WO2021005918A1 - 圧縮機及び冷凍装置 - Google Patents

圧縮機及び冷凍装置 Download PDF

Info

Publication number
WO2021005918A1
WO2021005918A1 PCT/JP2020/021574 JP2020021574W WO2021005918A1 WO 2021005918 A1 WO2021005918 A1 WO 2021005918A1 JP 2020021574 W JP2020021574 W JP 2020021574W WO 2021005918 A1 WO2021005918 A1 WO 2021005918A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil return
casing
compressor
return passage
Prior art date
Application number
PCT/JP2020/021574
Other languages
English (en)
French (fr)
Inventor
俊之 外山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20836964.5A priority Critical patent/EP3971420A4/en
Priority to CN202080049262.0A priority patent/CN114072583A/zh
Publication of WO2021005918A1 publication Critical patent/WO2021005918A1/ja
Priority to US17/572,151 priority patent/US20220128280A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • This disclosure relates to compressors and refrigeration equipment.
  • the mist-like lubricating oil contained in the compressed refrigerant gas discharged into the top space is subjected to the centrifugal force generated by the swirling flow.
  • the oil rise is reduced.
  • the static pressure in the top space is lower than the static pressure in the motor upper space (the space inside the casing into which the high-pressure refrigerant gas discharged downward from the compression mechanism flows). Therefore, the lubricating oil separated in the top space uses the negative pressure generated by contracting the refrigerant gas flowing into the motor upper space from the compression mechanism, from the top space to the bottom of the casing via the motor upper space. It is returned to the oil sump.
  • the purpose of the present disclosure is to enable the oil rise to be suppressed in a compressor whose top space is an oil separation space.
  • the first aspect of the present disclosure supports and supports a casing (10) for storing lubricating oil at the bottom, a compression mechanism (15) housed inside the casing (10), and the compression mechanism (15).
  • a housing (18) in which a crank chamber (19) is formed and a first oil return passage (31) for guiding the lubricating oil flowing into the crank chamber (19) downward are provided, and the first oil return passage (1)
  • the 31) is provided with an oil return guide (32) for condensing the lubricating oil, and the upper portion of the casing (10) is separated from the high-pressure refrigerant discharged from the compression mechanism (15).
  • the second oil return passage (33) is further provided with a second oil return passage (33) that constitutes the oil separation space (S2) and guides the lubricating oil separated in the oil separation space (S2) downward.
  • the outlet of is a compressor characterized in that it is arranged near the outlet of the oil return guide (32).
  • the outlet of the second oil return passage (33) of the lubricating oil separated in the oil separation space (S2) is arranged near the outlet of the oil return guide (32), the condensing of the lubricating oil Due to the negative pressure generated by the above, the separated oil can be guided downward through the second oil return passage (33) to suppress the oil rise.
  • a second aspect of the present disclosure is a compressor, wherein in the first aspect, the second oil return passage (33) is composed of a pipe (34) penetrating the housing (18). is there.
  • the second oil return passage (33) can be easily configured.
  • a third aspect of the present disclosure is, in the first or second aspect, at least each of the second oil return passage (33) and the oil return guide (32) between the casing (10) and the inner wall surface. It is a compressor characterized by further including an oil return plate (35) arranged so as to surround the lower part.
  • the space surrounded by the oil return plate (35) and the inner wall surface of the casing (10) is the second oil return passage (33) and the said. It is a compressor characterized in that it narrows downward from the vicinity of each outlet of the oil return guide (32).
  • the lubricating oil can be efficiently guided downward.
  • a fifth aspect of the present disclosure is a refrigerating apparatus including the compressor (1) according to any one of the first to fourth aspects.
  • the compressor (1) of any one of the first to fourth aspects since the compressor (1) of any one of the first to fourth aspects is provided, the oil rise can be further suppressed.
  • FIG. 1 is a schematic diagram of a refrigerant circuit of a refrigerating device including a compressor according to an embodiment.
  • FIG. 2 is a vertical cross-sectional view of the compressor according to the embodiment.
  • FIG. 3 is a detailed vertical sectional view of the upper part of the compressor shown in FIG. 4 (a) and 4 (b) are perspective views of the oil return guides constituting the compressor shown in FIG. 2 as viewed from the drive shaft side and the casing side, respectively.
  • 5 (a) and 5 (b) are perspective views of the oil return plate constituting the compressor shown in FIG. 2 as viewed from the drive shaft side and the casing side, respectively.
  • FIG. 1 is a schematic diagram of a refrigerant circuit of a refrigerating device including a compressor according to an embodiment.
  • FIG. 2 is a vertical cross-sectional view of the compressor according to the embodiment.
  • FIG. 3 is a detailed vertical sectional view of the upper part of the compressor shown in FIG. 4 (a) and 4 (b
  • FIG. 6 is a perspective view (before installation of the second oil return passage) of the compression mechanism, the housing, and the periphery thereof constituting the compressor shown in FIG.
  • FIG. 7 is a perspective view (after attachment of the second oil return passage) of the compression mechanism, the housing, and the periphery thereof constituting the compressor shown in FIG. 8 (a) and 8 (b) are perspective views of a modified example of the internal refrigerant discharge pipe constituting the compressor shown in FIG. 2 as viewed from the drive shaft side and the casing side, respectively.
  • FIG. 1 is a schematic view of a refrigerant circuit of a refrigerating device (100) including a compressor (1) according to the present embodiment.
  • the refrigerating device (100) includes a compressor (1), a condenser (2), an expansion mechanism (3), and an evaporator (4) according to the present embodiment.
  • the refrigerating apparatus (100) operates a refrigerating cycle for circulating the refrigerant by the refrigerant circuit shown in FIG. Specifically, the refrigerant discharged from the discharge pipe (51) of the compressor (1) passes through the condenser (2), the expansion mechanism (3) and the evaporator (4), and then the compressor (1). Introduced into the suction tube (52) of.
  • FIG. 2 is a vertical cross-sectional view of the compressor (1) according to the present embodiment
  • FIG. 3 is a detailed vertical cross-sectional view of the upper part of the compressor (1) shown in FIG.
  • the compressor (1) is a scroll compressor that compresses the refrigerant by turning at least one of two scroll parts that mesh with each other.
  • the casing (10) of the compressor (1) has a substantially cylindrical body portion (11) and a bowl shape that is airtightly welded to the upper end portion of the body portion (11). It has an upper wall portion (12) and a bowl-shaped bottom wall portion (13) that is airtightly welded to the lower end portion of the body portion (11).
  • the casing (10) is formed of a rigid member that is unlikely to be deformed or damaged when the pressure and temperature change inside and outside the casing (10).
  • the casing (10) is installed so that the substantially cylindrical axial direction of the body portion (11) is along the vertical direction.
