identification
  • the identification of the high-precision map adopted by the vehicle-mounted device needs to be carried so that the server can determine the second coordinate system of the high-precision map to be converted by the measurement target based on the identification of the high-precision map.
  • the identification of the measuring equipment is the identification of the measuring equipment on the high-precision map
  • the identification of the high-precision map used by the vehicle-mounted device may not be carried, so that the server can determine the second measurement target to be converted based on the identification of the measuring equipment on the high-precision map Coordinate System.
  • step 402 it may also include the map server sending a location query request of the measurement target in the first coordinate system to the measurement device.
  • the map server determines the measurement device used to measure the location of the target according to the identification of the measurement device in the query request for the location of the measurement target in the first coordinate system, and then sends the measurement device the location of the measurement target in the first coordinate system.
  • Location query request Furthermore, the measurement device returns the location information of the measurement target in the first coordinate system (LCS) corresponding to the measurement device to the map server according to the location query request of the measurement target in the first coordinate system.
  • LCS location information of the measurement target in the first coordinate system
  • Step 403 The map server determines the position of the measurement target in the second coordinate system according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system.
  • the map server based on the location information of the measurement target in the LCS coordinate system, and the coordinate transformation information from the LCS coordinate system to the M1-CS coordinate system when the measuring device determines the location of the measurement target in the first coordinate system , To determine the location information of the measurement target in the M1-CS coordinate system.
  • the map server determines the LCS when the measuring device determines the position of the measuring target in the first coordinate system according to the first position change information of the measuring device and the initial information of the measuring device on the first high-precision map. Coordinate transformation information from the coordinate system to the M1-CS coordinate system.
  • the map server determines that the LCS coordinate system is set to M1-CS when the measurement device determines the position of the measurement target in the first coordinate system according to the second position change information of the measurement device and the historical information of the measurement device on the first high-precision map. Coordinate transformation information of the coordinate system.
  • the measuring device determines the position of the measurement target in the first coordinate system, it is determined that the measurement target is in the M1- Position information of the CS coordinate system.
  • Step 404 The map server sends the position information of the measurement target in the second coordinate system M1-CS coordinate system to the vehicle-mounted device.
  • the vehicle-mounted device receives the location information of the measurement target in the second coordinate system M1-CS coordinate system sent by the map server. Further, the vehicle-mounted device can use the location information of the measurement target in the M1-CS coordinate system and the location information of the vehicle-mounted device in the M1-CS coordinate system. The position information of the coordinate system determines the relative position information of the measurement target relative to the vehicle-mounted device.
  • the position of the measurement target in the first coordinate system (RSU-LCS) is converted to the position of the measurement target in the second coordinate system (M1-CS) through the map server, so that the vehicle-mounted device uses the second coordinate system (M1-CS).
  • the position of the measurement target is used to determine the position estimation of the measurement target relative to the vehicle, and the better effect of high estimation accuracy, small deviation, and close consistency with the real situation can be obtained.
  • the process includes:
  • Step 501 The measuring device obtains the information of the first coordinate system relative to the second coordinate system.
  • the map server saves the information of the first coordinate system relative to the second coordinate system
  • the measurement device receives from the map server that the measurement device determines the position of the measurement target in the first coordinate system relative to the first coordinate system Information in the second coordinate system.
  • the measuring device may also send an information query request of the first coordinate system relative to the second coordinate system to the map server; the information query request of the first coordinate system relative to the second coordinate system is used to query the map server.
  • the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the measuring device may also send an information query request of the first coordinate system relative to the second coordinate system to the map server; the information query request of the first coordinate system relative to the second coordinate system is used to query the map server.
  • the measuring device determines the position of the measuring target in the first coordinate system, the information of the first coordinate system relative to the second coordinate system; the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the map server only sends the information of the first coordinate system relative to the second coordinate system by the first device request, which can prevent the map server from sending the information of the first coordinate system relative to the second coordinate system to unrelated This equipment protects the privacy of the measurement equipment and reduces signaling overhead.
  • Example b3.1 if the map server stores the initial information of the measuring equipment, the measuring equipment can obtain the first position change information of the measuring equipment through the sensing device (for example, the measuring equipment is relative to determine that the measuring target is in the first coordinate The first position change information relative to the initial position when the position is under the system); the measurement device can receive the initial information of the measurement device on the first high-precision map through the map server.
  • the sensing device for example, the measuring equipment is relative to determine that the measuring target is in the first coordinate The first position change information relative to the initial position when the position is under the system
  • the measurement device can receive the initial information of the measurement device on the first high-precision map through the map server.
  • the measuring device may determine the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system.
  • the measurement device may send an initial information query request of the first coordinate system relative to the second coordinate system to the map server; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the The position information of the measuring device in the second coordinate system at the initial position (for example, the position information of the measuring device in the first high-precision map at the initial position); the initial information query request of the first coordinate system relative to the second coordinate system includes The identification of the measuring device, and/or the identification of the second coordinate system.
  • the measuring device is based on the position information of the measuring device on the first high-precision map at the initial position sent by the map server, and when the measuring device determines the position of the measuring target in the first coordinate system, the first position of the measuring device relative to the initial position is
  • the position change information determines the coordinate transformation information of the first coordinate system (LCS) relative to the second coordinate system (the first high-precision map coordinate system) when the measuring device determines the position of the measurement target in the first coordinate system.
  • Example b4.1 if the map server stores the location change information of the measurement equipment reported according to the history of the measurement equipment and the initial information of the measurement equipment in the first high-precision map, the map server can determine the historical information of the measurement equipment, and then the measurement The device may receive the historical information of the measurement device on the first high-precision map sent by the map server and the historical information of the first coordinate system relative to the second coordinate system.
  • the map server receives the location information of the measurement device when the measurement device is measuring the historical target historically reported by the measurement device, and the map server may use the location information of the measurement device when the measurement device is measuring the historical target historically reported by the measurement device as the historical information of the measurement device.
  • the measuring device may also send a query request for historical information of the first coordinate system relative to the second coordinate system to the map server.
  • the measurement device may receive the historical information of the measurement device on the first high-precision map through the map server.
  • the measurement equipment can obtain the second position change information of the measurement equipment through the sensing device (for example, the second position change information of the measurement equipment relative to the position of the measurement history target when determining the position of the measurement target in the first coordinate system. ).
  • the measurement device can determine that the measurement device is determining the measurement target based on the historical information of the measurement device on the first high-precision map and the second position change information of the measurement device when the measurement device determines the location of the measurement target in the first coordinate system.
  • the coordinate transformation information of the measuring device on the first high-precision map When the position is in the first coordinate system, the coordinate transformation information of the measuring device on the first high-precision map.
  • Step 502 The measuring device obtains the position information of the measuring target in the first coordinate system.
  • Example A1 the measurement device obtains the position of the measurement target in the first coordinate system through a sensor measurement.
  • the specific determination method reference may be made to the foregoing embodiment, which will not be repeated here.
  • Step 503 The measurement device converts the position information of the measurement target relative to the measurement device into the position information of the measurement target on the first high-precision map according to the coordinate transformation information.
  • the measuring equipment RSU detects the target position in the first coordinate system RSU-LCS, and acquires the measuring equipment RSU position (pRSU) M1-CS in the second coordinate system M1-CS coordinate system and the first coordinate system RSU-LCS
  • the rotation information in the second coordinate system M1-CS completes the conversion of the position of the measurement target in the first coordinate system RSU-LCS to the position of the measurement target in the second coordinate system M1-CS.
  • Step 504 The measurement device sends the position of the measurement target in the second coordinate system to the vehicle-mounted device. Furthermore, the in-vehicle device receives the position of the measurement target in the second coordinate system sent by the measurement device.
  • the vehicle-mounted device may determine the relative position information of the measurement target relative to the vehicle-mounted device based on the location information of the measurement target in the M1-CS coordinate system and the location information of the vehicle-mounted device in the M1-CS coordinate system.
  • the measuring equipment completes the conversion of the target position in the first coordinate system RSU-LCS to the target position in the second coordinate system M1-CS, and sends it to the vehicle.
  • the vehicle uses the target position in the second coordinate system M1-CS to Determining the position estimation of the target relative to the vehicle can obtain the better effect of high estimation accuracy, small deviation, and close consistency with the real situation.
  • the vehicle-mounted device may send a position query request of the object to be identified in the second coordinate system to the measuring device.
  • the vehicle-mounted device may send a position query request of the object to be identified in the second coordinate system to the measuring device.
  • the in-vehicle device For the specific content of the query request for the location of the object to be identified in the second coordinate system, reference may be made to the in-vehicle device in the embodiment of FIG.
  • the vehicle-mounted device may send a location query request of the object to be identified in the second coordinate system to the map server.
  • the map server may forward the request for querying the position of the measurement target in the second coordinate system to the measurement device.
  • the measurement device may perform step 501 according to the query request for the position of the measurement target in the second coordinate system.
  • Step 601 The vehicle-mounted device acquires the information of the first coordinate system relative to the second coordinate system.
  • the map server stores the information of the first coordinate system relative to the second coordinate system; the map server sends to the vehicle-mounted terminal that the measurement device first determines the position of the measurement target in the first coordinate system.
  • the information of the coordinate system relative to the second coordinate system and further, the in-vehicle device receives from the map server the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system .
  • the vehicle-mounted device sends an information query request of the first coordinate system relative to the second coordinate system to the map server.
  • the map server sends an information query request of the first coordinate system relative to the second coordinate system to the measurement device according to the identification of the measurement device in the query request, so that the measurement device returns to the vehicle-mounted device that the measurement target is in the first coordinate system according to the query request.
  • the information query request of the first coordinate system relative to the second coordinate system is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the information request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • Example c3.1 the initial information of the first coordinate system relative to the second coordinate system is stored in the map server; the measurement device sends the measurement device to the vehicle-mounted terminal when the measurement device determines the position of the measurement target in the first coordinate system The first position change information of the device, and further, the vehicle-mounted device receives the first position change information of the measurement device sent by the measurement device; wherein, the first position change information of the measurement device is used to indicate the measurement When the device determines the position of the measurement target in the first coordinate system, the difference between the position information of the measurement device and the initial information; the vehicle-mounted device receives the first coordinate system relative to the second coordinate system from the map server The initial information; the vehicle-mounted device determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring equipment and the initial information of the first coordinate system relative to the second coordinate system.
  • the map server stores the historical information of the first coordinate system relative to the second coordinate system; the second position change information of the measuring device sent by the measuring device to the vehicle-mounted device; the vehicle-mounted device receives The second position change information of the measurement device sent by the measurement device; wherein the second position change information of the measurement device is used to indicate that the measurement device determines the position of the measurement target in the first coordinate system.
  • the difference between the position information of the measuring device and the historical information; the vehicle-mounted device receives the historical information of the first coordinate system relative to the second coordinate system from the map server; the vehicle-mounted device changes according to the second position of the measuring device
  • the information and the historical information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device sends an initial information query request of the first coordinate system relative to the second coordinate system to the map server; or, the vehicle-mounted device sends the first coordinate system relative to the measurement device Initial information query request in the second coordinate system; or, the vehicle-mounted device sends the first position change information query request of the measurement device to the measurement device; or, the vehicle-mounted device sends the first position change information query request of the measurement device to the map server.
  • the first position change information query request of the measuring equipment; the vehicle-mounted device sends the historical information query request of the first coordinate system relative to the second coordinate system to the map server; or, the vehicle-mounted device sends the measurement equipment to the map server.
  • the vehicle-mounted device sends the second position change information query request of the measurement device to the measurement device; or, the vehicle-mounted device sends the query request to the measurement device.
  • the map server sends the second location change information query request of the measuring device.
  • the specific manner of sending the query request may be determined according to whether the position information of the measurement target in the first coordinate system carries the position change information of the measurement device. For example, if it is determined that the location information of the measurement target in the first coordinate system includes the location change information of the measurement device, and the location change information of the measurement device includes: the translation transformation information of the measurement device on the first high-precision map, and the measurement device is in the According to the rotation transformation information of the first high-precision map, the vehicle-mounted device can directly determine the coordinate transformation information of the measuring device relative to the first high-precision map according to the position change information of the measuring device. Therefore, it is not necessary to send a query request to the map server.
  • the vehicle-mounted device can also receive the initial information of the measuring device; further, the vehicle-mounted device can also send the initial information query request of the measuring device to the map server, and further, according to the measuring device sent by the map server Based on the initial information of the first high-precision map and the first position change information of the measuring device, the coordinate transformation information of the measuring device relative to the first high-precision map is determined.
  • the vehicle-mounted device can also receive the historical information of the measuring device; further, the vehicle-mounted device can also send a historical information query request of the measuring device to the map server, and further, according to the measuring device's current status returned by the map server.
  • the historical information of the first high-precision map and the location change information of the measuring device determine the coordinate transformation information of the measuring device relative to the first high-precision map.
  • the vehicle-mounted device may send the location information query request of the measurement device to the map server, and further, according to the measurement device returned by the map server In the position information of the first high-precision map, the coordinate transformation information of the measuring device relative to the first high-precision map is determined.
  • the vehicle-mounted device may send a query request for location change information of the measurement device to the measurement device, which is not limited here.
  • the vehicle-mounted device sends a location query request of the measurement device on the first high-precision map to the map server according to the acquired identification of the measurement device.
  • the location query request of the first high-precision map by the measuring device includes: the identification of the measuring device, and/or the identification of the first high-precision map.
  • the identification of the high-precision map used by the vehicle-mounted device (for example, the identification M1-CS of the first high-precision map)
  • the identifier of the high-precision map corresponding to the identifier of the measuring device carried in the position information of the measuring target measured by the measuring device in the first coordinate system is the same identifier.
  • the identification of the measuring equipment is a unique identification, it is necessary to carry the identification of the high-precision map adopted by the vehicle-mounted device so that the map server can determine the location of the measuring equipment in the corresponding first high-precision map coordinate system according to the identification of the first high-precision map location information. If the identification of the measuring device is the identification of the measuring device on the high-precision map, the identification of the first high-precision map may not be carried, and the map server may determine that the measuring device is in the first high-precision map according to the identification of the measuring device Location information in the map coordinate system.
  • the vehicle-mounted device may send a location query request of the measurement target in the first coordinate system to the map server, where the location query request of the measurement target in the first coordinate system includes: The identification of the high-precision map M1-CS, the identification of the measurement target.
  • the map server can determine a device that can measure the location of the target according to the identification M1-CS of the first high-precision map and the identification of the measurement target, and the device stores corresponding location information in the first high-precision map, and Send a measurement location query request for the location of the measurement target to the device.
  • the vehicle-mounted device already knows that the measuring device can obtain the position of the object to be identified in the first coordinate system, and the first high-precision map stores the position information of the measuring device, then the vehicle-mounted device can send the measuring device to the measuring device.
  • the request for querying the position of the object to be identified in the second coordinate system may include: the identification of the measuring equipment, and/or the identification of the high-precision map adopted by the vehicle-mounted device.
  • Step 602 The vehicle-mounted device acquires position information of the measurement target in the first coordinate system.
  • the measurement device actively sends the location information of the measurement target of the measurement device in the first coordinate system to the vehicle-mounted device, including at least one of the following: location information of the measurement target under the LCS; and identification of the measurement device.
  • the map server sends the location of the measurement target in the first coordinate system to the vehicle-mounted device.
  • the vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the map server through the receiver.
  • the position of the measurement target in the first coordinate system can be flexibly obtained.
  • the diversion of resources is conducive to the effective use of resources.
  • the vehicle-mounted device may send a location query request in the first coordinate system of the object to be identified to the map server;
  • the object to be identified is an object within a preset range of the measuring equipment;
  • a location query request in a coordinate system is used to query the location information of the object to be identified in the first coordinate system;
  • the location query request of the object to be identified in the first coordinate system includes the identification of the measuring device;
  • the object to be identified The object is an object within a preset range of the measurement device;
  • the map server receives a target location query request from the vehicle-mounted device;
  • the map server determines the location information of the measurement device in the first coordinate system
  • the object to be identified includes at least the measurement target.
  • the measurement device sends the position of the measurement target in the first coordinate system to the vehicle-mounted device.
  • the vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the measurement device through a receiver.
  • the vehicle-mounted device may send a position query request in the first coordinate system of the object to be identified to the measuring device;
  • the object to be identified is an object within a preset range of the measuring device;
  • a location query request in a coordinate system is used to query the location information of the object to be identified in the first coordinate system;
  • the location query request of the object to be identified in the first coordinate system includes the identification of the measuring device;
  • the object to be identified The object is an object within a preset range of the measuring device; the measuring device receives from the vehicle-mounted device a position query request of the object to be identified in the first coordinate system; further, according to the measuring device in the first coordinate system It is determined that the object to be identified includes at least the measurement target.
  • Step 603 The vehicle-mounted device determines the position information of the measurement target under the first high-precision map according to the coordinate transformation information and the position information of the measurement target relative to the measurement equipment.
  • the vehicle-mounted device determines the relative position information of the measurement target relative to the vehicle-mounted device according to the target position of the measurement target in the M1-CS coordinate system and the location information of the vehicle-mounted device in the M1-CS coordinate system. Specifically, the vehicle-mounted device receives the location of the measurement device in the second coordinate system (pRSU) M1-CS sent by the map server, the location of the measurement target in the first coordinate system RSU-LCS sent by the measurement device, and the map server or The rotation information of the first coordinate system RSU-LCS in the second coordinate system M1-CS sent by the measuring device is used to determine the relative position of the measurement target relative to the vehicle corresponding to the vehicle-mounted device.
  • the vehicle-mounted device receives the location of the measurement device in the second coordinate system (pRSU) M1-CS sent by the map server, the location of the measurement target in the first coordinate system RSU-LCS sent by the measurement device, and the map server or The rotation information of the first coordinate system RSU-LCS in the second coordinate system M1
  • the vehicle is updated within the coverage of the measurement equipment, and the position of the measurement target in the first coordinate system RSU-LCS is converted to the position of the measurement target in the second coordinate system M1-CS, using the second coordinate system M1-CS To determine the position estimation of the measurement and control target relative to the vehicle based on the position of the measurement target, it can obtain the effect of high estimation accuracy, small deviation, and close consistency with the real situation.
  • the process of the positioning method is provided, and the execution subject of the process may include measurement equipment, vehicle-mounted devices, and map servers.
  • the map server may be the V2X server in the foregoing embodiment, or may be another server storing high-precision maps, or may be a server for navigation planning, which is not limited here.
  • the measuring device in the method includes a sensing device, the measuring device is a device for measuring the location information of the target, and the measuring device may be the RSU 103 or the first vehicle 101 or the second vehicle 102 in FIG. 1A.
  • the in-vehicle device 302 may be a device that requests location information of a measurement target, and may be the first vehicle 101 or the second vehicle 102 in FIG. 1A described above.
  • the measurement target may be the object to be identified that the vehicle corresponding to the vehicle-mounted device needs to acquire, where the object to be identified may be an object, pedestrian, etc., within a preset range of the vehicle for the vehicle-mounted device, such as the first in FIG. 1A.
  • the measurement device stores the location information of the measurement device in the high-precision map coordinate system, where the location information may include: initial information, historical information, and so on.
  • the initial information includes: initial translation transformation information (initial position) of the measuring device in the high-precision map coordinate system, and initial rotation information (initial posture) of the measuring device in the high-precision map coordinate system.
  • the high-precision map coordinate system includes at least the first high-precision map coordinate system.
  • the measurement device stores the initial information of the measurement device in the first high-precision map coordinate system (M1-CS), where the initial information includes: the initial translation transformation information of the measurement device in the M1-CS coordinate system, and the measurement device Initial rotation information in the M1-CS coordinate system.
  • M1-CS first high-precision map coordinate system
  • the measuring device can also save the identification of the measuring device in the M1-CS, such as RSU-M1-ID.
  • the measuring device can also store the initial information of the measuring device in the second high-precision map coordinate system (M2-CS), where the initial information includes: the initial translation transformation information of the measuring device in the M2-CS coordinate system, and the measuring device Initial rotation information in the M2-CS coordinate system.
  • the measuring device can also save the identification of the measuring device in the M2-CS, such as RSU-M2-ID.
  • the process includes:
  • Step 701 the information of the first coordinate system relative to the second coordinate system sent by the measuring device to the map server, and further, the map server receives the information of the first coordinate system relative to the second coordinate system sent from the measuring device.
  • the measurement device stores information of the first coordinate system relative to the second coordinate system; further, the map server receives from the measurement device that the measurement device first determines the position of the measurement target in the first coordinate system. Information about the coordinate system relative to the second coordinate system.
  • the position information of the measurement target in the first coordinate system may not carry the position of the measurement device on the first high-precision map Information
  • the location information of the measurement target in the first coordinate system may include at least one of the following: location change information of the measurement device on the first high-precision map, identification of the measurement device, and identification of the second coordinate system.
  • the measurement device stores the initial information of the first coordinate system relative to the second coordinate system in the memory, that is, the initial information of the first high-precision map of the measurement device, and further, the measurement device may send the first first coordinate system to the map server in advance.
  • the measurement device can store the first position change information.
  • the measurement device determines the location of the measurement target, the difference between the location information of the measurement device and the initial information. And send the first position transformation information to the map server.
  • the measurement device determines to send the first position change information of the measurement device when determining the position of the measurement target in the first coordinate system to the map server, and the first position change information indicates that the measurement device is relative to the measurement device at the position of the measurement target
  • the initial position of the position changes.
  • the map server can determine the location information of the measurement device on the first high-precision map according to the initial information of the measurement device and the first position change information of the measurement device when determining the location of the measurement target in the first coordinate system, and then determine When the measuring device determines the position of the measuring target in the first coordinate system, coordinate transformation information between the measuring device and the first high-precision map.
  • the initial information of the measurement device may be sent by the measurement device to the map server, may be carried in the position information of the measurement target in the first coordinate system at the same time, or may be sent separately, which is not limited here.
  • the measurement device stores the historical information of the first coordinate system relative to the second coordinate system in the memory, that is, the historical information of the first high-precision map of the measurement device, and further, the measurement device may send the first coordinate system to the map server in advance.
  • the measurement device can determine the location of the measurement target, store the second location change information, that is, the second location change information.
  • the measurement device determines the location of the measurement target, the difference between the location information of the measurement device and the location information of the measurement history target value. And send the second location change information to the map server.
  • the measuring device determines to send to the map server the second position change information of the measuring device when determining the position of the measuring target in the first coordinate system, and the position change information indicates that the measuring device is reporting the position of the measuring target relative to the last time it was reported.
  • the map server can determine that the measurement device is in the first coordinate system based on the historical information of the measurement device determined last time and the second location change information of the measurement device when determining the location of the measurement target in the first coordinate system.
  • the position information of the high-precision map and further, the coordinate transformation information between the measuring device and the first high-precision map when the measuring device determines the position of the measurement target in the first coordinate system.
  • the vehicle-mounted device may also send a location query request of the object to be identified in the second coordinate system to the map server.
  • the map server can send a location query request of the measurement target to the measurement device according to the location query request of the object to be identified in the second coordinate system, and the measurement device can measure the location of the measurement target according to the location query request of the measurement target.
  • the request for querying the position of the object to be identified in the second coordinate system may include: the identification of the measuring device, or, further, the identification of the second coordinate system.
  • the identification of the measurement equipment is a unique identification
  • the identification of the high-precision map adopted by the vehicle-mounted device needs to be carried so that the map server can determine the high-precision map coordinate system to be converted for the measurement target based on the identification of the high-precision map.
  • the identification of the measurement equipment is the identification of the measurement equipment on the high-precision map
  • the identification of the high-precision map used by the vehicle-mounted device may not be carried, so that the map server can determine the height of the measurement target to be converted based on the identification of the measurement equipment on the high-precision map.
  • Accuracy map coordinate system is the identification of the measurement equipment on the high-precision map.
  • the map server may also actively send a request for querying the position of the measurement target in the first coordinate system to the measurement device. Specifically, the map server determines the measuring device used to measure the position of the target according to the identification of the measuring device in the position query request of the object to be identified in the second coordinate system, and then sends a measurement query of the measuring target under the measuring device to the measuring device. ask. Furthermore, the measurement device returns the location information of the LCS coordinate system corresponding to the measurement device of the measurement target to the map server according to the measurement query request of the measurement target under the measurement device.
  • the map server can send the measurement device's position change query request to the measurement device, and the measurement device determines that it does not need to carry the initial information of the measurement device .
  • the map server needs to obtain the initial information of the measurement device in the first high-precision map.
  • the map server can send the measurement device's location query request to the measurement device, and the measurement device determines that it needs to carry the initial information of the measurement device and the location of the measurement device. Location change information.
  • the map server may also send a position change query request of the measuring device to the measuring device for obtaining the position change of the measuring device when the measuring device determines the position of the measuring target in the first coordinate system.
  • Step 702 The measurement device sends the location information of the measurement target in the first coordinate system to the map server; further, the map server receives the location information of the measurement target in the first coordinate system sent by the measurement device.
  • the measurement device obtains the position of the measurement target in the first coordinate system through a sensor measurement. Furthermore, the measurement device actively reports the location information of the measurement target of the measurement device in the first coordinate system to the map server, and the map server receives the location of the measurement target in the first coordinate system from the measurement device through the receiver.
  • the location information of the measurement target in the first coordinate system includes at least one of the following: location information of the measurement target in the LCS coordinate system; and the identification of the measurement device.
  • the map server may also send a location query request of the measurement target in the first coordinate system to the measurement device; the location query request of the measurement target in the first coordinate system is used to query the measurement device and The relative positional relationship between the measurement targets.
  • the request for querying the position of the measurement target in the first coordinate system includes the identifier of the measurement device and/or the identifier of the second coordinate system.
  • Step 703 When the map server determines the position of the measurement target in the first coordinate system according to the measurement device, the first coordinate is the coordinate transformation information from the LCS coordinate system to the second coordinate system M1-CS coordinate system, and the measurement target is in the first coordinate system.
  • the position information of the coordinate system LCS coordinate system determines the position of the measurement target in the second coordinate system M1-CS coordinate system.
  • Step 704 The map server sends the position of the measurement target in the second coordinate system M1-CS coordinate system to the vehicle-mounted device. Furthermore, the vehicle-mounted device receives the position of the measurement target in the second coordinate system M1-CS coordinate system sent by the map server.
  • Example a The map server sends at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device to the vehicle-mounted device. Furthermore, the in-vehicle device receives at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measuring device sent by the map server.
  • the vehicle-mounted device may send a request for querying the location of the object to be recognized in the second coordinate system to the map server; the request for the location of the object to be recognized in the second coordinate system is used to query the location of the object to be recognized in the second coordinate system
  • the location information under; the object to be identified is an object within the preset range of the measurement device; the location query request of the object to be identified in the second coordinate system includes the identification of the measurement device, and/or the second coordinates Department of identification.
  • the map server receives a location query request of the object to be identified in the second coordinate system from the vehicle-mounted device; the map server determines that the object to be identified at least includes the location information of the measurement target in the second coordinate system The measurement target.
  • the map server returns the position of the measurement target in the second coordinate system to the in-vehicle device.
  • the map server obtains the position of the measurement target in the second coordinate system.
  • the vehicle-mounted device may determine the relative position information of the measurement target relative to the vehicle-mounted device based on the location information of the measurement target in the M1-CS coordinate system and the location information of the vehicle-mounted device in the M1-CS coordinate system.
  • the process includes:
  • Step 801 The measuring device obtains coordinate transformation information of the measuring device on the first high-precision map.
  • Example b1 the measurement device stores information about the first coordinate system relative to the second coordinate system; the measurement device reads from the memory the first coordinate system when the measurement device determines the position of the measurement target in the first coordinate system Information about the coordinate system relative to the second coordinate system.
  • Step 802 The measuring device acquires the position of the measuring target in the first coordinate system.
  • the measurement device records the location information of the measurement device on the first high-precision map when determining the location of the measurement target in the first coordinate system, then it can be directly based on the measurement device’s location on the first high-precision map.
  • the location information of the map determines the coordinate transformation information of the measuring device on the first high-precision map.
  • the position change information of the measuring device is used to indicate that the measuring device is determining that the measuring target is in the first coordinate system.
  • the measuring equipment changes relative to the position of the last measurement, the measuring equipment needs to determine that the measuring equipment is in the The location information of a high-precision map is used to determine the coordinate transformation information of the measuring device on the first high-precision map.
  • the measuring device determines the position of the measuring target in the first coordinate system, only the position change information of the measuring device is recorded, and the position change information of the measuring device is used to indicate that the measuring device is determining the measuring target
  • the measurement device needs to determine the measurement based on the initial information of the measurement device on the first high-precision map and the location change information of the measurement device.
  • the location information of the device on the first high-precision map is further determined to determine the coordinate transformation information of the measuring device on the first high-precision map.
  • Step 803 The measurement device converts the position information of the measurement target in the first coordinate system into the position information of the measurement target in the second coordinate system according to the coordinate transformation information.
  • Step 804 The measurement device sends the location information of the measurement target on the first high-precision map to the vehicle-mounted device. Furthermore, the vehicle-mounted device receives the position of the measurement target in the second coordinate system M1-CS coordinate system sent by the map server, so that the vehicle-mounted device can according to the location information of the measurement target in the M1-CS coordinate system and the vehicle-mounted device in the M1-CS coordinate system To determine the relative position information of the measurement target relative to the vehicle-mounted device.
  • Example b The measurement device sends at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device to the vehicle-mounted device. Furthermore, the in-vehicle device receives at least one of the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measuring device sent by the measuring device.
  • the measurement device sends the location of the measurement target in the second coordinate system to the vehicle-mounted device, so that the vehicle-mounted device directly uses the measurement device to determine the location of the measurement target in the second coordinate system, without the need for the vehicle-mounted device to further determine the measurement target in the second coordinate system
  • the location reduces the processing complexity of the vehicle-mounted device, reduces the response time of the vehicle-mounted device, and improves the safety of the automatic driving of the vehicle-mounted device.
