WO2018233699A1 - 车辆定位方法、装置和终端设备 - Google Patents

车辆定位方法、装置和终端设备 Download PDF

Info

Publication number
WO2018233699A1
WO2018233699A1 PCT/CN2018/092462 CN2018092462W WO2018233699A1 WO 2018233699 A1 WO2018233699 A1 WO 2018233699A1 CN 2018092462 W CN2018092462 W CN 2018092462W WO 2018233699 A1 WO2018233699 A1 WO 2018233699A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
positioning
information
positioning information
networking
Prior art date
Application number
PCT/CN2018/092462
Other languages
English (en)
French (fr)
Inventor
胡小新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18821247.6A priority Critical patent/EP3644296A4/en
Priority to JP2019571355A priority patent/JP2020528598A/ja
Publication of WO2018233699A1 publication Critical patent/WO2018233699A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/091Traffic information broadcasting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present disclosure relates to the field of vehicle positioning, and in particular to a vehicle positioning method, apparatus, and terminal device.
  • Indoor positioning refers to the positional positioning in the indoor environment. It mainly uses wireless communication, base station positioning, inertial navigation and other technologies to form an indoor position positioning system, thereby realizing the position monitoring of people and objects in the indoor space.
  • the positioning system of the related art is susceptible to environmental factors and has poor signal stability in practical applications.
  • new positioning systems need to be established, and a large amount of underlying hardware facilities are required, so that the positioning cost is too high.
  • a vehicle positioning method including: acquiring positioning information sent by a peripheral device after receiving a positioning instruction; selecting, according to the positioning information, a peripheral device that meets a preset condition as a positioning reference; The wireless signal relationship between the vehicle and the peripheral device as the positioning reference acquires the positioning information of the position of the vehicle.
  • a vehicle positioning apparatus including: a first acquiring module, configured to acquire positioning information sent by a peripheral device after receiving a positioning instruction; and a selecting module configured to be according to the positioning information, Selecting a peripheral device that satisfies the preset condition as a positioning reference; and a second acquiring module configured to acquire positioning information of the position of the vehicle according to a wireless signal relationship between the vehicle and the peripheral device as the positioning reference.
  • a terminal device including a memory and a processor, wherein the memory stores a computer program that performs vehicle positioning according to the present disclosure when the processor runs the computer program method.
  • a storage medium having stored thereon a computer program that, when executed by a processor, causes the processor to perform a vehicle positioning method according to the present disclosure.
  • FIG. 1 is a schematic diagram of an environment in which a vehicle positioning method and apparatus according to an embodiment of the present disclosure is applied;
  • FIG. 2 is a flow chart of a vehicle positioning method in accordance with an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a vehicle positioning method according to another embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a vehicle positioning device in accordance with an embodiment of the present disclosure.
  • FIG. 5 is a block diagram of a vehicle positioning device according to another embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a vehicle positioning terminal device in accordance with an embodiment of the present disclosure.
  • Commonly used indoor positioning technologies mainly include Global Positioning System (GPS) positioning, Bluetooth positioning, infrared positioning, Wireless Sensor Network (WSN) positioning, and Radio Frequency Identification (RFID) positioning. Broadband positioning, ultrasonic positioning and cellular base station positioning.
  • GPS Global Positioning System
  • WSN Wireless Sensor Network
  • RFID Radio Frequency Identification
  • GPS positioning, Bluetooth positioning, infrared positioning, WSN positioning, RFID positioning and other positioning technologies are susceptible to environmental factors such as noise signals, temperature and humidity, other light sources or obstacles when applied to indoor environments. To make its signal stability poor.
  • the flow of the base station-based cellular positioning system is as follows: the terminal reports measurement information; the base station calculates based on the terminal reporting information and the base station measurement information; and the positioning result is returned to the terminal.
  • the base station-based cellular positioning does not need to establish a new positioning system and has a wide coverage, when the base station-based cellular positioning is used, the assistance of the positioning network composed of the base stations is required, and the delay is large and the positioning accuracy is low.
  • FIG. 1 is a schematic diagram of an environment in which a vehicle positioning method and apparatus according to an embodiment of the present disclosure is applied.
  • FIG. 1 shows an environment diagram of vehicle positioning based on Long Term Evolution-Vehicle (LTE-V), which is a protocol specifically for inter-vehicle communication.
  • LTE-V Long Term Evolution-Vehicle
  • the environment includes: a vehicle-mounted vehicle terminal 1 and a vehicle-mounted vehicle-mounted terminal 2 on each vehicle; a handheld terminal 1 and a handheld terminal 2; (disposed at a parking lot or a lane) with a vehicle Networking capabilities of fixed devices RSU1 to RSU3; and cellular networks used to transmit signals.
  • a finger link (SideLink, a standard for physical layer terminal pass-through defined by 36.211 in LTE) connection can be established between the vehicle-mounted vehicle terminal and the fixed device RSU.
  • SideLink a standard for physical layer terminal pass-through defined by 36.211 in LTE
  • the Internet of Vehicles is based on the in-vehicle network, the inter-vehicle network and the in-vehicle mobile Internet.
  • the car and X (X means car, road, pedestrian and Internet, etc.)
  • Internet of Vehicles is an integrated network that can realize intelligent traffic management, intelligent dynamic information service and intelligent vehicle control. It is a typical application of Internet of Things (IoT) technology in the field of transportation systems. To put it simply, the Internet of Vehicles is a network in which cars are connected to everything.
  • Vehicle-to-vehicle (V2V) vehicle and road infrastructure are realized through the interconnection between on-board ad hoc networks and multiple heterogeneous networks.
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrians
  • V2C Vehicle to Cloud
  • V2N Vehicle to Network
  • V2H Vehicle to Home
  • V2V communication refers to wireless-based data transmission between vehicles, and transmits vehicle position and speed information to another vehicle through a dedicated network.
  • V2V technology uses Dedicated Short Range Communication (DSRC).
  • DSRC Dedicated Short Range Communication
  • V2V communication requires a wireless network on which vehicles communicate information to each other to tell them what they are doing. This information can include speed, location, driving direction, braking, and more. With V2V, you can communicate directly between terminals without network participation.
  • the Internet of Vehicles is the key technology of the future intelligent transportation system. It enables vehicles and vehicles, vehicles and base stations, base stations and base stations to communicate, thus obtaining a series of traffic information such as real-time road conditions, road information and pedestrian information to improve driving safety. Sex, reduce congestion, improve traffic efficiency, and provide in-vehicle entertainment information. Vehicles equipped with the Internet of Vehicles system can automatically select the best driving route by analyzing the real-time traffic information, thus greatly alleviating traffic congestion. In addition, by using the on-board sensor and camera system, you can also sense the surrounding environment and make quick adjustments.