  • a compression mechanism (15) for compressing the refrigerant Inside the casing (10), a compression mechanism (15) for compressing the refrigerant, a drive motor (21) arranged below the compression mechanism (15), and the inside of the casing (10) are arranged so as to extend in the vertical direction.
  • the drive shaft (24) and the like are accommodated.
  • a refrigerant discharge pipe (51) and a suction pipe (52) are airtightly joined to the casing (10). The refrigerant is guided into the casing (10) through the suction pipe (52), compressed by the compression mechanism (15), and then discharged to the outside of the casing (10) through the discharge pipe (51).
  • the space between the compression mechanism (15) and the drive motor (21) inside the casing (10) is called the motor upper space (S1), and the compression inside the casing (10).
  • the space above the mechanism (15) is called the oil separation space (S2).
  • the compression mechanism (15) is composed of a fixed scroll part (16) and a swivel scroll part (17).
  • the fixed scroll component (16) and the swivel scroll component (17) are each composed of a mirror plate and a spiral-shaped wrap formed upright on the mirror plate.
  • the laps of the fixed scroll component (16) and the swivel scroll component (17) mesh with each other to form a compression chamber surrounded by each lap and each end plate.
  • a lid (41) is fastened and fixed to the upper surface of the fixed scroll component (16) by bolts (41a) (see FIGS. 6 and 7).
  • the fixed scroll component (16) has an internal refrigerant discharge pipe (53) that extends to the top of the oil separation space (S2).
  • the internal refrigerant discharge pipe (53) extends vertically upward from the fixed scroll component (16), curves at the top of the oil separation space (S2), and extends horizontally along the ceiling of the casing (10). It is a tube of.
  • the housing (18) is arranged below the compression mechanism (15), and the outer peripheral surface of the housing (18) is joined to the inner wall of the casing (10).
  • a fixed scroll part (16) is placed on the housing (18) by bolting or the like.
  • the housing (18) sandwiches the swivel scroll component (17) together with the fixed scroll component (16) via the Oldham joint (42).
  • the housing (18) is provided with a crank chamber (19).
  • the housing (18) has a bearing portion (20) that supports the upper part of the drive shaft (24) below the crank chamber (19).
  • the housing (18) is provided with a refrigerant passage (18a) that connects to the lower end of the internal refrigerant discharge pipe (53) and leads to the motor upper space (S1).
  • the refrigerant introduced into the compression mechanism (15) through the suction pipe (52) is compressed and sent to the motor upper space (S1), and then the refrigerant passage (18a) and the internal refrigerant discharge pipe (53). ) And the oil separation space (S2), and the discharge pipe (51) is discharged to the outside of the casing (10) (see the white dashed arrows in FIGS. 2 and 3).
  • the drive motor (21) is, for example, a brushless DC motor, and is arranged below the housing (18).
  • the drive motor (21) is composed of a stator (22) fixed to the inner wall of the casing (10) and a rotor (23) rotatably housed inside the stator (22) with a slight gap.
  • the rotor (23) is connected to the swivel scroll component (17) via a drive shaft (24) at its center of rotation.
  • a frame (25) is provided that is fixed to the body (11) of the casing (10) and supports the lower part of the drive shaft (24).
  • An oil separation plate (25a) is provided on the upper surface of the frame (25) to separate the lubricating oil contained in the compressed refrigerant descending from the compression mechanism (15). The separated lubricating oil falls into the oil sump (P) at the bottom of the casing (10).
  • the drive shaft (24) connects the compression mechanism (15) and the drive motor (21), and is arranged so as to extend in the vertical direction in the casing (10).
  • the lower end of the drive shaft (24) is located in the oil sump (P).
  • An oil supply passage (not shown) penetrating in the axial direction is formed inside the drive shaft (24).
  • a lubrication lateral hole (not shown) for supplying lubricating oil to each sliding portion such as the bearing portion (20) is formed so as to be connected to the oil supply passage.
  • the lubricating oil that rises in the lubrication path is supplied to each lubrication lateral hole to lubricate each sliding portion of the drive shaft (24).
  • the lubricating oil used to lubricate the sliding portion of the compression mechanism (15) flows into the crank chamber (19) and then passes through the first oil return passage (31) as shown in FIGS. 2 and 3. (See the solid white arrows in FIGS. 2 and 3).
  • the first oil return passage (31) is provided with an oil return guide (32) for condensing the lubricating oil. At least the lower part of the oil return guide (32) is surrounded by an inner wall surface of the casing (10) and an oil return plate (35) extending downward along the inner wall surface.
  • the lubricating oil delivered from the outlet of the oil return guide (32) descends in the space surrounded by the oil return plate (35) and the inner wall surface of the casing (10), and the oil pool (P) at the bottom of the casing (10). ) Is returned.
  • the oil return guide (32) is provided in the connection hole (32a) connected to the crank chamber (19) and in the casing (10) (body portion (11)). It has a condensing portion (32b) extending downward along the wall surface.
  • the condensing portion (32b) may have a shape that extends in the circumferential direction rather than the radial direction of the cylindrical casing (10).
  • the radial dimension of the condensing portion (32b) may be, for example, about 2 to 3 mm, and the circumferential dimension of the condensing portion (32b) may be, for example, about 10 mm.
  • FIGS. 5 (a) and 5 (b) are perspective views of the oil return plate (35) viewed from the drive shaft (24) side and the casing (10) side, respectively.
  • the oil return plate (35) surrounds at least the lower part (contraction portion (32b)) of the oil return guide (32) from the drive shaft (24) side. It has (35a) and a fixing portion (35b) fixed to the inner wall surface of the casing (10).
  • the shape of the surrounding portion (35a) may be configured such that the space between the inner wall surface of the casing (10) and the inner wall surface of the casing (10) narrows downward from the vicinity of the outlet of the oil return guide (32).
  • the fixed portion (35b) may have a shape corresponding to the inner wall surface of the casing (10).
  • the oil used to lubricate the tooth tips of the fixed scroll component (16) and the end plate of the swivel scroll (17) leaks into the compression chamber during the compression stroke and originally circulates in the system. It merges with the lubricating oil and is discharged from the compression chamber together with the compressed refrigerant into the upper space (S1) of the motor.
  • the lubricating oil in this compressed refrigerant exists in the form of mist.
  • a part of the lubricating oil contained in the descending compressed refrigerant is separated by the oil separation plate (25a) and returned to the oil sump (P) at the bottom of the casing (10) as described above.
  • the rest of the lubricating oil, together with the compressed refrigerant, is discharged to the oil separation space (S2) via the refrigerant passage (18a) and the internal refrigerant discharge pipe (53) (see the white dashed arrows in FIGS. 2 and 3). ..