  • the vehicle-mounted device sends a position query request of the object to be identified in the second coordinate system to the measuring device; the position request of the object to be identified in the second coordinate system is used to query the object to be identified in the second coordinate system
  • the location information of the object; the object to be identified is an object within the preset range of the measuring device; the location query request of the object to be identified in the second coordinate system includes the identification of the measuring device, and/or the second coordinate system Of the logo.
  • the measuring device receives a request for querying the position of the object to be identified in the second coordinate system from the vehicle-mounted device; the measuring device determines that the object to be identified at least includes the position information of the measuring target in the second coordinate system The measurement target. Furthermore, the measurement device returns the position of the measurement target in the second coordinate system to the in-vehicle device.
  • the vehicle-mounted device may send a location query request of the object to be identified in the second coordinate system to the map server.
  • the map server may forward the position query request of the object to be identified in the second coordinate system to the measuring device.
  • the measuring device may execute step 801 according to the position query request of the object to be identified in the second coordinate system.
  • the specific method for the measurement device to obtain the position of the measurement target in the second coordinate system reference may be made to the above-mentioned embodiment, which will not be repeated here.
  • Step 901 The vehicle-mounted device acquires coordinate transformation information of the measuring device in the second coordinate system.
  • the measurement device sends the information of the first coordinate system relative to the second coordinate system when the measurement device determines the position of the measurement target in the first coordinate system to the vehicle-mounted device. Furthermore, the in-vehicle device receives information from the first coordinate system relative to the second coordinate system when the measurement device acquires and determines the position of the measurement target in the first coordinate system.
  • the vehicle-mounted device sends an information query request of the first coordinate system relative to the second coordinate system to the measuring device.
  • the information query request of the first coordinate system relative to the second coordinate system is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the measuring device may also actively send the position change information of the measuring device on the first high-precision map when the measuring device determines the position of the measuring target in the first coordinate system to the vehicle-mounted device, so that According to the initial information of the measuring equipment on the first high-precision map, or the historical information of the measuring equipment on the first high-precision map, and the position change information, the vehicle-mounted device determines and measures the equipment when determining the position of the measuring target in the first coordinate system , The position information of the measuring device on the first high-precision map, and then the coordinate transformation information of the measuring device in the first high-precision map coordinate system is determined.
  • the measurement device sends to the vehicle-mounted device the initial information of the first coordinate system relative to the second coordinate system when the measurement device determines the position of the measurement target in the first coordinate system, and the first position change information . Furthermore, the in-vehicle device determines the information of the first coordinate system relative to the second coordinate system based on the first initial information and the first position change information.
  • the vehicle-mounted device may also send an initial information query request of the first coordinate system relative to the second coordinate system, and a first position change information query request to the measuring device.
  • an initial information query request of the first coordinate system relative to the second coordinate system may also send an initial information query request of the first coordinate system relative to the second coordinate system, and a first position change information query request to the measuring device.
  • the measurement device sends to the vehicle-mounted device the historical information of the first coordinate system relative to the second coordinate system when the measurement device determines the position of the measurement target in the first coordinate system, and the second position change information . Furthermore, the in-vehicle device determines the information of the first coordinate system relative to the second coordinate system based on the history information and the second position change information.
  • the specific initial information and first position change information of the first coordinate system relative to the second coordinate system, the historical information of the first coordinate system relative to the second coordinate system, and the determination of the second position change information can refer to the above-mentioned embodiments. I won't repeat them here.
  • the vehicle-mounted device may also send a historical information query request of the first coordinate system relative to the second coordinate system, and a second position change information query request to the measuring device.
  • a historical information query request of the first coordinate system relative to the second coordinate system may also send a historical information query request of the first coordinate system relative to the second coordinate system, and a second position change information query request to the measuring device.
  • Step 902 The vehicle-mounted device acquires the position information of the measurement target of the measuring device in the first coordinate system.
  • the measurement device actively sends the location information of the measurement target of the measurement device in the first coordinate system to the vehicle-mounted device, which may include at least one of the following: location information of the measurement target under the LCS; and identification of the measurement device.
  • the vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the measurement device through the receiver.
  • the position of the measurement target in the first coordinate system sent by the measuring device can be directly obtained, which is beneficial to reduce time delay and improve the position of the measurement target in the first coordinate system The speed of information acquisition.
  • the vehicle-mounted device sends a request for querying the position of the object to be recognized in the first coordinate system to the measuring device; the request for the position of the object to be recognized in the first coordinate system is used to query the position of the object to be recognized in the first coordinate system Position information in the coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the first coordinate system includes the identification of the measuring device.
  • the measurement equipment receives a position query request of the object to be identified in the first coordinate system from the vehicle-mounted device; the measurement equipment determines that the object to be identified is at least Including the measurement target.
  • Example B2.2 The vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the map server through the receiver. By receiving the position of the measurement target in the first coordinate system sent by the map server, the position of the measurement target in the first coordinate system can be flexibly obtained. The diversion of resources is conducive to the effective use of resources.
  • the vehicle-mounted device may send a location query request in the first coordinate system of the object to be identified to the map server;
  • the object to be identified is an object within a preset range of the measuring equipment;
  • a location query request in a coordinate system is used to query the location information of the object to be identified in the first coordinate system;
  • the location query request of the object to be identified in the first coordinate system includes the identification of the measuring device;
  • the object to be identified The object is an object within a preset range of the measurement device;
  • the map server receives a target location query request from the vehicle-mounted device;
  • the map server determines the location information of the measurement device in the first coordinate system
  • the object to be identified includes at least the measurement target.
  • the vehicle-mounted device can actively initiate a location query request of the object to be identified in the first coordinate system to the map server, so that the map server can determine the object to be identified and the position of the measurement target corresponding to the object to be identified in the first coordinate system , To prevent the map server from sending the location of the measurement target in the first coordinate system to irrelevant devices.
  • Step 903 The vehicle-mounted device determines the position information of the measurement target in the second coordinate system according to the coordinate transformation information and the position information of the measurement target relative to the measurement equipment.
  • the vehicle-mounted device determines the relative position information of the measurement target relative to the vehicle-mounted device according to the target position of the measurement target in the second coordinate system M1-CS coordinate system and the location information of the vehicle-mounted device in the second coordinate system M1-CS coordinate system.
  • the process of the positioning method provided may be executed by measuring equipment, vehicle-mounted devices, and map servers.
  • the map server may be the V2X server in the foregoing embodiment, or may be another server storing high-precision maps, or may be a server for navigation planning, which is not limited here.
  • the measuring device in the method includes a sensing device, the measuring device is a device for measuring the location information of the target, and the measuring device may be the RSU 103 or the first vehicle 101 or the second vehicle 102 in FIG. 1A.
  • the in-vehicle device 302 may be a device that requests location information of a measurement target, and may be the first vehicle 101 or the second vehicle 102 in FIG. 1A described above.
  • the measurement target may be the object to be identified that the vehicle corresponding to the vehicle-mounted device needs to acquire, where the object to be identified may be an object, pedestrian, etc., within a preset range of the vehicle for the vehicle-mounted device, such as the first in FIG. 1A.
  • the vehicle-mounted device stores the position information of the measuring equipment in the high-precision map coordinate system, where the position information may include: initial information, historical information, and so on.
  • the initial information includes: the initial translation transformation information of the measuring device in the high-precision map coordinate system, and the initial rotation information of the measuring device in the high-precision map coordinate system.
  • the high-precision map coordinate system includes at least the first high-precision map coordinate system.
  • the vehicle-mounted device saves the initial information of the measuring equipment in the first high-precision map coordinate system (M1-CS), where the initial information includes: the initial translation transformation information of the measuring equipment in the M1-CS coordinate system, and the measuring equipment Initial rotation information in the M1-CS coordinate system.
  • M1-CS first high-precision map coordinate system
  • the measuring device can also save the identification of the measuring device in the M1-CS, such as RSU-M1-ID.
  • the vehicle-mounted device may also store the initial information of the measuring equipment in the second high-precision map coordinate system (M2-CS), where the initial information includes: the initial translation transformation information of the measuring equipment in the M2-CS coordinate system, and the measuring equipment Initial rotation information in the M2-CS coordinate system.
  • the vehicle-mounted device can also store the identification of the measuring device in the M2-CS, such as RSU-M2-ID.
  • the process includes:
  • Step 1001 The map server obtains the information of the first coordinate system relative to the second coordinate system.
  • the map server may receive the information of the first coordinate system relative to the second coordinate system through a receiver.
  • Example a2.2 the information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device; the map server receives the measurement equipment from the vehicle-mounted device when determining that the measurement target is in the first coordinate system The position is the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device actively sends the information of the first coordinate system relative to the second coordinate system without the request of the first device, which saves signaling overhead.
  • the map server may also send an information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the information query request of the first coordinate system relative to the second coordinate system is used to query the vehicle.
  • the measuring device determines the position of the measuring target in the first coordinate system, the information of the first coordinate system relative to the second coordinate system; the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the vehicle-mounted device only sends the information of the first coordinate system relative to the second coordinate system by the first device request, which can prevent the vehicle-mounted device from sending the information of the first coordinate system relative to the second coordinate system to irrelevant This equipment protects the privacy of the measurement equipment and reduces signaling overhead.
  • Example a3.3 The vehicle-mounted device stores initial information of the first coordinate system relative to the second coordinate system; the map server receives the initial information of the first coordinate system relative to the second coordinate system from the vehicle-mounted device Information; the map server receives the identification of the measurement device and the first position change information of the measurement device from the measurement device; wherein the first position change information of the measurement device is used to indicate that the measurement device is determining that the measurement target is in the first
  • the position in the coordinate system is the difference between the position information of the measuring device and the initial information; the identifier of the measuring device is used by the map server to determine the initial information of the first coordinate system relative to the second coordinate system
  • the map server determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device can send the initial information of the first coordinate system relative to the second coordinate system to the map server as needed, and the measuring device can send the first position change information of the measuring device to the map server as needed, for example, the first
  • the initial information of the coordinate system relative to the second coordinate system may be sent to the map server in advance, and the first position change information of the measuring device may be sent together with the position of the measurement target in the first coordinate system to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the initial position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the first device is a map server, and the vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the map server receives the relative information of the first coordinate system from the vehicle-mounted device Historical information in the second coordinate system; the map server receives the identification of the measurement device and the second position change information of the measurement device from the measurement device; wherein the second position change information of the measurement device is used to indicate the measurement device When determining the position of the measuring target in the first coordinate system, the difference between the position information of the measuring device and the position information of the measuring historical target when determining the position of the measuring target; the identification of the measuring device is used for the map server Determine the historical information of the first coordinate system relative to the second coordinate system; the map server determines the first coordinate system according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system Information relative to the second coordinate system.
  • the vehicle-mounted device can send historical information of the first coordinate system relative to the second coordinate system to the map server as needed, and the measuring device can send the second position change information of the measuring device to the map server as needed, for example, the first
  • the historical information of the coordinate system relative to the second coordinate system may be sent to the map server in advance, and the second position change information of the measuring device may be sent together with the position of the measurement target in the first coordinate system to accommodate more Application scenarios to improve the flexibility of map server positioning.
  • the map server may send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position information of the measuring device in the second coordinate system when measuring the position of the historical target; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the map server sends a second location change information query request of the measurement device to the measurement device; the second location change information query request of the measurement device is used to query the measurement device when determining that the measurement target is in the first coordinate system.
  • the measuring position of the measuring device relative to the historical position in the position; the second position change information query request of the measuring device includes the identification of the measuring device and/or the identification of the second coordinate system.
  • Step 1002 The map server obtains the position of the measurement target in the first coordinate system.
  • Step 1003 The map server determines the position information of the measurement target under the first high-precision map according to the coordinate transformation information and the position information of the measurement target relative to the measurement device.
  • Step 1004 The map server sends the location information of the measurement target under the first high-precision map to the vehicle-mounted device.
  • the process includes:
  • Step 1101 The measuring device obtains the information of the first coordinate system relative to the second coordinate system.
  • the measuring device may receive the information of the first coordinate system relative to the second coordinate system through a receiver.
  • Example b2.2 the information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device; the measurement device receives from the vehicle-mounted device the measurement device determines that the measurement target is in the first coordinate system The position is the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device actively sends the information of the first coordinate system relative to the second coordinate system without the request of the first device, which saves signaling overhead.
  • the measuring equipment may also send an information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the information query request of the first coordinate system relative to the second coordinate system is used to query the vehicle.
  • the measuring device determines the position of the measuring target in the first coordinate system, the information of the first coordinate system relative to the second coordinate system; the information request of the first coordinate system relative to the second coordinate system includes the information of the measuring device Identification, and/or identification of the second coordinate system.
  • the vehicle-mounted device only sends the information of the first coordinate system relative to the second coordinate system by the first device request, which can prevent the vehicle-mounted device from sending the information of the first coordinate system relative to the second coordinate system to irrelevant This equipment protects the privacy of the measurement equipment and reduces signaling overhead.
  • Example b3.3 The vehicle-mounted device stores initial information of the first coordinate system relative to the second coordinate system; the measurement equipment receives the initial information of the first coordinate system relative to the second coordinate system from the vehicle-mounted device Information; The measuring device determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system.
  • the measurement device does not need to store the initial information of the first coordinate system relative to the second coordinate system, which reduces the occupation of storage space and avoids the impact on the performance of the measurement device that may be caused by the occupation of additional storage space.
  • the measurement equipment may send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the initial information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the initial position in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • Example b4.3 The history information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device; the measuring device receives the history of the first coordinate system relative to the second coordinate system from the vehicle-mounted device Information; The measuring device determines the information of the first coordinate system relative to the second coordinate system according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system.
  • the measurement device does not need to store the historical information of the first coordinate system relative to the second coordinate system, which reduces the occupation of storage space and avoids the impact on the performance of the measurement device that may be caused by the occupation of additional storage space.
  • the measurement equipment may send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement equipment
  • the position of the historical position in the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • Step 1102 the measuring device obtains the position of the measuring target in the first coordinate system.
  • Step 1103 The measurement device determines the location information of the measurement target under the first high-precision map according to the coordinate transformation information and the location information of the measurement target relative to the measurement device.
  • Step 1104 The measurement device sends the location information of the measurement target under the first high-precision map to the vehicle-mounted device.
  • Step 1201 The vehicle-mounted device acquires information of the first coordinate system relative to the second coordinate system.
  • the first device may read the information of the first coordinate system relative to the second coordinate system from the memory.
  • Example c1 the vehicle-mounted device stores information of the first coordinate system relative to the second coordinate system; the vehicle-mounted device reads from the memory the first coordinate system when the measuring device determines the position of the measurement target in the first coordinate system Information about a coordinate system relative to a second coordinate system.
  • the information of the first coordinate system relative to the second coordinate system stored in the vehicle-mounted device can be sent to the vehicle-mounted device by the map server in advance, or it can be sent to the vehicle-mounted device in advance by the measuring equipment, and the vehicle-mounted device determines that it needs to perform coordinate conversion.
  • the information of the first coordinate system relative to the second coordinate system can be directly read from the memory without online acquisition, which can improve the response speed and avoid the poor network from affecting the determination of the relative position of the measurement target.
  • the vehicle-mounted device stores initial information of the first coordinate system relative to the second coordinate system, and the initial information is determined according to the initial position and initial posture of the measuring device in the second coordinate system. Obtain the position change of the measurement device relative to the initial position when the measurement device measures the measurement target, and obtain the change in the posture of the measurement device relative to the initial posture when the measurement device measures the measurement target; The initial information, the position change and the posture change determine the information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device receives at least one of the following sent by the measuring device: the first position change information of the measuring device, and the identification of the measuring device; the measuring device may also send the second coordinates to the vehicle-mounted device The identification of the system; further, the on-board device determines the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring equipment and the initial information of the first coordinate system relative to the second coordinate system.
  • the vehicle-mounted device may also send a first location change information query request of the measurement device to the map server; or, the vehicle-mounted device may also send a first location change information query request of the measurement device to the measurement device
  • the first position change information query request of the measuring device is used to query the first position change information in the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system
  • the first position change information query request includes the identification of the measuring device and/or the identification of the second coordinate system.
  • Example c4.2 the vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the vehicle-mounted device receives at least one of the following items of the measuring device: second position change information of the measuring device, The identification of the measuring device, the identification of the second coordinate system; the vehicle-mounted device determines that the first coordinate system is relatively Information in the second coordinate system.
  • the vehicle-mounted device sends a second position change information query request of the measurement device to the map server; or, the vehicle-mounted device sends the second position change of the measurement device to the measurement device Information query request; wherein the second position change information query request of the measuring device is used to query the first position change information in the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system;
  • the second position change information query request of the measuring device includes the identification of the measuring device and/or the identification of the second coordinate system.
  • Step 1202 The vehicle-mounted device acquires the position of the measurement target in the first coordinate system.
  • the map server sends the location of the measurement target in the first coordinate system to the vehicle-mounted device. Furthermore, the in-vehicle device receives the position of the measurement target in the first coordinate system sent by the map server.
  • the position of the measurement target in the first coordinate system can be flexibly obtained.
  • the diversion of resources is conducive to the effective use of resources.
  • the vehicle-mounted device may send a location query request in the first coordinate system of the object to be identified to the map server;
  • the object to be identified is an object within a preset range of the measuring equipment;
  • a location query request in a coordinate system is used to query the location information of the object to be identified in the first coordinate system;
  • the location query request of the object to be identified in the first coordinate system includes the identification of the measuring device;
  • the object to be identified The object is an object within a preset range of the measurement device;
  • the map server receives a target location query request from the vehicle-mounted device;
  • the map server determines the location information of the measurement device in the first coordinate system
  • the object to be identified includes at least the measurement target.
  • the vehicle-mounted device can actively initiate a location query request of the object to be identified in the first coordinate system to the map server, so that the map server can determine the object to be identified and the position of the measurement target corresponding to the object to be identified in the first coordinate system , To prevent the map server from sending the location of the measurement target in the first coordinate system to irrelevant devices.
  • the measurement device sends the position of the measurement target in the first coordinate system to the vehicle-mounted device. Furthermore, the vehicle-mounted device receives the position of the measurement target in the first coordinate system sent by the measurement device through a receiver.
  • the position of the measurement target in the first coordinate system can be directly obtained, which is beneficial to reduce time delay and improve the position of the measurement target in the first coordinate system The speed of information acquisition.
  • the vehicle-mounted device sends a request for querying the position of the object to be recognized in the first coordinate system to the measuring device; the request for the position of the object to be recognized in the first coordinate system is used to query the position of the object to be recognized in the first coordinate system Position information in the coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the first coordinate system includes the identification of the measuring device.
  • the measuring device receives a position query request of the object to be identified in the first coordinate system from the vehicle-mounted device; the measuring device determines that the object to be identified is at least Including the measurement target.
  • the vehicle-mounted device can actively initiate a position query request of the object to be identified in the first coordinate system to the measuring device, so that the measuring device can determine the object to be identified and the position of the measurement target corresponding to the object to be identified in the first coordinate system. , To prevent the measurement device from sending the position of the measurement target in the first coordinate system to unrelated devices.
  • the location change information of the measurement device on the first high-precision map passes the location information of the measurement target in the first coordinate system
  • the measurement equipment can also actively send the initial information of the measurement equipment on the first high-precision map or the historical information of the measurement equipment on the first high-precision map to the vehicle-mounted device.
  • the initial information of the measurement equipment in the first high-precision map, or the historical information of the measurement equipment in the first high-precision map can be carried in the position information of the measurement target in the first coordinate system and sent, or it can be sent separately. limited.
  • the vehicle-mounted device can determine and measure the position of the measuring equipment in the first coordinate system based on the initial information of the measuring equipment in the first high-precision map, or the historical information of the measuring equipment in the first high-precision map, and the position change information.
  • the location information of the measuring device on the first high-precision map is used to determine the coordinate transformation information of the measuring device in the first high-precision map coordinate system.
  • the vehicle-mounted device may send an initial information query request of the measurement device to the measurement device; or, the vehicle-mounted device may send a historical information query request of the measurement device to the measurement device; or, the vehicle-mounted device may send the location of the measurement device to the measurement device Information query request.
  • the specific manner of sending the query request may be determined according to whether the position information of the measurement target in the first coordinate system carries the position change information of the measurement device. For example, if it is determined that the location information of the measurement target in the first coordinate system includes the location change information of the measurement device, and the location change information of the measurement device includes: the translation transformation information of the measurement device on the first high-precision map, and the measurement device is in the According to the rotation transformation information of the first high-precision map, the vehicle-mounted device can directly determine the coordinate transformation information of the measuring device relative to the first high-precision map according to the position change information of the measuring device. Therefore, it is not necessary to send a query request to the map server.
  • the vehicle-mounted device can send the initial information query request of the measuring device to the measuring device, and further, according to the initial information of the measuring device on the first high-precision map returned by the measuring device, and the position change information of the measuring device, determine The coordinate transformation information of the measuring device relative to the first high-precision map.
  • the vehicle-mounted device can send the historical information query request of the measuring equipment to the measuring equipment, and further, according to the historical information of the measuring equipment on the first high-precision map returned by the measuring equipment, and the position change information of the measuring equipment, Determine the coordinate transformation information of the measuring device relative to the first high-precision map.
  • the vehicle-mounted device may send the location information query request of the measurement device to the measurement device, and further, according to the measurement device returned by the measurement device In the position information of the first high-precision map, the coordinate transformation information of the measuring device relative to the first high-precision map is determined.
  • the vehicle-mounted device may send a query request for location change information of the measurement device to the measurement device, which is not limited here.
  • the vehicle-mounted device sends a location query request of the measurement device on the first high-precision map to the measurement device according to the acquired identification of the measurement device.
  • the location query request of the first high-precision map by the measuring device includes: the identification of the measuring device, and/or the identification of the first high-precision map.
  • Step 1203 The vehicle-mounted device determines the position information of the measurement target under the first high-precision map according to the coordinate transformation information and the position information of the measurement target relative to the measurement equipment.
  • the vehicle-mounted device determines the relative position information of the measurement target relative to the vehicle-mounted device according to the target position of the measurement target in the M1-CS coordinate system and the location information of the vehicle-mounted device in the M1-CS coordinate system.
  • the position q target of the measurement target in the first coordinate system RSU-LCS and the rotation information of the first coordinate system RSU-LCS in the second coordinate system M1-CS sent by the measuring device make the position of the measurement target and the vehicle
  • the relative position relationship of the positioning position in the second coordinate system is better matched, which solves the problem between the positioning offset of the vehicle based on the high-precision map positioning and the position offset of the measurement target detected by the measuring device based on the first coordinate system.
  • the inconsistency between the vehicle positioning position and the target position resulted in a large deviation in the estimation of the relative distance.
  • FIG. 13 is a structural block diagram of a positioning device 1300 provided by an embodiment of the application.
  • the positioning apparatus 1300 is, for example, a first device.
  • the positioning device 1300 includes a determining unit 1310, and optionally, an acquiring unit 1320.
  • the acquiring unit 1320 and the determining unit 1310 may also be two independent devices.
  • the determining unit 1310 and the acquiring unit 1320 are both carried in the map server, the acquiring unit 1320 may be a communication unit in the map server, and the determining unit 1310 may It is the determining unit in the map server, and the acquiring unit 1320 and the determining unit 1310 can communicate in a wired or wireless manner.
  • the positioning device 1300 may be a measurement device.
  • the measurement device includes a roadside unit, a measurement device in the roadside unit, a vehicle or a measurement device in the vehicle.
  • the measurement equipment may be a roadside unit, a chip used in a roadside unit, a measurement device in a roadside unit, or a chip used in a measurement device in a roadside unit.
  • the measuring device may also be a vehicle with the function of a measuring device and applied to a chip in a vehicle with the function of a measuring device, or the measuring device may also be a measuring device of a vehicle with the function of a measuring device, which is applied to the chip with the function of a measuring device.
  • the acquiring unit 1320 may be a transceiver, may include an antenna and a radio frequency circuit, etc., or may be an interface circuit coupled with a processor, and the determining unit 1310 may be a processor, such as a baseband processor or baseband.
  • the processor may include one or more central processing modules (central processing unit, CPU).
  • the acquiring unit 1320 may be a radio frequency unit
  • the determining unit 1310 may be a processor, such as a baseband processor.
  • the acquiring unit 1320 may be an input/output interface of the chip system (for example, a baseband chip), and the determining unit may be a processor of the chip system, and may include one or more central processing modules.
  • the determining unit 1310 may be used to perform all operations performed by the first device in the embodiment shown in FIG. 3 except for the transceiving operation, such as S403, and/or other processes used to support the technology described herein .
  • the obtaining unit 1320 may be used to perform all the obtaining operations performed by the first device in the embodiment shown in FIG. 3, such as S302, and/or other processes used to support the technology described herein.
  • the acquiring unit 1320 may be a functional module that can complete both sending and receiving operations.
  • the acquiring unit 1320 is a module included in the positioning device 1300, and the acquiring unit 1320 may be used to execute FIG. 3 In the embodiment shown in 11, all sending operations and receiving operations performed by the first device are performed.
  • the acquiring unit 1320 when performing a sending operation, can be regarded as a sending module, and when performing a receiving operation, the acquiring unit 1320 can be regarded as a sending module. It is a receiving module; or, the acquiring unit 1320 can also be a collective term for two functional modules.
  • the two functional modules are a sending module and a receiving module.
  • the sending module is used to complete the sending operation.
  • the acquiring unit 1320 is included in the first device.
  • the sending module can be used to perform all the sending operations performed by the first device in the embodiment shown in FIGS. 3-12
  • the receiving module is used to complete the receiving operation.
  • the acquiring unit 1320 is the first device 1100 Included modules, the receiving module can be used to perform all receiving operations performed by the first device in the embodiments shown in FIGS. 3-12.
  • the obtaining unit 1320 is configured to obtain information of the first coordinate system relative to the second coordinate system, where the first coordinate system is a coordinate system used by a measuring device, the second coordinate system is a coordinate system used by a map, and the first coordinate system is a coordinate system used by a map.
  • the information of a coordinate system relative to the second coordinate system includes translation information and rotation information of the first coordinate system mapped to the second coordinate system, wherein the translation information is based on the measurement device in the second coordinate system.
  • the position of the measurement system is determined, the rotation information is determined according to the posture of the measurement device in the second coordinate system; the position of the measurement target in the first coordinate system is acquired, and the measurement target in the first coordinate system The position is measured by the measuring device;
  • the determining unit 1310 is configured to determine the position of the measurement target in the second coordinate system according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, and a vehicle or a measurement device in the vehicle.
  • the positioning device is used in a map server, a roadside unit or a car.
  • the acquiring unit 1320 acquiring the information of the first coordinate system relative to the second coordinate system includes: reading the information of the first coordinate system relative to the second coordinate system from a memory; or, receiving the information of the first coordinate system relative to the second coordinate system. Information about the first coordinate system relative to the second coordinate system.
  • the obtaining unit 1320 is specifically configured to:
  • the information of the first coordinate system relative to the second coordinate system is determined.
  • the acquiring unit 1320 acquiring the position of the measurement target in the first coordinate system includes: obtaining the position of the measurement target in the first coordinate system through a sensor measurement; or, receiving the first coordinate system The position of the measurement target under.
  • the rotation information includes: the rotation matrix from the second coordinate system to the first coordinate system, the rotation matrix from the first coordinate system to the second coordinate system, and the rotation matrix of the first coordinate system in the second coordinate system.
  • the acquiring unit 1320 acquiring the information of the first coordinate system relative to the second coordinate system includes: acquiring the identifier of the measuring device; acquiring the first coordinate system relative to the identifier of the measuring device Information about the second coordinate system.
  • the division of units in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional units in the various embodiments of this application can be integrated into one processing unit. In the device, it can also exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the software or firmware includes but is not limited to computer program instructions or codes, and can be executed by a hardware processor.
  • the hardware includes, but is not limited to, various integrated circuits, such as a central processing unit (CPU), a digital signal processor (DSP), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the positioning device 1400 shown in FIG. 14 includes at least one processor 1401.
  • the positioning device 1400 also includes at least one memory 1402 for storing program instructions and/or data.
  • the memory 1402 is coupled with the processor 1401.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which can be electrical, mechanical, or other forms, and is used for information exchange between devices, units, or modules.
  • the processor 1401 may operate in cooperation with the memory 1402, the processor 1401 may execute program instructions stored in the memory 1402, and at least one of the at least one memory 1402 may be included in the processor 1401.
  • the positioning device 1400 may further include a communication interface 1403 for communicating with other devices through a transmission medium, so that the positioning device 1400 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver, an independent transmitter; a transceiver with integrated transceiver functions, or an interface circuit, etc. may also be integrated.
  • connection medium between the processor 1401, the memory 1402, and the communication interface 1403 is not limited in the embodiment of the present application.
  • the memory 1402, the processor 1401, and the communication interface 1403 are connected through the communication bus 1004 in FIG. 14.
  • the bus is represented by thick lines in FIG. , Not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 10 to represent, but it does not mean that there is only one bus or one type of bus.
  • the positioning device 1400 is used to implement the steps executed by the map server in the process shown in FIG. 3 to FIG. 12, and the positioning device 1400 may be a map server, or a chip or circuit in the map server.
  • the communication interface 1403 is used to perform the related operations of sending and receiving on the map server side in the above embodiment.
  • the processor 1401 is configured to perform processing related operations on the map server side in the above method embodiment.
  • the processor 1401 is configured to obtain the position of the measurement target in a first coordinate system, where the position of the measurement target in the first coordinate system is measured by the measuring device; and obtain the first coordinate system relative to the second coordinate System information, the first coordinate system is the coordinate system used by the measuring device, the second coordinate system is the coordinate system used by the map, and the information of the first coordinate system relative to the second coordinate system includes the first coordinate system
  • the coordinate system is mapped to the translation information and rotation information of the second coordinate system, wherein the translation information is determined according to the position of the measuring device in the second coordinate system, and the rotation information is determined according to the measuring device Determine the posture in the second coordinate system; determine the position of the measurement target in the second coordinate system according to the information of the first coordinate system relative to the second coordinate system and the position of the measurement target in the first coordinate system Location.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, and a vehicle or a measurement device in the vehicle.
