WO2021008190A1 - 一种压敏导电胶条及其在光伏电池片贴合中的应用 - Google Patents

一种压敏导电胶条及其在光伏电池片贴合中的应用 Download PDF

Info

Publication number
WO2021008190A1
WO2021008190A1 PCT/CN2020/087547 CN2020087547W WO2021008190A1 WO 2021008190 A1 WO2021008190 A1 WO 2021008190A1 CN 2020087547 W CN2020087547 W CN 2020087547W WO 2021008190 A1 WO2021008190 A1 WO 2021008190A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
conductive adhesive
sensitive conductive
sensitive
adhesive strip
Prior art date
Application number
PCT/CN2020/087547
Other languages
English (en)
French (fr)
Inventor
张立伟
赵立萍
Original Assignee
苏州微邦材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州微邦材料科技有限公司 filed Critical 苏州微邦材料科技有限公司
Publication of WO2021008190A1 publication Critical patent/WO2021008190A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of pressure-sensitive adhesives, in particular to a pressure-sensitive conductive adhesive strip and its application in photovoltaic cell sheet bonding.
  • solar power generation is indispensable for the solar cells.
  • the shingled cell module is to closely connect the cells in a superimposed manner. With the same assembly materials, more cells can be laid to increase the solar absorption area of the cell module. , Improve the conversion efficiency of photovoltaic modules, but also reduce costs, so it has been marketed.
  • the connection between photovoltaic shingled module cells on the market basically relies on welding tape or conductive glue to achieve adhesive connection, but there are technical and application problems.
  • the use of welding tape connection because the welding tape has no initial Adhesive, difficult to operate in alignment lamination construction, it needs to be heated at high temperature to make the lamination connection, the heating process is easy to cause uneven heating of the welding strip due to some uncontrollable factors, resulting in the virtual space between the photovoltaic shingle module cells. Unconnected welding, etc., affect performance.
  • the use of conductive glue to connect has uneven glue dispensing, and there is a technical problem of glue overflow after pressing, and high temperature heating is required to promote its solidification connection, which is easy to cause uneven conduction of virtual connections, and the brittleness of the glue after curing is relatively large.
  • the present invention provides a method for preparing a pressure-sensitive conductive adhesive strip and applies it to photovoltaic cell bonding, especially the bonding of cells in photovoltaic shingle modules, which can realize photovoltaic cells
  • the flexible bonding between the sheets and the high-efficiency and balanced conduction make the connection of the solar cells faster and more efficient, and solve the problem of heating problems in the production process of the existing photovoltaic shingled module using soldering tape and conductive glue to connect the solar cells. Problems such as uniformity, virtual welding, expansion, and cracks.
  • the pressure-sensitive conductive adhesive film as a more flexible bonding material, also compensates for the difference in thermal expansion coefficients between different materials in the component, so that it has better high and low temperature cycle performance and can adapt to more temperature difference environments;
  • the conductive adhesive film has a certain thermal conductivity, which can quickly transfer the heat from the hot spot in the component to the adjacent battery, lower the battery temperature, and has better resistance to hot spot.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse conductive particles uniformly in acrylic pressure-sensitive adhesive water, and obtain a pressure-sensitive conductive adhesive film after coating, curing, and winding;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips.
  • the conductive particles are silver-coated copper particles, silver-coated glass powder particles, silver-coated nickel particles or mixtures thereof, and the addition amount is 15-65 wt%.
  • the adding ratio of the silver-coated copper particles, silver-coated glass powder particles, and silver-coated nickel particles is 1:2:1.
  • the particle diameter D50 of the silver-coated copper particles, silver-coated glass powder particles and silver-coated nickel particles is 5 ⁇ m-50 ⁇ m.
  • the pressure-sensitive conductive adhesive strip has a thickness of 20 ⁇ m-100 ⁇ m, and the length and width are die-cut according to the size of the battery sheet and the area to which it is attached.
  • the width of the pressure-sensitive conductive adhesive strip is 0.3mm-1.8mm, and the length is 39mm-316mm.