  • the compressed refrigerant is discharged into the oil separation space (S2) along the tangential direction of the inner wall surface of the casing (10) (upper wall portion (12)), and the discharged compressed refrigerant is discharged in the oil separation space (S2).
  • the second oil return passage (33) is configured by the fixed scroll part (16) and the pipe (34) penetrating the housing (18).
  • the inner diameter of the pipe (34) is, for example, about 2 mm.
  • FIG 6 and 7 are perspective views of the compression mechanism (15), the housing (18), and their surroundings before and after the installation of the second oil return passage (33) (pipe (34)).
  • the fixed scroll component (16) is provided with an upper oil discharge hole (16a) that penetrates vertically, and the housing (18) is provided vertically.
  • the lower oil discharge hole (18b) that penetrates is provided so as to connect with the upper oil discharge hole (16a).
  • the pipe (34) serving as the second oil return passage (33) is inserted into the upper oil discharge hole (16a) and the lower oil discharge hole (18b).
  • the lower part of the pipe (34) protrudes into the motor upper space (S1) below the housing (18), and the lower end of the pipe (34), that is, the outlet of the second oil return passage (33), is the oil return guide ( It is located near the exit of 32).
  • the oil return plate (35) is arranged between the inner wall surface of the casing (10) and the oil return guide (32) so as to surround at least the lower part of the pipe (34).
  • the lubricating oil delivered from the lower end of the pipe (34), that is, the outlet of the second oil return passage (33) descends the space surrounded by the oil return plate (35) and the inner wall surface of the casing (10). Then, it is returned to the oil sump (P) at the bottom of the casing (10).
  • the shape of the oil return plate (35) is such that the space between the inner wall surface of the casing (10) is narrowed downward from the vicinity of each outlet of the oil return guide (32) and the pipe (34). , May be configured.
  • the upper part of the casing (10) is located near the outlet of the oil return guide (32) that compresses the lubricating oil discharged downward from the crank chamber (19).
  • the outlet of the second oil return passage (33) of the lubricating oil separated in the oil separation space (S2) is arranged. Therefore, the lubricating oil separated in the oil separation space (S2) is moved downward via the second oil return passage (33) by the negative pressure generated by the contraction of the lubricating oil instead of the contraction of the refrigerant gas. Can be guided. Therefore, the lubricating oil separated in the oil separation space (S2) does not flow into the flow of the refrigerant gas again, so that the oil rise can be further suppressed.
  • the oil that has finished lubricating the sliding parts (pin bearings, upper main bearings, etc.) of the compression mechanism (15) and drive shaft (24) once flows into the crank chamber (19), and then It returns to the oil sump (P) via the oil return guide (32) and the oil return plate (35).
  • the oil return guide (32) and the oil return plate (35) returns to the oil sump (P) via the oil return guide (32) and the oil return plate (35).
  • the oil flow is contracted. Therefore, in particular, the spatial static pressure near the outlet of the oil return guide (32) in the oil return plate (35) is negative compared to the static pressure in the motor upper space (S1) and the oil separation space (S2). Become.
  • the outlet of the second oil return passage (33) near the outlet of the oil return guide (32), the liquid oil separated in the top space that becomes the oil separation space (S2) is returned to the second oil. It is discharged into the oil return plate (35) through the passage (33), that is, the pipe (34), and returns to the oil sump (P) as it is.
  • the compressor (1) in which the top space is the oil separation space (S2), the discharged oil from the crank chamber (19) is contracted, and the contracted flow region and the oil separation space (S2) are seconded. Since the separated oil is communicated through the oil return passage (33), the separated oil can return to the oil sump (P) along the discharged oil flow, so that the compressor (1) has a better oil rise.
  • the oil rise can be further reduced as compared with the conventional specifications (the liquid oil separated in the top space is discharged into the discharged refrigerant gas).
  • the top space which is the oil separation space (S2), basically exhibits the same oil separation effect as the conventional separately placed oil separator, it is possible to realize a configuration that does not require this oil separator. It is possible to reduce the cost and size of the air conditioning system.
  • the second oil return passage (33) is composed of a pipe (34) penetrating the housing (18), the second oil return passage (33) can be easily simplified. Can be configured in.
  • the compressor (1) of the present embodiment it is arranged so as to surround at least the lower portions of the second oil return passage (33) and the oil return guide (32) between the compressor (1) and the inner wall surface of the casing (10). If the oil return plate (35) is further provided, it is possible to suppress the scattering of the lubricating oil sent from each outlet of the second oil return passage (33) and the oil return guide (32). In this case, the space surrounded by the oil return plate (35) and the inner wall surface of the casing (10) faces downward from the vicinity of the respective outlets of the second oil return passage (33) and the oil return guide (32). When it becomes narrower, the flow velocity of the lubricating oil increases as it goes downward, so that the lubricating oil can be efficiently guided downward.
  • the compressor (1) having the configuration shown in FIG. 2 is targeted, but in the present disclosure, the compressor has a top space as an oil separation space and a lubricating oil is stored at the bottom.
  • the shape of the oil return guide (32) shown in FIGS. 4 (a) and 4 (b) and the shape of the oil return plate (35) shown in FIGS. 5 (a) and 5 (b) are merely examples. It is not limited to these.
  • the entire second oil return passage (33) is composed of the pipe (34), but the upper oil discharge hole (16a) and the lower oil discharge hole (18b) are used as they are in the second oil return passage (33). ) May be used. Further, by not providing the fixed scroll component (16) on the lower oil discharge hole (18b) of the housing (18), a second oil return passage (33) without the upper oil discharge hole (16a) can be configured. Good.
  • the oil return plate (35) is arranged, but instead of this, the oil return plate (35) is formed by, for example, extending the oil return guide (32) or the pipe (34) downward. Does not have to be placed.
  • FIGS. 8A and 8B are perspective views of the sheet metal member (54) as viewed from the drive shaft side and the casing side, respectively.
  • the sheet metal member (54) has a pipe wall portion (54a) forming a pipeline that serves as an internal refrigerant discharge pipe between the sheet metal member (54) and the inner wall of the upper wall portion (12).
  • the tube wall portion (54a) may extend vertically upward from the fixed scroll component (16), curved at the top of the oil separation space (S2), and extend horizontally.
  • the fixed portion (54b) may have a shape corresponding to the inner wall surface of the upper wall portion (12).
  • This disclosure is useful for compressors and refrigeration equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