  • the processor 1401 is specifically configured to: obtain the identification of the measurement device; and obtain the information of the first coordinate system relative to the second coordinate system according to the identification of the measurement device.
  • the identification of the measuring device may include one or more of the following: the serial number of the measuring device in the second coordinate system, or the unique serial number of the measuring device.
  • Example a1 the memory 1402 of the map server stores information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to read from the memory 1402 that the measurement device is determining whether the measurement target is The position in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the measurement device stores information about the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive from the measurement device through the communication interface 1403 that the measurement device determines that the measurement target is The position in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information request of the first coordinate system relative to the second coordinate system Including the identification of the measuring device and/or the identification of the second coordinate system.
  • the information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device; the processor 1401 is further configured to receive from the vehicle-mounted device through the communication interface 1403 that the measuring device is determined Information about the first coordinate system relative to the second coordinate system when measuring the position of the target in the first coordinate system.
  • the processor 1401 is further configured to send an information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403;
  • the information query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information of the first coordinate system relative to the second coordinate system
  • the request includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the processor 1401 is further configured to obtain initial information of the first coordinate system relative to the second coordinate system, where the initial information is based on the initial position of the measuring device in the second coordinate system. And the initial posture determined;
  • the processor 1401 is further configured to determine that the first coordinate system is relative to the second coordinate system according to the initial information of the first coordinate system relative to the second coordinate system and the position change and posture change of the measuring device. Information.
  • the memory 1402 of the map server stores initial information of the first coordinate system relative to the second coordinate system; the processor 1401 is further configured to read from the memory the first coordinate system relative to the first coordinate system.
  • the initial information of the two-coordinate system receives the identification of the measuring device and the first position change information of the measuring device through the communication interface 1403; wherein, the first position change information of the measuring device is used to indicate that the measuring device is determining that the measurement target is at The position in the first coordinate system is the difference between the position information of the measuring device and the initial information; the first position change information of the measuring device includes the position when the measuring device measures the measurement target relative to the initial The position change of the position, the change of the posture of the measuring device relative to the initial posture when the measuring target is measured; the identifier of the measuring device is used by the map server to determine that the first coordinate system is relative to the second The initial information of the coordinate system; the processor 1401 is also used to determine the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and
  • Example a3.2 The measurement device stores initial information of the first coordinate system relative to the second coordinate system; the processor 1401 is further configured to receive the first coordinate system relative to the measurement device through the communication interface 1403. In the initial information of the second coordinate system, the identification of the measuring device and the first position change information of the measuring device are received from the measuring device; wherein the first position change information of the measuring device is used to indicate that the measuring device is determining the measurement target The difference between the position information of the measuring device and the initial information when the position is in the first coordinate system; the identifier of the measuring device is used by the map server to determine that the first coordinate system is relative to the second coordinate system The processor 1401 is also used to determine the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system .
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the initial information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the position of the initial position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • Example a3.3 Initial information of the first coordinate system relative to the second coordinate system is stored in the vehicle-mounted device; the processor 1401 is further configured to receive the first coordinate from the vehicle-mounted device through the communication interface 1403 Relative to the initial information of the second coordinate system, the identification of the measuring device and the first position change information of the measuring device are received from the measuring device; wherein the first position change information of the measuring device is used to indicate that the measuring device is determining When measuring the position of the target in the first coordinate system, the difference between the position information of the measuring device and the initial information; the identifier of the measuring device is used by the map server to determine that the first coordinate system is relative to the second The initial information of the coordinate system; the processor 1401 is further configured to determine the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system Information.
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403; the initial information of the first coordinate system relative to the second coordinate system The query request is used to query the position of the initial position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the processor 1401 is configured to send a first position change information query request of the measuring device to the measuring device through the communication interface 1403; the first position change information query request of the measuring device is used to query the location of the measuring device The measurement position of the measurement device relative to the initial position when determining the position of the measurement target in the first coordinate system; the first position change information query request of the measurement device includes the identification of the measurement device and/or the second coordinate system Of the logo.
  • the processor 1401 may be used to obtain historical information of the first coordinate system relative to the second coordinate system, where the historical information is based on the initial historical position and historical posture of the measuring device in the second coordinate system.
  • the second position change information includes: the position change of the measurement device when the measurement target is measured relative to the initial position, and the measurement device’s posture relative to the measurement target when the measurement device measures the measurement target State the posture change of the initial posture.
  • the processor 1401 is further configured to determine the information of the first coordinate system relative to the second coordinate system according to the historical information and the second position change information of the measuring device.
  • Example a4.1 The memory 1402 of the map server stores historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive the identification of the measuring device and the information of the measuring device through the communication interface 1403 The second position change information; wherein, the second position change information of the measuring device is used to indicate that the position information of the measuring device is relative to the position of the measurement history target when the measuring device determines the position of the measuring target in the first coordinate system The difference value of the position information of the measuring device; the identifier of the measuring device is used by the map server to determine the historical information of the first coordinate system relative to the second coordinate system;
  • the processor 1401 is also configured to read historical information of the first coordinate system relative to the second coordinate system from the memory 1402; according to the second position change information of the measuring device and the first coordinate system relative to the second coordinate system The historical information determines the information of the first coordinate system relative to the second coordinate system.
  • Example a4.2 The measurement device stores historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is further configured to receive the first coordinate system relative to the measurement device through the communication interface 1403. In the historical information of the second coordinate system, the identification of the measuring device and the second position change information of the measuring device are received from the measuring device; wherein the second position change information of the measuring device is used to indicate that the measuring device is determining the measurement target The difference between the position information of the measuring device and the position information of the measuring device when the position in the first coordinate system is measured relative to the position of the historical target; the identifier of the measuring device is used by the map server to determine the first The historical information of a coordinate system relative to the second coordinate system; the processor 1401 is further configured to determine the first coordinate according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system The system is relative to the information of the second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the historical information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the location information of the measurement device in the second coordinate system when the measurement device measures the location of the historical target; the query request for historical information of the first coordinate system relative to the second coordinate system includes the measurement The identification of the device, and/or the identification of the second coordinate system.
  • Example a4.3 The vehicle-mounted device stores historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is further configured to receive the first coordinates from the vehicle-mounted device through the communication interface 1403 System relative to the historical information of the second coordinate system, the identification of the measuring device and the second position change information of the measuring device are received from the measuring device; wherein the second position change information of the measuring device is used to indicate that the measuring device is determining The difference between the position information of the measuring device when measuring the position of the target in the first coordinate system and the position information of the measuring device when measuring the position of the historical target; the identification of the measuring device is used by the map server to determine the position of the measuring device The historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is further configured to determine the first coordinate system according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system Information about a coordinate system relative to a second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403; the historical information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the location information of the measurement device in the second coordinate system when the measurement device measures the location of the historical target; the query request for historical information of the first coordinate system relative to the second coordinate system includes the measurement The identification of the device, and/or the identification of the second coordinate system.
  • the processor 1401 is configured to send a second location change information query request of the measuring device to the measurement device through the communication interface 1403; the second location change information query request of the measurement device is used to query the location of the measurement device The measurement position of the measurement device relative to the historical position when determining the position of the measurement target in the first coordinate system; the second position change information query request of the measurement device includes the identification of the measurement device and/or the second coordinate system Of the logo.
  • the processor 1401 is configured to receive the position of the measurement target in the first coordinate system from the measurement device through the communication interface 1403.
  • the processor 1401 is configured to send a location query request of a measurement target in a first coordinate system to the measurement device through a communication interface 1403; the location query request of a measurement target in the first coordinate system is used to Query the relative position relationship between the measurement device and the measurement target.
  • the request for querying the position of the measurement target in the first coordinate system includes the identifier of the measurement device and/or the identifier of the second coordinate system.
  • the processor 1401 is configured to send the position of the measurement target in the first coordinate system to the vehicle-mounted device through the communication interface 1403.
  • the processor 1401 is configured to receive, through the communication interface 1403, the position query request of the object to be identified in the first coordinate system sent by the vehicle-mounted device; the object to be identified is within the preset range of the measuring equipment Object; the position query request in the first coordinate system of the object to be recognized is used to query the position information of the object to be recognized in the first coordinate system; the position query request in the first coordinate system of the object to be recognized includes the measurement The identification of the device; the object to be identified is an object within a preset range of the measuring device;
  • the processor 1401 is further configured to determine that the object to be identified includes at least the measurement target according to the position information of the measurement device in the first coordinate system.
  • the processor 1401 is configured to send the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device to the vehicle-mounted device through the communication interface 1403 At least one of.
  • the processor 1401 is configured to receive a position query request of the object to be identified in the second coordinate system sent by the vehicle-mounted device through the communication interface 1403; the position request of the object to be identified in the second coordinate system is used for querying The position information of the object to be identified in the second coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the second coordinate system includes the measurement The identification of the device, and/or the identification of the second coordinate system.
  • the processor 1401 is further configured to determine, according to the position information of the measurement target in the second coordinate system, that the object to be identified includes at least the measurement target.
  • the positioning device 1400 is used to implement the steps performed by the measuring device in the above-mentioned flow shown in FIG. 3 to FIG. 12.
  • the positioning device 1400 may be a measuring device, or a chip or a circuit in the measuring device.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, a vehicle or a measurement device in the vehicle.
  • the measurement equipment may be a roadside unit, a chip used in a roadside unit, a measurement device in a roadside unit, or a chip used in a measurement device in a roadside unit.
  • the measuring device may also be a vehicle with the function of a measuring device and applied to a chip in a vehicle with the function of a measuring device, or the measuring device may also be a measuring device of a vehicle with the function of a measuring device, which is applied to the chip with the function of a measuring device.
  • the communication interface 1403 is used to perform the related operations of receiving and sending on the measuring device side in the above embodiment.
  • the processor 1401 is configured to perform processing-related operations on the measuring device side in the above method embodiment.
  • the processor 1401 is configured to obtain the position of a measurement target in a first coordinate system, where the position of the measurement target in the first coordinate system is measured by the measuring device; according to the first coordinate system relative to the second coordinate System information and the position of the measurement target in the first coordinate system, determine the position of the measurement target in the second coordinate system; obtain the information of the first coordinate system relative to the second coordinate system; the first coordinate system is The coordinate system used by the measuring device, the second coordinate system is the coordinate system used by the map, and the information of the first coordinate system relative to the second coordinate system includes the mapping of the first coordinate system to the second coordinate system Translation information and rotation information, wherein the translation information is determined according to the position of the measuring device in the second coordinate system, and the rotation information is determined according to the posture of the measuring device in the second coordinate system; Or, obtain the information of the first coordinate system relative to the second coordinate system through the communication interface 1403.
  • the processor 1401 is specifically configured to: obtain the identification of the measurement device; and obtain the information of the first coordinate system relative to the second coordinate system according to the identification of the measurement device.
  • the identification of the measuring device may include one or more of the following: the serial number of the measuring device in the second coordinate system, or the unique serial number of the measuring device.
  • Example b1 the memory 1402 of the measuring device stores information of the first coordinate system relative to the second coordinate system; the processor 1401 reads from the memory 1402 that the measuring device determines that the measurement target is in the first coordinate The position under the system is the information of the first coordinate system relative to the second coordinate system.
  • the map server stores information about the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive from the map server through the communication interface 1403 that the measurement device is determining the measurement
  • the position of the target in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403; the information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information request of the first coordinate system relative to the second coordinate system Including the identification of the measuring device and/or the identification of the second coordinate system.
  • Example b2.2 the vehicle-mounted device stores information about the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive from the vehicle-mounted device through the communication interface 1403 that the measuring device is determining the measurement The position of the target in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403; the information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information request of the first coordinate system relative to the second coordinate system Including the identification of the measuring device and/or the identification of the second coordinate system.
  • the map server stores the initial information of the first coordinate system relative to the second coordinate system; the processor 1401 is also used to read the first position change information of the measuring device in the memory 1402, through The communication interface 1403 receives the identification of the measuring device and the initial information of the first coordinate system relative to the second coordinate system from the map server; according to the first position change information of the measuring device and the first coordinate system relative to the second coordinate system The initial information determines the information of the first coordinate system relative to the second coordinate system.
  • the first position change information of the measuring device is used to indicate the difference between the position information of the measuring device and the initial information when the measuring device determines the position of the measuring target in the first coordinate system; the measuring device The identifier is used by the map server to determine the initial information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403; the initial information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the position of the initial position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • Example b3.2 The memory 1402 of the measuring device stores initial information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to read the second coordinate system of the measuring device from the memory 1402. The initial information of a coordinate system relative to the second coordinate system; read the first position change information of the measuring device from the memory 1402; according to the first position change information of the measuring device and the first coordinate system relative to the second coordinate system The initial information determines the information of the first coordinate system relative to the second coordinate system.
  • Example b3.3 The vehicle-mounted device stores initial information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to read the first position change information of the measuring device from the memory 1402, Receive the initial information of the first coordinate system relative to the second coordinate system from the in-vehicle device through the communication interface 1403; according to the first position change information of the measuring equipment and the initial information of the first coordinate system relative to the second coordinate system, Determine the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403; the initial information of the first coordinate system relative to the second coordinate system The query request is used to query the position of the initial position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the map server stores the historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is also used to read the first position change information of the measuring device in the memory 1402, through the communication interface 1403 receives the identification of the measuring device and the second position change information of the measuring device; according to the second position change information of the measuring device and the historical information of the first coordinate system relative to the second coordinate system, it is determined that the first coordinate system is relative to the second coordinate system. Information about the two-coordinate system.
  • the second position change information of the measuring device is used to indicate the position of the measuring device when the position information of the measuring device is relative to the position of the historical target when the measuring device determines the position of the measuring target in the first coordinate system Information difference; the identification of the measuring device is used by the map server to determine the historical information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403;
  • the historical information query request is used to query the historical position of the measurement device in the second coordinate system;
  • the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measurement device, and/or The identifier of the second coordinate system.
  • Example b4.2 The memory 1402 of the measuring device stores historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to read the first coordinate system of the measuring device from the memory 1402 The historical information of a coordinate system relative to the second coordinate system; read the second position change information of the measuring device from the memory 1402; according to the second position change information of the measuring device and the first coordinate system relative to the second coordinate system The historical information determines the information of the first coordinate system relative to the second coordinate system.
  • Example b4.3 The vehicle-mounted device stores the historical information of the first coordinate system relative to the second coordinate system; the processor 1401 is also used to read the second position change information of the measuring device in the memory 1402, through The communication interface 1403 receives the historical information of the first coordinate system relative to the second coordinate system from the vehicle-mounted device; determines according to the second position change information of the measuring equipment and the historical information of the first coordinate system relative to the second coordinate system Information about the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the vehicle-mounted device through the communication interface 1403; the historical information of the first coordinate system relative to the second coordinate system The query request is used to query the position of the historical position of the measuring device in the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device, and/or the The ID of the second coordinate system.
  • the processor 1401 is further configured to obtain the position of the measurement target in the first coordinate system through a sensor measurement.
  • the processor 1401 is configured to receive, through the communication interface 1403, a request for querying the position of the measurement target in the first coordinate system sent by the map server; the request for querying the position of the measurement target in the first coordinate system includes the The identification of the measuring device, and/or the identification of the second coordinate system.
  • the processor 1401 is configured to send the position of the measurement target in the first coordinate system to the vehicle-mounted device through the communication interface 1403.
  • the processor 1401 is configured to receive, through the communication interface 1403, the position query request of the object to be identified in the first coordinate system sent by the vehicle-mounted device; the object to be identified is within the preset range of the measuring equipment Object; the position query request in the first coordinate system of the object to be recognized is used to query the position information of the object to be recognized in the first coordinate system; the position query request in the first coordinate system of the object to be recognized includes the measurement The identification of the device; the object to be identified is an object within a preset range of the measuring device;
  • the processor 1401 is further configured to determine that the object to be identified includes at least the measurement target according to the position information of the measurement device in the first coordinate system.
  • the processor 1401 is configured to send the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device to the vehicle-mounted device through the communication interface 1403 At least one of.
  • the processor 1401 is configured to receive a position query request of the object to be identified in the second coordinate system sent by the vehicle-mounted device through the communication interface 1403; the position request of the object to be identified in the second coordinate system is used for querying The position information of the object to be identified in the second coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the second coordinate system includes the measurement The identification of the device, and/or the identification of the second coordinate system.
  • the processor 1401 is further configured to determine, according to the position information of the measurement target in the second coordinate system, that the object to be identified includes at least the measurement target.
  • the positioning device 1400 is used to implement the steps performed by the vehicle-mounted device in the flow shown in FIGS. 3-12.
  • the positioning device 1400 may be the vehicle-mounted device or the vehicle to which the vehicle-mounted device belongs, or the vehicle-mounted device or the vehicle-mounted device belongs to A chip or circuit in a vehicle.
  • the communication interface 1403 is used to perform operations related to the transceiving of the vehicle-mounted device in the above embodiment.
  • the processor 1401 is configured to perform processing-related operations of the vehicle-mounted device or the vehicle-mounted device in the above method embodiment.
  • the processor 1401 is configured to obtain information about a first coordinate system relative to a second coordinate system, where the first coordinate system is a coordinate system used by a measuring device, the second coordinate system is a coordinate system used by a map, and the first coordinate system is a coordinate system used by a map.
  • the information of a coordinate system relative to the second coordinate system includes translation information and rotation information of the first coordinate system mapped to the second coordinate system, wherein the translation information is based on the measurement device in the second coordinate system.
  • the position of the system is determined, the rotation information is determined according to the posture of the measuring device in the second coordinate system; according to the information of the first coordinate system relative to the second coordinate system and the information in the first coordinate system
  • the position of the measurement target in the second coordinate system is determined; the position of the measurement target in the first coordinate system is acquired through the communication interface 1403, and the position of the measurement target in the first coordinate system is the measurement Measured by the equipment.
  • the measurement equipment includes a roadside unit, a measurement device in the roadside unit, and a vehicle or a measurement device in the vehicle.
  • the processor 1401 is specifically configured to: obtain the identification of the measurement device; and obtain the information of the first coordinate system relative to the second coordinate system according to the identification of the measurement device.
  • the identification of the measuring device may include one or more of the following: the serial number of the measuring device in the second coordinate system, or the unique serial number of the measuring device.
  • Example c1 the memory 1402 of the positioning device stores the information of the first coordinate system relative to the second coordinate system; the processor 1401 reads from the memory 1402 that the measuring device determines that the measurement target is in the first coordinate The position under the system is the information of the first coordinate system relative to the second coordinate system.
  • the map server stores the information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive from the map server through the communication interface 1403 that the measurement device is determining the measurement
  • the position of the target in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403; the information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information request of the first coordinate system relative to the second coordinate system Including the identification of the measuring device and/or the identification of the second coordinate system.
  • the measurement device stores information of the first coordinate system relative to the second coordinate system; the processor 1401 is configured to receive through the communication interface 1403 the measurement device sent by the measurement device is determining the measurement target The position in the first coordinate system is the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send an information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the information of the first coordinate system relative to the second coordinate system
  • the query request is used to query the information of the first coordinate system relative to the second coordinate system when the measuring device determines the position of the measurement target in the first coordinate system; the information request of the first coordinate system relative to the second coordinate system Including the identification of the measuring device and/or the identification of the second coordinate system.
  • the map server stores initial information of the first coordinate system relative to the second coordinate system
  • the processor 1401 is configured to receive the information of the measurement device sent by the measurement device through the communication interface 1403 First position change information; wherein the first position change information of the measurement device is used to indicate that the position information of the measurement device is relative to the initial information when the measurement device determines the position of the measurement target in the first coordinate system
  • the processor 1401 is configured to receive the initial information of the first coordinate system relative to the second coordinate system from the map server through the communication interface 1403, according to the first position change information of the measuring device and the first coordinate system Relative to the initial information of the second coordinate system, the information of the first coordinate system relative to the second coordinate system is determined.
  • the processor 1401 is configured to send a first position change information query request of a measurement device to a map server through the communication interface 1403; the first position change information query request of the measurement device is used to query the location of the measurement device The measurement position of the measurement device relative to the initial position when determining the position of the measurement target in the first coordinate system; the first position change information query request of the measurement device includes the identification of the measurement device and/or the second coordinate system Of the logo.
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403;
  • the measurement device sends an initial information query request of the first coordinate system relative to the second coordinate system;
  • the initial information query request of the first coordinate system relative to the second coordinate system is used to query the location of the measurement device in the first coordinate system.
  • the initial position of the two coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes the identification of the measuring device and/or the identification of the second coordinate system.
  • Example c3.2 the initial information of the first coordinate system relative to the second coordinate system is stored in the measuring device; the processor 1401 is configured to receive the information of the measuring device sent by the measuring device through the communication interface 1403 First position change information; wherein the first position change information of the measurement device is used to indicate that the position information of the measurement device is relative to the initial information when the measurement device determines the position of the measurement target in the first coordinate system The difference; according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system, the information of the first coordinate system relative to the second coordinate system is determined.
  • the processor 1401 is configured to receive the initial information of the first coordinate system relative to the second coordinate system from the measuring device through the communication interface 1403;
  • the processor 1401 is configured to send an initial information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the first The initial information query request of the coordinate system relative to the second coordinate system is used to query the initial position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes all The identification of the measuring device, and/or the identification of the second coordinate system.
  • the memory 1402 of the positioning device stores initial information of the first coordinate system relative to the second coordinate system;
  • the processor 1401 is configured to receive at least one of the following information of the measuring device through the communication interface 1403 Item: first position change information of the measuring device, the identification of the measuring device, and the identification of the second coordinate system;
  • the processor 1401 is further configured to determine the information of the first coordinate system relative to the second coordinate system according to the first position change information of the measuring device and the initial information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send the first position change information query request of the measurement device to the map server through the communication interface 1403; or, send the measurement device information to the measurement device
  • the first position change information query request wherein the first position change information query request of the measurement device is used to query the measurement device in the first coordinate system of the second coordinate system when the measurement device determines the position of the measurement target in the first coordinate system.
  • Position change information; the first position change information query request of the measuring device includes the identification of the measuring device and/or the identification of the second coordinate system.
  • the map server stores historical information of the first coordinate system relative to the second coordinate system
  • the processor 1401 is configured to receive the information of the measurement device sent by the measurement device through the communication interface 1403 Second position change information; wherein the second position change information of the measurement device is used to indicate that the position information of the measurement device is relative to the historical information when the measurement device determines the position of the measurement target in the first coordinate system
  • the processor 1401 is further configured to receive historical information of the first coordinate system relative to the second coordinate system from the map server through the communication interface 1403; according to the second position change information and the first coordinate of the measuring device The historical information of the system relative to the second coordinate system determines the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the map server through the communication interface 1403; or, to the map server;
  • the measurement device sends a historical information query request of the first coordinate system relative to the second coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system is used to query the measurement device in the first coordinate system.
  • the historical position of the two coordinate system; the historical information query request of the first coordinate system relative to the second coordinate system includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • Example c4.2 Initial information of the first coordinate system relative to the second coordinate system is stored in the measuring device; the processor 1401 is configured to receive the information of the measuring device sent by the measuring device through the communication interface 1403 Second position change information; wherein, the second position change information of the measuring device is used to indicate that the position information of the measuring device is relative to the measurement history target when the measuring device determines the position of the measuring target in the first coordinate system The difference between the position information of the measuring device when the position is measured; the processor 1401 is further configured to receive historical information of the first coordinate system relative to the second coordinate system from the measuring device through the communication interface 1403; and change according to the second position of the measuring device The information and the historical information of the first coordinate system relative to the second coordinate system determine the information of the first coordinate system relative to the second coordinate system.
  • the processor 1401 is configured to send a historical information query request of the first coordinate system relative to the second coordinate system to the measuring device through the communication interface 1403; the first The historical information query request of the coordinate system relative to the second coordinate system is used to query the historical position of the measuring device in the second coordinate system; the initial information query request of the first coordinate system relative to the second coordinate system includes all The identification of the measuring device, and/or the identification of the second coordinate system.
  • the memory 1402 of the positioning device stores historical information of the first coordinate system relative to the second coordinate system;
  • the processor 1401 is configured to receive at least one of the following information of the measuring device through the communication interface 1403 Item: the second position change information of the measuring device, the identification of the measuring device, the identification of the second coordinate system;
  • the processor 1401 is further configured to change information according to the second position change of the measuring device and the first coordinate system The information of the first coordinate system relative to the second coordinate system is determined relative to the historical information of the second coordinate system.
  • the processor 1401 is configured to send a second position change information query request of the measurement device to the map server through the communication interface 1403; or, send the measurement device information to the measurement device The second location change information query request; wherein the second location change information query request of the measurement device is used to query the measurement device in the first coordinate system of the second coordinate system when the measurement device determines the position of the measurement target in the first coordinate system.
  • Location change information; the second location change information query request of the measuring device includes the identifier of the measuring device and/or the identifier of the second coordinate system.
  • the processor 1401 is configured to receive the position of the measurement target in the first coordinate system from the map server through the communication interface 1403.
  • the processor 1401 is configured to send, through the communication interface 1403, a request for querying the position of the object to be identified in the first coordinate system to the map server; the request for the position of the object to be identified in the first coordinate system is used To query the position information of the object to be recognized in the first coordinate system; the object to be recognized is an object within a preset range of the measuring device; the query request for the position of the object to be recognized in the first coordinate system includes all Indicates the identification of the measuring equipment.
  • Example B2.2 the processor 1401 is configured to receive the position of the measurement target in the first coordinate system from the measurement device through the communication interface 1403.
  • the processor 1401 is configured to send a location query request of the object to be identified in the first coordinate system to the measuring device through the communication interface 1403; the location request of the object to be identified in the first coordinate system is used for querying The position information of the object to be identified in the first coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the first coordinate system includes the measurement The identification of the device.
  • Example a The processor 1401 is configured to receive at least the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measurement device from a map server through the communication interface 1403 One item.
  • the processor 1401 is configured to send a location query request of the object to be identified in the second coordinate system to the map server through the communication interface 1403; the location request of the object to be identified in the second coordinate system is used to query the location
  • the position information of the object to be identified in the second coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the second coordinate system includes the measuring device , And/or the identity of the second coordinate system.
  • Example b The processor 1401 is configured to receive, through the communication interface 1403, the position of the measurement target in the second coordinate system, the identifier of the second coordinate system, and the identifier of the measuring device sent by the measuring device. At least one item.
  • the processor 1401 is configured to send a location query request of the object to be identified in the second coordinate system to the measuring device through the communication interface 1403; the location request of the object to be identified in the second coordinate system is used to query the location.
  • the position information of the object to be identified in the second coordinate system; the object to be identified is an object within a preset range of the measuring device; the position query request of the object to be identified in the second coordinate system includes the measuring device , And/or the identity of the second coordinate system.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by the computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (digital video disc, DVD for short), or semiconductor media (for example, SSD), etc.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the disclosed device and method can be implemented in other ways within the scope of this application.
  • the above-described embodiments are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. .
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the described devices and methods and schematic diagrams of different embodiments can be combined or integrated with other systems, modules, technologies, or methods without departing from the scope of the present application.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electronic, mechanical or other forms.