  • the coating method is to coat the acrylic pressure-sensitive adhesive uniformly dispersed with conductive particles on the release film or release paper, and the coating speed is 3-30m/min; the curing method adopts heating curing or The curing method of UV irradiation.
  • a pressure-sensitive conductive adhesive strip prepared by a method for preparing a pressure-sensitive conductive adhesive strip is used in photovoltaic cell sheet bonding.
  • the pressure-sensitive conductive adhesive strips are pasted on the edge of the photovoltaic cell by manual or automated devices, and adjacent cells are sequentially pasted in series in a shingle manner.
  • the overlapping width when the adjacent battery pieces are attached is 0.3-1.8 mm.
  • the performance of the pressure-sensitive conductive adhesive strip of the present invention can reach the following standards: Adhesion: >10N/25mm (ASTM D3330), conductivity: ⁇ 1*10 -3 ⁇ cm, aging resistance: shingled component power Loss/attenuation ⁇ 2% (IEC61215).
  • the packaging power of the 60-plate monocrystalline shingled module can be increased by 5-10W and above.
  • FIG. 1 is a photograph of the pressure-sensitive conductive adhesive strip prepared in Example 5.
  • Fig. 2 is a schematic diagram of the application of the pressure-sensitive conductive adhesive strip of the present invention in the bonding of photovoltaic cells.
  • Figure 3 is a schematic diagram of the entire photovoltaic shingled module.
  • FIG. 4 (a) is a SEM electron microscope picture of the pressure-sensitive conductive adhesive strip prepared in Example 3; (b) is an SEM electron microscope picture of the cross-section of the pressure-sensitive conductive adhesive tape prepared in Example 3.
  • FIG. 5 is an EL image of the photovoltaic shingled cell module of Example 5.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse the mixture of 15wt% silver-coated copper particles and silver-coated glass micropowder particles uniformly in acrylic pressure-sensitive adhesive water, and coat it on release film or release paper at a coating speed of 3m/min, heating After curing into a film and winding, a pressure-sensitive conductive adhesive film is obtained, wherein the ratio of silver-coated copper particles and silver-coated glass powder particles is 1:1, and the particle size D50 is 20um;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips with a thickness of 20 ⁇ m, a width of 0.8 mm, and a length of 156 mm.
  • Adhesion 11.4N/25mm (ASTM D3330); conductivity: 0.8*10 -3 ⁇ cm; aging resistance: shingled module power loss/attenuation 1.08 % (IEC61215).
  • the packaging power of the 60-type 22% average efficiency monocrystalline PREC battery shingle module can achieve 356W, which exceeds the module efficiency of the conventional method.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse the mixture of 25wt% silver-coated copper particles and silver-coated glass micropowder particles uniformly in acrylic pressure-sensitive adhesive water, and coat it on release film or release paper at a coating speed of 10m/min, UV The pressure-sensitive conductive adhesive film is obtained after irradiation curing and winding, wherein the ratio of silver-coated copper particles and silver-coated glass powder particles is 1:2, and the particle size D50 is 5um;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips with a thickness of 40 ⁇ m, a width of 1 mm, and a length of 156 mm.
  • the packaging power of the 60-type 22% average efficiency monocrystalline PREC battery shingled module can achieve 356W, which exceeds the module efficiency of the conventional method.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse 35wt% silver-clad glass powder particles uniformly in acrylic pressure-sensitive adhesive water, and coat them on release film or release paper at a coating speed of 15m/min. After heating and curing to form a film and wind up Obtain the pressure-sensitive conductive adhesive film, wherein the particle size D50 of the silver-coated glass powder particles is 15um;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips with a thickness of 60 ⁇ m, a width of 1 mm, and a length of 156 mm.
  • the plane SEM electron microscope picture and the cross-sectional SEM electron microscope picture are shown in Figure 4 (a) and (b), respectively.
  • the performance of the obtained pressure-sensitive conductive adhesive tape was tested, the adhesion force: 10.7N/25mm (ASTM D3330); the conductivity: 0.78*10 -3 ⁇ cm; the aging resistance: the power loss/attenuation of the shingled module was 1.19 % (IEC61215).