圧縮機(1)は、ケーシング(10)の内部に収容される圧縮機構(15)と、クランク室(19)が形成されたハウジング(18)と、クランク室(19)に流入した潤滑油を下方に導く第1油戻し通路(31)とを備える。第1油戻し通路(31)には、潤滑油を縮流させる油戻しガイド(32)が設けられる。ケーシング(10)の上部は、圧縮機構(15)から吐出された高圧冷媒から潤滑油が分離される油分離空間(S2)を構成する。圧縮機(1)は、油分離空間(S2)で分離された潤滑油を下方に導く第2油戻し通路(33)をさらに備える。第2油戻し通路(33)の出口は、油戻しガイド(32)の出口付近に配置される。

Description

圧縮機及び冷凍装置
 本開示は、圧縮機及び冷凍装置に関する。
 特許文献1に開示された圧縮機においては、トップ空間(圧縮機構の上方にあるケーシング内部の空間)に吐出された圧縮冷媒ガスに含まれるミスト状の潤滑油を、旋回流により生じる遠心力を利用して冷媒ガスから液状に分離することによって、油上がりを低減させている。
 この従来の圧縮機の構造では、トップ空間の静圧は、モータ上部空間(圧縮機構から下方に吐出された高圧冷媒ガスが流入するケーシング内部の空間)の静圧よりも低い。このため、トップ空間で分離された潤滑油は、圧縮機構からモータ上部空間に流入する冷媒ガスを縮流させることにより生じる負圧を用いて、トップ空間からモータ上部空間を経由してケーシング底部の油溜まり部に戻される。
国際公開2011/093385号公報
 しかしながら、特許文献1に開示された従来の圧縮機では、せっかくトップ空間で冷媒ガスから分離した潤滑油を、モータ上部空間で再度冷媒ガスの流れの中に流入させることになる。その結果、油上がりの抑制効果は、トップ空間での旋回流(サイクロン)による潤滑油の分離分に限定されてしまう。
 本開示の目的は、トップ空間を油分離空間とする圧縮機において、油上がりを抑制できるようにすることにある。
 本開示の第1の態様は、潤滑油を底部に貯留するケーシング(10)と、前記ケーシング(10)の内部に収容される圧縮機構(15)と、前記圧縮機構(15)を支持し且つクランク室(19)が形成されたハウジング(18)と、前記クランク室(19)に流入した前記潤滑油を下方に導く第1油戻し通路(31)とを備え、前記第1油戻し通路(31)には、前記潤滑油を縮流させる油戻しガイド(32)が設けられ、前記ケーシング(10)の上部は、前記圧縮機構(15)から吐出された高圧冷媒から前記潤滑油が分離される油分離空間(S2)を構成し、前記油分離空間(S2)で分離された前記潤滑油を下方に導く第2油戻し通路(33)をさらに備え、前記第2油戻し通路(33)の出口は、前記油戻しガイド(32)の出口付近に配置されることを特徴とする圧縮機である。
 第1の態様では、油分離空間(S2)で分離された潤滑油の第2油戻し通路(33)の出口を、油戻しガイド(32)の出口付近に配置するため、潤滑油の縮流により生じた負圧によって、第2油戻し通路(33)を通じて分離油を下方に導いて油上がりを抑制できる。
 本開示の第2の態様は、第1の態様において、前記第2油戻し通路(33)は、前記ハウジング(18)を貫通するパイプ(34)から構成されることを特徴とする圧縮機である。
 第2の態様では、第2油戻し通路(33)を簡単に構成することができる。
 本開示の第3の態様は、第1又は2の態様において、前記ケーシング(10)の内壁面との間に前記第2油戻し通路(33)及び前記油戻しガイド(32)のそれぞれの少なくとも下部を囲むように配置された油戻し板(35)をさらに備えることを特徴とする圧縮機である。
 第3の態様では、第2油戻し通路(33)及び油戻しガイド(32)の各出口から送出される潤滑油の飛散を抑制することができる。
 本開示の第4の態様は、第3の態様において、前記油戻し板(35)と前記ケーシング(10)の内壁面とに囲まれた空間は、前記第2油戻し通路(33)及び前記油戻しガイド(32)のそれぞれの出口付近から下方に向けて狭くなることを特徴とする圧縮機である。
 第4の態様では、下方に行くに従って潤滑油の流速が増大するので、潤滑油を効率よく下方に導くことができる。
 本開示の第5の態様は、第1乃至4の態様のいずれか1つの圧縮機(1)を備えることを特徴とする冷凍装置である。
 第5の態様では、第1乃至4の態様のいずれか1つの圧縮機(1)を備えているため、油上がりをより抑制することができる。
図1は、実施形態に係る圧縮機を備える冷凍装置の冷媒回路の概略図である。 図2は、実施形態に係る圧縮機の縦断面図である。 図3は、図2に示す圧縮機上部の詳細な縦断面図である。 図4(a)、(b)は、図2に示す圧縮機を構成する油戻しガイドを駆動軸側、ケーシング側からそれぞれ見た斜視図である。 図5(a)、(b)は、図2に示す圧縮機を構成する油戻し板を駆動軸側、ケーシング側からそれぞれ見た斜視図である。 図6は、図2に示す圧縮機を構成する圧縮機構、ハウジング及びそれらの周辺の斜視図(第2油戻し通路の取り付け前)である。 図7は、図2に示す圧縮機を構成する圧縮機構、ハウジング及びそれらの周辺の斜視図(第2油戻し通路の取り付け後)である。 図8(a)、(b)は、図2に示す圧縮機を構成する内部冷媒吐出管の変形例を駆動軸側、ケーシング側からそれぞれ見た斜視図である。
 以下、本開示の実施形態について図面を参照しながら説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 〈冷凍装置の構成〉
 図1は、本実施形態に係る圧縮機(1)を備える冷凍装置(100)の冷媒回路の概略図である。