Abstract

本申请公开了一种定位方法及装置,可应用于车联网、智能驾驶、智能网联车等领域。获取第一坐标系相对于第二坐标系的信息,第一坐标系为测量设备使用的坐标系,第二坐标系为地图使用的坐标系,第一坐标系相对于第二坐标系的信息包括第一坐标系到第二坐标系的平移信息和旋转信息,其中平移信息为根据测量设备在第二坐标系的位置确定的,旋转信息为根据测量设备在第二坐标系的姿态确定;获取第一坐标系下的测量目标的位置,第一坐标系下的测量目标的位置为测量设备测量得到;根据第一坐标系相对于第二坐标系的信息和第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。

Description

定位方法及装置 技术领域
本申请涉及自动驾驶或辅助驾驶技术领域,尤其涉及一种定位方法及装置。
背景技术
随着人工智能的快速发展,辅助驾驶和自动驾驶应运而生。行驶车辆在启动辅助驾驶或自动驾驶功能时,需要对行车周围环境进行感知。比如,对行车路径上的行人、车辆、车道线、可行驶区域以及障碍物等信息进行感知,以避免碰撞到其他车辆、行人、障碍物,或者偏离车道线等。
目前,现有技术中车辆获取测量目标位置的精度不能满足自动驾驶的需求,车辆如何准确的获取周边环境中测量目标的位置信息,是当前的研究热点。
发明内容
本申请提供一种定位方法及装置,用于车辆准确的获取周边环境中测量目标的位置信息。
第一方面,本申请实施例提供一种定位方法,包括:
获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
该方法可由第一设备执行,第一设备可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第一设备可以为终端设备、地图服务器、路边单元、车辆或车载装置。一种可能的实现方式,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
本申请实施例中,第一设备在获得第一坐标系相对于第二坐标系的信息,及第一坐标系下的测量目标的位置后,可以根据第一坐标系相对于第二坐标系的信息,将第一坐标系下的测量目标的位置,转换至第二坐标系下的测量目标的位置。由于地图使用的坐标系为第二坐标系,可以进一步比较准确地确定所述测量目标相对于使用地图的其他设备(例如自动驾驶车辆)的位置。因此,通过上述方法,可以避免由于坐标系的偏移误差导致的较大定位误差,并可以充分利用较高精度的坐标系进行定位,提高自动驾驶的安全性。
一种可能的设计,所述获取第一坐标系相对于第二坐标系的信息的方式,可以包括:
获取所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。其中,所述测量设备的标识可以包括以下一项或多项:测量设备在第二坐标系中的编号,或测量设备的唯一编号。从而,通过测量设备的标识,以确定测量设备在第二坐标系下的位置信息,进而确定第一坐标系相对第二坐标系的信息,以区分不同地图使用的坐标系间采用的第二坐标系不同,进而有效区分第一坐标系相对第二坐标系的信息 不同,进而提高不同地图坐标系下测量目标相对自身车辆的相对位置的精度。
一种可能的设计,第一设备获取第一坐标系相对于第二坐标系的信息可以采用以下方式:
方式1,第一设备可以从存储器读取所述第一坐标系相对于第二坐标系的信息;
示例a1,第一设备为地图服务器,所述地图服务器中存储有所述第一坐标系相对于第二坐标系的信息;所述地图服务器从存储器读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
示例b1,第一设备为测量设备(例如由路边单元或者车辆作为测量设备),所述测量设备中存储有第一坐标系相对于第二坐标系的信息;所述测量设备从存储器读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
示例c1,第一设备为车载装置,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述车载装置从存储器中读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
通过上述方法,通过第一设备从存储器获取第一坐标系相对于第二坐标系的信息的方法,易于获取,且获取速度较快,避免信令交互导致的网络对第一坐标系相对于第二坐标系的信息可能存在的延迟。
方式2,第一设备可以通过接收器接收所述第一坐标系相对于第二坐标系的信息。
示例a2,第一设备为地图服务器,所述测量设备(例如由路边单元或者车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的信息;所述地图服务器从所述测量设备接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,节省信令开销。
进一步的,所述地图服务器还可以向所述测量设备发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,测量设备才发送第一坐标系相对于第二坐标系的信息的方式,可避免测量设备将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b2,第一设备为测量设备(例如由路边单元或者车辆作为测量设备),所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;测量设备从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,地图服务器主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,可以节省信令开销。
进一步的,所述测量设备还可以向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,地图服务器才发送第一坐标系相对于第二坐标系的信息的方式,可避免地图服务器将第一坐标系相对于第二坐标系的信息发送给不相关 的设备,保护了测量设备的隐私,减少信令的开销。
示例c2.1,第一设备为车载装置,所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;车载装置从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,地图服务器主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,可以节省信令开销。
进一步的,车载装置向所述地图服务器发送第一坐标系相对于第二坐标系的信息的查询请求。所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,地图服务器才发送第一坐标系相对于第二坐标系的信息的方式,可避免地图服务器将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例c2.2,第一设备为车载装置,所述测量设备(例如由路边单元或者车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的信息;车载装置从测量设备接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,可以节省信令开销。
进一步的,车载装置向所述测量设备发送第一坐标系相对于第二坐标系的信息的查询请求。所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,测量设备才发送第一坐标系相对于第二坐标系的信息的方式,可避免测量设备将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
方式3,第一设备可以获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
通过上述方法,第一设备可以根据历史获取的第一坐标系相对于第二坐标系的初始信息,及测量设备在确定测量目标在第一坐标系下的位置时,确定的测量设备的第一位置变化信息(所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化),这两部分信息,确定所述第一坐标系相对于第二坐标系的信息,通过灵活配置所述第一坐标系相对于第二坐标系的信息中2部分信息的获取方式,进而灵活配置第一设备与测量设备间的交互信令,以适应更多的场景。
示例a3.1、第一设备为地图服务器,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述地图服务器接收所述测量设备的标识和测量设备的第一位置变化信息;所述第一位置变化信息包括以下至少一项:所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,所述测量设备测量所述测量目标时的姿态相对于所述 初始姿态的姿态变化。其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备发送第一坐标系相对于第二坐标系的初始信息的方式,相比发送第一坐标系相对于第二坐标系的信息的方式,可以使得地图服务器有效利用已获取的测量设备在第二坐标系下的初始位置,减少信息的发送。另外,通过测量设备主动发送的方式,无需第一设备请求,可以节省信令开销。
示例a3.2、第一设备为地图服务器,所述测量设备(例如由路边单元或者车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的初始信息;所述地图服务器从测量设备接收所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器从测量设备接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
通过上述方法,测量设备可以根据需要分别向地图服务器发送第一坐标系相对于第二坐标系的初始信息,和测量设备的第一位置变化信息,例如,第一坐标系相对于第二坐标系的初始信息可以是预先发送给地图服务器的,而测量设备的第一位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,也可以是一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向测量设备发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,测量设备才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免测量设备将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
进一步的,地图服务器可以向测量设备发送测量设备的第一位置变化信息查询请求;所述测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对初始位置的测量位置;所述测量设备的第一位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用地图服务器请求,测量设备才发送测量设备的第一位置变化信息的方式,可避免测量设备将测量设备的第一位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
示例a3.3、第一设备为地图服务器,所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述地图服务器从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器从测量设备接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆 作为测量设备)的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置可以根据需要向地图服务器发送第一坐标系相对于第二坐标系的初始信息,测量设备可以根据需要,向地图服务器发送测量设备的第一位置变化信息,例如,第一坐标系相对于第二坐标系的初始信息可以是预先发送给地图服务器的,而测量设备的第一位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b3.1、第一设备为测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备),所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述测量设备从所述地图服务器接收所述第一坐标系相对于第二坐标系的初始信息;所述测量设备根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的初始信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,所述测量设备可以向所述地图服务器发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用测量设备请求,地图服务器才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免地图服务器将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
示例b3.2、第一设备为测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备),所述测量设备中存储有第一坐标系相对于第二坐标系的初始信息;所述测量设备从存储器读取所述测量设备的所述第一坐标系相对于第二坐标系的初始信息;所述测量设备从存储器读取所述测量设备的第一位置变化信息;所述测量设备根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备分别存储第一坐标系相对于第二坐标系的初始信息和测量设备的第一位置变化信息,相比测量设备存储每次确定测量目标时,第一坐标系相对于第二坐标系的信息,尤其是存在多个第二坐标系的场景下,只需存储1个测量设备的第一位置变化信息,可以有效减少存储空间的占用。
示例b3.3、第一设备为测量设备(例如由路边单元或者所述车载装置所在车辆以外的 其他车辆作为测量设备),所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述测量设备从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息;所述测量设备根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的初始信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,测量设备可以向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例c3.1、第一设备为车载装置,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述车载装置接收所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)发送的所述测量设备的第一位置变化信息;其中,所述测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述车载装置从所述地图服务器接收第一坐标系相对于第二坐标系的初始信息;所述车载装置根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置通过地图服务器接收第一坐标系相对于第二坐标系的初始信息,通过测量设备接收测量设备的第一位置变化信息,可以使得信息的发送更加灵活,避免同时大量的发送信息,可能导致网络出现拥塞,从而车载装置可能延迟获取测量目标的位置,影响自动驾驶的性能。
进一步的,一种可能的实现方式,所述车载装置向所述地图服务器发送所述第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备在所述第二坐标系的初始位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c3.2、第一设备为车载装置,所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的初始信息;所述车载装置接收所述测量设备发送的所述测量设备的第一位置变化信息;其中,所述测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述车载装置从测量设备接收第一坐标系相对于第二坐标系的初始信息;所述车载装置根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置通过测量设备分别接收第一坐标系相对于第二坐标系的初始信息,和测量设备的第一位置变化信息,可以使得信息的发送更加灵活,避免同时大量的发送信息,可能导致网络出现拥塞,从而车载装置可能延迟获取测量目标的位置,影响自动驾驶的性能。
进一步的,一种可能的实现方式,所述车载装置向所述测量设备发送所述第一坐标系 相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备在所述第二坐标系的初始位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。示例c3.3,第一设备为车载装置,所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述车载装置接收所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)的以下至少一项:测量设备的第一位置变化信息,所述测量设备的标识,所述第二坐标系的标识;所述车载装置根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置可以有效利用已获取的测量设备在第二坐标系下的初始位置,减少信息的发送。另外,通过测量设备或地图服务器主动发送测量设备的第一位置变化信息的方式,无需车载装置请求,可以节省信令开销。
一种可能的实现方式,所述车载装置向所述测量设备发送所述测量设备的第一位置变化信息查询请求;或者,所述车载装置向所述地图服务器发送所述测量设备的第一位置变化信息查询请求;所述测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时相对初始位置的差值;所述测量设备的第一位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
通过上述方法,车载装置可以主动向地图服务器或测量设备发起查询请求,进而使得信息的发送更加灵活,也可避免地图服务器或测量设备将所述第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,或者,避免地图服务器或测量设备将测量设备的第一位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
方式4,第一设备可以获取所述第一坐标系相对于第二坐标系的历史信息。所述历史信息为根据所述测量设备在所述第二坐标系的初历史位置和历史姿态确定的;所述第二位置变化信息包括:所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,和所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化。根据所述历史信息及所述测量设备的第二位置变化信息,确定所述第一坐标系相对于第二坐标系的信息。
通过上述方法,第一设备可以根据测量的历史目标的位置获取的第一坐标系相对于第二坐标系的历史信息,及测量设备在确定测量目标在第一坐标系下的位置时确定的第二位置变化,这两部分信息,确定所述第一坐标系相对于第二坐标系的信息,可以灵活配置第一设备获取第一坐标系相对第二坐标系的信息的方式,进而灵活配置第一设备与测量设备间的交互信令,还可以减少测量设备在确定测量目标在第一坐标系下的位置时发送的信息,以适应更多的场景。
示例a4.1、第一设备为地图服务器,所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述地图服务器接收所述测量设备(例如由路边单元或者车辆作为测量设备)的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时第一坐标系相对于第二坐标系的历史信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息, 确定第一坐标系相对于第二坐标系的信息。
通过上述方法,测量设备发送第一坐标系相对于第二坐标系的历史信息的方式,相比发送第一坐标系相对于第二坐标系的信息的方式,可以使得地图服务器有效利用已获取的测量设备在第二坐标系下的历史位置,减少信息的发送。另外,通过测量设备主动发送的方式,无需第一设备请求,可以节省信令开销。
示例a4.2、第一设备为地图服务器,所述测量设备(例如由路边单元或者车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的历史信息;所述地图服务器从测量设备接收所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器从测量设备接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
通过上述方法,测量设备可以根据需要分别向地图服务器发送第一坐标系相对于第二坐标系的历史信息,和测量设备的第二位置变化信息,例如,第一坐标系相对于第二坐标系的历史信息可以是预先发送给地图服务器的,而测量设备的第二位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,也可以是一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向测量设备发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备测量历史目标的位置时所述测量设备在第二坐标系下的位置信息;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,测量设备才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免测量设备将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例a4.3、第一设备为地图服务器,所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述地图服务器从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器从测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置可以根据需要向地图服务器发送第一坐标系相对于第二坐标系的历史信息,测量设备可以根据需要,向地图服务器发送测量设备的第二位置变化信息,例如,第一坐标系相对于第二坐标系的历史信息可以是预先发送给地图服务器的,而测量设备的第二位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备测量历史目标的位置时所述测量设备在第二坐标系下的位置信息;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
进一步的,地图服务器向测量设备发送测量设备的第二位置变化信息查询请求;所述测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对历史位置的测量位置;所述测量设备的第二位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用地图服务器请求,测量设备才发送测量设备的第二位置变化信息的方式,可避免测量设备将测量设备的第二位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
示例b4.1,第一设备为测量设备(例如由路边单元或者车辆作为测量设备),所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述测量设备接收所述地图服务器发送的测量设备的第二位置变化信息;所述测量设备根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的历史信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,所述测量设备可以向所述地图服务器发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备历史位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,地图服务器才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免地图服务器将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b4.2、第一设备为测量设备(例如由路边单元或者车辆作为测量设备),所述测量设备中存储有第一坐标系相对于第二坐标系的历史信息;所述测量设备从存储器读取所述测量设备的所述第一坐标系相对于第二坐标系的历史信息;所述测量设备从存储器读取所述测量设备的第二位置变化信息;所述测量设备根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备分别存储第一坐标系相对于第二坐标系的历史信息和测量设备的第二位置变化信息,相比测量设备存储每次确定测量目标时,第一坐标系相对于第二坐标系的信息,尤其是存在多个第二坐标系的场景下,只需存储1个测量设备的第二位置变化信息,可以有效减少存储空间的占用。
示例b4.3、第一设备为测量设备(例如由路边单元或者车辆作为测量设备),所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述测量设备从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息;所述测量设备根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标 系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的历史信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,测量设备可以向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备历史位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例c4.1,第一设备为车载装置,所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述车载装置接收所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)发送的所述测量设备的第二位置变化信息;其中,所述测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述历史信息的差值;所述车载装置从所述地图服务器接收第一坐标系相对于第二坐标系的历史信息;所述车载装置根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
通过上述方法,车载装置通过地图服务器接收第一坐标系相对于第二坐标系的历史信息,通过测量设备接收测量设备的第二位置变化信息,可以使得信息的发送更加灵活,避免同时大量的发送信息,可能导致网络出现拥塞,从而车载装置可能延迟获取测量目标的位置,影响自动驾驶的性能。
进一步的,一种可能的实现方式,所述车载装置向所述地图服务器发送所述第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备在所述第二坐标系的历史位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c4.2、第一设备为车载装置,所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)中存储有第一坐标系相对于第二坐标系的初始信息;所述车载装置接收所述测量设备发送的所述测量设备的第二位置变化信息;其中,所述测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时测量设备的位置信息的差值;所述车载装置从测量设备接收第一坐标系相对于第二坐标系的历史信息;所述车载装置根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置通过测量设备分别接收第一坐标系相对于第二坐标系的历史信息,和测量设备的第二位置变化信息,可以使得信息的发送更加灵活,避免同时大量的发送信息,可能导致网络出现拥塞,从而车载装置可能延迟获取测量目标的位置,影响自动驾驶的性能。
进一步的,一种可能的实现方式,所述车载装置向所述测量设备发送所述第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备在所述第二坐标系的历史位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c4.3,第一设备为车载装置,所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述车载装置接收所述测量设备(例如由路边单元或者所述车载装置所在车辆以外的其他车辆作为测量设备)的以下至少一项:测量设备的第二位置变化信息,所述测量设备的标识,所述第二坐标系的标识;所述车载装置根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置可以有效利用已获取的测量设备在第二坐标系下的历史位置,减少信息的发送。另外,通过测量设备或地图服务器主动发送测量设备的第二位置变化信息的方式,无需车载装置请求,可以节省信令开销。
一种可能的实现方式,所述车载装置向所述测量设备发送所述测量设备的第二位置变化信息查询请求;或者,所述车载装置向所述地图服务器发送所述测量设备的第二位置变化信息查询请求;所述测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时相对历史位置的差值;所述测量设备的第二位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
通过上述方法,车载装置可以主动向地图服务器或测量设备发起查询请求,进而使得信息的发送更加灵活,也可避免地图服务器或测量设备将所述第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,或者,避免地图服务器或测量设备将测量设备的第二位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
进一步的,一种可能的实现方式,所述车载装置向所述地图服务器发送测量设备的第二位置变化信息查询请求;或者,所述车载装置向所述测量设备发送测量设备的第二位置变化信息查询请求;其中,测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时在所述第二坐标系的第一位置变化信息;测量设备的第二位置变化信息查询请求包括所述测量设备的标识和/或所述第二坐标系的标识。
通过上述方法,车载装置可以主动向地图服务器或测量设备发起查询请求,进而使得信息的发送更加灵活,也可避免地图服务器或测量设备将测量设备的第二位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
一种可能的设计,获取第一坐标系下的测量目标的位置的方式可以为:
方式1,通过传感器测量得到所述第一坐标系下的测量目标的位置。
示例A1,测量设备作为执行所述定位方法的第一设备,并且通过传感器测量得到所述第一坐标系下的测量目标的位置。
方式2,通过接收器接收所述第一坐标系下的测量目标的位置。
示例A2,第一设备为地图服务器,地图服务器通过接收器从测量设备接收所述第一坐标系下的测量目标的位置。
通过上述方法,可以使得地图服务器获得测量设备测得的第一坐标系下的测量目标的位置,便于地图服务器根据第一坐标系下的测量目标的位置,及地图服务器本身存储的第一坐标系相对第二坐标系的信息,将测量目标的位置转换至第二坐标系下,以满足车辆获取测量目标在第二坐标系的位置的需求。或者,地图服务器根据测量设备发送的第一坐标系下的测量目标的位置,可以向车载装置转发第一坐标系下的测量目标的位置,由车载设备作为执行所述定位方法的第一设备,可以更加灵活的发送相关信息,以适应更多场景。
进一步的,所述地图服务器还可以向所述测量设备发送第一坐标系下的测量目标的位 置查询请求;所述第一坐标系下的测量目标的位置查询请求用于查询所述测量设备与所述测量目标之间的相对位置关系。所述第一坐标系下的测量目标的位置查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
通过上述方法,地图服务器可以主动向测量设备发起查询请求,进而使得信息的发送更加灵活,也可避免测量设备将第一坐标系下的测量目标的位置发送给不相关的设备,保护了测量目标的隐私,减少信令的发送。
示例B2,第一设备为车载装置,车载装置通过接收器接收所述第一坐标系下的测量目标的位置。
示例B2.1,车载装置通过接收器接收地图服务器发送的所述第一坐标系下的测量目标的位置。
通过接收地图服务器发送的所述第一坐标系下的测量目标的位置,可以灵活的获取测量目标在第一坐标系下的位置,并不限于测量设备发送给车载装置,可以通过地图服务器进行有效的分流,有利于实现资源的有效利用。
进一步的,所述车载装置可以向所述地图服务器发送待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;所述地图服务器从所述车载装置接收目标位置查询请求;所述地图服务器根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
通过上述方法,车载装置可以向地图服务器主动发起待识别对象第一坐标系下的位置查询请求,进而使得地图服务器确定待识别对象,及待识别对象对应的测量目标在第一坐标系下的位置,以避免地图服务器发送向无关的设备发送第一坐标系下的测量目标的位置。
示例B2.2,车载装置通过接收器接收测量设备(测量设备例如为路边单元或者车辆内的测量设备)发送的所述第一坐标系下的测量目标的位置。
通过接收测量设备发送的所述第一坐标系下的测量目标的位置,可以直接获取测量目标在第一坐标系下的位置,有利于减少时延,提高第一坐标系下的测量目标的位置信息的获取速度。
进一步的,所述车载装置向所述测量设备发送待识别对象在第一坐标系的位置查询请求;所述待识别对象在第一坐标系的位置请求用于查询所述待识别对象在第一坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第一坐标系的位置查询请求包括所述测量设备的标识。所述测量设备从所述车载装置接收待识别对象在第一坐标系的位置查询请求;所述测量设备根据所述待识别对象在第一坐标系的位置查询请求,确定所述待识别对象至少包括所述测量目标。
通过上述方法,车载装置可以主动向测量设备发起待识别对象第一坐标系下的位置查询请求,进而使得测量设备确定待识别对象,及待识别对象对应的测量目标在第一坐标系下的位置,以避免测量设备发送向无关的设备发送第一坐标系下的测量目标的位置。
一种可能的设计,车载装置还可以通过接收器接收所述第二坐标系下的测量目标的位置。
示例a,所述地图服务器向车载装置发送第二坐标系下的测量目标的位置、所述第二 坐标系的标识、所述测量设备的标识中的至少一项。进而,车载装置接收地图服务器发送的第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
通过地图服务器向车载装置发送第二坐标系下的测量目标的位置,使得车载装置直接利用地图服务器确定第二坐标系下的测量目标的位置,无需车载装置进一步确定第二坐标系下的测量目标的位置,减少了车载装置的处理的复杂度,减少车载装置的响应时间,提高车载装置自动驾驶的安全性。
进一步的,车载装置可以向地图服务器发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。所述地图服务器从所述车载装置接收待识别对象在第二坐标系下的位置查询请求;所述地图服务器根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。进而,地图服务器向车载装置返回第二坐标系下的测量目标的位置。具体的地图服务器获取第二坐标系下的测量目标的位置的方式可以参考上述实施例,在此不再赘述。
从而,车载装置可以根据需要,主动向地图服务器发送待识别对象在第二坐标系下的位置查询请求,避免地图服务器发送第二坐标系下的测量目标的位置不及时,导致的无法及时对目标相对自车的距离做出对应的驾驶操作,影响自动驾驶的安全性。
示例b,所述测量设备(测量设备例如为路边单元或者车辆内的测量设备)向车载装置发送所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识的至少一项。进而,车载装置接收测量设备发送的第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
通过测量设备向车载装置发送第二坐标系下的测量目标的位置,使得车载装置直接利用测量设备确定第二坐标系下的测量目标的位置,无需车载装置进一步确定第二坐标系下的测量目标的位置,减少了车载装置的处理的复杂度,减少车载装置的响应时间,提高车载装置自动驾驶的安全性。
进一步的,车载装置向测量设备发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。所述测量设备从所述车载装置接收待识别对象在第二坐标系下的位置查询请求;所述测量设备根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。进而,测量设备向车载装置返回第二坐标系下的测量目标的位置。具体的测量设备获取第二坐标系下的测量目标的位置的方式可以参考上述实施例,在此不再赘述。
一种可能的实现方式,所述第一坐标系相对第二坐标系的信息包括以下至少一项:
所述测量设备在第二坐标系的位置信息,及所述测量设备在所述第二坐标系的姿态信息;位置信息包括以下至少一项:测量设备在所述第二坐标系中的坐标位置或所述测量设备的外边线顶点在所述第二坐标系中的位置;所述姿态信息包括以下至少一项:所述测量设备在第二坐标系中的偏航角、俯仰角或横滚角。
一种可能的实现方式,所述测量目标在第一坐标系下的位置信息包括以下至少一项:
测量目标在第一坐标系下的位置信息;所述位置信息包括以下至少一项:测量目标在所述第一坐标系中的坐标位置或所述测量目标的外边线顶点在所述第一坐标系中的位置;
测量目标在第一坐标系下的姿态信息;所述姿态信息包括以下至少一项:所述测量目标在第一坐标系中的偏航角、俯仰角或横滚角。
一种可能的实现方式,所述旋转信息包括:第二坐标系到第一坐标系的旋转矩阵、第一坐标系到第二坐标系的旋转矩阵、第一坐标系在第二坐标系下的欧拉角、第二坐标系在第一坐标系下的欧拉角、第二坐标系到第一坐标系的旋转向量、第一坐标系到第二坐标系的旋转向量、第二坐标系到第一坐标系的旋转四元数或第一坐标系到第二坐标系的旋转四元数中的至少一项。
第二方面,本申请实施例提供一种定位装置,包括:
获取单元,用于获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;
确定单元,用于根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
一种可能的设计,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
一种可能的设计,所述装置用于地图服务器、路边单元或者车。
一种可能的设计,所述获取单元获取第一坐标系相对于第二坐标系的信息包括:从存储器读取所述第一坐标系相对于第二坐标系的信息;或者,接收所述第一坐标系相对于第二坐标系的信息。
一种可能的设计,所述获取单元,具体用于:
获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;
获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;
根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
一种可能的设计,所述获取单元获取第一坐标系下的测量目标的位置包括:通过传感器测量得到所述第一坐标系下的测量目标的位置;或者,接收所述第一坐标系下的测量目标的位置。
一种可能的设计,所述旋转信息包括:第二坐标系到第一坐标系的旋转矩阵、第一坐标系到第二坐标系的旋转矩阵、第一坐标系在第二坐标系下的欧拉角、第二坐标系在第一坐标系下的欧拉角、第二坐标系到第一坐标系的旋转向量、第一坐标系到第二坐标系的旋转向量、第二坐标系到第一坐标系的旋转四元数或第一坐标系到第二坐标系的旋转四元数中的至少一项。
一种可能的设计,所述获取单元获取第一坐标系相对于第二坐标系的信息包括:获取 所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。
关于第二方面或各种可能的实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,本申请实施例提供一种定位装置,应用于地图服务器,该定位装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储程序和指令。所述存储器与处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括接口电路,所述接口电路用于该装置与其它设备进行通信,示例的,所述接口电路可以是收发器、电路、总线、模块或其它类型的接口电路。示例性地,所述定位装置为地图服务器,或者为设置在地图服务器中的芯片。其中,收发器例如通过地图服务器中的天线、馈线和编解码器等实现,或者,如果所述定位装置为设置在地图服务器中的芯片,那么接口电路例如为芯片中的通信接口,该通信接口与地图服务器中的射频收发组件连接,以通过射频收发组件实现信息的收发。关于第三方面或各种可能的实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第四方面,本申请实施例提供一种定位装置,应用于测量设备,示例性的,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。所述测量设备可以为路边单元,也可以是应用于路边单元中的芯片,也可以是路边单元内的测量装置,或者,应用于路边单元内的测量装置中的芯片,所述测量设备也可以为具有测量设备功能的车辆,应用于具有测量设备功能的车辆中的芯片,或者,所述测量设备也可以为具有测量设备功能的车辆的测量装置,应用于具有测量设备功能的车辆中的测量装置的芯片,或者是车载装置中具有测量设备功能的组合器件、部件,或者其他具有测量设备功能的组合器件、部件等。该定位装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储程序和指令。所述存储器与处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括接口电路,所述接口电路用于该装置与其它设备进行通信,示例的,所述接口电路可以是收发器、电路、总线、模块或其它类型的接口电路。示例性地,所述定位装置为测量设备,或者为设置在测量设备中的芯片。其中,收发器例如通过测量设备中的天线、馈线和编解码器等实现,或者,如果所述定位装置为设置在测量设备中的芯片,那么接口电路例如为芯片中的通信接口,该通信接口与测量设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。关于第四方面或各种可能的实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第五方面,本申请实施例提供一种定位装置,应用于车辆或具有车载装置的车辆,包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储程序和指令。所述存储器与处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面描述的方法。所述装置还可以包括接口电路,所述接口电路用于该装置与其它设备进行通信,示例的,所述接口电路可以是收发器、电路、总线、模块或其它类型的接口电路。示例性地,所述定位装置为车辆,或者为设置在地车辆中的芯片。其中,收发器例如通过车辆中的天线、馈线和编解码器等实现,或者,如果所述定位装置为设置在车辆中的芯片,那么接口电路例如为芯片中的通信接口,该通信接口与车辆中的射 频收发组件连接,以通过射频收发组件实现信息的收发。关于第五方面或各种可能的实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第六方面,提供一种通信系统,该通信系统包括第三方面所述的定位装置、第四方面所述的定位装置或第五方面所述的定位装置。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,使得所述定位装置执行上述第一方面或任意一种可能的实施方式中所述的方法。