  • the vehicle network vehicle terminal ie, the terminal device with V2X capability on the vehicle
  • the vehicle network vehicle terminal is used for the vehicle to receive the location information of the external terminal device and to transmit its own location information.
  • Vehicle networking fixed equipment eg, Road Side Unit (RSU)
  • RSU Road Side Unit
  • the vehicle network fixed device can obtain its own high-precision position information, and can obtain its position information from the vehicle network fixed device through preset mode or through network delivery mode. That is to say, the fixed connection device of the vehicle network can obtain its own precise location from the network, or obtain its own precise location by other means such as preset, and can broadcast the relevant information required for positioning, and fix the device with other vehicles. Communicate as a candidate positioning reference.
  • the RSU is a roadside-mounted unit in the Electronic Toll Collection (ETC) system that uses DSRC technology to communicate with the On Board Unit (OBU) for vehicle identification.
  • ETC Electronic Toll Collection
  • OBU On Board Unit
  • Handheld terminals include, but are not limited to, terminals with Internet access capabilities such as mobile phones and tablet computers. Handheld terminals can communicate directly with other terminal devices over a cellular network.
  • FIG. 2 is a flow chart of a vehicle positioning method according to an embodiment of the present disclosure.
  • the vehicle positioning method shown in FIG. 2 can be applied to the environment shown in FIG. 1. As shown in FIG. 2, the vehicle positioning method according to an embodiment of the present disclosure may include steps S100 to S300.
  • step S100 after receiving the positioning instruction, the positioning information sent by the peripheral device is acquired.
  • step S100 may include acquiring positioning information sent by the surrounding vehicle networking device, that is, acquiring positioning information of the vehicle networking device having the function of transmitting positioning information to the vehicle when receiving the positioning instruction.
  • a vehicle networking device may include a vehicle networking fixed device (eg, the RSU shown in FIG. 1) in which the vehicle exchanges information with the outside world and a vehicle network of the vehicle in which the location has been determined.
  • An in-vehicle device (hereinafter also referred to as a V2X in-vehicle device), that is, an in-vehicle device may include an in-vehicle fixed device and a car-network in-vehicle device that has been determined to have a location.
  • a V2X device is a V2X-capable device that exchanges information with the outside world, and may be a fixed device (such as an RSU) or a V2X in-vehicle device. With the development of the Internet of Vehicles, the number of RSU devices will increase.
  • the location information broadcasted by the V2X device may include location information of the V2X device, location accuracy of the V2X device, type information of the V2X device, and motion information of the V2X device.
  • Longitude, latitude, and altitude can be used to represent the location information of a V2X device.
  • Accuracy is the degree to which the observed value is close to the true value, that is, the positioning accuracy, which is the closeness between the spatial entity position information (usually the coordinates) and its true position.
  • the type information of the V2X device can indicate the type of the V2X device, such as a fixed RSU or a V2X in-vehicle device.
  • the motion information of the V2X device may include the state of the V2X device (for example, the motion state and the stationary state) and the direction angle of the V2X device.
  • V2X capability such as RSU
  • RSU Fixed equipment with V2X capability
  • RSU Fixed equipment with V2X capability
  • V2X devices can be deployed at the parking lot of the indoor parking lot or at the side of the lane.
  • V2X devices can be used as a positioning reference.
  • the positioning accuracy will also increase.
  • no additional infrastructure is required, which saves costs and reduces the complexity of locating the network.
  • the V2X in-vehicle device can search for the surrounding V2X devices (including the fixed device and other V2X in-vehicle devices) to obtain the positioning information of the V2X device with the function of sending the positioning information to the periphery, and the surrounding area.
  • the V2X device is used as a candidate positioning reference.
  • step S200 according to the positioning information, the peripheral device that meets the preset condition is selected as the positioning reference, that is, the vehicle networking device that meets the preset condition is selected as the positioning reference.
  • step S100 After acquiring the positioning information of the multiple V2X devices in step S100, according to the obtained positioning information of each V2X device, and according to the preset condition, a part of the V2X devices of the V2X devices are selected as the positioning reference. In order to achieve accurate positioning, at least two V2X devices must be selected as the positioning reference. The more the positioning reference is selected, the more accurate the positioning accuracy will be. In addition, an appropriate number of positioning datums can be selected according to the needs of the algorithm.
  • step S300 the positioning information of the position of the vehicle is acquired according to the wireless signal relationship between the vehicle and the peripheral device as the positioning reference, that is, the vehicle's own position is acquired according to the wireless signal relationship with the V2X device as the positioning reference. Location information.
  • the method for obtaining the position of the vehicle itself may adopt various algorithms in the related art, including but not limited to triangulation, Time Difference of Arrival (TOA) or time difference of Arrival (TDOA). ) Positioning method, etc.
  • TOA Time Difference of Arrival
  • TDOA time difference of Arrival
  • the principle of the triangulation method is to detect the target orientation by using two or more V2X devices at different positions, and then use the triangular geometry principle to determine the position and distance of the target.
  • the principle of the TOA positioning method is to measure the signal propagation time to two (or more) V2X devices as positioning targets, thereby obtaining distance estimates for two (or more) V2X devices as positioning references, for each
  • the V2X device as the positioning reference is the center of the circle, and the radius of each of the corresponding distance estimation values is a circle, and the intersection of the plurality of circles is the estimated position of the mobile station.
  • the TDOA positioning method is a method of positioning using time difference. The distance of the signal source can be determined by measuring the time the signal arrives at the monitoring station.
  • the position of the signal can be determined by the distance from the signal source to each monitoring station.
  • the absolute time is generally difficult to measure. Therefore, by comparing the time difference between the signals arriving at each monitoring station, the hyperbola with the focus of the monitoring station and the long distance as the long axis can be obtained. The intersection of each hyperbola is the position of the signal.
  • the preset condition may include at least one of the following: the vehicle networking device is an RSU fixed device; the vehicle networking device is a vehicle networking vehicle device; the positioning accuracy of the vehicle networking device reaches a preset accuracy threshold; and the vehicle is in the vehicle networking device. Within the direction angle; and the car networking equipment is at a standstill.
  • the step S200 may include: using a type of the V2X device, a positioning accuracy of the V2X device to reach a preset accuracy threshold, a direction angle of the V2X device, and a V2X in-vehicle device in a stationary state as a reference reference, according to different conditions. Or a combination of different conditions, select at least one V2X device as a positioning reference.
  • a V2X fixed device can be selected as a positioning reference; a V2X device with a positioning accuracy of less than 0.5 m is used as a positioning reference; a V2X fixed device and a V2X in-vehicle device with a positioning accuracy of less than 0.5 m and in a stationary state are used as positioning. Benchmark.