 図1に示すように、冷凍装置(100)は、本実施形態に係る圧縮機(1)、凝縮器(2)、膨張機構(3)及び蒸発器(4)を備える。冷凍装置(100)は、図1に示す冷媒回路によって、冷媒を循環する冷凍サイクルの運転動作を行う。具体的には、圧縮機(1)の吐出管(51)から吐出された冷媒は、凝縮器(2)、膨張機構(3)及び蒸発器(4)を経由して、圧縮機(1)の吸入管(52)に導入される。
 〈圧縮機の構成〉
 図2は、本実施形態に係る圧縮機(1)の縦断面図であり、図3は、図2に示す圧縮機(1)の上部の詳細な縦断面図である。圧縮機(1)は、互いに噛合する2つのスクロール部品の少なくとも一方が旋回することにより冷媒を圧縮するスクロール圧縮機である。
 図2及び図3に示すように、圧縮機(1)のケーシング(10)は、略円筒状の胴部(11)と、胴部(11)の上端部に気密状に溶接される椀状の上壁部(12)と、胴部(11)の下端部に気密状に溶接される椀状の底壁部(13)とを有する。ケーシング(10)は、ケーシング(10)内外において圧力及び温度が変化した場合に変形及び破損が起こりにくい剛性部材で成型される。ケーシング(10)は、胴部(11)の略円筒状の軸方向が鉛直方向に沿うように設置される。ケーシング(10)内には、冷媒を圧縮する圧縮機構(15)、圧縮機構(15)の下方に配置される駆動モータ(21)、及び、ケーシング(10)内を上下方向に延びるように配置される駆動軸(24)等が収容される。ケーシング(10)には、冷媒の吐出管(51)及び吸入管(52)が気密状に接合される。冷媒は、吸入管(52)を通じてケーシング(10)の内部に導かれ、圧縮機構(15)によって圧縮された後、吐出管(51)を通じてケーシング(10)の外部に吐出される。
 尚、圧縮機(1)において、ケーシング(10)の内部における圧縮機構(15)と駆動モータ(21)との間の空間をモータ上部空間(S1)といい、ケーシング(10)の内部における圧縮機構(15)の上側の空間を油分離空間(S2)という。
 圧縮機構(15)は、固定スクロール部品(16)と、旋回スクロール部品(17)とから構成される。固定スクロール部品(16)及び旋回スクロール部品(17)はそれぞれ、鏡板と、当該鏡板に直立して形成される渦巻形状のラップとから構成される。固定スクロール部品(16)及び旋回スクロール部品(17)の各ラップ同士が噛合することにより、各ラップ及び各鏡板に囲まれる圧縮室が形成される。固定スクロール部品(16)の上面には、蓋体(41)がボルト(41a)(図6、図7参照)により締結固定されている。固定スクロール部品(16)は、油分離空間(S2)の上部まで延びる内部冷媒吐出管(53)を有する。内部冷媒吐出管(53)は、固定スクロール部品(16)から鉛直上向きに伸び、油分離空間(S2)の上部で湾曲し、ケーシング(10)の天井部に沿って水平方向に伸びるL字形状の管である。
 ハウジング(18)は、圧縮機構(15)の下方に配設され、ハウジング(18)の外周面は、ケーシング(10)の内壁に接合される。ハウジング(18)上には、ボルト固定等によって固定スクロール部品(16)が載置される。ハウジング(18)は、オルダム継手(42)を介して、固定スクロール部品(16)と共に旋回スクロール部品(17)を挟持する。ハウジング(18)にはクランク室(19)が設けられる。ハウジング(18)は、クランク室(19)の下方に、駆動軸(24)の上部を支持する軸受部(20)を有する。ハウジング(18)には、内部冷媒吐出管(53)の下端と接続し且つモータ上部空間(S1)に通じる冷媒通路(18a)が設けられる。
 本実施形態では、吸入管(52)を通じて圧縮機構(15)に導入された冷媒は、圧縮されてモータ上部空間(S1)に送出され、その後、冷媒通路(18a)、内部冷媒吐出管(53)及び油分離空間(S2)を経由して、吐出管(51)からケーシング(10)の外部に吐出される(図2、図3の白抜き破線矢印参照)。
 駆動モータ(21)は、例えば、ブラシレスDCモータであり、ハウジング(18)の下方に配設される。駆動モータ(21)は、ケーシング(10)の内壁に固定されるステータ(22)と、ステータ(22)の内側に僅かな間隙を設けて回転自在に収容されるロータ(23)とから構成される。ロータ(23)は、その回転中心において、駆動軸(24)を介して旋回スクロール部品(17)に連結される。駆動モータ(21)の下方には、ケーシング(10)の胴部(11)に固定され且つ駆動軸(24)の下部を支持するフレーム(25)が設けられる。フレーム(25)の上面には油分離板(25a)が設けられ、圧縮機構(15)から下降してきた圧縮冷媒中に含まれる潤滑油を分離する。分離された潤滑油は、ケーシング(10)底部の油溜まり(P)へ落下する。
 駆動軸(24)は、圧縮機構(15)と駆動モータ(21)とを連結し、ケーシング(10)内を上下方向に延びるように配置される。駆動軸(24)の下端部は、油溜まり(P)に位置する。駆動軸(24)の内部には、軸方向に貫通する給油路(図示省略)が形成される。駆動軸(24)が軸回転運動をすると、駆動軸(24)下端に配置した油ポンプ(例えばトロコイドポンプ)によって、油溜まり(P)に貯留される潤滑油が給油路を上方に向かって流れ、圧縮機構(15)の摺動部(ピン軸受等)を潤滑する。駆動軸(24)の内部には、軸受部(20)等の各摺動部へ潤滑油を供給するための給油横孔(図示省略)が給油路と接続するように形成される。給油路を上昇する潤滑油は、各給油横孔に供給され、駆動軸(24)の各摺動部を潤滑する。
 〈潤滑油の回収機構の構成〉
 以下、圧縮機構(15)や駆動軸(24)の摺動部を潤滑するように供給された潤滑油の回収機構について説明する。