第九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在处理器上运行时,使得所述定位装置执行上述第一方面或任意一种可能的实施方式中所述的方法。
附图说明
图1A-1B为本申请实施例的一种应用架构示意图;
图2为本申请实施例的一种应用场景的示意图;
图3为本申请实施例中定位方法的流程图;
图4为本申请实施例中定位方法的流程图;
图5为本申请实施例中定位方法的流程图;
图6为本申请实施例中定位方法的流程图;
图7为本申请实施例中定位方法的流程图;
图8为本申请实施例中定位方法的流程图;
图9为本申请实施例中定位方法的流程图;
图10为本申请实施例中定位方法的流程图;
图11为本申请实施例中定位方法的流程图;
图12为本申请实施例中定位方法的流程图;
图13为本申请实施例提供的定位装置的结构框图;
图14为本申请实施例提供的定位装置的结构框图。
具体实施方式
为了便于理解,对本申请实施例涉及的术语进行解释说明,该术语的解释说明也作为对本申请实施例发明内容的一部分。
1)车载装置,例如车载单元(on board unit,OBU),一般安装在车辆上,在ETC系统中,路边架设路侧单元(road side unit,RSU),OBU可以与RSU进行通信,例如可以通过微波来通信。在车辆通过RSU时,OBU和RSU之间可以使用微波进行通信。在电子收费(electronic toll collection,ETC)系统中,OBU采用专用短距离通信(dedicated short range communications,DSRC)技术,与RSU建立微波通信链路,在车辆行进的途中,在不停车的情况下,可以实现车辆的身份识别或电子扣费等过程。
或者,除了OBU之外,车载装置也可以是其他的安装在车上的装置。例如,如下介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载装置,或者称为车载装置。本车的车载系统可以至少包括车辆、车载网络、以及车载装置。车载装置包括各种传感器、GNNS接收模块等。
终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)路侧装置,例如路边单元(road side unit,RSU),可以是支持车到一切(vehicle-to-everything,V2X)应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。或者,路侧装置也可以是设置在路侧或其他地点的其他装置。
在自动驾驶应用场景中,路边单元(RSU)或其他车辆使用传感器探测周边的道路环境,把探测到的道路环境中的目标(包括障碍物和交通参与者,例如车辆、行人)及其位置通知给自动驾驶车辆或具有辅助驾驶功能的车辆,从而增强这些车辆对周边目标的感知能力,扩展车辆的探测范围。RSU能够获得较高精度的目标位置,从而增强这些车辆的感知精度,其他车辆也能获得前方道路的目标位置。
3)电子地图,也称为数字地图,是利用计算机技术,以数字方式存储和查阅等的地图。例如,导航地图和高精度地图。导航地图,是面向驾驶员使用的地图数据,是一种提供道路级导航功能的电子地图(或数字地图),具有地图显示、位置定位、道路引导的功能。通常精度达到米级。高精度地图,是面向自动驾驶汽车使用的地图数据(含车道、道路、交通标志牌、交通信号灯、定位图层等信息),是一种提供高精度的定位功能、道路级和车道级的规划和引导功能的电子地图。高精度地图的精度可以达到厘米级。不仅有高精度的坐标信息,同时还有准确的路况信息,例如车道的长宽、坡度、曲率等数据。电子 地图可以存储在地图服务器中,也可以存储于车载装置或路侧装置中,在此不做限定。存储有高精度地图的地图服务器可以将这些目标位置(或地物位置)传递给具有自动驾驶或辅助驾驶功能的车辆(“ego-car”),可以提高车辆的安全顺畅的自动驾驶体验。
基于不同绘图来源的高精度地图,其坐标系可能存在差异,或者高精度地图中的测量精度等存在不同等原因,高精度地图中的地图数据可能存在无法兼容的问题,因此,本申请中,可以通过不同绘图来源的高精度地图的标识,区分同绘图来源的高精度地图。例如,第一绘图来源的第一高精度地图的标识表示为M1,第二绘图来源的第二高精度地图的标识表示为M2,进而,基于不同高精度地图对应的坐标系也可以通过标识进行区分,例如,第一绘图来源的第一高精度地图的坐标系标识表示为M1-CS,第二绘图来源的第二高精度地图的坐标系标识表示为M2-CS。
电子地图的坐标系可以为地心坐标系(GCS),也称为全球绝对坐标系,例如,1984世界大地坐标系统(WorldGeodetic System 1984,WGS84),也可以为参心坐标系(reference-ellipsoid-centric coordinate system,RECCS),2000国家大地坐标系(China Geodetic Coordinate System 2000,CGCS2000),北京54坐标系(BJZ54)。本申请实施例并不限定电子地图采用的坐标系。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一道路和第二道路,只是为了区分不同的道路,而并不是表示这两种道路的优先级或者重要程度等的不同。
由于自动驾驶是基于车辆与其他的通讯(Vehicle-to-Everything,V2X)。在图1A所示的网络架构中,侧行传输链路SL为短距离通信方式,一般覆盖距离为1000米以内,可实现车辆之间、车辆与RSU、车辆与行人/非机动车等之间的通信。Uu空口是车辆与网络设备或其它实体之间的通信接口,可以实现车辆与网络设备的通信。比如,车辆可通过接入网络设备与核心网设备进行通信,车辆与接入网设备之间可通过Uu空口进行连接,接入网设备与核心网设备之间可通过有线方式进行连接。通过接入网设备,核心网设备可以实现和任一车辆或路边基础设施之间的通信,实现车到网络到一切(vehicle to network to everything,V2N2X)的场景。其中,V2X包括车辆与其它车辆(Vehicle-to-Vehicle,V2V)、车辆与路边基础设施(Vehicle-to-Infrastructure,V2I)、车辆与网络(Vehicle-to-Network,V2N)及车辆与行人(Vehicle-to-Pedestrian,V2P)之间的通讯,涉及道路安全、交通效率和智能交通系统等增值应用的实时通讯。通过V2X通讯,车辆可实现与周围环境之间的数据交换,车辆可以相互之间实现互动,车辆可与行人所携带的便携UE实现互动,车辆还可与一定范围内的交通灯等周围基础设施进行互动。通过这些互动,车辆可获得实时路况、道路信息、行人信息等一系列信息,并根据实际情况对驾驶过程做出相应提示/控制,如前 方碰撞警告、十字路口让行、特殊车辆让行、交通堵塞提示等,从而提升道路安全性、提高交通效率。
举例来说,如图1A所示,为本申请实施例适用的一种网络架构,包括:第一车辆101、第二车辆102、RSU103、非机动车/行人104、车联网V2X服务器105或网络设备106中的一个或多个。
其中,第一车辆101与第二车辆102之间可通过侧行链路(sidelink,SL)连接,第一车辆101与第二车辆102之间的通信,可称为车到车(vehicle to vehicle,V2V)通信,第一车辆101与第二车辆102之间的连接,可称为V2V连接,V2V表示不同车辆之间的连接。第一车辆101与RSU103之间可通过SL连接,第一车辆101与RSU103之间的通信可称为车到基础设施(vehicle to infrastructure,V2I)通信,第一车辆101与RSU103之间的连接,可称为V2I连接,V2I表示车辆到道路基础设施的连接,例如,车辆到红绿灯等。第一车辆101与非机动车/行人104之间可通过SL连接,第一车辆101与非机动车/行人104之间的通信可称为车到行人(vehicle to pedestrian,V2P)通信,第一车辆101与非机动车/行人104之间的连接,称为V2P连接,V2P可表示车辆到行人、非机动车的连接。第一车辆101通过网络设备106与V2X服务器105连接。例如,第一车辆101与网络设备106可通过Uu空口连接,网络设备106与V2X服务器105之间可通过有线或无线方式相连,有线方式可为太网(ethernet)网络或光纤网络等,无线方式可为Uu空口等,不作限定。第一车辆101与网络设备106之间的通信可称为车到网络(vehicle to network,V2N)通信,第一车辆101与网络设备106之间的连接,可称为V2N连接,V2N可表示车辆到网络的连接。
可选的,在图1A所示的网络架构中,第二车辆102与V2X服务器105之间可通过网络设备106连接。V2X服务器105可通过有线方式或无线方式与RSU103连接,用于对RSU103进行管理和控制。在本申请中,V2X服务器105可以为基于高精度地图的服务器,用于管理高精度地图中的各对象(例如,第一车辆101,第二车辆102,RSU103)在高精度地图中的位置信息。具体的,V2X服务器105可以通过如下的一种或如下多种方式的任意组合来获得测量目标(待确定位置信息的对象)在高精度地图中的位置信息:通过设置在路侧的感知装置获得测量目标的位置信息;其中,感知装置例如为传感器等,感知装置能够获得道路的信息和/或所述道路上的对象的信息。感知装置可以是路侧装置或车载装置的组成部分,例如是路侧装置或车载装置的功能单元,或者感知装置和路侧装置或车载装置也可以是彼此独立的不同的装置,感知装置能够与路侧装置或车载装置通信。无论感知装置是否是路侧装置或车载装置的组成部分,感知装置都可以设置在路侧装置或车载装置上,或者,感知装置也可以与路侧装置或车载装置独立设置,例如感知装置可以在路侧分散设置,以采集更为丰富的信息。或,接收来自道路上的至少一个车辆的位置信息。还可以通过云服务器获得测量目标的位置信息;云服务器例如是设置在交通管理部门的服务器等,具体不做限制。
图1A仅为示例性说明,并不作为对本申请的限定。比如,图1A所示的架构中,RSU可替换为道路基础设施等。或者,还可包括其它数量的车辆、非机动车/行人和RSU等。或者,V2X服务器可通过Uu空口直接和第一车辆101和第二车辆102连接等,不作限定。
图1B示出了本申请实施例适用的另一种网络架构,包括:V2X服务器105,网络设备106、测量设备2021和车载装置2022。测量设备2021可以为图1A中的第一车辆101、 第二车辆102、RSU103中的任一种。车载装置2022可以为图1A中的第一车辆101、第二车辆102中的任一种。为描述方便,以测量设备2021为测量目标的位置的设备,车载装置2022为请求测量目标的位置信息的设备(例如,车辆)为例进行说明。
测量设备2021与V2X服务器105之间,车载装置2022与V2X服务器105之间可通过网络设备106的Uu空口资源进行数据传输。数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备向终端设备发送数据,上行数据(如PUSCH携带的数据)传输可以指终端设备向网络设备发送数据。数据可以是广义的数据,比如可以是用户数据,也可以是系统信息,广播信息,或其他的信息等。在图1B所示的网络架构中,测量设备2021和车载装置2022之间也可以通过侧行链路(sidelink,SL)资源进行数据传输,与空口资源类似,侧行链路资源也可以包括时域资源、频域资源、码域资源中至少一个。具体来说,车载装置2022和测量设备2021进行数据传输的物理信道可以包括物理侧行链路共享信道(physical sidelink shared channel,PSSCH)和/或物理侧行链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH用于传输数据,PSCCH用于传输控制信息,比如调度分配(scheduling assignment,SA)信息。需要说明的是,本申请实施例可应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)系统;第五代(5th generation,5G)通信系统,例如新无线(new radio,NR)系统;或未来各种演进的通信系统等,例如物联网、车联网、第六代(6th generation,6G)通信系统等,不作限定。图1B示例出了一个网络设备和两个设备。可选的,该网络架构还以包括多个网络设备并且在一个网络设备的覆盖范围内可以包括其它数量的设备,本申请实施例对此不作限定。
基于图1A-图1B所示的网络架构,本申请提供一种应用场景:在辅助驾驶或自动驾驶场景中,行驶车辆需要对周边的环境进行感知。为了能够保持安全的行车环境,行驶车辆需要了解周边车辆的状态信息,如位置信息等。比如,行驶车辆可通过安装在车辆上面的车辆传感器探测得到周边车辆的位置信息。再比如,行驶车辆可以通过V2X的方式获取周边车辆的位置信息。当然,行驶车辆还可以通过V2X服务器获取周边车辆在高精度地图中的位置信息。之后,驾驶车辆基于获取到的周边环境的距离等信息,结合自身车姿等相关信息,可以为辅助驾驶或自动驾驶的功能规划出可能的行驶路径,并结合车辆动力学模型给出相应的控制命令,并交给执行器来执行,从而完成辅助驾驶和自动驾驶的功能。
在一种可能的方案中,以测量设备为RSU103为例,RSU103可周期性上报测量的测量目标的位置信息,以告知车载装置或V2X服务器。测量目标可以为车辆、非机动车/行人和RSU等任一种。车载装置或V2X服务器可以通过上报的消息可以获知测量目标的位置信息,比如实时的位置等,从而进行路径规划和控制等。以第一车辆101为测量目标为例,RSU103可周期性上报测量的第一车辆101的位置信息,以告知第二车辆102和V2X服务器105,第二车辆102和V2X服务器105可以通过上报的消息可以获知第一车辆101的位置信息。当然,还可以为第二车辆102或V2X服务器105向RSU103发送第一车辆101的位置信息查询请求,以使RSU103对第一车辆101进行位置的测量,进而获得第一车辆101相对RSU103的位置信息。
在另一种可能的方案中,车载装置可以为测量目标的相邻车辆,例如,第二车辆102可以对第一车辆101相对第二车辆101的位置进行测量,第二车辆102可周期性上报第一车辆101相对第二车辆101的位置信息,以告知V2X服务器105或车载装置,V2X服务 器105或车载装置可以通过第二车辆102上报的消息可以获知第一车辆101相对第二车辆101的位置信息,从而对车载装置进行路径规划和控制等。
如图2所示,为本发明实施例提供的定位方法的一种典型的应用场景的示意图,其中:本车301是行驶于道路A上车辆,其需要获知前方的被测物体302的精确位置信息,以便提供给本车301上的自动驾驶系统执行决策和控制,其中,被测物体302典型地为移动于道路A上的其他车辆或行人,也可以为其他移动物体;测量设备303用于测量被测物体302的位置,测量设备303典型地为路边单元RSU,也可以为其他车辆或移动终端等其他具有测量功能的设备;云端的地图服务器304存储有高精度地图;可获取本车301在所述高精度地图下的位置信息,为了得到较精确的被测物体302与本车301之间的相对位置信息,本发明实施例将测量设备303测量得到的被测物体302的位置信息转换为所述高精度地图下的位置信息,具体来说,基于测量设备在所述高精度地图下的位置和姿态,确定所述转换方式。本发明实施例能够克服基于高精度地图定位的本车定位偏移与基于未使用高精度地图的测量设备303探测的被测物体302偏移之间的不一致,所导致的本车定位位置与目标位置的相对距离的估计存在较大偏差的技术问题。
如图3所示,定位方法包括:
步骤S301:第一设备获取第一坐标系相对于第二坐标系的信息。
其中,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定。
本申请实施例中,一种可能的设计,可以通过获取所述测量设备的标识,进而根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。其中,所述测量设备的标识可以包括以下一项或多项:测量设备在第二坐标系中的编号,或测量设备的唯一编号。从而,通过测量设备的标识,以确定测量设备在第二坐标系下的位置信息,进而确定第一坐标系相对第二坐标系的信息,以区分不同地图使用的坐标系间采用的第二坐标系不同,进而有效区分第一坐标系相对第二坐标系的信息不同,进而提高不同地图坐标系下测量目标相对自身车辆的相对位置的精度。
以测量设备为RSU为例,为描述方便,第一坐标系可以为RSU相对自身为原点建立的坐标系(RSU-LCS坐标系),地图使用的第二坐标系可以为第一高精度地图坐标系(M1-CS)。因此,第一坐标系相对于第二坐标系的信息可以为测量设备在确定测量目标在第一坐标系下的位置时,测量设备相对第一高精度地图坐标系的坐标变换信息。坐标变换信息可以为测量设备所在的LCS坐标系相对于第一高精度地图坐标系(M1-CS)的坐标变换信息。
举例来说,可以通过RSU的中心点、自身坐标系原点、或RSU外边线顶点的一种作为RSU在坐标系中的位置点,将RSU的位置点作为RSU-LCS坐标系的原点。此时,RSU在RSU-LCS坐标系中的位置信息可以包括以下一项或多项:RSU在RSU-LCS坐标系下的坐标信息,RSU在RSU-LCS坐标系下的初始旋转信息(例如,水平角、俯仰角等,为描述简便,可以将RSU的初始姿态作为RSU-LCS坐标系的坐标轴,即初始旋转信息为0)。由于RSU在RSU-LCS坐标系下的坐标为原点,因此,RSU在RSU-LCS坐标系中的位置信息即为RSU-LCS坐标系的原点位置信息。当然,RSU-LCS坐标系也可以不以RSU为原 点建立坐标系,此时,RSU在RSU-LCS坐标系下的坐标信息不为原点。RSU坐标系的建立方式可以包括多种方式,在此不限定。
为描述简便,以下以RSU-LCS坐标系原点为RSU为例进行说明。此时,在第一高精度地图M1-CS的第二坐标系中,RSU的位置信息可以包括RSU在M1-CS的第二坐标系中的坐标位置信息,及RSU在M1-CS的第二坐标系中的旋转信息。其中,RSU在M1-CS的坐标系中的坐标位置信息可以表示为RSU-LCS坐标系原点在M1-CS的坐标系中的坐标位置信息,RSU在M1-CS的坐标系中的旋转信息可以表示为RSU-LCS坐标系原点在M1-CS的坐标系中的旋转信息,即RSU-LCS坐标轴相对M1-CS的坐标轴的旋转信息。
基于坐标变换原理,第一坐标系(RSU-LCS)和第二坐标系(第一高精度地图M1-CS的)间的坐标变换可以通过平移变换和/或旋转变换实现。即,RSU-LCS坐标系相对M1-CS的坐标系的坐标变换信息,可以包括以下至少一项:RSU-LCS坐标系相对M1-CS的坐标系平移变换信息,RSU-LCS坐标系相对M1-CS的坐标系的旋转变换信息。
1)RSU-LCS坐标系在M1-CS下的平移变换信息可以表示为:RSU-LCS坐标系原点在M1-CS坐标系下的坐标位置(p RSU) M1-CS,或RSU-LCS坐标系到M1-CS坐标系的平移向量。
一种可能的设计,在测量设备的坐标位置为固定的场景中(例如,测量设备为RSU,测量设备的坐标位置可以是固定的),LCS坐标系原点相对M1-CS坐标系的平移变换信息为固定值,因此,可以将该固定值称为LCS坐标系原点相对M1-CS坐标系的初始平移变换信息,并将初始平移变换信息作为测量设备的初始信息中的一项预先存储在服务器或测量设备中,其他设备可以向服务器或测量设备通过发送测量设备在第一高精度地图的初始位置查询请求的方式获取。
一种可能的设计,在测量设备的坐标位置为不固定的场景中(例如,测量设备为RSU,测量设备的坐标位置可以随着不同高精度地图存在变化),LCS坐标系在M1-CS下的平移变换信息随着测量设备的移动而随之变化,因此,需要测量设备在获得测量目标的测量值时,上报测量设备在确定测量目标在第一坐标系下的位置时,上报LCS坐标系原点在M1-CS坐标系下的坐标位置(p 301) M1-CS,或LCS坐标系到M1-CS坐标系的平移向量。一种可能的方式,LCS相对M1-CS坐标系的平移变换信息可以作为测量目标的测量值中的一项,随RSU上报的测量信息一起发送,也可以单独发送,在此不做限定。
2)LCS坐标系相对M1-CS坐标系的旋转变换信息可以包括以下至少一项:LCS坐标系相对M1-CS坐标系的欧拉角(α,β,γ),或LCS坐标系到M1-CS坐标系的旋转四元数;或LCS坐标系到M1-CS坐标系的旋转向量,或LCS坐标系到M1-CS坐标系的旋转矩阵
Figure PCTCN2020077297-appb-000001
另一种表示方式,可以为M1-CS坐标系相对LCS坐标系的欧拉角(α,β,γ),或M1-CS坐标系到LCS坐标系的旋转向量,或M1-CS坐标系到LCS坐标系的旋转四元数;或M1-CS坐标系到LCS坐标系的旋转矩阵
Figure PCTCN2020077297-appb-000002
其中,欧拉角:一组用于确定定点转动刚体位置的3个独立角参量(α,β,γ),由章动角、旋进角和自转角组成。
旋转矩阵:由LCS坐标系相对M1-CS坐标系的欧拉角,可以得到的LCS坐标系到坐标系M1-CS坐标系的旋转矩阵,或M1-CS坐标系到坐标系LCS坐标系的旋转矩阵。
其中,旋转矩阵可以通过旋转四元数表示。其中,旋转四元数可以表示为q=[s,v] T,与旋转矩阵
Figure PCTCN2020077297-appb-000003
的关系如下:
R=vv T+s 2I+2sv^+(v^) 2
旋转矩阵可以通过旋转向量表示。其中,旋转向量可以表示为由旋转轴n(n是一个向量)和旋转角θ构成,即旋转向量为θn;旋转向量与旋转矩阵
Figure PCTCN2020077297-appb-000004
的关系如下:
R=cosθI+(1-cosθ)nn T+sinθn^
其中n T表示n的转置。
Figure PCTCN2020077297-appb-000005
n=[n1,n2,n3] T
Figure PCTCN2020077297-appb-000006
n是R的最大特征值对应的特征向量。
因此,根据LCS坐标系相对M1-CS坐标系的欧拉角、旋转向量、旋转四元数中的一项或多项,可以计算出旋转矩阵
Figure PCTCN2020077297-appb-000007
一种可能的设计,在测量设备的姿态为固定的场景中,LCS坐标系在M1-CS下的旋转变换信息为固定值,可以将该为固定值作为测量设备的初始信息中的初始旋转信息预先存储至服务器或测量设备,不需要服务器或测量设备通过发送请求的方式获取,为描述方便,下面可以将在建立LCS坐标系相对M1-CS的坐标系的坐标变换信息时,测量设备在M1-CS的坐标系中的姿态信息称为测量设备在M1-CS的坐标系中的初始旋转信息。在具体实施过程中,测量设备在M1-CS的坐标系中的初始旋转信息可以作为测量设备的初始信息中的一项预先存储在地图服务器或测量设备中。
一种可能的设计,测量设备的姿态为不固定的场景中,LCS坐标系在M1-CS下的旋转变换信息随着测量设备测量目标的位置而随之变化,因此,需要测量设备在获得测量目标的测量值时,还需上报测量设备在确定测量目标在第一坐标系下的位置时,测量设备的旋转变换信息,例如,在确定测量目标在第一坐标系下的位置时,测量设备的旋转信息或测量设备的旋转差分信息。
其中,测量设备的旋转信息可以为在确定测量目标在第一坐标系下的位置时,LCS坐标系在M1-CS下的旋转变换信息。旋转差分信息可以为在确定测量目标在第一坐标系下的位置时,LCS坐标系相对测量设备在初始位置时对应的LCS坐标系的旋转信息,进而,可以通过测量设备在M1-CS的坐标系中的初始旋转信息及测量设备的旋转差分信息,确定测量设备在M1-CS坐标系下的旋转信息。例如,LCS坐标系在初始位置时,初始旋转信息对应的欧拉角为[0,0,90],测量设备在确定测量目标在第一坐标系下的位置时,水平方向沿逆时针旋转了30度,此时,测量设备相对初始位置的欧拉角,自转角增加30度,即,旋转差分信息对应的欧拉角为[0,0,30],测量设备的旋转信息可以根据初始旋转信息和旋转差分信息确定,即测量设备的旋转信息对应的欧拉角为[0,0,120]。
另一种可能的方式,测量设备的旋转差分信息可以为测量设备相对上一次上报的姿态信息的旋转差分信息。进而,可以通过测量设备上一次上报的旋转差分信息,确定出上一次测量设备在M1-CS的坐标系中的旋转信息;根据上一次测量设备在M1-CS的坐标系中旋转信息测量设备当前上报的旋转差分信息,确定LCS坐标系原点在M1-CS坐标系下的旋转信息。例如,LCS坐标系在上一次上报位置信息时,旋转信息对应的欧拉角为[0,0,120], 测量设备在确定测量目标在第一坐标系下的位置时,水平方向沿逆时针旋转了30度,此时,测量设备相对初始位置的欧拉角,自转角增加30度,即,旋转差分信息对应的欧拉角为[0,0,30],测量设备的旋转信息可以根据上一次上报的旋转信息和旋转差分信息确定,即测量设备的旋转信息对应的欧拉角为[0,0,150]。
综上,通过确定LCS坐标系相对M1-CS坐标系的坐标变换信息,可以将LCS坐标系中测量的测量目标的位置信息转换至M1-CS坐标系下的测量目标的位置信息。
步骤S302:第一设备获取第一坐标系下的测量目标的位置。
其中,所述第一坐标系下的测量目标的位置为所述测量设备测量得到,即获得测量目标相对测量设备的位置信息(q target) LCS
步骤S303:第一设备根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
具体的,可以根据坐标变换,将测量设备测量的测量目标在LCS坐标系下的位置信息(q target) LCS转换为M1-CS下的测量目标的位置信息(p target) M1-CS
具体的,可以按照如下方法,进行坐标转换:
Figure PCTCN2020077297-appb-000008
其中,以上述旋转矩阵为例,旋转矩阵为根据测量设备在第一高精度地图中的初始旋转矩阵,及测量设备在确定测量目标在第一坐标系下的位置时的旋转差分信息确定的,或者,旋转矩阵为根据测量设备在第一高精度地图中旋转信息确定的。
第一车辆V1基于高精度地图进行车辆定位。例如,根据第一高精度地图提供的在第一高精度地图坐标系(M1-CS)下的定位图层信息、以及第一车辆V1采集的周边环境信息,进行视觉定位,估计出在高精度地图坐标系(M1-CS)下第一车辆V1的定位位置p ego-car
在高精度地图的制作过程中,由于感知装置(例如RSU或设置有感知装置的设备)的测量精度等原因,在第一高精度地图坐标系(M1-CS)下,地物在第一高精度地图中的位置与其真实位置之间可能产生绝对偏移Δ 0。例如,第一高精度地图中的道路A在第一高精度地图中的位置相对于该道路A的真实位置向右有0.5m到1m的偏移,第一高精度地图中的RSU在第一高精度地图中的位置相对于RSU的真实位置向右有0.5m到1m的偏移。因此,基于第一高精度地图定位的第一车辆V1的定位位置p ego-car也会至少产生绝对偏移Δ 0的测量误差。另外,由于天气条件和测量设备的精度所限,RSU基于自身的坐标系探测到的第二车辆V2相对RSU的位置q target也会产生偏移Δ’。其中,Δ’不受高精度地图制图的绝对偏移Δ 0的影响,所以Δ’与Δ 0互相独立无关。例如:Δ’=+0.5m(表示向右偏0.5m);Δ 0=0m(表示不偏移)。两个偏移不一致,就会导致第一车辆V1的定位位置p ego-car与第二车辆V2相对RSU的位置q target间的相对位置的误差至少包括:Δ 0和Δ’,进而,第一车辆V1的定位位置p ego-car与第二车辆V2的位置p target间的相对位置的误差至少包括:2Δ 0+Δ’,因此,增大了第一车辆V1与第二车辆V2的相对位置估计的误差,不利于第一车辆获得安全顺畅的自动驾驶体验。
综上,在对当前车辆进行路径规划和安全威胁分析等过程中,当前车辆需要使用环境中各对象的位置等信息,例如,确定第一车辆与第二车辆间的相对位置,通过坐标转换得到的M1-CS下的测量目标的位置信息(p target) M1-CS与第一高精度地图M1-CS坐标系相适应,进而可以有效减少车载装置与测量目标间的相对位置的估计误差。
本申请实施例中,第一设备可以是图2中本车301或者本车301中的部件;所述第一 设备还可以是图2中的测量设备303,例如为路边单元RSU、其他车辆或者其他车辆中的部件;所述第一设备还可以是图2中的地图服务器304。第一设备在获得第一坐标系相对于第二坐标系的信息,及第一坐标系下的测量目标的位置后,可以根据第一坐标系相对于第二坐标系的信息,将第一坐标系下的测量目标的位置,转换至第二坐标系下的测量目标的位置。由于地图使用的坐标系为第二坐标系,因此,通过上述方法,可以确定第二坐标系下的测量目标的位置与车辆的位置,进而可以使得车辆获取测量目标相对自身车辆的相对位置,避免由于测量目标采用的测量设备使用的坐标系,车辆采用地图的坐标系,导致的测量目标相对自身车辆的相对位置误差较大,影响自动驾驶的安全性。
下面根据具体的场景描述本申请的具体实施方式。下面实施例中,涉及的地图以高精度地图为例进行说明,其他地图的实施方式可以参考下述实施例,在此不再赘述。
如图4-图6所示,提供定位方法的流程,该流程的执行主体可以为测量设备、车载装置或地图服务器。地图服务器可以为上述实施例中的V2X服务器,也可以为其他存储有高精度地图的服务器,也可以为进行导航规划的服务器,在此不做限定。其中,该方法中的测量设备包括感知装置,测量设备为测量目标的位置信息的设备,测量设备可以是上述图1A中的RSU103、第一车辆101或第二车辆102。车载装置302可以是请求测量目标的位置信息的设备,可以是上述图1A中的第一车辆101或第二车辆102。测量目标,可以是车载装置对应的车辆所需获取的待识别对象,其中,待识别对象可以为预设范围内的物体、行人等对象,例如上述图1A中的第一车辆101或第二车辆102。
其中,地图服务器可以保存有测量设备在高精度地图坐标系下的位置信息,其中,位置信息可以包括:初始信息、历史信息等。初始信息包括:测量设备在高精度地图坐标系下的初始平移变换信息,及测量设备在高精度地图坐标系下的初始旋转信息。高精度地图坐标系至少包括第一高精度地图坐标系。例如,地图服务器可以保存有测量设备在第一高精度地图坐标系(M1-CS)下的初始信息,其中,初始信息包括:测量设备在M1-CS坐标系下的初始平移变换信息,及测量设备在M1-CS坐标系下的初始旋转信息。地图服务器还可以保存测量设备在M1-CS的标识,例如RSU-M1-ID。地图服务器还可以保存有测量设备在第二高精度地图坐标系(M2-CS)下的初始信息,其中,初始信息包括:测量设备在M2-CS坐标系下的初始平移变换信息,及测量设备在M2-CS坐标系下的初始旋转信息。地图服务器还可以保存测量设备在M2-CS的标识,例如RSU-M2-ID。
以坐标变换的执行主体为地图服务器为例进行说明。如图4所示,该流程包括:
步骤401:地图服务器获取第一坐标系相对于第二坐标系的信息。
地图服务器可以保存有所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;即测量设备在高精度地图坐标系下的位置信息,其中,位置信息可以包括:位置信息、初始信息、历史信息等。进而,地图服务器可以从存储器读取测量设备在高精度地图坐标系下的位置信息。
进一步的,地图服务器可以接收测量设备定期上报的测量设备的位置变化信息,例如,测量设备在第一坐标系下确定测量目标在第一坐标系下的位置时,测量设备在第一高精度地图的位置变化信息,包括以下至少一项:测量设备在第一高精度地图的平移变换信息,测量设备在第一高精度地图的旋转信息或测量设备在第一高精度地图的旋转差分信息;需要说明的是,位置固定的测量设备可以不上报平移变换信息(位置变化),姿态固定的测量设备可以不上报旋转信息或旋转差分信息(姿态变化),此时,测量设备的旋转信息即 为测量设备的初始旋转信息。在具体实施过程中,测量设备的位置变化信息可以根据测量设备在第一高精度地图中获得的定位信息确定,也可以根据测量设备的感知装置确定,在此不做限定。
进而,地图服务器可以根据初始信息或历史信息,确定测量设备的位置信息。其中,初始信息包括:测量设备在高精度地图坐标系下的初始平移变换信息,及测量设备在高精度地图坐标系下的初始旋转信息。历史信息可以为根据测量设备在确定测量目标在第一坐标系下的位置时的位置变化信息确定的,具体的确定方式可以参考上述实施例。
例如,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述地图服务器接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
高精度地图坐标系至少包括第一高精度地图坐标系。例如,地图服务器保存有测量设备在第一高精度地图坐标系(M1-CS)下的初始信息(第一坐标系相对第二坐标系的初始信息),其中,初始信息包括:测量设备在M1-CS坐标系下的初始平移变换信息,及测量设备在M1-CS坐标系下的初始旋转信息。服务器还可以保存有测量设备在第二高精度地图坐标系(M2-CS)下的初始信息,其中,初始信息包括:测量设备在M2-CS坐标系下的初始平移变换信息,及测量设备在M2-CS坐标系下的初始旋转信息。
另外,服务器还可以保存测量设备的标识,例如,服务器还可以保存测量设备在M1-CS的标识,例如RSU-M1-ID。服务器还可以保存测量设备在M2-CS的标识,例如RSU-M2-ID,或测量设备的唯一标识(L-ID)。
进一步的,地图服务器可以向测量设备发送测量设备的第一位置变化信息查询请求;所述测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对初始位置的测量位置;所述测量设备的第一位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用地图服务器请求,测量设备才发送测量设备的第一位置变化信息的方式,可避免测量设备将测量设备的第一位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
或者,所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述地图服务器接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
例如,地图服务器保存有测量设备在第一高精度地图坐标系(M1-CS)下的历史信息,其中,历史信息包括:测量设备在M1-CS坐标系下的历史平移变换信息,及测量设备在M1-CS坐标系下的历史旋转信息。该历史信息可以为测量设备在测量上一个测量目标时确 定的位置信息,也可以为测量设备上报给地图服务器的上一个测量目标对应的测量历史目标的位置信息,可以根据地图服务器更新的需要,确定历史信息,在此不做限定。服务器还可以保存有测量设备在第二高精度地图坐标系(M2-CS)下的历史信息,其中,历史信息包括:测量设备在M2-CS坐标系下的历史平移变换信息,及测量设备在M2-CS坐标系下的历史旋转信息。
进一步的,地图服务器可以向测量设备发送测量设备的第二位置变化信息查询请求;所述测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对历史位置的测量位置;所述测量设备的第二位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用地图服务器请求,测量设备才发送测量设备的第二位置变化信息的方式,可避免测量设备将测量设备的第二位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
步骤402:测量设备向地图服务器发送测量目标在第一坐标系下的位置信息,进而,地图服务器接收测量设备发送的测量目标在第一坐标系下的位置信息。
一种可能的实现方式,测量设备向服务器主动上报测量设备测量目标在第一坐标系下的位置信息,测量目标在第一坐标系下的位置信息包括以下至少一项:测量目标在第一LCS坐标系下的位置信息;测量设备的标识。
其中,测量目标在第一坐标系LCS下的位置信息,可以包括以下至少一项:
测量目标的中心的在LCS坐标系下的坐标信息、以测量目标为位置点为原心建立的TCS坐标系原点在LCS的坐标信息、测量目标TCS坐标系在LCS下的旋转信息、测量目标的外边线(外接矩形或多边形)在LCS坐标系下的顶点坐标等。
在一种可能的实现方式,在步骤402之前,车载装置还可以向服务器发送待识别对象在第二坐标系的位置查询请求。进而,服务器可以根据待识别对象在第二坐标系的位置查询请求,确定待识别对象对应的测量设备,进而向测量设备发送待识别对象的位置查询请求,测量设备可以根据待识别对象的位置查询请求,确定测量目标,并对测量目标的位置进行测量。具体的,待识别对象在第一高精度地图的位置查询请求可以包括:测量设备的标识,第二坐标系(或,高精度地图)的标识。若测量设备的标识为唯一标识,则需要携带车载装置采用的高精度地图的标识,以便服务器可以根据高精度地图的标识,确定测量目标需转换的高精度地图的第二坐标系。若测量设备的标识为测量设备在高精度地图的标识,则可以不携带车载装置采用的高精度地图的标识,以便服务器可以根据测量设备在高精度地图的标识,确定测量目标需转换的第二坐标系。
另一种可能的方式,在步骤402之前,还可以包括地图服务器向测量设备发送测量目标在第一坐标系下的位置查询请求。具体的,地图服务器根据测量目标在第一坐标系下的位置查询请求中的测量设备的标识,确定用于测量目标的位置的测量设备,进而向测量设备发送测量目标在第一坐标系下的位置查询请求。进而,测量设备根据测量目标在第一坐标系下的位置查询请求,向地图服务器返回所述测量目标的在测量设备对应的第一坐标系(LCS)的位置信息。
步骤403:地图服务器根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
一种可能的实现方式,地图服务器根据测量目标在LCS坐标系的位置信息,及测量设 备在确定测量目标在第一坐标系下的位置时,LCS坐标系到M1-CS坐标系的坐标变换信息,确定测量目标在M1-CS坐标系的位置信息。
另一种可能的实现方式,地图服务器根据测量设备的第一位置变化信息,测量设备在第一高精度地图的初始信息,确定测量设备在确定测量目标在第一坐标系下的位置时,LCS坐标系到M1-CS坐标系的坐标变换信息。或者,地图服务器根据测量设备的第二位置变化信息,测量设备在第一高精度地图的历史信息,确定测量设备在确定测量目标在第一坐标系下的位置时,LCS坐标系到M1-CS坐标系的坐标变换信息。进而,根据测量目标在LCS坐标系的位置信息,及测量设备在确定测量目标在第一坐标系下的位置时,LCS坐标系到M1-CS坐标系的坐标变换信息,确定测量目标在M1-CS坐标系的位置信息。
步骤404:地图服务器向车载装置发送测量目标在第二坐标系M1-CS坐标系的位置信息。
进而,车载装置接收地图服务器发送的测量目标在第二坐标系M1-CS坐标系的位置信息,进一步的,车载装置可以根据测量目标在M1-CS坐标系的位置信息及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
通过地图服务器完成第一坐标系(RSU-LCS)下的测量目标的位置转换为第二坐标系(M1-CS)下的测量目标的位置,进而使得车载装置使用第二坐标系(M1-CS)测量目标的位置来确定测量目标相对于本车的位置估计,能够获得估计精度高、偏差小、与真实情况接近一致的较佳效果。
以坐标变换的执行主体为测量设备为例进行说明。如图5所示,该流程包括:
步骤501:测量设备获取第一坐标系相对于第二坐标系的信息。
示例b2,地图服务器保存有第一坐标系相对于第二坐标系的信息,测量设备从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。进一步的,所述测量设备还可以向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
进一步的,所述测量设备还可以向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,地图服务器才发送第一坐标系相对于第二坐标系的信息的方式,可避免地图服务器将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b3.1,若地图服务器存储有测量设备的初始信息,则所述测量设备可以通过传感装置,获取测量设备的第一位置变化信息(例如,测量设备相在确定测量目标在第一坐标系下的位置时相对初始位置的第一位置变化信息);测量设备可以通过地图服务器接收测量设备在第一高精度地图的初始信息。
进而,测量设备可以根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述测量设备可以向所述地图服务器发送第一坐标系相对于第二坐标系的初始信息查询请求;第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备在初始位置时在第二坐标系的位置信息(例如,测量设备在初始位置时在第一高精度地图的位置信息);第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。进而,测量设备根据地图服务器发送的测量设备在初始位置时在第一高精度地图的位置信息,及测量设备在确定测量目标在第一坐标系下的位置时,测量设备相对初始位置的第一位置变化信息,确定测量设备在确定测量目标在第一坐标系下的位置时,第一坐标系(LCS)相对第二坐标系(第一高精度地图坐标系)的坐标变换信息。
示例b4.1,若地图服务器存储有根据测量设备历史上报的测量设备的位置变化信息,和测量设备在第一高精度地图的初始信息,地图服务器可以确定出测量设备的历史信息,进而,测量设备可以接收地图服务器发送的测量设备在第一高精度地图的历史信息第一坐标系相对于第二坐标系的历史信息。或者,地图服务器接收测量设备历史上报的测量设备在测量历史目标时的位置信息,地图服务器可以将测量设备历史上报的测量设备在测量历史目标时的位置信息,作为测量设备的历史信息。
进一步的,测量设备还可以向地图服务器发送第一坐标系相对于第二坐标系的历史信息的查询请求。此时,测量设备可以通过地图服务器接收测量设备在第一高精度地图的历史信息。另外,测量设备可以通过传感装置,获取测量设备的第二位置变化信息(例如,测量设备相在确定测量目标在第一坐标系下的位置时相对测量历史目标的位置的第二位置变化信息)。进而,测量设备可以根据测量设备在第一高精度地图的历史信息,及测量设备在确定测量目标在第一坐标系下的位置时测量设备的第二位置变化信息,确定测量设备在确定测量目标在第一坐标系下的位置时,测量设备在第一高精度地图的坐标变换信息。
步骤502:测量设备获取测量目标在第一坐标系下的位置信息。
示例A1,测量设备通过传感器测量得到所述第一坐标系下的测量目标的位置。具体的确定方式可以参考上述实施例,在此不再赘述。
步骤503:测量设备根据坐标变换信息,将测量目标相对测量设备的位置信息转换为测量目标在第一高精度地图的位置信息。
举例来说,测量设备RSU探测第一坐标系RSU-LCS下的目标位置,获取第二坐标系M1-CS坐标系下的测量设备RSU位置(pRSU)M1-CS和第一坐标系RSU-LCS在第二坐标系M1-CS下的旋转信息,完成在第一坐标系RSU-LCS下的测量目标的位置转换为第二坐标系M1-CS下的测量目标的位置。
步骤504:测量设备向车载装置发送测量目标在第二坐标系的位置。进而,车载装置接收测量设备发送的测量目标在第二坐标系的位置。
进一步的,车载装置可以根据测量目标在M1-CS坐标系的位置信息及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
测量设备完成第一坐标系RSU-LCS下的目标位置转换为第二坐标系M1-CS下的目标位置,并下发给向本车,本车使用第二坐标系M1-CS的目标位置来确定目标相对于本车的位置估计,能够获得估计精度高、偏差小、与真实情况接近一致的较佳效果。
一种可能的实现方式,在步骤503之前,或,在步骤501之前,车载装置可以向测量设备发送待识别对象在第二坐标系的位置查询请求。其中,待识别对象在第二坐标系的位 置查询请求的具体内容可以参考图4的实施例中车载装置向地图服务器发送待识别对象在第二坐标系的位置查询请求,在此不再赘述。