  • FIG. 3 is a flowchart of a vehicle positioning method according to another embodiment of the present disclosure.
  • the vehicle positioning method shown in FIG. 3 can be applied to the environment shown in FIG. 1.
  • the vehicle positioning method according to an embodiment of the present disclosure may include steps S10 to S50.
  • Steps S10 to S30 are the same as or substantially the same as steps S100 to S300 shown in FIG. 2, and therefore are not described herein again.
  • step S40 the positioning information of the new position of the vehicle is continuously acquired based on the positioning information and the map information of the position of the vehicle until the position of the vehicle is positioned as the target position, that is, the positioning information based on the position of the vehicle itself And the map information continues to locate the process, and continuously acquires the location information of the new location until it reaches the destination.
  • step S50 the positioning information of the location of the vehicle is broadcasted externally, that is, after the V2X in-vehicle device completes its own positioning, its positioning information can be broadcasted outward as a candidate positioning reference for other vehicles.
  • the positioning information broadcasted by the V2X in-vehicle device may include location information, positioning accuracy, device type information (ie, type V2X in-vehicle device), and motion information (motion/still state, direction angle, etc.), so that it can be used as other V2X in-vehicle devices.
  • Alternative positioning benchmarks are possible.
  • the network may be an LTE network or other types of cellular networks.
  • the V2X fixed device device obtains its own location information from the GPS or the network.
  • Handheld terminals, V2X vehicle terminals and RSUs in the indoor parking lot can communicate via the network.
  • the inter-terminal communication can also be directly performed between the handheld terminal, the V2X vehicle terminal, and the RSU.
  • the radio resource allocation processing for direct communication between terminals can be completed by the LTE-V V2V mechanism.
  • the terminal maps the resource pool based on its own location (all optional resource pools are pre-configured in the terminal or acquired through the network). After culling the radio resources that are determined to be occupied by other terminals, the terminal selects the radio resources used by itself from the remaining available resource pools according to certain principles, and uses the selected radio resources to transmit data. All terminals use the same resource pool to receive broadcast information.
  • RSU1 and RSU2 can obtain their own location information from the network, determine the radio resources used by themselves according to the manner of resource selection, and broadcast their own positioning information by using the selected radio resources.
  • the vehicle-mounted vehicle-mounted terminal 1 After the vehicle-mounted vehicle-mounted terminal 1 enters the indoor area, the upper-layer application of the vehicle-mounted vehicle-mounted terminal 1 determines that positioning is required, and the vehicle-mounted vehicle-mounted terminal 1 searches for peripheral V2X terminal information. After the car network vehicle terminal 1 recognizes the positioning information broadcast by the RSU1 and the RSU2, both RSU1 and RSU2 are used as candidate positioning references, and finally it is determined that both RSU1 and RSU2 are selected as the positioning reference.
  • the Internet of Vehicles-mounted vehicle terminal 1 performs wireless communication with the RSU 1 and the RSU 2, and performs self-positioning based on the positioning information of the RSU 1 and the RSU 2 and the wireless signal relationship therebetween. After the positioning, the car network vehicle terminal 1 can travel to the destination based on its own positioning information and map information. After arriving at the destination, the car network vehicle terminal 1 can broadcast its own positioning information for other devices to select as a candidate positioning reference.
  • the Internet of Vehicles vehicle terminal 2 searches for peripheral V2X terminal information, and identifies the positioning information broadcast by the RSU1, RSU2, RSU3, and the Internet of Vehicles vehicle terminal 1.
  • the car network vehicle terminal 2 determines to select a fixed device type V2X device (i.e., RSU1, RSU2, and RSU3) as a positioning reference.
  • RSU1, RSU2, and RSU3 a fixed device type V2X device
  • the car network vehicle terminal 2 performs its own position location based on the positioning information of the RSU1, the RSU2, and the RSU3, and the wireless signal relationship therebetween.
  • the in-vehicle terminal 2 can travel to the destination based on its own positioning information and map information.
  • the car network vehicle terminal 2 can broadcast its own positioning information for other devices to select as a candidate positioning reference.
  • the embodiment of the present disclosure is based on the V2V communication function provided by LTE-V, and combines the RSU device in the vehicle networking, and proposes an LTE-V based indoor positioning method.
  • the communication between the RSU device deployed in the car network and the V2X terminal is used for positioning.
  • the positioning process is mainly based on direct communication between V2X terminals (ie, V2V communication between V2X devices), and utilizes the computing power of multiple terminals for positioning, rather than communicating between the terminal and the network, and without locating network assistance.
  • the vehicle positioning method of the embodiment of the present disclosure the purpose of accurate positioning in the vehicle interior can be achieved, the network bandwidth overhead and the operation overhead are reduced, and the positioning cost is reduced.
  • FIG. 4 is a block diagram of a vehicle positioning device in accordance with an embodiment of the present disclosure.
  • the vehicle positioning device shown in Figure 4 can be applied to the environment shown in Figure 1.
  • the vehicle positioning apparatus may include a first acquisition module 10, a selection module 20, and a second acquisition module 30.
  • the first obtaining module 10 is configured to acquire positioning information sent by the peripheral device after receiving the positioning instruction.
  • the selection module 20 is configured to select a peripheral device that meets the preset condition as a positioning reference according to the positioning information.
  • the second acquisition mode 30 is configured to acquire positioning information of a position of the vehicle according to a wireless signal relationship between the vehicle and a peripheral device as a positioning reference.
  • FIG. 5 is a block diagram of a vehicle positioning device in accordance with another embodiment of the present disclosure.
  • the vehicle positioning device shown in Fig. 5 can be applied to the environment shown in Fig. 1.
  • the vehicle positioning apparatus may include a first acquisition module 10, a selection module 20, a second acquisition module 31, and a broadcast module 40.
  • the first obtaining module 10 and the selecting module 20 are the same as or substantially the same as the first obtaining module 10 and the selecting module 20 shown in FIG. 4, and therefore are not described herein again.
  • the second acquisition module 31 may be further configured to continuously acquire positioning information of a new position of the vehicle based on the positioning information and the map information of the position of the vehicle until the position of the vehicle is positioned as a target position.
  • the broadcast module 40 is set to broadcast information of the location of the vehicle to the outside.
  • the present disclosure also provides one or more non-transitory computer readable storage media storing computer-executable instructions, when executed by one or more processors, wherein The one or more processors are caused to perform a vehicle positioning method according to various embodiments of the present disclosure.
  • FIG. 6 is a block diagram of a vehicle positioning terminal device in accordance with an embodiment of the present disclosure.
  • the present disclosure also provides a terminal device.
  • the terminal device may include a memory and a processor.
  • a computer program is stored on the memory.