 圧縮機構(15)の摺動部の潤滑に使用された潤滑油は、クランク室(19)に流入した後、図2及び図3に示すように、第1油戻し通路(31)を経由して下方に導かれる(図2、図3の白抜き実線矢印参照)。第1油戻し通路(31)には、潤滑油を縮流させる油戻しガイド(32)が設けられる。油戻しガイド(32)の少なくとも下部は、ケーシング(10)の内壁面と、当該内壁面に沿って下方に延びる油戻し板(35)とによって囲まれる。油戻しガイド(32)の出口から送出された潤滑油は、油戻し板(35)とケーシング(10)の内壁面とに囲まれた空間を下降し、ケーシング(10)底部の油溜まり(P)まで戻される。
 図4(a)、(b)は、油戻しガイド(32)を駆動軸(24)側、ケーシング(10)側からそれぞれ見た斜視図である。図4(a)、(b)に示すように、油戻しガイド(32)は、クランク室(19)と接続する接続孔(32a)と、ケーシング(10)(胴部(11))の内壁面に沿って下方に延びる縮流部(32b)とを有する。縮流部(32b)は、円筒状のケーシング(10)の径方向よりも周方向に拡がった形状を有していてもよい。縮流部(32b)の径方向寸法は、例えば2~3mm程度であり、縮流部(32b)の周方向寸法は、例えば10mm程度であってもよい。
 図5(a)、(b)は、油戻し板(35)を駆動軸(24)側、ケーシング(10)側からそれぞれ見た斜視図である。図5(a)、(b)に示すように、油戻し板(35)は、駆動軸(24)側から油戻しガイド(32)の少なくとも下部(縮流部(32b))を囲む包囲部(35a)と、ケーシング(10)の内壁面に固定される固定部(35b)とを有する。包囲部(35a)の形状は、ケーシング(10)の内壁面との間の空間が、油戻しガイド(32)の出口付近から下方に向けて狭くなるように構成されていてもよい。固定部(35b)は、ケーシング(10)の内壁面に応じた形状を有していてもよい。
 固定スクロール部品(16)の歯先と旋回スクロール(17)の鏡板部との潤滑(いわゆるスラスト軸受部)に使用された油は、圧縮行程中に圧縮室内に漏れこみ、元々システム内を循環する潤滑油と合流し、圧縮室から圧縮冷媒と一緒にモータ上部空間(S1)に吐き出される。この圧縮冷媒中の潤滑油はミスト状として存在する。
 ここで、下降する圧縮冷媒中に含まれる潤滑油の一部は、前述のように、油分離板(25a)によって分離されて、ケーシング(10)底部の油溜まり(P)へ戻されるが、潤滑油の残りは、圧縮冷媒と共に、冷媒通路(18a)及び内部冷媒吐出管(53)を経由して油分離空間(S2)に吐出される(図2、図3の白抜き破線矢印参照)。圧縮冷媒は、ケーシング(10)(上壁部(12))の内壁面の接線方向に沿って油分離空間(S2)に吐出され、吐出された圧縮冷媒は、油分離空間(S2)内で上壁部(12)の内壁面に沿って旋回して流れる(図3の破線矢印F参照)。このとき、圧縮冷媒に含まれる潤滑油は、旋回流により生じる遠心力によって、上壁部(12)の内壁面に向かって飛散し、上壁部(12)の内壁面に衝突する。衝突して液膜状となった潤滑油は、上壁部(12)の内壁面に沿って落下して、固定スクロール部品(16)に設けられた上部油排出孔(16a)から第2油戻し通路(33)を経由してモータ上部空間(S1)に排出される(図2、図3の白抜き実線矢印参照)。一方、油分離空間(S2)で潤滑油が分離された圧縮冷媒は、吐出管(51)を通じてケーシング(10)の外部に吐出される。
 本実施形態では、固定スクロール部品(16)及びハウジング(18)を貫通するパイプ(34)によって、第2油戻し通路(33)が構成される。パイプ(34)の内径は、例えば2mm程度である。
 図6、図7は、第2油戻し通路(33)(パイプ(34))の取り付け前後における圧縮機構(15)、ハウジング(18)及びそれらの周辺の斜視図である。
 図2、図3、図6、図7に示すように、固定スクロール部品(16)には、上下に貫通する上部油排出孔(16a)が設けられると共に、ハウジング(18)には、上下に貫通する下部油排出孔(18b)が上部油排出孔(16a)と接続するように設けられる。第2油戻し通路(33)となるパイプ(34)は、上部油排出孔(16a)及び下部油排出孔(18b)に挿入される。パイプ(34)の下部は、ハウジング(18)の下方のモータ上部空間(S1)中に突き出ており、パイプ(34)の下端つまり第2油戻し通路(33)の出口は、油戻しガイド(32)の出口付近に配置される。油戻し板(35)は、ケーシング(10)の内壁面との間に、油戻しガイド(32)と共にパイプ(34)の少なくとも下部を囲むように配置される。これにより、パイプ(34)の下端つまり第2油戻し通路(33)の出口から送出された潤滑油は、油戻し板(35)とケーシング(10)の内壁面とに囲まれた空間を下降し、ケーシング(10)底部の油溜まり(P)まで戻される。
 尚、油戻し板(35)の形状は、ケーシング(10)の内壁面との間の空間が、油戻しガイド(32)及びパイプ(34)の各出口付近から下方に向けて狭くなるように、構成されていてもよい。
 -実施形態の効果-
 以上に説明した本実施形態の圧縮機(1)によると、クランク室(19)から下方に排出される潤滑油を縮流させる油戻しガイド(32)の出口付近に、ケーシング(10)上部の油分離空間(S2)で分離された潤滑油の第2油戻し通路(33)の出口を配置する。このため、冷媒ガスの縮流ではなく、潤滑油の縮流により生じた負圧によって、油分離空間(S2)で分離された潤滑油を第2油戻し通路(33)を経由して下方に導くことができる。従って、油分離空間(S2)で分離された潤滑油が再び冷媒ガスの流れの中に流入することがないので、油上がりをより一層抑制することができる。