  • the pressure-sensitive conductive adhesive strips are pasted on the edge of the photovoltaic shingled battery module by manual or automatic devices, and adjacent cells are pasted in series in a shingled manner.
  • the overlapping width of the adjacent cells is 1.1mm when they are attached.
  • the packaging power of the 60-type 22% average efficiency single crystal PREC battery shingled module can achieve 362W, which exceeds the module efficiency of the conventional method.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse the mixture of 45wt% silver-coated copper particles and silver-coated glass micropowder particles uniformly in acrylic pressure-sensitive adhesive water, and coat them on release film or release paper at a coating speed of 20m/min, heating After curing into a film and winding, a pressure-sensitive conductive adhesive film is obtained, wherein the ratio of silver-coated copper particles and silver-coated glass powder particles is 1:3, and the particle size D50 is 20 ⁇ m;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips with a thickness of 80 ⁇ m, a width of 0.8 mm, and a length of 156 mm.
  • Adhesive force 11.1N/25mm (ASTM D3330); conductivity: 0.62*10 -3 ⁇ cm; aging resistance: shingled module power loss/attenuation is 1.37 % (IEC61215).
  • the packaging power of the 60-type 22% average efficiency monocrystalline PREC battery shingled module can achieve 360W, which exceeds the module efficiency of the conventional method.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse 55wt% of silver-coated copper particles uniformly in acrylic pressure-sensitive adhesive water, and coat them on release film or release paper at a coating speed of 8m/min. After curing by UV radiation to form a film and winding Obtain a pressure-sensitive conductive adhesive film, wherein the particle size D50 of the silver-coated copper particles is 30 ⁇ m;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips with a thickness of 100 ⁇ m, a width of 0.8 mm, and a length of 153 mm, as shown in Figure 1.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse the mixture of 45wt% silver-coated copper particles and silver-coated nickel particles uniformly in acrylic pressure-sensitive adhesive water, and coat them on release film or release paper at a coating speed of 12m/min and heat curing
  • the pressure-sensitive conductive adhesive film is obtained after film formation and winding, wherein the ratio of silver-coated copper particles to silver-coated nickel particles is 1:4, and the particle size D50 is 40 ⁇ m;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips, with a thickness of 70 ⁇ m, a width of 1.2 mm, and a length of 78 mm.
  • the performance of the obtained pressure-sensitive conductive adhesive tape was tested, the adhesion force: >11.7N/25mm (ASTM D3330); the conductivity: 0.52*10 -3 ⁇ cm; the aging resistance: the power loss/attenuation of the shingled module was 1.27% (IEC61215).
  • the pressure-sensitive conductive adhesive strips are pasted on the edge of the photovoltaic shingled battery module by manual or automatic devices, and adjacent cells are pasted in series in a shingled manner.
  • the overlapping width of the adjacent cells is 1.5mm when they are attached.
  • the package power of the 60-type 22% average efficiency monocrystalline PREC battery shingled module can achieve 355W, which exceeds the module efficiency of the conventional method.
  • a method for preparing a pressure-sensitive conductive adhesive strip includes the following steps:
  • Step 1 Disperse 45wt% of silver-coated nickel particles uniformly in acrylic pressure-sensitive adhesive water, and coat them on release film or release paper at a coating speed of 15m/min. After curing by UV radiation, the film is formed and rolled Obtain a pressure-sensitive conductive adhesive film with a particle size D50 of 50 ⁇ m;
  • Step 2 Die-cut the pressure-sensitive conductive adhesive film into strips, which are pressure-sensitive conductive adhesive strips, with a thickness of 70 ⁇ m, a width of 1.2 mm, and a length of 319 mm.
  • the performance of the obtained pressure-sensitive conductive adhesive tape was tested, the adhesive force:> 11.4N/25mm (ASTM D3330); the conductivity: 0.64*10 -3 ⁇ cm; the aging resistance: the power loss/attenuation of the shingled module was 1.69% (IEC61215).
  • the packaging power of the 60-type 22% average efficiency monocrystalline PREC battery shingled module can achieve more than 355W, which exceeds the module efficiency of the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