  • the processor runs the computer program, the processor can perform a vehicle positioning method in accordance with various embodiments of the present disclosure.
  • the memory may also store an operating system, and the memory and the processor may be connected to each other through a system bus.
  • FIG. 6 only schematically illustrates a terminal device including a memory and a processor, however, embodiments of the present disclosure are not limited thereto, and the terminal device may further include a network interface, an input device, and the like.
  • the computer program can be stored in a computer readable storage medium and can be executed by at least one processor in a computer system to implement a process comprising the methods of the various embodiments described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Atmospheric Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开涉及一种车辆定位方法、装置和终端设备。所述方法包括:在接收到定位指令后,获取周边设备发送的定位信息;根据所述定位信息,选取满足预设条件的周边设备作为定位基准;以及根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。

Description

车辆定位方法、装置和终端设备 技术领域
本公开涉及车辆定位领域,具体地,涉及一种车辆定位方法、装置和终端设备。
背景技术
室内定位是指在室内环境中实现位置定位,主要采用无线通讯、基站定位、惯导定位等多种技术来形成一套室内位置定位体系,从而实现人员、物体等在室内空间中的位置监控。
相关技术的定位系统在实际应用中,易受到环境因素的影响,信号稳定性较差。此外,一些定位技术应用于室内环境时,需要建立新的定位系统,并且需要大量的底层硬件设施,使得定位成本太高。
因此,对于室内车辆定位,需要一种简单且能够实现精确定位的方法。
发明内容
根据本公开实施例,提供一种车辆定位方法,包括:在接收到定位指令后,获取周边设备发送的定位信息;根据所述定位信息,选取满足预设条件的周边设备作为定位基准;以及根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。
根据本公开实施例,提供一种车辆定位装置,包括:第一获取模块,其设置为在接收到定位指令后,获取周边设备发送的定位信息;选取模块,其设置为根据所述定位信息,选取满足预设条件的周边设备作为定位基准;以及第二获取模块,其设置为根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。
根据本公开实施例,提供一种终端设备,包括存储器和处理器,在所述存储器存储有计算机程序,当所述处理器运行所述计算机程序 时,所述处理器执行根据本公开的车辆定位方法。
根据本公开实施例,提供一种存储介质,其上存储有计算机程序,当所述计算机程序由处理器运行时,使得所述处理器执行根据本公开的车辆定位方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为应用根据本公开实施例的车辆定位方法和装置的环境示意图;
图2为根据本公开实施例的车辆定位方法的流程图;
图3为根据本公开另一实施例的车辆定位方法的流程图;
图4为根据本公开实施例的车辆定位装置的框图;
图5为根据本公开另一实施例的车辆定位装置的框图;以及
图6为根据本公开实施例的车辆定位终端设备的框图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
常用的室内定位技术主要有全球定位系统(Global Positioning System,GPS)定位、蓝牙定位、红外线定位、无线传感器网络(Wireless Sensor Network,WSN)定位和无线射频识别(Radio Frequency Identification,RFID)定位、超宽带定位、超声波定位和蜂窝基站定位等。
在定位系统的实际应用中,GPS定位、蓝牙定位、红外线定位、WSN定位、RFID定位等定位技术应用于室内环境时,易受到诸如噪声信号、温湿度、其他光源或障碍物等环境因素的影响,使其信号稳定性较差。
此外,蓝牙定位、红外线定位、WSN定位、RFID定位、超宽带定位和超声波等定位技术应用于室内环境时,需要建立新的定位系统,并且需要大量的底层硬件设施,使得定位成本太高。
目前,基于基站的蜂窝定位系统的流程如下:终端上报测量信息;基站基于终端上报信息和基站测量信息运算;以及定位结果返回终端。虽然基于基站的蜂窝定位无需建立新的定位系统,且覆盖范围广,但是在使用基于基站的蜂窝定位时,需要由基站组成的定位网络的辅助,其时延较大,且定位精度较低。
图1为应用根据本公开实施例的车辆定位方法和装置的环境示意图。
图1示出了基于长期演进的车辆间协议(Long Term Evolution-Vehicle,LTE-V)的车辆定位的环境示意图,LTE-V是专门针对车辆间通讯的协议。如图1所示,在该环境中包括:各个车辆上的车联网车载终端1和车联网车载终端2;手持终端1和手持终端2;(部署在停车场车位处或车道边的)具有车联网能力的固定设备RSU1至RSU3;以及用来传输信号的蜂窝网络。在车联网车载终端和固定设备RSU之间可以建立指边链路(SideLink,LTE中36.211定义的物理层终端直通的标准)连接。图1示出的各类型终端设备数量仅用于举例说明,本公开对此不做限定。
车联网(Internet of Vehicles)是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在车与X(X表示车、路、行人及互联网等)之间进行无线通讯和信息交换的大系统网络。车联网是能够实现智能化交通管理、智能动态信息服务和车辆智能化控制的一体化网络,是物联网(Internet of Things,IoT)技术在交通系统领域的典型应用。简单说,车联网就是车与一切事物相联的网络,通过车载自组网及多种异构网络之间的互联,实现了车与车(Vehicle to Vehicle,V2V)、车与道路基础设施(Vehicle to Infrastructure,V2I)、车与行人(Vehicle to Pedestrians,V2P)、车与云端(Vehicle to Cloud,V2C)、车与网络(Vehicle to Network,V2N)以及车与家(Vehicle to Home,V2H)之间的互联互通。 将这种车与一切事物之间的互联互通表述为V2X(Vehicle to X),X表示车、路、行人及互联网等,或者也可以表述为“Vehicle to Everything”。
V2V通信是指在车辆之间基于无线的数据传输,通过专设的网络发送车辆位置和速度信息给另外的车辆。V2V技术使用的是专用短程通信(Dedicated Short Range Communication,DSRC)。V2V通信需要一个无线网络,在这个网络上车辆之间互相传送信息,以告诉对方自己在做什么。这些信息可以包括速度、位置、驾驶方向、刹车等。通过V2V,可以在各终端之间直接通信,而无需网络参与。
车联网是未来智能交通运输系统的关键技术,它使得车与车、车与基站、基站与基站之间能够通信,从而获得实时路况、道路信息、行人信息等一系列交通信息,以提高驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。搭配了车联网系统的车辆能够通过对实时交通信息的分析,自动选取路况最佳的行驶路线,从而大大缓解交通堵塞。除此之外,通过使用车载传感器和摄像系统,还可以感知周围环境,做出迅速调整。