 より具体的には、圧縮機構(15)や駆動軸(24)の摺動部(ピン軸受、上部主軸受等)を潤滑し終わった油は、一旦クランク室(19)内に流入した後、油戻しガイド(32)及び油戻し板(35)を介して、油溜まり(P)に戻る。クランク室(19)から油戻しガイド(32)に潤滑油が導かれる際に、油流れは縮流される。このため、特に、油戻し板(35)内における油戻しガイド(32)の出口付近の空間静圧は、モータ上部空間(S1)及び油分離空間(S2)の静圧と比べて負圧となる。従って、油戻しガイド(32)の出口付近に第2油戻し通路(33)の出口を配置することにより、油分離空間(S2)となるトップ空間で分離された液状油が、第2油戻し通路(33)つまりパイプ(34)を介して、油戻し板(35)内に排出され,そのまま、油溜まり(P)に戻る。
 すなわち、トップ空間を油分離空間(S2)とした圧縮機(1)において、クランク室(19)からの排出油を縮流させる共に、当該縮流領域と油分離空間(S2)とを第2油戻し通路(33)により連通させるため、分離油は排出油流れに乗って油溜まり(P)まで戻ることができるので、さらに油上がりの良い圧縮機(1)となる。
 以上のように、本実施形態の圧縮機(1)によると、従来仕様(トップ空間で分離された液状油が吐出冷媒ガス中に排出される)と比べて、油上りをより一層低減できる。また、油分離空間(S2)となるトップ空間が基本的に従来の別置き油分離器と同等の油分離効果を発揮するため、この油分離器を不要とする構成を実現できるので、冷凍装置等の空調システムのコストダウン及び小型化を図ることができる。
 また、本実施形態の圧縮機(1)において、第2油戻し通路(33)は、ハウジング(18)を貫通するパイプ(34)から構成されると、第2油戻し通路(33)を簡単に構成することができる。
 また、本実施形態の圧縮機(1)において、ケーシング(10)の内壁面との間に第2油戻し通路(33)及び油戻しガイド(32)のそれぞれの少なくとも下部を囲むように配置された油戻し板(35)をさらに備えると、第2油戻し通路(33)及び油戻しガイド(32)の各出口から送出される潤滑油の飛散を抑制することができる。この場合、油戻し板(35)とケーシング(10)の内壁面とに囲まれた空間が、第2油戻し通路(33)及び油戻しガイド(32)のそれぞれの出口付近から下方に向けて狭くなると、下方に行くに従って潤滑油の流速が増大するので、潤滑油を効率よく下方に導くことができる。
 《その他の実施形態》
 前記実施形態では、図2に示す構成の圧縮機(1)を対象としたが、本開示において、トップ空間を油分離空間とし且つ潤滑油が底部に貯留される圧縮機であれば、その構成は特に限定されるものではない。例えば、図4(a)、(b)に示す油戻しガイド(32)の形状や、図5(a)、(b)に示す油戻し板(35)の形状等は、例示にすぎず、これらに限定されるものではない。
 また、前記実施形態では、第2油戻し通路(33)全体をパイプ(34)から構成したが、上部油排出孔(16a)及び下部油排出孔(18b)をそのまま第2油戻し通路(33)の一部として用いてもよい。また、ハウジング(18)の下部油排出孔(18b)上に固定スクロール部品(16)を設けないことにより、上部油排出孔(16a)の無い第2油戻し通路(33)を構成してもよい。
 また、前記実施形態では、油戻し板(35)を配置したが、これに代えて、例えば、油戻しガイド(32)やパイプ(34)を下方に延伸させることにより、油戻し板(35)を配置しなくてもよい。
 また、前記実施形態では、内部冷媒吐出管(53)として、L字形状に延びる円管を配置したが、これに代えて、例えば、図8(a)、(b)に示すような板金部材(54)を上壁部(12)の内壁に取り付けることにより、内部冷媒吐出管を構成してもよい。ここで、図8(a)、(b)は、板金部材(54)を駆動軸側、ケーシング側からそれぞれ見た斜視図である。図8(a)、(b)に示すように、板金部材(54)は、上壁部(12)の内壁との間に内部冷媒吐出管となる管路を構成する管壁部(54a)と、上壁部(12)の内壁面に固定される固定部(54b)とを有する。管壁部(54a)は、固定スクロール部品(16)から鉛直上向きに伸び、油分離空間(S2)の上部で湾曲し、水平方向に伸びていてもよい。固定部(54b)は、上壁部(12)の内壁面に応じた形状を有していてもよい。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。さらに、以上に述べた「第1」、「第2」、…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 本開示は、圧縮機及び冷凍装置について有用である。
   1  圧縮機
   2  凝縮器
   3  膨張機構
   4  蒸発器
  10  ケーシング
  11  胴部
  12  上壁部
  13  底壁部
  15  圧縮機構
  16  固定スクロール部品
  16a  上部油排出孔
  17  旋回スクロール部品
  18  ハウジング
  18a  冷媒通路
  18b  下部油排出孔
  19  クランク室
  20  軸受部
  21  駆動モータ
  22  ステータ
  23  ロータ
  24  駆動軸
  25  フレーム
  25a  油分離板
  31  第1油戻し通路
  32  油戻しガイド
  32a  接続孔
  32b  縮流部
  33  第2油戻し通路
  34  パイプ
  35  油戻し板
  35a  包囲部
  35b  固定部
  41  蓋体
  41a  ボルト
  51  吐出管
  52  吸入管
  53  内部冷媒吐出管
  54  板金部材
  54a  管壁部
  54b  固定部
 100  冷凍装置
  S1  モータ上部空間
  S2  油分離空間
   P  油溜まり