一种压敏导电胶条及其在光伏电池片贴合中的应用,制备步骤如下:步骤一:将导电颗粒均匀的分散在丙烯酸压敏胶水中,经涂布、固化成膜、收卷后得到压敏导电胶膜;步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条。将其应用于光伏叠瓦组件中,能够实现光伏叠瓦组件电池片之间的柔性贴合和高效均衡导电,使得在组装叠瓦电池片时的联接更加的快捷和高效,同时解决了现有光伏叠瓦组件生产过程中,使用焊带和导电胶水联接电池片时存在的虚焊、膨胀、隐裂、红斑等问题。

Description

一种压敏导电胶条及其在光伏电池片贴合中的应用
技术领域
本发明涉及压敏胶技术领域,具体涉及一种压敏导电胶条及其在光伏电池片贴合中的应用。
背景技术
利用太阳能发电作为清洁能源,不仅能够节约资源,同时能大大减少二氧化碳的排放量,因此太阳能电池得到了各个国家和地区的大力推崇。太阳能发电不可缺少的即是电池片,其中,叠瓦电池组件是将电池片以叠加方式紧密连接,在使用同等组装材料的情况下可以铺设更多电池片,增加电池组件对太阳光的吸收面积,提高光伏组件的转换效率,同时也降低成本,因此,已被市场化。目前市场上的光伏叠瓦组件电池片之间的连接基本是依靠焊带或导电胶水来实现粘合连接,但都存在技术和应用上的问题,其中,采用焊带连接,由于焊带没有初粘性,对位贴合施工操作难,需要对其进行高温加热使其贴合连接,加热过程中容易因为一些不可控因素导致对焊带加热不均匀,从而造成光伏叠瓦组件电池片之间虚焊不连接等情况,影响使用性能。而采用导电胶水连接存在点胶不均匀,压合后有溢胶的技术问题,并且也需要高温加热促使其固化连接,易造成虚连接导电不均匀的情况,而且胶水固化后的脆性较大,在一些极端环境中,由于热胀冷缩老化过程,会对光伏叠瓦组件造成隐裂等破坏。因此,需要研究出一种性能优异导电胶,解决以上问题,以进一步提高电池片之间的贴合性,从而提高太阳能电池的使用性能。
发明内容
要解决的技术问题:本发明提供了一种压敏导电胶条的制备方法,并将其应用于光伏电池片贴合中,尤其是光伏叠瓦组件中电池片的贴合,能够实现光伏电池片之间的柔性贴合和高效均衡导电,使得在组装电池片时的联接更加的快捷和高效,解决现有光伏叠瓦组件生产过程中使用焊带和导电胶水联接电池片时存在的加热不均、虚焊、膨胀、隐裂等问题。同时压敏导电胶膜作为一种更加柔性的粘结材料,也弥补了组件中不同材料之间的热膨胀系数的差异,从而具备了更优异的高低温循环性能,可以适应更多的温差环境;而且此导电胶膜具有一定的导热性能,可以将组件中出现的热斑热量快速的转递到相邻的电池片上,降低电池温度,具有更好的抗热斑性能。
技术方案:一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将导电颗粒均匀的分散在丙烯酸压敏胶水中,经涂布、固化成膜、收卷后得到压敏导电胶膜;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条。
进一步的,所述导电颗粒为银包铜颗粒、银包玻璃微粉颗粒、银包镍颗粒或其混合 物,添加量为15-65wt%。
进一步的,所述银包铜颗粒、银包玻璃微粉颗粒、银包镍颗粒的添加比例为1:2:1。
进一步的,所述银包铜颗粒、银包玻璃微粉颗粒和银包镍颗粒的粒径D50值为5μm-50μm。
进一步的,所述压敏导电胶条的厚度为20μm-100μm,长度和宽度根据电池片的尺寸和所贴合的面积进行模切。
进一步的,所述压敏导电胶条的宽度为0.3mm-1.8mm,长度为39mm-316mm。
进一步的,所述涂布方式为将均匀分散了导电颗粒的丙烯酸压敏胶水涂布于离型膜或离型纸上,涂布速度为3-30m/min;所述固化方式采用加热固化或UV照射的固化方式。
一种压敏导电胶条的制备方法所制备的压敏导电胶条在光伏电池片贴合中的应用。
进一步的,利用人工或自动化装置将压敏导电胶条粘贴于光伏电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片。
进一步的,所述相邻电池片贴合时的重叠宽度为0.3-1.8mm。
有益效果:
1.非常便捷的连接了两个电池片的正反面及正负极,贴合后可直接使用,无需加热,较其他产品省去了加热固化等工艺,提高了生产效率和能源减少;
2.本发明压敏导电胶条的性能可以达到如下标准:粘结力:>10N/25mm(ASTM D3330),导电率:<1*10 -3Ω·cm,耐老化性:叠瓦组件功率损耗/衰减<2%(IEC61215)。
3.本发明压敏导电胶条应用在叠瓦组件后,相对于其他连接方式,不存在虚焊,而且可以避免在高低温环境下热胀冷缩因为材质不同带来的应力而对电池片产生的隐裂及热斑等现象,最大程度的减少了后端可能带来的各种不利因素,实现了组件生产的良率提升。
4.本发明压敏导电胶条应用在叠瓦组件后,相对于电池片连接的其他方式,60版型单晶叠瓦组件封装功率可以提高5-10W及以上。
附图说明
图1为实施例5中所制备压敏导电胶条的照片。
图2为本发明压敏导电胶条在光伏电池片贴合中的应用的示意图。
图3为整片光伏叠瓦组件的示意图。
图4中(a)为实施例3中所制备压敏导电胶条的SEM电镜图片;(b)为实施例3中所制备压敏导电胶条的横截面的SEM电镜图片。
图5为实施例5的光伏叠瓦电池组件的EL图像。
具体实施方式
以本发明压敏导电胶条在光伏叠瓦电池组件电池贴片贴合中的应用为例。
实施例1
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将15wt%的银包铜颗粒和银包玻璃微粉颗粒的混合物均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为3m/min,加热固化成膜、收卷后得到压敏导电胶膜,其中,银包铜颗粒和银包玻璃微粉颗粒的比例为1:1,粒径D50为20um;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为20μm,宽度为0.8mm,长度为156mm。
对所得压敏导电胶条的性能进行测试,粘结力:11.4N/25mm(ASTM D3330);导电率:0.8*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.08%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1mm。如图2和图3所示。
同时经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到356W,超出常规方式的组件效率。
实施例2