车联网车载终端(即,车辆上具有V2X能力的终端设备)用于车辆接收外界终端设备的位置信息,以及发送自身的位置信息。
车联网固定设备(如,路侧单元(Road Side Unit,RSU))具有通信能力。车联网固定设备可以获取自身高精度的位置信息,可以通过预置方式或者通过网络下发方式由车联网固定设备获取其位置信息。也就是说,车联网固定设备既可以从网络处获得自己的精确位置,也可以通过预设等其他方式获得自己的精确位置,并可以对外广播定位所需相关信息,并和其他车联网固定设备进行通信,以作为候选定位基准。
RSU是电子收费(Electronic Toll Collection,ETC)系统中安装在路侧的单元,其采用DSRC技术与车载单元(On Board Unit,OBU)进行通讯,以实现车辆身份识别。
手持终端包括但不限于手机、平板电脑等具有车联网能力的终端。手持终端可以通过蜂窝网络与其他终端设备进行直接通信。
图2为根据本公开实施例的车辆定位方法的流程图
图2所示的车辆定位方法可应用于图1所示的环境中。如图2所示,根据本公开实施例的车辆定位方法可以包括步骤S100至S300。
在步骤S100,在接收到定位指令后,获取周边设备发送的定位信息。
在一个实施例中,步骤S100可以包括获取周边车联网设备发送的定位信息,即,当接收到定位指令时,获取周边具有向车辆发送定位信息功能的车联网设备的定位信息。
在一个实施例中,车联网设备(在下文中也称作V2X设备)可以包括车与外界进行信息交换的车联网固定设备(例如,图1所示的RSU)和已经确定位置的车辆的车联网车载设备(在下文中也称作V2X车载设备),即,车联网设备可以包括车联网固定设备和已经确定位置的车联网车载设备。V2X设备是与外界进行信息交换的具有V2X能力的设备,其可以是固定设备(比如RSU),也可以是V2X车载设备等。随着车联网的发展,RSU设备的数量将会增加。
V2X设备向外广播的定位信息可以包括V2X设备的位置信息、V2X设备的定位精度、V2X设备的类型信息以及V2X设备的运动信息。可以用经度、纬度和高度来表示V2X设备的位置信息。精度是表示观测值与真实值的接近程度,即定位精度,是空间实体位置信息(通常为坐标)与其真实位置之间的接近程度。V2X设备的类型信息可以表示V2X设备的类型,比如固定RSU或者V2X车载设备等。V2X设备的运动信息可以包括V2X设备的状态(例如,运动状态和静止状态)及V2X设备的方向角等。
在室内停车场车位处或者车道边可以部署具有V2X能力的固定设备,例如,RSU。随着车联网的发展,车联网中将有大量的位置固定的V2X设备,可以借助这些设备作为定位基准。随着V2X设备数目的增多,定位精度也将随之越高。此外,不需要额外建立基础设施,从而节省了成本,并减小了定位网络的复杂度。
车辆进入室内,当要求进行定位时,V2X车载设备可以搜索周边的V2X设备(包括固定设备和其他V2X车载设备),以获取周边具有 向外发送定位信息功能的V2X设备的定位信息,并将周边的V2X设备用作候选定位基准。
在步骤S200,根据所述定位信息,选取满足预设条件的周边设备作为定位基准,即,选取满足预设条件的车联网设备作为定位基准。
在步骤S100获取了多个V2X设备的定位信息后,根据获取的各个V2X设备的定位信息,并且根据预设条件,选取这些V2X设备中的一部分V2X设备作为定位基准。为了准确的实现定位,至少要选取两个V2X设备作为定位基准。定位基准选取的个数越多,定位精度就会越精确。此外,可以根据算法的需要来选取合适数量的定位基准。
在步骤S300,根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息,即,根据与作为定位基准的V2X设备间的无线信号关系,获取车辆自身位置的定位信息。
用于获取车辆自身的位置方法可以采用相关技术中的各种算法,包括(但不限于)三角定位法、到达时间(Time Difference of Arrival,TOA)定位法或到达时间差(Time Difference of Arrival,TDOA)定位法等。
三角定位法的原理是利用在不同位置的2台或者2台以上的V2X设备探测目标方位,然后运用三角几何原理确定目标的位置和距离。TOA定位法的原理是测量出到两个(或多个)作为定位基准的V2X设备的信号传播时间,从而得到到两个(或多个)作为定位基准的V2X设备的距离估计值,以每个作为定位基准的V2X设备为圆心,以对应的每个所述距离估计值为半径画圆,多个圆的交点就是移动台的估计位置。TDOA定位法是一种利用时间差进行定位的方法。通过测量信号到达监测站的时间,可以确定信号源的距离。利用信号源到各个监测站的距离,就能确定信号的位置。但是绝对时间一般比较难测量,因此通过比较信号到达各个监测站的时间差,就能得出以监测站为焦点,距离差为长轴的双曲线,各条双曲线的交点就是信号的位置。
在一个实施例中,预设条件可以包括以下至少一项:车联网设备为RSU固定设备;车联网设备为车联网车载设备;车联网设备的定位精度达到预设精度阈值;车辆在车联网设备的方向角内;以及车联 网设备处于静止状态。
在此实施例中,步骤S200可以包括:以V2X设备的类型、V2X设备的定位精度达到一预设精度阈值、V2X设备的方向角、V2X车载设备处于静止状态等条件为参考基准,根据不同条件或不同条件的组合,选取至少一个V2X设备作为定位基准。
根据本公开实施例,可以选取,例如,V2X固定设备作为定位基准;定位精度达到小于0.5米的V2X设备作为定位基准;定位精度小于0.5米且处于静止状态的V2X固定设备和V2X车载设备作为定位基准。
图3为根据本公开另一实施例的车辆定位方法的流程图。
图3所示的车辆定位方法可应用于图1所示的环境中。如图3所示,根据本公开实施例的车辆定位方法可以包括步骤S10至S50。步骤S10至S30分别与图2所示步骤S100至S300相同或基本相同,故此处不再赘述。
在步骤S40,基于所述车辆的位置的定位信息和地图信息持续获取所述车辆的新的位置的定位信息,直至所述车辆的位置被定位为目标位置,即,基于车辆自身位置的定位信息和地图信息持续定位过程,并不断获取新的位置的定位信息,直至到达目的地。
在步骤S50,对外广播所述车辆的位置的定位信息,即,V2X车载设备在完成自身的定位后,可以向外广播其定位信息,以作为其他车辆的候选定位基准。
当车辆计算出自身位置后,向外广播其定位信息,以供其它待定位车辆参考。V2X车载设备向外广播的定位信息可以包括位置信息、定位精度、设备类型信息(即,类型为V2X车载设备)和运动信息(运动/静止状态,方向角等),从而可以作为其他V2X车载设备的备选定位基准。
为了进一步说明本公开实施例,下面以具体应用示例来详细描述上述定位过程。
假如室内停车场中已经部署蜂窝网络,此网络可以是LTE网络,也可以是其它类型蜂窝网络。V2X固定设备装置从GPS或者网络获取 自身位置信息。室内停车场内的手持终端、V2X车载终端和RSU可以通过网络进行通信。当室内停车场没有蜂窝网络时,手持终端、V2X车载终端和RSU之间也可以直接进行终端间通信。
需要说明的是,V2X车载终端、RSU和手持终端等终端之间直接通信的无线资源分配处理可以通过LTE-V V2V机制完成。终端在广播信息前,基于自身位置映射资源池(所有可选的资源池预先配置在终端中或者通过网络获取)。在剔除那些判断为被其它终端占用的无线资源后,终端从剩余可用的资源池中按照一定原则选取自己使用的无线资源,并利用选取的无线资源发送数据。所有终端使用相同的资源池接收广播信息。
参照图1,RSU1和RSU2可以从网络获取自身位置信息,按照资源选取的方式确定自己使用的无线资源,并利用选取的无线资源广播自身定位信息。车联网车载终端1进入室内区域后,车联网车载终端1的上层应用决定需要进行定位,并且车联网车载终端1寻找周边的V2X终端信息。车联网车载终端1识别出RSU1和RSU2广播的定位信息后,以RSU1和RSU2二者作为候选的定位基准,并且最终确定选取RSU1和RSU2二者作为定位基准。随后,车联网车载终端1与RSU1和RSU2进行无线通信,并且基于RSU1、RSU2的定位信息以及和它们之间的无线信号关系,进行自身定位。定位后,车联网车载终端1可以基于自身的定位信息和地图信息向目的地行进。到达目的地后,车联网车载终端1可以对外广播自身的定位信息,以供其它设备选取作为候选定位基准。