另一种可能的实现方式,在步骤501之前,车载装置可以向地图服务器发送待识别对象在第二坐标系的位置查询请求。其中,待识别对象在第二坐标系的位置查询请求的具体内容可以参考图4的实施例中车载装置向地图服务器发送待识别对象在第二坐标系的位置查询请求的实施方式,在此不再赘述。进而,地图服务器可以将测量目标在第二坐标系的位置查询请求转发给测量设备。测量设备可以根据测量目标在第二坐标系的位置查询请求,执行步骤501。
以坐标变换的执行主体为车载装置为例进行说明。如图6所示,该流程包括:
步骤601:车载装置获取第一坐标系相对于第二坐标系的信息。
示例c2.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;地图服务器向车载终端发送所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息,进而,车载装置从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,车载装置向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求。进而,地图服务器根据查询请求中的测量设备的标识,向测量设备发送第一坐标系相对于第二坐标系的信息查询请求,以便测量设备根据该查询请求,向车载装置返回测量目标在第一坐标系下的位置。所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c3.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;测量设备向车载终端发送所述测量设备在确定测量目标在第一坐标系下的位置时测量设备的第一位置变化信息,进而,所述车载装置接收所述测量设备发送的所述测量设备的第一位置变化信息;其中,所述测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述车载装置从所述地图服务器接收第一坐标系相对于第二坐标系的初始信息;所述车载装置根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
示例c4.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;测量设备向车载装置发送的所述测量设备的第二位置变化信息;所述车载装置接收所述测量设备发送的所述测量设备的第二位置变化信息;其中,所述测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述历史信息的差值;所述车载装置从所述地图服务器接收第一坐标系相对于第二坐标系的历史信息;所述车载装置根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述车载装置向所述地图服务器发送所述第一坐标系相对于第二坐标系的初始信息查询请求;或者,所述车载装置向所述测量设备发送所述第一坐标系相对于第二坐标系的初始信息查询请求;或者,所述车载装置向所述测量设备发送所述测量设备的第一位置变化信息查询请求;或者,所述车载装置向所述地图服务器发送所述测量设备的 第一位置变化信息查询请求;所述车载装置向所述地图服务器发送所述第一坐标系相对于第二坐标系的历史信息查询请求;或者,所述车载装置向所述测量设备发送所述第一坐标系相对于第二坐标系的历史信息查询请求;所述车载装置向所述测量设备发送所述测量设备的第二位置变化信息查询请求;或者,所述车载装置向所述地图服务器发送所述测量设备的第二位置变化信息查询请求。
具体发送的查询请求的方式,可以根据测量目标在第一坐标系下的位置信息中是否携带测量设备的位置变化信息确定。例如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的位置变化信息,且,测量设备的位置变化信息包括:测量设备在第一高精度地图的平移变换信息,测量设备在第一高精度地图的旋转变换信息,则车载装置可以根据测量设备的位置变化信息,直接确定测量设备相对第一高精度地图的坐标变换信息,因此,可以不向地图服务器发送查询请求。
例如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的第一位置变化信息,且,测量设备的第一位置变化信息指示了测量设备在确定测量目标在第一坐标系下的位置时相对初始信息的位置变化,则车载装置还可以接收测量设备的初始信息;进一步的,车载装置还可以向地图服务器发送测量设备的初始信息查询请求,进而,根据地图服务器发送的测量设备在第一高精度地图的初始信息,及测量设备的第一位置变化信息,确定测量设备相对第一高精度地图的坐标变换信息。
再比如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的第二位置变化信息,且,测量设备的位置变化信息指示了测量设备在确定测量目标在第一坐标系下的位置时相对历史信息的位置变化,则车载装置还可以接收测量设备的历史信息;进一步的,车载装置还可以向地图服务器发送测量设备的历史信息查询请求,进而,根据地图服务器返回的测量设备在第一高精度地图的历史信息,及测量设备的位置变化信息,确定测量设备相对第一高精度地图的坐标变换信息。
或者,若确定测量目标在第一坐标系下的位置信息中不包括测量设备的位置变化信息,则车载装置可以向地图服务器发送测量设备的位置信息查询请求,进而,根据地图服务器返回的测量设备在第一高精度地图的位置信息,确定测量设备相对第一高精度地图的坐标变换信息。或者,车载装置可以向测量设备发送测量设备的位置变化信息查询请求,在此不做限定。
一种可能的实现方式,车载装置根据获取的测量设备的标识,向地图服务器发送测量设备在第一高精度地图的位置查询请求。其中,测量设备在第一高精度地图的位置查询请求中包括:测量设备的标识,和/或第一高精度地图的标识。
需要说明的是,为保证车载装置在通过测量设备的初始信息进行坐标变换时的准确度,需保证车载装置采用的高精度地图的标识(例如,为第一高精度地图的标识M1-CS)与测量设备测量目标在第一坐标系下的位置信息中携带的测量设备的标识对应的高精度地图的标识为相同的标识。
若测量设备的标识为唯一标识,则需要携带车载装置采用的高精度地图的标识,以便地图服务器可以根据第一高精度地图的标识,确定测量设备在对应的第一高精度地图坐标系下的位置信息。若测量设备的标识为测量设备在高精度地图的标识,则可以不携带第以高精度地图的标识,地图服务器可以根据测量设备在第一高精度地图的标识,确定测量设备在第一高精度地图坐标系下的位置信息。
举例来说,若车载装置确定测量设备发送的测量设备测量目标在第一坐标系下的位置信息中,测量设备的标识对应第二高精度地图标识M2-CS,而车载装置采用的高精度地图为第一高精度地图M1-CS,则车载装置可以向地图服务器发送测量目标在第一坐标系下的位置查询请求,其中,测量目标在第一坐标系下的位置查询请求中包括:第一高精度地图的标识M1-CS,测量目标的标识。进而,地图服务器可以根据第一高精度地图的标识M1-CS,测量目标的标识,确定出可以测量目标的位置的设备,且该设备在第一高精度地图中存储有对应的位置信息,并向该设备发送测量目标的位置的测量位置查询请求。
另一种可能的实现方式,车载装置已知晓测量设备可以获取待识别对象在第一坐标系下的位置,且第一高精度地图中存储有测量设备的位置信息,则车载装置可以向测量设备发送待识别对象在第二坐标系下的位置查询请求。待识别对象在第二坐标系下的位置查询请求可以包括:测量设备的标识,和/或车载装置采用的高精度地图的标识。
步骤602:车载装置获取测量目标在第一坐标系下的位置信息。
其中,测量设备向车载装置主动发送测量设备测量目标在第一坐标系下的位置信息,包括以下至少一项:测量目标在LCS下的位置信息;测量设备的标识。
示例B2.1,地图服务器向车载装置发送所述第一坐标系下的测量目标的位置。车载装置通过接收器接收地图服务器发送的所述第一坐标系下的测量目标的位置。通过接收地图服务器发送的所述第一坐标系下的测量目标的位置,可以灵活的获取测量目标在第一坐标系下的位置,并不限于测量设备发送给车载装置,可以通过地图服务器进行有效的分流,有利于实现资源的有效利用。
进一步的,所述车载装置可以向所述地图服务器发送待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;所述地图服务器从所述车载装置接收目标位置查询请求;所述地图服务器根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
示例B2.2,测量设备向车载装置发送所述第一坐标系下的测量目标的位置。车载装置通过接收器接收测量设备发送的所述第一坐标系下的测量目标的位置。
进一步的,所述车载装置可以向所述测量设备发送待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;所述测量设备从所述车载装置接收待识别对象第一坐标系下的位置查询请求;进而,根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
步骤603:车载装置根据坐标变换信息及测量目标相对测量设备的位置信息,确定测量目标在第一高精度地图下的位置信息。
进一步的,车载装置根据测量目标在M1-CS坐标系的目标位置及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。具体的,车载装置接收地图服务器发送的测量设备在第二坐标系下的位置(pRSU)M1-CS、测量设备发送的在第一 坐标系RSU-LCS下的测量目标的位置、以及地图服务器或测量设备发送的第一坐标系RSU-LCS在第二坐标系M1-CS下的旋转信息,来确定测量目标相对于车载装置对应的车辆的相对位置。进而,车辆在测量设备覆盖范围内更新,并完成第一坐标系RSU-LCS下的测量目标的位置转换为第二坐标系M1-CS下的测量目标的位置,使用第二坐标系M1-CS的测量目标的位置来确定测控目标相对于本车的位置估计,能够获得估计精度高、偏差小、与真实情况接近一致的效果。
如图7-图9所示,提供的定位方法的流程,其流程的执行主体可包括测量设备、车载装置和地图服务器等。地图服务器可以为上述实施例中的V2X服务器,也可以为其他存储有高精度地图的服务器,也可以为进行导航规划的服务器,在此不做限定。其中,该方法中的测量设备包括感知装置,测量设备为用于测量目标的位置信息的设备,测量设备可以是上述图1A中的RSU103或第一车辆101或第二车辆102。车载装置302可以是请求测量目标的位置信息的设备,可以是上述图1A中的第一车辆101或第二车辆102。测量目标,可以是车载装置对应的车辆所需获取的待识别对象,其中,待识别对象可以为车载装置对于的车辆的预设范围内的物体、行人等对象,例如上述图1A中的第一车辆101或第二车辆102。
测量设备保存有测量设备在高精度地图坐标系下的位置信息,其中,位置信息可以包括:初始信息、历史信息等。初始信息包括:测量设备在高精度地图坐标系下的初始平移变换信息(初始位置),及测量设备在高精度地图坐标系下的初始旋转信息(初始姿态)。高精度地图坐标系至少包括第一高精度地图坐标系。例如,测量设备保存有测量设备在第一高精度地图坐标系(M1-CS)下的初始信息,其中,初始信息包括:测量设备在M1-CS坐标系下的初始平移变换信息,及测量设备在M1-CS坐标系下的初始旋转信息。测量设备还可以保存测量设备在M1-CS的标识,例如RSU-M1-ID。测量设备还可以保存有测量设备在第二高精度地图坐标系(M2-CS)下的初始信息,其中,初始信息包括:测量设备在M2-CS坐标系下的初始平移变换信息,及测量设备在M2-CS坐标系下的初始旋转信息。测量设备还可以保存测量设备在M2-CS的标识,例如RSU-M2-ID。
以坐标变换的执行主体为地图服务器为例进行说明。如图7所示,该流程包括:
步骤701:测量设备向地图服务器发送的第一坐标系相对第二坐标系的信息,进而,地图服务器接收来自测量设备发送的第一坐标系相对第二坐标系的信息。
示例a2,所述测量设备中存储有第一坐标系相对于第二坐标系的信息;进而,地图服务器从测量设备接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
另一种可能的实现方式,为减少测量目标在第一坐标系下的位置信息占用的资源,测量目标在第一坐标系下的位置信息中可以不携带测量设备在第一高精度地图的位置信息,测量目标在第一坐标系下的位置信息可以包括以下至少一项:测量设备在第一高精度地图的位置变化信息,测量设备的标识,第二坐标系的标识。
示例a3.2,测量设备在存储器中存储有第一坐标系相对于第二坐标系的初始信息,即测量设备第一高精度地图的初始信息,进而,测量设备可以预先向地图服务器发送第一坐标系相对于第二坐标系的初始信息。当测量设备可以在确定测量目标的位置时,测量设备可以存储第一位置变化信息,测量设备在确定测量目标的位置时,测量设备的位置信息相对初始信息的差值。并且向地图服务器发送第一位置变换信息。比如,若测量设备确定向 地图服务器发送测量设备在确定测量目标在第一坐标系下的位置时的第一位置变化信息,且,第一位置变化信息指示测量设备在测量目标的位置相对测量设备的初始位置的位置变化。则地图服务器可以根据测量设备的初始信息,及测量设备在确定测量目标在第一坐标系下的位置时的第一位置变化信息,确定测量设备在第一高精度地图的位置信息,进而,确定测量设备在确定测量目标在第一坐标系下的位置时,测量设备与第一高精度地图的坐标变换信息。其中,测量设备的初始信息可以为测量设备发送给地图服务器的,可以同时携带在测量目标在第一坐标系下的位置信息中,也可以单独发送,在此不做限定。
示例a4.2,测量设备在存储器中存储有第一坐标系相对于第二坐标系的历史信息,即测量设备第一高精度地图的历史信息,进而,测量设备可以预先向地图服务器发送第一坐标系相对于第二坐标系的历史信息。当测量设备可以在确定测量目标的位置时,存储第二位置变化信息,即第二位置变化信息,测量设备在确定测量目标的位置时,测量设备的位置信息相对测量历史目标的位置信息的差值。并且向地图服务器发送第二位置变化信息。例如,若测量设备确定向地图服务器发送测量设备在确定测量目标在第一坐标系下的位置时的第二位置变化信息,且,该位置变化信息指示测量设备在测量目标的位置相对上一次上报地图服务器的位置变化,则地图服务器可以根据上一次确定的测量设备的历史信息,及测量设备在确定测量目标在第一坐标系下的位置时的第二位置变化信息,确定测量设备在第一高精度地图的位置信息,进而,确定测量设备在确定测量目标在第一坐标系下的位置时,测量设备与第一高精度地图的坐标变换信息。
在一种可能的实现方式,在步骤701之前,车载装置还可以向地图服务器发送待识别对象在第二坐标系的位置查询请求。进而,地图服务器可以根据待识别对象在第二坐标系的位置查询请求,向测量设备发送测量目标的位置查询请求,测量设备可以根据测量目标的位置查询请求,对测量目标的位置进行测量。具体的,待识别对象在第二坐标系的位置查询请求可以包括:测量设备的标识,或者,还包括第二坐标系的标识。若测量设备的标识为唯一标识,则需要携带车载装置采用的高精度地图的标识,以便地图服务器可以根据高精度地图的标识,确定测量目标需转换的高精度地图坐标系。若测量设备的标识为测量设备在高精度地图的标识,则可以不携带车载装置采用的高精度地图的标识,以便地图服务器可以根据测量设备在高精度地图的标识,确定测量目标需转换的高精度地图坐标系。
另一种可能的方式,在步骤701之前,地图服务器还可以主动向测量设备发送测量目标在第一坐标系下的位置查询请求。具体的,地图服务器根据待识别对象在第二坐标系的位置查询请求中的测量设备的标识,确定用于测量目标的位置的测量设备,进而向测量设备发送测量目标在测量设备下的测量查询请求。进而,测量设备根据测量目标在测量设备下的测量查询请求,向地图服务器返回所述测量目标的在测量设备对应的LCS坐标系的位置信息。
进一步的,地图服务器若已获取测量设备在第一高精度地图的初始信息,此时,地图服务器可以向测量设备发送测量设备的位置变化查询请求,进而测量设备确定不需要携带测量设备的初始信息。或者,地图服务器需要获取测量设备在第一高精度地图的初始信息,此时,地图服务器可以向测量设备发送测量设备的位置查询请求,进而测量设备确定需要携带测量设备的初始信息及测量设备的位置变化信息。当然,地图服务器还可以向测量设备发送测量设备的位置变化查询请求,用于获取测量设备在确定测量目标在第一坐标系下的位置时,测量设备的位置变化。
步骤702:测量设备向地图服务器发送测量目标在第一坐标系下的位置信息;进而,地图服务器接收测量设备发送的测量目标在第一坐标系下的位置信息。
示例A2,测量设备通过传感器测量得到所述第一坐标系下的测量目标的位置。进而,测量设备向地图服务器主动上报测量设备测量目标在第一坐标系下的位置信息,地图服务器通过接收器从测量设备接收所述第一坐标系下的测量目标的位置。其中,测量目标在第一坐标系下的位置信息包括以下至少一项:测量目标在LCS坐标系下的位置信息;测量设备的标识。测量目标在LCS坐标系下的位置信息的确定方式,可以参考上述实施例,在此不再赘述。
进一步的,所述地图服务器还可以向所述测量设备发送第一坐标系下的测量目标的位置查询请求;所述第一坐标系下的测量目标的位置查询请求用于查询所述测量设备与所述测量目标之间的相对位置关系。所述第一坐标系下的测量目标的位置查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。具体的实施方式可以参考上述实施例,在此不再赘述。
步骤703:地图服务器根据测量设备在确定测量目标在第一坐标系下的位置时,第一坐标想LCS坐标系到第二坐标系M1-CS坐标系的坐标变换信息,及测量目标在第一坐标系LCS坐标系的位置信息,确定测量目标在第二坐标系M1-CS坐标系的位置。
步骤704:地图服务器向车载装置发送测量目标在第二坐标系M1-CS坐标系的位置。进而,车载装置接收地图服务器发送的测量目标在第二坐标系M1-CS坐标系的位置。
示例a,所述地图服务器向车载装置发送第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。进而,车载装置接收地图服务器发送的第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
进一步的,车载装置可以向地图服务器发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。所述地图服务器从所述车载装置接收待识别对象在第二坐标系下的位置查询请求;所述地图服务器根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。进而,地图服务器向车载装置返回第二坐标系下的测量目标的位置。具体的地图服务器获取第二坐标系下的测量目标的位置的方式可以参考上述实施例,在此不再赘述。
进一步的,车载装置可以根据测量目标在M1-CS坐标系的位置信息及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
以坐标变换的执行主体为测量设备为例进行说明。如图8所示,该流程包括:
步骤801:测量设备获取测量设备在第一高精度地图的坐标变换信息。
示例b1,所述测量设备中存储有第一坐标系相对于第二坐标系的信息;所述测量设备从存储器读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
步骤802:测量设备获取测量目标在第一坐标系下的位置。
一种可能的实现方式,若测量设备在确定测量目标在第一坐标系下的位置时,记录的是测量设备在第一高精度地图的位置信息,则可以直接根据测量设备在第一高精度地图的 位置信息,确定测量设备在第一高精度地图的坐标变换信息。
一种可能的实现方式,若测量设备在确定测量目标在第一坐标系下的位置时,仅记录测量设备的位置变化信息,测量设备的位置变化信息用于表示测量设备在确定测量目标在第一坐标系下的位置时,测量设备相对于上一次测量时的位置变化,则测量设备需要根据测量设备在第一高精度地图的历史信息,及测量设备的位置变化信息,确定测量设备在第一高精度地图的位置信息,进而确定测量设备在第一高精度地图的坐标变换信息。
另一种可能的实现方式,若测量设备在确定测量目标在第一坐标系下的位置时,仅记录测量设备的位置变化信息,且测量设备的位置变化信息用于表示测量设备在确定测量目标在第一坐标系下的位置时,测量设备相对于测量设备的初始位置的位置变化,则测量设备需要根据测量设备在第一高精度地图的初始信息,及测量设备的位置变化信息,确定测量设备在第一高精度地图的位置信息,进而确定测量设备在第一高精度地图的坐标变换信息。
步骤803:测量设备根据坐标变换信息,将测量目标在第一坐标系下的位置信息转换为测量目标在第二坐标系下的位置信息。
具体实施方式可以参考上述实施例,在此不再赘述。
步骤804:测量设备向车载装置发送测量目标在第一高精度地图的位置信息。进而,车载装置接收地图服务器发送的测量目标在第二坐标系M1-CS坐标系的位置,以使车载装置可以根据测量目标在M1-CS坐标系的位置信息及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
示例b,所述测量设备向车载装置发送所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识的至少一项。进而,车载装置接收测量设备发送的第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。通过测量设备向车载装置发送第二坐标系下的测量目标的位置,使得车载装置直接利用测量设备确定第二坐标系下的测量目标的位置,无需车载装置进一步确定第二坐标系下的测量目标的位置,减少了车载装置的处理的复杂度,减少车载装置的响应时间,提高车载装置自动驾驶的安全性。
进一步的,车载装置向测量设备发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。所述测量设备从所述车载装置接收待识别对象在第二坐标系下的位置查询请求;所述测量设备根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。进而,测量设备向车载装置返回第二坐标系下的测量目标的位置。
另一种可能的实现方式,在步骤801之前,车载装置可以向地图服务器发送待识别对象在第二坐标系的位置查询请求。其中,待识别对象在第二坐标系的位置查询请求的具体内容可以参考图7的实施例,在此不再赘述。进而,地图服务器可以将待识别对象在第二坐标系的位置查询请求转发给测量设备。测量设备可以根据待识别对象在第二坐标系的位置查询请求,执行步骤801。具体的测量设备获取第二坐标系下的测量目标的位置的方式可以参考上述实施例,在此不再赘述。
以坐标变换的执行主体为车载装置为例进行说明。如图9所示,该流程包括:
步骤901:车载装置获取测量设备在第二坐标系下的坐标变换信息。
示例c2.2,所述测量设备向车载装置发送所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。进而,车载装置接收来自所述测量设备在获取确定测量目标在第一坐标系下的位置时,第一坐标系相对于第二坐标系的信息。
进一步的,车载装置向所述测量设备发送第一坐标系相对于第二坐标系的信息查询请求。所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
另一种可能的实现方式,测量设备还可以将测量设备确定测量目标在第一坐标系下的位置时的测量设备在第一高精度地图的位置变化信息还可以主动发送给车载装置,以使车载装置根据测量设备在第一高精度地图的初始信息,或测量设备在第一高精度地图的历史信息,及位置变化信息,确定并测量设备在确定测量目标在第一坐标系下的位置时,测量设备在第一高精度地图的位置信息,进而确定测量设备在第一高精度地图坐标系的坐标变换信息。
示例c3.2,所述测量设备向车载装置发送所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的初始信息,和第一位置变化信息。进而,车载装置根据第一初始信息和第一位置变化信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,车载装置还可以向测量设备发送第一坐标系相对于第二坐标系的初始信息查询请求,第一位置变化信息查询请求,具体实施方式可以参考上述实施例,在此不再赘述。
示例c4.2,所述测量设备向车载装置发送所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的历史信息,和第二位置变化信息。进而,车载装置根据历史信息和第二位置变化信息,确定第一坐标系相对于第二坐标系的信息。具体的第一坐标系相对于第二坐标系的初始信息、第一位置变化信息,第一坐标系相对于第二坐标系的历史信息、第二位置变化信息的确定方式可以参考上述实施例,在此不再赘述。
进一步的,车载装置还可以向测量设备发送第一坐标系相对于第二坐标系的历史信息查询请求,第二位置变化信息查询请求,具体实施方式可以参考上述实施例,在此不再赘述。
步骤902:车载装置获取测量设备测量目标在第一坐标系下的位置信息。
一种可能的实现方式,测量设备向车载装置主动发送测量设备测量目标在第一坐标系下的位置信息,可以包括以下至少一项:测量目标在LCS下的位置信息;测量设备的标识。
示例B2.1,车载装置通过接收器接收测量设备发送的所述第一坐标系下的测量目标的位置。通过接收测量设备发送的所述第一坐标系下的测量目标的位置,可以直接获取测量目标在第一坐标系下的位置,有利于减少时延,提高第一坐标系下的测量目标的位置信息的获取速度。
进一步的,所述车载装置向所述测量设备发送待识别对象在第一坐标系的位置查询请求;所述待识别对象在第一坐标系的位置请求用于查询所述待识别对象在第一坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第一坐标系的位置查询请求包括所述测量设备的标识。所述测量设备从所述车载装置接收待识别对象在第一坐标系的位置查询请求;所述测量设备根据所述待识别对象在第一坐标系的位 置查询请求,确定所述待识别对象至少包括所述测量目标。
示例B2.2,车载装置通过接收器接收地图服务器发送的所述第一坐标系下的测量目标的位置。通过接收地图服务器发送的所述第一坐标系下的测量目标的位置,可以灵活的获取测量目标在第一坐标系下的位置,并不限于测量设备发送给车载装置,可以通过地图服务器进行有效的分流,有利于实现资源的有效利用。
进一步的,所述车载装置可以向所述地图服务器发送待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;所述地图服务器从所述车载装置接收目标位置查询请求;所述地图服务器根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。通过上述方法,车载装置可以向地图服务器主动发起待识别对象第一坐标系下的位置查询请求,进而使得地图服务器确定待识别对象,及待识别对象对应的测量目标在第一坐标系下的位置,以避免地图服务器发送向无关的设备发送第一坐标系下的测量目标的位置。
步骤903:车载装置根据坐标变换信息及测量目标相对测量设备的位置信息,确定测量目标在第二坐标系下的位置信息。
进一步的,车载装置根据测量目标在第二坐标系M1-CS坐标系的目标位置及车载装置在第二坐标系M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
如图10所示,提供的定位方法的流程,其流程的执行主体可包括测量设备、车载装置和地图服务器等。地图服务器可以为上述实施例中的V2X服务器,也可以为其他存储有高精度地图的服务器,也可以为进行导航规划的服务器,在此不做限定。其中,该方法中的测量设备包括感知装置,测量设备为用于测量目标的位置信息的设备,测量设备可以是上述图1A中的RSU103或第一车辆101或第二车辆102。车载装置302可以是请求测量目标的位置信息的设备,可以是上述图1A中的第一车辆101或第二车辆102。测量目标,可以是车载装置对应的车辆所需获取的待识别对象,其中,待识别对象可以为车载装置对于的车辆的预设范围内的物体、行人等对象,例如上述图1A中的第一车辆101或第二车辆102。
车载装置保存有测量设备在高精度地图坐标系下的位置信息,其中,位置信息可以包括:初始信息、历史信息等。初始信息包括:测量设备在高精度地图坐标系下的初始平移变换信息,及测量设备在高精度地图坐标系下的初始旋转信息。高精度地图坐标系至少包括第一高精度地图坐标系。例如,车载装置保存有测量设备在第一高精度地图坐标系(M1-CS)下的初始信息,其中,初始信息包括:测量设备在M1-CS坐标系下的初始平移变换信息,及测量设备在M1-CS坐标系下的初始旋转信息。测量设备还可以保存测量设备在M1-CS的标识,例如RSU-M1-ID。车载装置还可以保存有测量设备在第二高精度地图坐标系(M2-CS)下的初始信息,其中,初始信息包括:测量设备在M2-CS坐标系下的初始平移变换信息,及测量设备在M2-CS坐标系下的初始旋转信息。车载装置还可以保存测量设备在M2-CS的标识,例如RSU-M2-ID。
以坐标变换的执行主体为地图服务器为例进行说明。如图10所示,该流程包括:
步骤1001:地图服务器获取第一坐标系相对于第二坐标系的信息。
一种可能的实现方式,地图服务器可以通过接收器接收所述第一坐标系相对于第二坐标系的信息。
示例a2.2,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述地图服务器接收来自所述车载装置的所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,节省信令开销。
进一步的,所述地图服务器还可以向所述车载装置发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例a3.3、所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述地图服务器从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器从测量设备接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述地图服务器根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
通过上述方法,车载装置可以根据需要向地图服务器发送第一坐标系相对于第二坐标系的初始信息,测量设备可以根据需要,向地图服务器发送测量设备的第一位置变化信息,例如,第一坐标系相对于第二坐标系的初始信息可以是预先发送给地图服务器的,而测量设备的第一位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例a4.3、第一设备为地图服务器,所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述地图服务器从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器从测量设备接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述地图服务器根据测量设备的第二位置变化信息及第一坐标 系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置可以根据需要向地图服务器发送第一坐标系相对于第二坐标系的历史信息,测量设备可以根据需要,向地图服务器发送测量设备的第二位置变化信息,例如,第一坐标系相对于第二坐标系的历史信息可以是预先发送给地图服务器的,而测量设备的第二位置变化信息可以是与第一坐标系下的测量目标的位置一起发送的,以适应更多的应用场景,提高地图服务器定位的灵活性。
进一步的,地图服务器可以向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备测量历史目标的位置时所述测量设备在第二坐标系下的位置信息;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
进一步的,地图服务器向测量设备发送测量设备的第二位置变化信息查询请求;所述测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对历史位置的测量位置;所述测量设备的第二位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用地图服务器请求,测量设备才发送测量设备的第二位置变化信息的方式,可避免测量设备将测量设备的第二位置变化信息发送给不相关的设备,保护了测量设备和地图坐标系的隐私,减少信令的开销。
步骤1002:地图服务器获取测量目标在第一坐标系下的位置。
具体实施过程可以参考上述图4或图7中的实施方式,在此不再赘述。
步骤1003:地图服务器根据坐标变换信息及测量目标相对测量设备的位置信息,确定测量目标在第一高精度地图下的位置信息。
具体实施过程可以参考上述图4或图7中的实施方式,在此不再赘述。
步骤1004:地图服务器向车载装置发送测量目标在第一高精度地图下的位置信息。
具体实施过程可以参考上述图4或图7中的实施方式,在此不再赘述。
以坐标变换的执行主体为测量设备为例进行说明。如图11所示,该流程包括:
步骤1101:测量设备获取第一坐标系相对于第二坐标系的信息。
一种可能的实现方式,测量设备可以通过接收器接收所述第一坐标系相对于第二坐标系的信息。
示例b2.2,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述测量设备接收来自所述车载装置的所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。通过上述方法,车载装置主动发送第一坐标系相对于第二坐标系的信息的方式,无需第一设备请求,节省信令开销。
进一步的,所述测量设备还可以向所述车载装置发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的 信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b3.3、所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述测量设备从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息;所述测量设备根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的初始信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,测量设备可以向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的初始信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的初始信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
示例b4.3、所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述测量设备从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息;所述测量设备根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。通过上述方法,测量设备无需存储第一坐标系相对于第二坐标系的历史信息,减少存储空间的占用,避免额外的存储空间的占用可能导致的对测量设备性能的影响。
进一步的,测量设备可以向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备历史位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。通过上述方法,采用第一设备请求,车载装置才发送第一坐标系相对于第二坐标系的历史信息的方式,可避免车载装置将第一坐标系相对于第二坐标系的历史信息发送给不相关的设备,保护了测量设备的隐私,减少信令的开销。
步骤1102:测量设备获取测量目标在第一坐标系下的位置。
具体实施过程可以参考上述图5或图8中的实施方式,在此不再赘述。
步骤1103:测量设备根据坐标变换信息及测量目标相对测量设备的位置信息,确定测量目标在第一高精度地图下的位置信息。
具体实施过程可以参考上述图5或图8中的实施方式,在此不再赘述。
步骤1104:测量设备向车载装置发送测量目标在第一高精度地图下的位置信息。
具体实施过程可以参考上述图5或图8中的实施方式,在此不再赘述。
以坐标变换的执行主体为车载装置为例进行说明。如图12所示,该流程包括:
步骤1201:车载装置获取第一坐标系相对于第二坐标系的信息。
一种可能的实现方式,第一设备可以从存储器读取所述第一坐标系相对于第二坐标系的信息。
示例c1,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述车载装置从存储器中读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。车载装置中存储的第一坐标系相对于第二坐标系的信息可以为地图服务器预先发送给车载装置的,也可以为测量设备预先发送给车载装置的,进而车载装置在确定需要进行坐标转换时,可以直接从存储器中读取第一坐标系相对于第二坐标系的信息,而无需在线获取,可以提高响应速度,避免网络不佳影响测量目标的相对位置的确定。
一种可能的实现方式,车载装置存储有第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
示例c3.2,所述车载装置接收所述测量设备发送的以下至少一项:测量设备的第一位置变化信息,所述测量设备的标识;测量设备还可以向车载装置发送所述第二坐标系的标识;进而,车载装置根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述车载装置还可以向所述地图服务器发送测量设备的第一位置变化信息查询请求;或者,所述车载装置还可以向所述测量设备发送测量设备的第一位置变化信息查询请求;其中,测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时在所述第二坐标系的第一位置变化信息;测量设备的第一位置变化信息查询请求包括所述测量设备的标识和/或所述第二坐标系的标识。
示例c4.2,所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述车载装置接收所述测量设备的以下至少一项:测量设备的第二位置变化信息,所述测量设备的标识,所述第二坐标系的标识;所述车载装置根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,一种可能的实现方式,所述车载装置向所述地图服务器发送测量设备的第二位置变化信息查询请求;或者,所述车载装置向所述测量设备发送测量设备的第二位置变化信息查询请求;其中,测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时在所述第二坐标系的第一位置变化信息;测量设备的第二位置变化信息查询请求包括所述测量设备的标识和/或所述第二坐标系的标识。
步骤1202:车载装置获取测量目标在第一坐标系下的位置。
示例B2.1,地图服务器向车载装置发送所述第一坐标系下的测量目标的位置。进而,车载装置接收地图服务器发送的所述第一坐标系下的测量目标的位置。
通过接收地图服务器发送的所述第一坐标系下的测量目标的位置,可以灵活的获取测量目标在第一坐标系下的位置,并不限于测量设备发送给车载装置,可以通过地图服务器进行有效的分流,有利于实现资源的有效利用。
进一步的,所述车载装置可以向所述地图服务器发送待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;所述地图服务器从所述车载装置接收目标位置查询请求;所述 地图服务器根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
通过上述方法,车载装置可以向地图服务器主动发起待识别对象第一坐标系下的位置查询请求,进而使得地图服务器确定待识别对象,及待识别对象对应的测量目标在第一坐标系下的位置,以避免地图服务器发送向无关的设备发送第一坐标系下的测量目标的位置。
示例B2.2,测量设备向车载装置发送所述第一坐标系下的测量目标的位置。进而,车载装置通过接收器接收测量设备发送的所述第一坐标系下的测量目标的位置。
通过接收测量设备发送的所述第一坐标系下的测量目标的位置,可以直接获取测量目标在第一坐标系下的位置,有利于减少时延,提高第一坐标系下的测量目标的位置信息的获取速度。
进一步的,所述车载装置向所述测量设备发送待识别对象在第一坐标系的位置查询请求;所述待识别对象在第一坐标系的位置请求用于查询所述待识别对象在第一坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第一坐标系的位置查询请求包括所述测量设备的标识。所述测量设备从所述车载装置接收待识别对象在第一坐标系的位置查询请求;所述测量设备根据所述待识别对象在第一坐标系的位置查询请求,确定所述待识别对象至少包括所述测量目标。
通过上述方法,车载装置可以主动向测量设备发起待识别对象第一坐标系下的位置查询请求,进而使得测量设备确定待识别对象,及待识别对象对应的测量目标在第一坐标系下的位置,以避免测量设备发送向无关的设备发送第一坐标系下的测量目标的位置。
一种可能的实现方式,若测量设备将测量设备确定测量目标在第一坐标系下的位置时的测量设备在第一高精度地图的位置变化信息通过测量目标在第一坐标系下的位置信息的方式发送给车载装置,则测量设备还可以主动将测量设备在第一高精度地图的初始信息,或测量设备在第一高精度地图的历史信息主动发送给车载装置。测量设备在第一高精度地图的初始信息,或测量设备在第一高精度地图的历史信息可以携带在测量目标在第一坐标系下的位置信息中发送,也可以单独发送,在此不做限定。以使车载装置根据测量设备在第一高精度地图的初始信息,或测量设备在第一高精度地图的历史信息,及位置变化信息,确定并测量设备在确定测量目标在第一坐标系下的位置时,测量设备在第一高精度地图的位置信息,进而确定测量设备在第一高精度地图坐标系的坐标变换信息。
一种可能的实现方式,车载装置可以向测量设备发送测量设备的初始信息查询请求;或者,车载装置向测量设备发送测量设备的历史信息查询请求;或者,车载装置向测量设备发送测量设备的位置信息查询请求。
具体发送的查询请求的方式,可以根据测量目标在第一坐标系下的位置信息中是否携带测量设备的位置变化信息确定。例如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的位置变化信息,且,测量设备的位置变化信息包括:测量设备在第一高精度地图的平移变换信息,测量设备在第一高精度地图的旋转变换信息,则车载装置可以根据测量设备的位置变化信息,直接确定测量设备相对第一高精度地图的坐标变换信息,因此,可以不向地图服务器发送查询请求。
例如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的位置变化信息,且,测量设备的位置变化信息指示了测量设备在确定测量目标在第一坐标系下的位置时相对初始信息的位置变化,则车载装置可以向测量设备发送测量设备的初始信息查询请求, 进而,根据测量设备返回的测量设备在第一高精度地图的初始信息,及测量设备的位置变化信息,确定测量设备相对第一高精度地图的坐标变换信息。
再比如,若确定测量目标在第一坐标系下的位置信息中包括测量设备的位置变化信息,且,测量设备的位置变化信息指示了测量设备在确定测量目标在第一坐标系下的位置时相对历史信息的位置变化,则车载装置可以向测量设备发送测量设备的历史信息查询请求,进而,根据测量设备返回的测量设备在第一高精度地图的历史信息,及测量设备的位置变化信息,确定测量设备相对第一高精度地图的坐标变换信息。
或者,若确定测量目标在第一坐标系下的位置信息中不包括测量设备的位置变化信息,则车载装置可以向测量设备发送测量设备的位置信息查询请求,进而,根据测量设备返回的测量设备在第一高精度地图的位置信息,确定测量设备相对第一高精度地图的坐标变换信息。或者,车载装置可以向测量设备发送测量设备的位置变化信息查询请求,在此不做限定。
一种可能的实现方式,车载装置根据获取的测量设备的标识,向测量设备发送测量设备在第一高精度地图的位置查询请求。其中,测量设备在第一高精度地图的位置查询请求中包括:测量设备的标识,和/或第一高精度地图的标识。
步骤1203:车载装置根据坐标变换信息及测量目标相对测量设备的位置信息,确定测量目标在第一高精度地图下的位置信息。
进一步的,车载装置根据测量目标在M1-CS坐标系的目标位置及车载装置在M1-CS坐标系的位置信息,确定测量目标相对车载装置的相对位置信息。