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将25wt%的银包铜颗粒和银包玻璃微粉颗粒的混合物均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为10m/min,UV照射固化成膜、收卷后得到压敏导电胶膜,其中,银包铜颗粒和银包玻璃微粉颗粒的比例为1:2,粒径D50为5um;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为40μm,宽度为1mm,长度为156mm。
对所得压敏导电胶条的性能进行测试,粘结力:>12N/25mm(ASTM D3330);导电率:0.86*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.7%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1mm。
经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到356W,超出常规方式的组件效率。
实施例3
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将35wt%的银包玻璃微粉颗粒均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为15m/min,加热固化成膜、收卷后得到压敏导电胶膜,其中,银包玻璃微粉颗粒的粒径D50为15um;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为60μm,宽度为1mm,长度为156mm。其平面SEM电镜图片和横截面SEM电镜图片分别如图4中(a)和(b)所示。
对所得压敏导电胶条的性能进行测试,粘结力:10.7N/25mm(ASTM D3330);导电率:0.78*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.19%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1.1mm。
经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到362W,超出常规方式的组件效率。
实施例4
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将45wt%的银包铜颗粒和银包玻璃微粉颗粒的混合物均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为20m/min,加热固化成膜、收卷后得到压敏导电胶膜,其中,银包铜颗粒和银包玻璃微粉颗粒的比例为1:3,粒径D50为20μm;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为80μm,宽度为0.8mm,长度为156mm。
对所得压敏导电胶条的性能进行测试,粘结力:11.1N/25mm(ASTM D3330);导电率:0.62*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.37%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1mm。
经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到360W,超出常规方式的组件效率。
实施例5
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将55wt%的银包铜颗粒均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为8m/min,UV照射固化成膜、收卷后得到压敏导电胶膜,其中,银包铜颗粒粒径D50为30μm;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为100μm,宽度为0.8mm,长度为153mm,如图1所示。
对所得压敏导电胶条的性能进行测试,粘结力:12.3N/25mm(ASTM D3330);导电率:0.66*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.56%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1.3mm。
将光伏叠瓦电池组件进行过TC50和TC200测试,结果如图5所示。同时经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到353W,超出常规方式的组件效率。
实施例6
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将45wt%的银包铜颗粒和银包镍颗粒的混合物均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为12m/min,加热固化成膜、收卷后得到压敏导电胶膜,其中,银包铜颗粒和银包镍颗粒的比例为1:4,粒径D50为40μm;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为70μm,宽度为1.2mm,长度为78mm。
对所得压敏导电胶条的性能进行测试,粘结力:>11.7N/25mm(ASTM D3330);导电率:0.52*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.27%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1.5mm。
经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到 355W,超出常规方式的组件效率。
实施例7
一种压敏导电胶条的制备方法,包括以下步骤:
步骤一:将45wt%的银包镍颗粒均匀的分散在丙烯酸压敏胶水中,涂布于离型膜或离型纸上,涂布速度为15m/min,UV照射固化成膜、收卷后得到压敏导电胶膜,粒径D50为50μm;
步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条,厚度为70μm,宽度为1.2mm,长度为319mm。
对所得压敏导电胶条的性能进行测试,粘结力:>11.4N/25mm(ASTM D3330);导电率:0.64*10 -3Ω·cm;耐老化性:叠瓦组件功率损耗/衰减为1.69%(IEC61215)。
利用人工或自动化装置将压敏导电胶条粘贴于光伏叠瓦电池组件的电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片,相邻电池片贴合时的重叠宽度为1.3mm。
经过测试,60版型22%平均效率的单晶PREC电池叠瓦组件的封装功率可以做到355W以上,超出常规方式的组件效率。