此后,车联网车载终端2进入室内区域,并且要求进行定位。车联网车载终端2寻找周边的V2X终端信息,并且识别出RSU1、RSU2、RSU3和车联网车载终端1广播的定位信息。车联网车载终端2确定选取固定设备类型的V2X设备(即,RSU1,RSU2和RSU3)作为定位基准。随后,车联网车载终端2基于RSU1、RSU2和RSU3的定位信息,以及和它们之间的无线信号关系,进行自身位置定位。定位后,车载终端2可以基于自身的定位信息和地图信息向目的地行进。达目的地后,车联网车载终端2可以对外广播自身的定位信息,以供其它设备 选取作为候选定位基准。
本公开实施例基于LTE-V提供的V2V通信功能,同时结合车联网中的RSU设备,提出了一种基于LTE-V的车辆室内定位方法。基于蜂窝网络,利用车联网中部署的RSU设备和V2X终端之间的通信进行定位。利用多个RSU和V2X车载作为定位基准,覆盖面广且连续,并且无需另外部署传感器,无需建立先验信息库。定位过程主要基于V2X终端间直接通信(即,V2X设备之间的V2V通信),并且利用多终端的运算能力来进行定位,而不是在终端和网络之间进行通信,也无需定位网络辅助。根据本公开实施例的车辆定位方法,能够实现车辆室内精确定位的目的,降低网络带宽开销和运算开销,并且降低了定位成本。
图4为根据本公开实施例的车辆定位装置的框图。
图4所示的车辆定位装置可应用于图1所示的环境中。如图4所示,根据本公开实施例的车辆定位装置可以包括第一获取模块10、选取模块20和第二获取模块30。
第一获取模块10设置为在接收到定位指令后,获取周边设备发送的定位信息。
选取模块20设置为根据所述定位信息,选取满足预设条件的周边设备作为定位基准。
第二获取模30设置为根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。
图5为根据本公开另一实施例的车辆定位装置的框图。
图5所示的车辆定位装置可应用于图1所示的环境中。如图5所示,根据本公开实施例的车辆定位装置可以包括第一获取模块10、选取模块20、第二获取模块31和广播模块40。第一获取模块10和选取模块20分别与图4所示的第一获取模块10和选取模块20相同或基本相同,故此处不再赘述。
第二获取模块31还可以设置为基于所述车辆的位置的定位信息和地图信息持续获取所述车辆的新的位置的定位信息,直至所述车辆的位置被定位为目标位置。
广播模块40设置为对外广播所述车辆的位置的定位信息。
在一个实施例中,本公开还提供一个或多个存储有计算机可执行指令的非易失性计算机可读存储介质,所述计算机可执行指令被一个或多个处理器执行时,其中,可使得所述一个或多个处理器执行根据本公开各实施例的车辆定位方法。
图6为根据本公开实施例的车辆定位终端设备的框图。
如图6所示,在一个实施例中,本公开还提供一种终端设备。所述终端设备可以包括存储器和处理器。在存储器上存储有计算机程序。当处理器运行所述计算机程序时,处理器可以执行根据本公开各实施例的车辆定位方法。
如图6所示,存储器还可以存储有操作系统,并且存储器与处理器可以通过系统总线彼此连接。应当认识到,图6仅示意性地示出了包括存储器和处理器的终端设备,然而,本公开实施例不限于此,终端设备还可以包括网络接口、输入装置等。
本领域普通技术人员可以理解,上述实施例方法中的全部或部分流程可以通过计算机程序来指令相关的硬件来完成。所述计算机程序可存储于计算机可读取存储介质中,并且可以被计算机系统中的至少一个处理器执行,以实现包括如上述各实施例方法的流程。存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和控制,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种车辆定位方法,包括:
    在接收到定位指令后,获取周边设备发送的定位信息;
    根据所述定位信息,选取满足预设条件的周边设备作为定位基准;以及
    根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。
  2. 根据权利要求1所述的车辆定位方法,其中,所述获取周边设备发送的定位信息的步骤包括:
    获取周边车联网设备发送的定位信息。
  3. 根据权利要求2所述的车辆定位方法,其中,所述预设条件至少包括以下一项:
    所述车联网设备为路侧单元RSU固定设备;
    所述车联网设备为车联网车载设备;
    所述车联网设备的定位精度达到预设精度阈值;
    所述车辆在所述车联网设备的方向角内;以及
    所述车联网设备处于静止状态。
  4. 根据权利要求1所述的车辆定位方法,其中,在所述根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息的步骤之后,所述方法还包括:
    基于所述车辆的位置的定位信息和地图信息持续获取所述车辆的新的位置的定位信息,直至所述车辆的位置被定位为目标位置。
  5. 根据权利要求4所述的车辆定位方法,其中,在所述基于所述车辆的位置的定位信息和地图信息持续获取所述车辆的新的位置的定位信息,直至所述车辆的位置被定位为目标位置的步骤之后,所 述方法还包括:
    对外广播所述车辆的位置的定位信息。
  6. 一种车辆定位装置,包括:
    第一获取模块,其设置为在接收到定位指令后,获取周边设备发送的定位信息;
    选取模块,其设置为根据所述定位信息,选取满足预设条件的周边设备作为定位基准;以及
    第二获取模块,其设置为根据车辆和作为定位基准的周边设备之间的无线信号关系,获取所述车辆的位置的定位信息。
  7. 根据权利要求6所述的车辆定位装置,其中,所述第一获取模块还设置为:
    获取周边车联网设备发送的定位信息。
  8. 根据权利要求7所述的车辆定位装置,其中,所述预设条件至少包括以下一项:
    所述车联网设备为路侧单元RSU固定设备;
    所述车联网设备为车联网车载设备;
    所述车联网设备的定位精度达到预设精度阈值;
    所述车辆在所述车联网设备的方向角内;以及
    所述车联网设备处于静止状态。
  9. 根据权利要求6所述的车辆定位装置,其中,所述第二获取模块还设置为:
    基于所述车辆的位置的定位信息和地图信息持续获取所述车辆的新的位置的定位信息,直至所述车辆的位置被定位为目标位置。
  10. 根据权利要求9所述的车辆定位装置,还包括广播模块,其设置为对外广播所述车辆的位置的定位信息。
  11. 一种终端设备,包括存储器和处理器,在所述存储器存储有计算机程序,当所述处理器运行所述计算机程序时,所述处理器执行根据权利要求1至5中任一项所述的车辆定位方法。
  12. 一种存储介质,其上存储有计算机程序,当所述计算机程序由处理器运行时,使得所述处理器执行根据权利要求1至5中任一项所述的车辆定位方法。
PCT/CN2018/092462 2017-06-22 2018-06-22 车辆定位方法、装置和终端设备 WO2018233699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18821247.6A EP3644296A4 (en) 2017-06-22 2018-06-22 METHOD, DEVICE AND TERMINAL FOR VEHICLE POSITIONING
JP2019571355A JP2020528598A (ja) 2017-06-22 2018-06-22 車両測位方法、装置及び端末設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710482282.7A CN109118794A (zh) 2017-06-22 2017-06-22 车辆定位方法、装置和终端设备
CN201710482282.7 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018233699A1 true WO2018233699A1 (zh) 2018-12-27

Family

ID=64732796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092462 WO2018233699A1 (zh) 2017-06-22 2018-06-22 车辆定位方法、装置和终端设备

Country Status (4)

Country Link
EP (1) EP3644296A4 (zh)
JP (1) JP2020528598A (zh)