通过测量设备发送的第一坐标系RSU-LCS下的测量目标的位置q target、以及第一坐标系RSU-LCS在第二坐标系M1-CS下的旋转信息,使测量目标的位置与本车在第二坐标系的定位位置的相对位置关系得到较好的匹配,解决了基于高精度地图定位的本车定位偏移与基于第一坐标系的测量设备探测的测量目标的位置偏移之间的不一致,所导致的本车定位位置与目标位置的相对距离的估计存在较大偏差的问题。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图13为本申请实施例提供的定位装置1300的结构框图。示例性地,定位装置1300例如为第一设备。定位装置1300包括确定单元1310,可选的,还可以包括获取单元1320。或者,获取单元1320和确定单元1310也可以是两个彼此独立的装置,例如确定单元1310和获取单元1320均承载在地图服务器中,获取单元1320可以是地图服务器内的通信单元,确定单元1310可以是地图服务器内的确定单元,获取单元1320和确定单元1310之间可以通过有线方式或无线方式进行通信。示例性地,定位装置1300可以是测量设备,示例性的,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。所述测量设备可以为路边单元,也可以是应用于路边单元中的芯片,也可以是路边单元内的测量装置,或者,应用于路边单元内的测量装置中的芯片,所述测量设备也可以为具有测量设备功能的车辆,应用于具有测量设备功能的车辆中的芯片,或者,所述测量设备也可以为具有测量设备功能的车辆的测量装置,应用于具有测量设备功能的车辆中的测量装置的芯片,或者是车载装置中具有测量设备功能的组合器件、部件,或者其他具有测量设备功能的组合器件、部件等。当定位装置1300是路边单元时获取单元1320可以是收发器,可以包括天线和射频电路等,也可以是与处理器耦合的接口电路,确定单元1310可以是处 理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理模块(central processing unit,CPU)。当定位装置1300是具有终端功能的部件时,获取单元1320可以是射频单元,确定单元1310可以是处理器,例如基带处理器。当定位装置1300是芯片系统时,获取单元1320可以是芯片系统(例如基带芯片)的输入输出接口、确定单元可以是芯片系统的处理器,可以包括一个或多个中央处理模块。
其中,确定单元1310可以用于执行图3所示的实施例中由第一设备所执行的除了收发操作之外的全部操作,例如S403,和/或用于支持本文所描述的技术的其它过程。获取单元1320可以用于执行图3所示的实施例中由第一设备所执行的全部获取操作,例如S302,和/或用于支持本文所描述的技术的其它过程。
另外,获取单元1320可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如获取单元1320是定位装置1300所包括的模块,则获取单元1320可以用于执行图3-图11所示的实施例中由第一设备所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为获取单元1320是发送模块,而在执行接收操作时,可以认为获取单元1320是接收模块;或者,获取单元1320也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如获取单元1320是第一设备所包括的模块,则发送模块可以用于执行图3-图12所示的实施例中由第一设备所执行的全部发送操作,接收模块用于完成接收操作,例如获取单元1320是第一设备1100所包括的模块,则接收模块可以用于执行图3-图12所示的实施例中由第一设备所执行的全部接收操作。
获取单元1320,用于获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;
确定单元1310,用于根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
一种可能的设计,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
一种可能的设计,所述定位装置用于地图服务器、路边单元或者车。
一种可能的设计,所述获取单元1320获取第一坐标系相对于第二坐标系的信息包括:从存储器读取所述第一坐标系相对于第二坐标系的信息;或者,接收所述第一坐标系相对于第二坐标系的信息。
一种可能的设计,所述获取单元1320,具体用于:
获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;
获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;
根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
一种可能的设计,所述获取单元1320获取第一坐标系下的测量目标的位置包括:通过传感器测量得到所述第一坐标系下的测量目标的位置;或者,接收所述第一坐标系下的测量目标的位置。
一种可能的设计,所述旋转信息包括:第二坐标系到第一坐标系的旋转矩阵、第一坐标系到第二坐标系的旋转矩阵、第一坐标系在第二坐标系下的欧拉角、第二坐标系在第一坐标系下的欧拉角、第二坐标系到第一坐标系的旋转向量、第一坐标系到第二坐标系的旋转向量、第二坐标系到第一坐标系的旋转四元数或第一坐标系到第二坐标系的旋转四元数中的至少一项。
一种可能的设计,所述获取单元1320获取第一坐标系相对于第二坐标系的信息包括:获取所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图13中的各个单元的只一个或多个可以软件、硬件、固件或其结合实现。所述软件或固件包括但不限于计算机程序指令或代码,并可以被硬件处理器所执行。所述硬件包括但不限于各类集成电路,如中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)或专用集成电路(ASIC)。
图14所示的定位装置1400包括至少一个处理器1401。定位装置1400还包括至少一个存储器1402,用于存储程序指令和/或数据。存储器1402和处理器1401耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1401可以和存储器1402协同操作,处理器1401可以执行存储器1402中存储的程序指令,所述至少一个存储器1402中的至少一个可以包括于处理器1401中。
定位装置1400还可包括通信接口1403,用于通过传输介质和其它设备进行通信,从而用于定位装置1400可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者接口电路等。
应理解,本申请实施例中不限定上述处理器1401、存储器1402以及通信接口1403之间的连接介质。本申请实施例在图14中以存储器1402、处理器1401以及通信接口1403之间通过通信总线1004连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,定位装置1400用于实现上述图3-图12所示流程中地图服务器执行的步骤,定位装置1400可以是地图服务器,或者地图服务器内的芯片或电路。通信接口1403,用于执行上文实施例中地图服务器侧收发的相关操作。处理器1401,用于执行上文方法实施例中地图服务器侧的处理相关操作。
比如,处理器1401,用于获取第一坐标系下的测量目标的位置,所述第一坐标系下的 测量目标的位置为所述测量设备测量得到;获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
一种可能的设计,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
一种可能的设计,所述处理器1401,具体用于:获取所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。其中,所述测量设备的标识可以包括以下一项或多项:测量设备在第二坐标系中的编号,或测量设备的唯一编号。
示例a1,所述地图服务器的存储器1402中存储有所述第一坐标系相对于第二坐标系的信息;所述处理器1401,用于从存储器1402读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
示例a2.1,所述测量设备中存储有第一坐标系相对于第二坐标系的信息;所述处理器1401,用于通过通信接口1403从测量设备接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述测量设备发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
方式a2.2,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述处理器1401,还用于通过通信接口1403从所述车载装置接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,还用于通过通信接口1403向所述车载装置发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
一种可能的设计,所述处理器1401,还用于获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;
获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;
所述处理器1401,还用于根据所述第一坐标系相对于第二坐标系的初始信息及所述测量设备的位置变化和姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
示例a3.1,所述地图服务器的存储器1402中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于从存储器中读取第一坐标系相对于第二坐标系的初始信息,通过通信接口1403接收所述测量设备的标识和测量设备的第一位置变化信息;其中, 测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;测量设备的第一位置变化信息包括所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述处理器1401还用于根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
示例a3.2、所述测量设备中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于通过通信接口1403从测量设备接收所述第一坐标系相对于第二坐标系的初始信息,从测量设备接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向测量设备发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例a3.3、所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于通过通信接口1403从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息,从测量设备接收所述测量设备的标识和测量设备的第一位置变化信息;其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
进一步的,所述处理器1401,用于通过通信接口1403向测量设备发送测量设备的第一位置变化信息查询请求;所述测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对初始位置的测量位置;所述测量设备的第一位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
方式4,处理器1401可以用于获取所述第一坐标系相对于第二坐标系的历史信息,所述历史信息为根据所述测量设备在所述第二坐标系的初历史位置和历史姿态确定的;所述第二位置变化信息包括:所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,和所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化。
所述处理器1401,还用于根据所述历史信息及所述测量设备的第二位置变化信息,确定所述第一坐标系相对于第二坐标系的信息。
示例a4.1、地图服务器的存储器1402中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,用于通过通信接口1403接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;
所述处理器1401,还用于从存储器1402中读取第一坐标系相对于第二坐标系的历史信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
示例a4.2、所述测量设备中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于通过通信接口1403从测量设备接收所述第一坐标系相对于第二坐标系的历史信息,从测量设备接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向测量设备发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备测量历史目标的位置时所述测量设备在第二坐标系下的位置信息;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例a4.3、所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于通过通信接口1403从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息,从测量设备接收所述测量设备的标识和测量设备的第二位置变化信息;其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备测量历史目标的位置时所述测量设备在第二坐标系下的位置信息;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
进一步的,所述处理器1401,用于通过通信接口1403向测量设备发送测量设备的第二位置变化信息查询请求;所述测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对历史位置的测量位置;所述测 量设备的第二位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
一种可能的设计,所述处理器1401,用于通过通信接口1403从测量设备接收所述第一坐标系下的测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403向所述测量设备发送第一坐标系下的测量目标的位置查询请求;所述第一坐标系下的测量目标的位置查询请求用于查询所述测量设备与所述测量目标之间的相对位置关系。所述第一坐标系下的测量目标的位置查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
一种可能的设计,所述处理器1401,用于通过通信接口1403向车载装置发送所述第一坐标系下的测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403接收所述车载装置发送的待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;
所述处理器1401,还用于根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
一种可能的设计,所述处理器1401,用于通过通信接口1403向车载装置发送所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
进一步的,所述处理器1401,用于通过通信接口1403接收车载装置发送的待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。
处理器1401,还用于根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
在一种示例中,定位装置1400用于实现上述图3-图12所示流程中测量设备执行的步骤,定位装置1400可以是测量设备,或者测量设备内的芯片或电路。示例性的,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。所述测量设备可以为路边单元,也可以是应用于路边单元中的芯片,也可以是路边单元内的测量装置,或者,应用于路边单元内的测量装置中的芯片,所述测量设备也可以为具有测量设备功能的车辆,应用于具有测量设备功能的车辆中的芯片,或者,所述测量设备也可以为具有测量设备功能的车辆的测量装置,应用于具有测量设备功能的车辆中的测量装置的芯片,或者是车载装置中具有测量设备功能的组合器件、部件,或者其他具有测量设备功能的组合器件、部件等。通信接口1403,用于执行上文实施例中测量设备侧收发的相关操作。处理器1401,用于执行上文方法实施例中测量设备侧的处理相关操作。
处理器1401,用于获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置;获取第一坐标系 相对于第二坐标系的信息;所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;或者,通过通信接口1403获取第一坐标系相对于第二坐标系的信息。一种可能的设计,所述处理器1401,具体用于:获取所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。其中,所述测量设备的标识可以包括以下一项或多项:测量设备在第二坐标系中的编号,或测量设备的唯一编号。
示例b1,所述测量设备的存储器1402中存储有所述第一坐标系相对于第二坐标系的信息;所述处理器1401从存储器1402读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
示例b2.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;所述处理器1401,用于通过通信接口1403从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例b2.2,所述车载装置中存储有第一坐标系相对于第二坐标系的信息;所述处理器1401,用于通过通信接口1403从所述车载装置接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述车载装置发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例b3.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,还用于存储器1402中读取测量设备的第一位置变化信息,通过通信接口1403接收所述测量设备的标识和来自地图服务器的第一坐标系相对于第二坐标系的初始信息;根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。其中,测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的初始信息。
进一步的,所述处理器1401,用于通过通信接口1403向地图服务器发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例b3.2、所述测量设备的存储器1402中存储有第一坐标系相对于第二坐标系的初 始信息;所述处理器1401,用于从存储器1402读取所述测量设备的所述第一坐标系相对于第二坐标系的初始信息;从存储器1402读取所述测量设备的第一位置变化信息;根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
示例b3.3、所述车载装置中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,用于从存储器1402读取所述测量设备的第一位置变化信息,通过通信接口1403从所述车载装置接收所述第一坐标系相对于第二坐标系的初始信息;根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向车载装置发送第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备初始位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例b4.1,地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于存储器1402中读取测量设备的第一位置变化信息,通过通信接口1403接收所述测量设备的标识和测量设备的第二位置变化信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。其中,测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时所述测量设备的位置信息的差值;所述测量设备的标识用于所述地图服务器确定所述第一坐标系相对于第二坐标系的历史信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述地图服务器发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备历史位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例b4.2、所述测量设备的存储器1402中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,用于从存储器1402读取所述测量设备的所述第一坐标系相对于第二坐标系的历史信息;从存储器1402读取所述测量设备的第二位置变化信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
示例b4.3、所述车载装置中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,还用于存储器1402中读取测量设备的第二位置变化信息,通过通信接口1403从所述车载装置接收所述第一坐标系相对于第二坐标系的历史信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向车载装置发送第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备历史位置在第二坐标系下的位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
一种可能的设计,所述处理器1401,还用于通过传感器测量得到所述第一坐标系下的 测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403接收地图服务器发送的第一坐标系下的测量目标的位置查询请求;所述第一坐标系下的测量目标的位置查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
一种可能的设计,所述处理器1401,用于通过通信接口1403向车载装置发送所述第一坐标系下的测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403接收所述车载装置发送的待识别对象第一坐标系下的位置查询请求;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象第一坐标系下的位置查询请求用于查询待识别对象在第一坐标系下的位置信息;所述待识别对象第一坐标系下的位置查询请求包括所述测量设备的标识;所述待识别对象为距离所述测量设备的预设范围内的对象;
所述处理器1401,还用于根据所述测量设备在第一坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
一种可能的设计,所述处理器1401,用于通过通信接口1403向车载装置发送所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
进一步的,所述处理器1401,用于通过通信接口1403接收车载装置发送的待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。处理器1401,还用于根据所述测量目标在第二坐标系的位置信息,确定所述待识别对象至少包括所述测量目标。
在一种示例中,定位装置1400用于实现上述图3-图12所示流程中车载装置执行的步骤,定位装置1400可以是车载装置或车载装置所属的车辆,或者车载装置或车载装置所属的车辆内的芯片或电路。通信接口1403,用于执行上文实施例中车载装置收发的相关操作。处理器1401,用于执行上文方法实施例中车载装置或车载装置的处理相关操作。
处理器1401,用于获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置;通过通信接口1403获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到。
一种可能的设计,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
一种可能的设计,所述处理器1401,具体用于:获取所述测量设备的标识;根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。其中,所述测量设备的标识可以包括以下一项或多项:测量设备在第二坐标系中的编号,或测量设备的唯一编号。
示例c1,所述定位装置的存储器1402中存储有所述第一坐标系相对于第二坐标系的 信息;所述处理器1401从存储器1402读取所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
示例c2.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的信息;所述处理器1401,用于通过通信接口1403从所述地图服务器接收所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述地图服务器发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c2.2,所述测量设备中存储有第一坐标系相对于第二坐标系的信息;处理器1401,用于通过通信接口1403接收所述测量设备发送的所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向所述测量设备发送第一坐标系相对于第二坐标系的信息查询请求;所述第一坐标系相对于第二坐标系的信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时第一坐标系相对于第二坐标系的信息;所述第一坐标系相对于第二坐标系的信息请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c3.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,用于通过通信接口1403接收所述测量设备发送的所述测量设备的第一位置变化信息;其中,所述测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;所述处理器1401,用于通过通信接口1403从所述地图服务器接收第一坐标系相对于第二坐标系的初始信息,根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,所述处理器1401,用于通过通信接口1403向地图服务器发送测量设备的第一位置变化信息查询请求;所述测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时测量设备相对初始位置的测量位置;所述测量设备的第一位置变化信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述地图服务器发送所述第一坐标系相对于第二坐标系的初始信息查询请求;或者,向所述测量设备发送所述第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备在所述第二坐标系的初始位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c3.2,所述测量设备中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,用于通过通信接口1403接收所述测量设备发送的所述测量设备的第一位置变化信息;其中,所述测量设备的第一位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述初始信息的差值;根据测量设 备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。所述处理器1401,用于通过通信接口1403从测量设备接收第一坐标系相对于第二坐标系的初始信息;
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述测量设备发送所述第一坐标系相对于第二坐标系的初始信息查询请求;所述第一坐标系相对于第二坐标系的初始信息查询请求用于查询所述测量设备在所述第二坐标系的初始位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c3.3,所述定位装置的存储器1402中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,用于通过通信接口1403接收所述测量设备的以下至少一项:测量设备的第一位置变化信息,所述测量设备的标识,所述第二坐标系的标识;
所述处理器1401,还用于根据测量设备的第一位置变化信息及第一坐标系相对于第二坐标系的初始信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述地图服务器发送测量设备的第一位置变化信息查询请求;或者,向所述测量设备发送测量设备的第一位置变化信息查询请求;其中,测量设备的第一位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时在所述第二坐标系的第一位置变化信息;测量设备的第一位置变化信息查询请求包括所述测量设备的标识和/或所述第二坐标系的标识。
示例c4.1,所述地图服务器中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,用于通过通信接口1403接收所述测量设备发送的所述测量设备的第二位置变化信息;其中,所述测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对所述历史信息的差值;所述处理器1401,还用于通过通信接口1403从所述地图服务器接收第一坐标系相对于第二坐标系的历史信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述地图服务器发送所述第一坐标系相对于第二坐标系的历史信息查询请求;或者,向所述测量设备发送所述第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备在所述第二坐标系的历史位置;所述第一坐标系相对于第二坐标系的历史信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c4.2、所述测量设备中存储有第一坐标系相对于第二坐标系的初始信息;所述处理器1401,用于通过通信接口1403接收所述测量设备发送的所述测量设备的第二位置变化信息;其中,所述测量设备的第二位置变化信息用于表示所述测量设备在确定测量目标在第一坐标系下的位置时所述测量设备的位置信息相对测量历史目标的位置时测量设备的位置信息的差值;所述处理器1401,还用于通过通信接口1403从测量设备接收第一坐标系相对于第二坐标系的历史信息;根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述 测量设备发送所述第一坐标系相对于第二坐标系的历史信息查询请求;所述第一坐标系相对于第二坐标系的历史信息查询请求用于查询所述测量设备在所述第二坐标系的历史位置;所述第一坐标系相对于第二坐标系的初始信息查询请求包括所述测量设备的标识,和/或所述第二坐标系的标识。
示例c4.3,所述定位装置的存储器1402中存储有第一坐标系相对于第二坐标系的历史信息;所述处理器1401,用于通过通信接口1403接收所述测量设备的以下至少一项:测量设备的第二位置变化信息,所述测量设备的标识,所述第二坐标系的标识;所述处理器1401,还用于根据测量设备的第二位置变化信息及第一坐标系相对于第二坐标系的历史信息,确定第一坐标系相对于第二坐标系的信息。
进一步的,一种可能的实现方式,所述处理器1401,用于通过通信接口1403向所述地图服务器发送测量设备的第二位置变化信息查询请求;或者,向所述测量设备发送测量设备的第二位置变化信息查询请求;其中,测量设备的第二位置变化信息查询请求用于查询所述测量设备在确定测量目标在第一坐标系下的位置时在所述第二坐标系的第一位置变化信息;测量设备的第二位置变化信息查询请求包括所述测量设备的标识和/或所述第二坐标系的标识。
示例B2.1,所述处理器1401,用于通过通信接口1403从地图服务器接收所述第一坐标系下的测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403还可以向所述地图服务器发送待识别对象在第一坐标系的位置查询请求;所述待识别对象在第一坐标系的位置请求用于查询所述待识别对象在第一坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第一坐标系的位置查询请求包括所述测量设备的标识。
示例B2.2,所述处理器1401,用于通过通信接口1403从测量设备接收所述第一坐标系下的测量目标的位置。
进一步的,所述处理器1401,用于通过通信接口1403向所述测量设备发送待识别对象在第一坐标系的位置查询请求;所述待识别对象在第一坐标系的位置请求用于查询所述待识别对象在第一坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第一坐标系的位置查询请求包括所述测量设备的标识。
示例a,所述处理器1401,用于通过通信接口1403从地图服务器接收所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
进一步的,所述处理器1401,用于通过通信接口1403向地图服务器发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系的标识。
示例b,所述处理器1401,用于通过通信接口1403接收测量设备发送的所述第二坐标系下的测量目标的位置、所述第二坐标系的标识、所述测量设备的标识中的至少一项。
进一步的,所述处理器1401,用于通过通信接口1403向测量设备发送待识别对象在第二坐标系下的位置查询请求;所述待识别对象在第二坐标系的位置请求用于查询所述待识别对象在第二坐标系下的位置信息;所述待识别对象为所述测量设备预设范围内的对象;所述待识别对象在第二坐标系的位置查询请求包括所述测量设备的标识,和/或第二坐标系 的标识。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD)、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,在没有超过本申请的范围内,可以通过其他的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
另外,所描述装置和方法以及不同实施例的示意图,在不超出本申请的范围内,可以与其它系统,模块,技术或方法结合或集成。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电子、机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种定位方法,其特征在于,包括:
    获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;
    获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;
    根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法用于地图服务器、路边单元或者车。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述获取第一坐标系相对于第二坐标系的信息包括:
    从存储器读取所述第一坐标系相对于第二坐标系的信息;
    或者,通过接收器接收所述第一坐标系相对于第二坐标系的信息。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述获取第一坐标系相对于第二坐标系的信息包括:
    获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;
    获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;
    根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述获取第一坐标系下的测量目标的位置包括:
    通过传感器测量得到所述第一坐标系下的测量目标的位置;
    或者,通过接收器接收所述第一坐标系下的测量目标的位置。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述旋转信息包括:第二坐标系到第一坐标系的旋转矩阵、第一坐标系到第二坐标系的旋转矩阵、第一坐标系在第二坐标系下的欧拉角、第二坐标系在第一坐标系下的欧拉角、第二坐标系到第一坐标系的旋转向量、第一坐标系到第二坐标系的旋转向量、第二坐标系到第一坐标系的旋转四元数或第一坐标系到第二坐标系的旋转四元数中的至少一项。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述获取第一坐标系相对于第二坐标系的信息包括:
    获取所述测量设备的标识;
    根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。
  9. 一种定位装置,其特征在于,包括:
    获取单元,用于获取第一坐标系相对于第二坐标系的信息,所述第一坐标系为测量设备使用的坐标系,所述第二坐标系为地图使用的坐标系,所述第一坐标系相对于第二坐标系的信息包括所述第一坐标系映射到所述第二坐标系的平移信息和旋转信息,其中所述平移信息为根据所述测量设备在所述第二坐标系的位置确定的,所述旋转信息为根据所述测量设备在所述第二坐标系的姿态确定;
    所述获取单元还用于获取第一坐标系下的测量目标的位置,所述第一坐标系下的测量目标的位置为所述测量设备测量得到;
    确定单元,用于根据所述第一坐标系相对于第二坐标系的信息和所述第一坐标系下的测量目标的位置,确定第二坐标系下的测量目标的位置。
  10. 根据权利要求9所述的装置,其特征在于,所述测量设备包括路边单元、路边单元内的测量装置、车或车内的测量装置。
  11. 根据权利要求9或10所述的装置,其特征在于,所述装置用于地图服务器、路边单元或者车。
  12. 根据权利要求9-11任一项所述的装置,其特征在于,所述获取单元获取第一坐标系相对于第二坐标系的信息包括:
    从存储器读取所述第一坐标系相对于第二坐标系的信息;
    或者,通过接收器接收所述第一坐标系相对于第二坐标系的信息。
  13. 根据权利要求9-11任一项所述的装置,其特征在于,所述获取单元,具体用于:
    获取第一坐标系相对于第二坐标系的初始信息,所述初始信息为根据所述测量设备在所述第二坐标系的初始位置和初始姿态确定的;
    获取所述测量设备测量所述测量目标时的位置相对于所述初始位置的位置变化,以及获取所述测量设备测量所述测量目标时的姿态相对于所述初始姿态的姿态变化;
    根据所述初始信息、所述位置变化和所述姿态变化,确定所述第一坐标系相对于第二坐标系的信息。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,所述获取单元获取第一坐标系下的测量目标的位置包括:
    通过传感器测量得到所述第一坐标系下的测量目标的位置;
    或者,通过接收器接收所述第一坐标系下的测量目标的位置。
  15. 根据权利要求9-14任一项所述的装置,其特征在于,所述旋转信息包括:第二坐标系到第一坐标系的旋转矩阵、第一坐标系到第二坐标系的旋转矩阵、第一坐标系在第二坐标系下的欧拉角、第二坐标系在第一坐标系下的欧拉角、第二坐标系到第一坐标系的旋转向量、第一坐标系到第二坐标系的旋转向量、第二坐标系到第一坐标系的旋转四元数或第一坐标系到第二坐标系的旋转四元数中的至少一项。
  16. 根据权利要求9-15任一项所述的装置,其特征在于,所述获取单元获取第一坐标系相对于第二坐标系的信息包括:
    获取所述测量设备的标识;
    根据所述测量设备的标识获取所述第一坐标系相对于第二坐标系的信息。
  17. 一种定位装置,其特征在于,包括处理器和存储器,所述存储器存储计算机程序 指令,所述处理器运行所述计算机程序指令以执行权利要求1-8任一项所述的操作。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括接收器或者传感器中的至少一个,其中,所述接收器用于接收所述第一坐标系相对于第二坐标系的信息或者接收所述第一坐标系下的测量目标的位置,所述传感器用于测量得到所述第一坐标系下的测量目标的位置。
  19. 一种定位装置,其特征在于,包括:
    处理器和接口电路;
    其中,所述处理器通过所述接口电路与存储器耦合,所述处理器用于执行所述存储器中的程序代码,以实现如权利要求1-8中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在被处理器运行时,使得所述定位装置执行如权利要求1-8任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,当所述计算机程序产品在处理器上运行时,使得所述定位装置执行如权利要求1-8任一项所述的方法。
PCT/CN2020/077297 2020-02-28 2020-02-28 定位方法及装置 WO2021168841A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/077297 WO2021168841A1 (zh) 2020-02-28 2020-02-28 定位方法及装置
EP20922097.9A EP4095488A4 (en) 2020-02-28 2020-02-28 POSITIONING METHOD AND DEVICE
CN202080002469.2A CN113574346A (zh) 2020-02-28 2020-02-28 定位方法及装置
US17/896,960 US20220412746A1 (en) 2020-02-28 2022-08-26 Positioning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077297 WO2021168841A1 (zh) 2020-02-28 2020-02-28 定位方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/896,960 Continuation US20220412746A1 (en) 2020-02-28 2022-08-26 Positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2021168841A1 true WO2021168841A1 (zh) 2021-09-02