Claims (10)

  1. 一种压敏导电胶条的制备方法,其特征在于,包括以下步骤:
    步骤一:将导电颗粒均匀的分散在丙烯酸压敏胶水中,经涂布、固化成膜、收卷后得到压敏导电胶膜;
    步骤二:将压敏导电胶膜进行模切得条状,即为压敏导电胶条。
  2. 根据权利要求1所述的一种压敏导电胶条的制备方法,其特征在于:所述导电颗粒为银包铜颗粒、银包玻璃微粉颗粒、银包镍颗粒或其混合物,添加量为15-65wt%。
  3. 根据权利要求2所述的一种压敏导电胶条的制备方法,其特征在于:所述银包铜颗粒、银包玻璃微粉颗粒、银包镍颗粒的添加比例为1:2:1。
  4. 根据权利要求2所述的一种压敏导电胶条的制备方法,其特征在于:所述银包铜颗粒、银包玻璃微粉颗粒和银包镍颗粒的粒径D50值为5μm-50μm。
  5. 根据权利要求1所述的一种压敏导电胶条的制备方法,其特征在于:所述压敏导电胶条的厚度为20μm-100μm,长度和宽度根据电池片的尺寸和所贴合的面积进行模切。
  6. 根据权利要求1所述的一种压敏导电胶条的制备方法,其特征在于:所述压敏导电胶条的宽度为0.3mm-1.8mm,长度为39mm-316mm。
  7. 根据权利要求1所述的一种压敏导电胶条的制备方法,其特征在于:所述涂布方式为将均匀分散了导电颗粒的丙烯酸压敏胶水涂布于离型膜或离型纸上,涂布速度为3-30m/min;所述固化方式采用加热固化或UV照射的固化方式。
  8. 根据权利要求1-7所述的一种压敏导电胶条的制备方法所制备的压敏导电胶条在光伏电池片贴合中的应用。
  9. 根据权利要求8所述的压敏导电胶条在光伏电池片贴合中的应用,其特征在于:利用人工或自动化装置将压敏导电胶条粘贴于光伏电池片边缘部分,以叠瓦方式依次串联粘贴相邻电池片。
  10. 根据权利要求9所述的压敏导电胶条在光伏电池片贴合中的应用,其特征在于:所述相邻电池片贴合时的重叠宽度为0.3-1.8mm。
PCT/CN2020/087547 2019-07-17 2020-04-28 一种压敏导电胶条及其在光伏电池片贴合中的应用 WO2021008190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910646205.X 2019-07-17
CN201910646205.XA CN110437762A (zh) 2019-07-17 2019-07-17 一种压敏导电胶条及其在光伏电池片贴合中的应用