CN (1) CN109118794A (zh)
WO (1) WO2018233699A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164135A (zh) * 2019-01-14 2019-08-23 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位系统
CN110446160A (zh) * 2019-08-13 2019-11-12 南京戎智信息创新研究院有限公司 一种基于多路径信道状态信息的车辆位置估计的深度学习方法
CN111413721A (zh) * 2020-01-14 2020-07-14 华为技术有限公司 车辆定位的方法、装置、控制器、智能车和系统
CN111627242A (zh) * 2019-02-26 2020-09-04 上海微功智能科技有限公司 一种室内停车库中停车位的融合定位方法
JPWO2020202375A1 (zh) * 2019-03-29 2020-10-08
CN111832774A (zh) * 2020-06-02 2020-10-27 深圳市金溢科技股份有限公司 网约车的轨迹追踪方法、云平台和网约车obu
CN112396127A (zh) * 2020-12-04 2021-02-23 东软睿驰汽车技术(沈阳)有限公司 一种车辆零部件选型方法、装置及相关产品
CN112540344A (zh) * 2019-09-20 2021-03-23 西安中兴新软件有限责任公司 车联网设备位置的定位方法、装置、系统、终端及存储介质
CN112964261A (zh) * 2021-03-18 2021-06-15 北京航迹科技有限公司 一种车辆定位校验方法、系统及装置
CN113264039A (zh) * 2019-04-29 2021-08-17 北京百度网讯科技有限公司 基于路侧感知装置的车辆驾驶方法、装置和车路协同系统
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置
CN114613165A (zh) * 2022-03-11 2022-06-10 杭州小驹物联科技有限公司 一种工程车区域限速的方法
WO2023232046A1 (zh) * 2022-05-31 2023-12-07 武汉路特斯汽车有限公司 基于车联网的车辆控制方法及控制系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785620B (zh) * 2019-01-30 2022-02-18 同济大学 一种车联网环境下的交通管控系统
CN110446180A (zh) * 2019-07-02 2019-11-12 杭州律橙电子科技有限公司 一种车载智能终端系统及其操作方法
CN110632626A (zh) * 2019-10-28 2019-12-31 启迪云控(北京)科技有限公司 一种基于车联网的定位方法及系统
CN110809233A (zh) * 2019-11-01 2020-02-18 杭州鸿泉物联网技术股份有限公司 基于dsrc的车辆定位方法及系统
CN113965872A (zh) * 2020-07-03 2022-01-21 华为技术有限公司 定位方法、装置及电子设备
CN112284404A (zh) * 2020-09-16 2021-01-29 东风汽车集团有限公司 车辆定位方法、装置、设备及可读存储介质
CN114867099A (zh) * 2021-01-18 2022-08-05 大唐移动通信设备有限公司 一种定位方法及装置
US20240147411A1 (en) * 2021-03-06 2024-05-02 Nokia Technologies Oy Mechanism for sidelink positioning
CN117099010A (zh) * 2021-03-31 2023-11-21 高通股份有限公司 用于定位的锚用户设备选择
EP4367948A1 (en) * 2021-07-08 2024-05-15 Qualcomm Incorporated Device selection for ue positioning
CN115700401A (zh) * 2021-07-29 2023-02-07 华为技术有限公司 车辆定位方法及相关装置
DE102022105717A1 (de) 2022-03-10 2023-09-14 Trumpf Tracking Technologies Gmbh Verfahren zur Einrichtung eines Lokalisierungssystems und Lokalisierungssystem
CN116939479A (zh) * 2022-04-08 2023-10-24 大唐移动通信设备有限公司 定位参考信号传输方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044091A1 (en) * 2010-08-20 2012-02-23 Electronics And Telecommunications Research Institute Method and apparatus for providing parking management service, and client device and server therefor
CN103065487A (zh) * 2012-12-19 2013-04-24 深圳市元征科技股份有限公司 车联网智能交通系统及车载终端
CN104157164A (zh) * 2014-02-28 2014-11-19 深圳华宏联创科技有限公司 停车引导系统
CN105654764A (zh) * 2016-02-05 2016-06-08 浙江浙大中控信息技术有限公司 一种室内停车场定位方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198287A (ja) * 2008-02-21 2009-09-03 Toyota Motor Corp 移動体案内装置、ナビゲーション装置、移動体案内方法
US9766321B2 (en) * 2013-03-14 2017-09-19 Digi International Inc. Indoor positioning with radio frequency chirp signal propagation delay measurement
CN106205185A (zh) * 2015-03-20 2016-12-07 鲍星合 停车场管理系统及管理方法
CN104809911B (zh) * 2015-04-14 2017-08-25 深圳市润安科技发展有限公司 基于超宽频无线定位技术的停车场引导系统及引导方法
EP3349503A4 (en) * 2015-09-07 2019-05-01 Sony Corporation WIRELESS COMMUNICATION DEVICE, INFORMATION PROCESSING DEVICE, COMMUNICATION SYSTEM, INFORMATION PROCESSING METHOD AND PROGRAM
CN205609033U (zh) * 2016-03-18 2016-09-28 邦奇智能科技(上海)有限公司 一种基于低功耗蓝牙的停车引导系统
CN106772238B (zh) * 2016-12-06 2020-07-17 东软集团股份有限公司 车辆定位方法及装置
CN106443741B (zh) * 2016-12-15 2019-05-14 东软集团股份有限公司 基于车载无线网络的协作定位方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120044091A1 (en) * 2010-08-20 2012-02-23 Electronics And Telecommunications Research Institute Method and apparatus for providing parking management service, and client device and server therefor