Family

ID=77490643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077297 WO2021168841A1 (zh) 2020-02-28 2020-02-28 定位方法及装置

Country Status (4)

Country Link
US (1) US20220412746A1 (zh)
EP (1) EP4095488A4 (zh)
CN (1) CN113574346A (zh)
WO (1) WO2021168841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493598A (zh) * 2022-11-15 2022-12-20 西安羚控电子科技有限公司 运动过程中的目标定位方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969779A (zh) * 2017-03-17 2017-07-21 重庆邮电大学 基于dsrc的智能车辆地图融合系统及方法
CN109540148A (zh) * 2018-12-04 2019-03-29 广州小鹏汽车科技有限公司 基于slam地图的定位方法及系统
CN110296686A (zh) * 2019-05-21 2019-10-01 北京百度网讯科技有限公司 基于视觉的定位方法、装置及设备
US20190301873A1 (en) * 2018-03-27 2019-10-03 Uber Technologies, Inc. Log trajectory estimation for globally consistent maps

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11507084B2 (en) * 2019-03-27 2022-11-22 Intel Corporation Collaborative 3-D environment map for computer-assisted or autonomous driving vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969779A (zh) * 2017-03-17 2017-07-21 重庆邮电大学 基于dsrc的智能车辆地图融合系统及方法
US20190301873A1 (en) * 2018-03-27 2019-10-03 Uber Technologies, Inc. Log trajectory estimation for globally consistent maps
CN109540148A (zh) * 2018-12-04 2019-03-29 广州小鹏汽车科技有限公司 基于slam地图的定位方法及系统
CN110296686A (zh) * 2019-05-21 2019-10-01 北京百度网讯科技有限公司 基于视觉的定位方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095488A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493598A (zh) * 2022-11-15 2022-12-20 西安羚控电子科技有限公司 运动过程中的目标定位方法、装置及存储介质
CN115493598B (zh) * 2022-11-15 2023-03-10 西安羚控电子科技有限公司 运动过程中的目标定位方法、装置及存储介质

Also Published As

Publication number Publication date
US20220412746A1 (en) 2022-12-29
CN113574346A (zh) 2021-10-29
EP4095488A1 (en) 2022-11-30
EP4095488A4 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
US11092696B2 (en) Grouping for efficient cooperative positioning calculations
EP3491854B1 (en) Methods and apparatuses relating to determination of locations of portable devices
US10334405B2 (en) Identifying a geographic location for a stationary micro-vehicular cloud
CN106603150B (zh) 用于毫米波通信的方法
WO2018233699A1 (zh) 车辆定位方法、装置和终端设备
CN109817022B (zh) 一种获取目标对象位置的方法、终端、汽车及系统
US11645913B2 (en) System and method for location data fusion and filtering
WO2021036210A1 (zh) 一种定位方法及定位装置
TW202145811A (zh) 在車輛編隊或自主車輛運輸中定位車輛的基於叢集的方法
Xu et al. Design and implementation of a fog computing based collision warning system in VANETs
US20220412746A1 (en) Positioning method and apparatus
JP2023517799A (ja) 車両対あらゆるモノ(v2x)によって支援されるローカルナビゲーション
KR20230134498A (ko) 사이드링크 포지셔닝의 신호에 대한 타이밍 결정
WO2022206322A1 (zh) 一种通信方法及通信装置
CN112887914A (zh) 终端间定位方法及装置
KR20230148157A (ko) 사이드링크 포지셔닝이 가능한 ue에서의 레인징 세션들의동적 병합 및 분리
CN114152256A (zh) 用于第一车辆并且用于在第一车辆处估计第二车辆的方位的装置、方法和计算机程序、车辆
JP2018072892A (ja) 通信装置、通信システム、通信方法、通信プログラム及び記録媒体
US11546910B2 (en) Optimization of ranging sessions initiated by vehicle and pedestrian UES
US20230300567A1 (en) User equipment (ue) based relative position
WO2024027343A1 (zh) 定位方法及装置
WO2023280119A1 (zh) 信息生成方法和装置、信息使用方法和装置
EP3986000A1 (en) Communication method and apparatus
CN117676459A (zh) 一种相对位置的确定方法及装置
JP2018106343A (ja) 通信装置、通信方法並びに通信用プログラム及びデータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020922097

Country of ref document: EP

Effective date: 20220825

NENP Non-entry into the national phase

Ref country code: DE