Publications (1)

Publication Number Publication Date
WO2021008190A1 true WO2021008190A1 (zh) 2021-01-21

Family

ID=68430629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087547 WO2021008190A1 (zh) 2019-07-17 2020-04-28 一种压敏导电胶条及其在光伏电池片贴合中的应用

Country Status (2)

Country Link
CN (1) CN110437762A (zh)
WO (1) WO2021008190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116825902A (zh) * 2023-08-31 2023-09-29 浙江制能科技有限公司 光伏组件用覆膜系统、覆膜方法及光伏组件的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437762A (zh) * 2019-07-17 2019-11-12 苏州微邦材料科技有限公司 一种压敏导电胶条及其在光伏电池片贴合中的应用
CN111087939A (zh) * 2019-12-05 2020-05-01 江苏晶华新材料科技有限公司 一种导电胶带
CN113921618A (zh) * 2020-07-08 2022-01-11 咸阳隆基乐叶光伏科技有限公司 汇流条、光伏组件及电池串的连接方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195859A2 (en) * 1985-03-27 1986-10-01 Norwood Industries, Inc. Conductive adhesives
EP0330452A2 (en) * 1988-02-26 1989-08-30 Minnesota Mining And Manufacturing Company Electrically conductive pressure-sensitive adhesive tape
US20030047206A1 (en) * 2001-09-10 2003-03-13 Elias Kawam Photovoltaic array and method of manufacturing same
US20110265849A1 (en) * 2011-01-27 2011-11-03 Jongkyoung Hong Solar cell panel
CN102271907A (zh) * 2008-11-07 2011-12-07 3M创新有限公司 导电性层合组件
CN103314066A (zh) * 2010-11-23 2013-09-18 粘合剂研究股份有限公司 反应性导电压敏胶带
CN104673123A (zh) * 2013-11-27 2015-06-03 日东电工株式会社 导电性粘合带、电子构件及粘合剂
CN105400460A (zh) * 2014-08-25 2016-03-16 3M中国有限公司 导电胶组合物和胶带及其在太阳能电池组件中的应用
JP2017069094A (ja) * 2015-09-30 2017-04-06 デクセリアルズ株式会社 導電性テープ、及び導電性テープの製造方法
CN108400174A (zh) * 2018-05-24 2018-08-14 圣晖莱南京能源科技有限公司 一种cigs光伏叠瓦组件
CN208284484U (zh) * 2018-05-24 2018-12-25 圣晖莱南京能源科技有限公司 一种cigs光伏叠瓦组件
CN109326665A (zh) * 2017-09-28 2019-02-12 长春永固科技有限公司 太阳能电池串、太阳能电池组件及其制备方法
CN110437762A (zh) * 2019-07-17 2019-11-12 苏州微邦材料科技有限公司 一种压敏导电胶条及其在光伏电池片贴合中的应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195859A2 (en) * 1985-03-27 1986-10-01 Norwood Industries, Inc. Conductive adhesives
EP0330452A2 (en) * 1988-02-26 1989-08-30 Minnesota Mining And Manufacturing Company Electrically conductive pressure-sensitive adhesive tape
US20030047206A1 (en) * 2001-09-10 2003-03-13 Elias Kawam Photovoltaic array and method of manufacturing same
CN102271907A (zh) * 2008-11-07 2011-12-07 3M创新有限公司 导电性层合组件
CN103314066A (zh) * 2010-11-23 2013-09-18 粘合剂研究股份有限公司 反应性导电压敏胶带
US20110265849A1 (en) * 2011-01-27 2011-11-03 Jongkyoung Hong Solar cell panel
CN104673123A (zh) * 2013-11-27 2015-06-03 日东电工株式会社 导电性粘合带、电子构件及粘合剂
CN105400460A (zh) * 2014-08-25 2016-03-16 3M中国有限公司 导电胶组合物和胶带及其在太阳能电池组件中的应用
JP2017069094A (ja) * 2015-09-30 2017-04-06 デクセリアルズ株式会社 導電性テープ、及び導電性テープの製造方法
CN109326665A (zh) * 2017-09-28 2019-02-12 长春永固科技有限公司 太阳能电池串、太阳能电池组件及其制备方法
CN108400174A (zh) * 2018-05-24 2018-08-14 圣晖莱南京能源科技有限公司 一种cigs光伏叠瓦组件
CN208284484U (zh) * 2018-05-24 2018-12-25 圣晖莱南京能源科技有限公司 一种cigs光伏叠瓦组件
CN110437762A (zh) * 2019-07-17 2019-11-12 苏州微邦材料科技有限公司 一种压敏导电胶条及其在光伏电池片贴合中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116825902A (zh) * 2023-08-31 2023-09-29 浙江制能科技有限公司 光伏组件用覆膜系统、覆膜方法及光伏组件的制备方法
CN116825902B (zh) * 2023-08-31 2023-12-01 浙江制能科技有限公司 光伏组件用覆膜系统、覆膜方法及光伏组件的制备方法