CN103065487A (zh) * 2012-12-19 2013-04-24 深圳市元征科技股份有限公司 车联网智能交通系统及车载终端
CN104157164A (zh) * 2014-02-28 2014-11-19 深圳华宏联创科技有限公司 停车引导系统
CN105654764A (zh) * 2016-02-05 2016-06-08 浙江浙大中控信息技术有限公司 一种室内停车场定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3644296A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164135A (zh) * 2019-01-14 2019-08-23 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位系统
CN111627242B (zh) * 2019-02-26 2022-12-16 上海微功智能科技有限公司 一种室内停车库中停车位的融合定位方法
CN111627242A (zh) * 2019-02-26 2020-09-04 上海微功智能科技有限公司 一种室内停车库中停车位的融合定位方法
JPWO2020202375A1 (zh) * 2019-03-29 2020-10-08
US11838859B2 (en) 2019-03-29 2023-12-05 Honda Motor Co., Ltd. Information processing apparatus, information processing method, and program
JP7333387B2 (ja) 2019-03-29 2023-08-24 本田技研工業株式会社 情報処理装置、情報処理方法、及びプログラム
EP3952406A4 (en) * 2019-03-29 2022-04-13 Honda Motor Co., Ltd. INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD AND PROGRAM
CN113264039A (zh) * 2019-04-29 2021-08-17 北京百度网讯科技有限公司 基于路侧感知装置的车辆驾驶方法、装置和车路协同系统
CN113264039B (zh) * 2019-04-29 2023-05-12 北京百度网讯科技有限公司 基于路侧感知装置的车辆驾驶方法、装置和车路协同系统
CN110446160A (zh) * 2019-08-13 2019-11-12 南京戎智信息创新研究院有限公司 一种基于多路径信道状态信息的车辆位置估计的深度学习方法
CN112540344A (zh) * 2019-09-20 2021-03-23 西安中兴新软件有限责任公司 车联网设备位置的定位方法、装置、系统、终端及存储介质
CN111413721A (zh) * 2020-01-14 2020-07-14 华为技术有限公司 车辆定位的方法、装置、控制器、智能车和系统
CN111832774A (zh) * 2020-06-02 2020-10-27 深圳市金溢科技股份有限公司 网约车的轨迹追踪方法、云平台和网约车obu
CN111832774B (zh) * 2020-06-02 2024-04-12 深圳市金溢科技股份有限公司 网约车的轨迹追踪方法、云平台和网约车obu
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置
CN114095520B (zh) * 2020-07-21 2024-01-19 中信科智联科技有限公司 一种定位数据的确定方法、车联网设备及装置
CN112396127A (zh) * 2020-12-04 2021-02-23 东软睿驰汽车技术(沈阳)有限公司 一种车辆零部件选型方法、装置及相关产品
CN112396127B (zh) * 2020-12-04 2024-06-11 东软睿驰汽车技术(沈阳)有限公司 一种车辆零部件选型方法、装置及相关产品
CN112964261A (zh) * 2021-03-18 2021-06-15 北京航迹科技有限公司 一种车辆定位校验方法、系统及装置
CN114613165A (zh) * 2022-03-11 2022-06-10 杭州小驹物联科技有限公司 一种工程车区域限速的方法
WO2023232046A1 (zh) * 2022-05-31 2023-12-07 武汉路特斯汽车有限公司 基于车联网的车辆控制方法及控制系统

Also Published As

Publication number Publication date
EP3644296A4 (en) 2021-03-03
CN109118794A (zh) 2019-01-01
JP2020528598A (ja) 2020-09-24
EP3644296A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2018233699A1 (zh) 车辆定位方法、装置和终端设备
US11443633B2 (en) Method and system for vehicle-to-pedestrian collision avoidance
US11670172B2 (en) Planning and control framework with communication messaging
Cruz et al. Neighbor-aided localization in vehicular networks
RU2699376C2 (ru) Определение местоположения
KR101755944B1 (ko) Gps, uwb 및 v2x를 접목하여 차량의 위치를 결정하는 자율 주행 방법 및 시스템
US10334405B2 (en) Identifying a geographic location for a stationary micro-vehicular cloud
US20200326203A1 (en) Real-world traffic model
JP7299858B2 (ja) ビークルマイクロクラウドによる協調パーキングスペースサーチ
US11069236B2 (en) Systems and methods for virtual traffic lights implemented on a mobile computing device
CN115428485B (zh) 用于车联网通信的方法
US20230008967A1 (en) Methods of communication in traffic intersection management
CN116491204A (zh) 用于与交通有关的物理测距信号的基于几何的“先听后说”(lbt)感测
CN113099529A (zh) 室内车辆导航方法、车载终端、场端服务器及系统
KR20220124186A (ko) 차량-대-사물 (v2x) 에 의해 지원되는 로컬 내비게이션
JP2024503696A (ja) サイドリンク測位における信号のためのタイミング決定
US20220412746A1 (en) Positioning method and apparatus
US11982756B2 (en) Device and method for positioning based on heterogeneous networks
US20230300567A1 (en) User equipment (ue) based relative position
US20240019257A1 (en) System And Method Using Multilateration And Object Recognition For Vehicle Navigation
Deka et al. Grid and region of interest-based localisation system in vehicular ad-hoc networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018821247

Country of ref document: EP

Effective date: 20200122