Also Published As

Publication number Publication date
CN110437762A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021008190A1 (zh) 一种压敏导电胶条及其在光伏电池片贴合中的应用
WO2018191831A1 (zh) 一种密集排布的太阳能电池串和制备方法及其组件、系统
WO2019119805A1 (zh) 光伏电池加工工艺以及光伏电池串焊固化装置
TWI495137B (zh) Manufacture method of solar cell module and solar cell module
CN109256235A (zh) 导电胶、太阳能背钝化电池、叠瓦电池串及其制作方法
WO2023005913A1 (zh) 太阳能电池串及其制备方法和应用
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
US20140216544A1 (en) Electrically conductive adhesive, solar battery module using the same, and production method thereof
CN105576057B (zh) 太阳能电池组件及其制备方法
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
JP2010258006A (ja) 太陽電池モジュール及びその製造方法
WO2016065735A1 (zh) 一种光伏电池的制备工艺
CN103022201A (zh) 晶硅太阳能电池模块及其制造方法
TWI495122B (zh) Method for manufacturing solar cell module, solar cell module, connection method of solar cell and mark line
TW201445757A (zh) 包含導電膠帶之模組及太陽能電池及彼等之製造與使用方法
WO2024016804A1 (zh) 一种光伏组件中电池片电气连接的加固方法
CN102983195A (zh) 一种用于背接触太阳能电池的焊带
WO2023016582A1 (zh) 光伏电池串及其制备方法、串焊设备和光伏组件
CN108649088A (zh) 一种hit太阳能电池片的连接方法及hit光伏组件
TW201719911A (zh) 具有在窄前匯流排上之前側匯流排膠帶的光伏電池
WO2024055763A1 (zh) 一种光伏电池连接工艺
CN102983223A (zh) 光伏组件及其生产工艺和生产设备
WO2014173018A1 (zh) 高性能绝缘太阳能光伏光热一体化板芯及其制备方法
CN206961838U (zh) 一种密集排布的太阳能电池串及其组件、系统
WO2024016805A1 (zh) 一种光伏叠瓦组件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840717

Country of ref document: EP

Kind code of ref document: A1