Claims (5)

  1.  潤滑油を底部に貯留するケーシング(10)と、
     前記ケーシング(10)の内部に収容される圧縮機構(15)と、
     前記圧縮機構(15)を支持し且つクランク室(19)が形成されたハウジング(18)と、
     前記クランク室(19)に流入した前記潤滑油を下方に導く第1油戻し通路(31)と
    を備え、
     前記第1油戻し通路(31)には、前記潤滑油を縮流させる油戻しガイド(32)が設けられ、
     前記ケーシング(10)の上部は、前記圧縮機構(15)から吐出された高圧冷媒から前記潤滑油が分離される油分離空間(S2)を構成し、
     前記油分離空間(S2)で分離された前記潤滑油を下方に導く第2油戻し通路(33)をさらに備え、
     前記第2油戻し通路(33)の出口は、前記油戻しガイド(32)の出口付近に配置されることを特徴とする圧縮機。
  2.  請求項1において、
     前記第2油戻し通路(33)は、前記ハウジング(18)を貫通するパイプ(34)から構成されることを特徴とする圧縮機。
  3.  請求項1又は2において、
     前記ケーシング(10)の内壁面との間に前記第2油戻し通路(33)及び前記油戻しガイド(32)のそれぞれの少なくとも下部を囲むように配置された油戻し板(35)をさらに備えることを特徴とする圧縮機。
  4.  請求項3において、
     前記油戻し板(35)と前記ケーシング(10)の内壁面とに囲まれた空間は、前記第2油戻し通路(33)及び前記油戻しガイド(32)のそれぞれの出口付近から下方に向けて狭くなることを特徴とする圧縮機。
  5.  請求項1乃至4のいずれか1項に記載の圧縮機(1)を備えていることを特徴とする冷凍装置。
PCT/JP2020/021574 2019-07-11 2020-06-01 圧縮機及び冷凍装置 WO2021005918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20836964.5A EP3971420A4 (en) 2019-07-11 2020-06-01 COMPRESSOR AND REFRIGERATOR
CN202080049262.0A CN114072583A (zh) 2019-07-11 2020-06-01 压缩机和制冷装置
US17/572,151 US20220128280A1 (en) 2019-07-11 2022-01-10 Compressor, and refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129494 2019-07-11
JP2019129494A JP2021014812A (ja) 2019-07-11 2019-07-11 圧縮機及び冷凍装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/572,151 Continuation US20220128280A1 (en) 2019-07-11 2022-01-10 Compressor, and refrigeration device

Publications (1)

Publication Number Publication Date
WO2021005918A1 true WO2021005918A1 (ja) 2021-01-14

Family

ID=74113944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021574 WO2021005918A1 (ja) 2019-07-11 2020-06-01 圧縮機及び冷凍装置

Country Status (5)

Country Link
US (1) US20220128280A1 (ja)
EP (1) EP3971420A4 (ja)
JP (1) JP2021014812A (ja)
CN (1) CN114072583A (ja)
WO (1) WO2021005918A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167084A (ja) * 1986-12-28 1988-07-11 Daikin Ind Ltd 圧縮機における油戻し装置
US20080170957A1 (en) * 2007-01-15 2008-07-17 Seon-Woong Hwang Compressor and oil separating device therefor
JP2009030611A (ja) * 2007-07-30 2009-02-12 Lg Electronics Inc 圧縮機
WO2011093385A1 (ja) 2010-01-27 2011-08-04 ダイキン工業株式会社 圧縮機及び冷凍装置
JP2015098785A (ja) * 2013-11-18 2015-05-28 ダイキン工業株式会社 スクロール圧縮機
JP2016020664A (ja) * 2014-07-15 2016-02-04 ダイキン工業株式会社 スクロール圧縮機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165788A (en) * 1980-05-23 1981-12-19 Hitachi Ltd Enclosed scroll compressor
CN101372961A (zh) * 2007-08-22 2009-02-25 泰州乐金电子冷机有限公司 涡旋式压缩机的油回收装置
CN101684796A (zh) * 2008-09-28 2010-03-31 乐金电子(天津)电器有限公司 涡旋式压缩机
JP6437294B2 (ja) * 2014-12-11 2018-12-12 日立ジョンソンコントロールズ空調株式会社 スクロール圧縮機
KR102141871B1 (ko) * 2015-05-26 2020-08-07 한온시스템 주식회사 오일회수 수단을 구비한 압축기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167084A (ja) * 1986-12-28 1988-07-11 Daikin Ind Ltd 圧縮機における油戻し装置
US20080170957A1 (en) * 2007-01-15 2008-07-17 Seon-Woong Hwang Compressor and oil separating device therefor
JP2009030611A (ja) * 2007-07-30 2009-02-12 Lg Electronics Inc 圧縮機
WO2011093385A1 (ja) 2010-01-27 2011-08-04 ダイキン工業株式会社 圧縮機及び冷凍装置
JP2015098785A (ja) * 2013-11-18 2015-05-28 ダイキン工業株式会社 スクロール圧縮機
JP2016020664A (ja) * 2014-07-15 2016-02-04 ダイキン工業株式会社 スクロール圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971420A4

Also Published As

Publication number Publication date
EP3971420A4 (en) 2022-08-03
US20220128280A1 (en) 2022-04-28
CN114072583A (zh) 2022-02-18
JP2021014812A (ja) 2021-02-12
EP3971420A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
US7819644B2 (en) Scroll compressor with crankshaft venting
US9410547B2 (en) Compressor with oil separator and refrigeration device including the same
US9777731B2 (en) Duct-mounted suction gas filter
JP6145734B2 (ja) 電動圧縮機
US6386840B1 (en) Oil return for reduced height scroll compressor
US20070092391A1 (en) Horizontal scroll compressor
US20090136372A1 (en) Open drive scroll compressor with lubrication system
US8118563B2 (en) Tandem compressor system and method
JP4939884B2 (ja) 流体圧縮機
WO2021005918A1 (ja) 圧縮機及び冷凍装置
JP7119812B2 (ja) 圧縮機
JP2005140066A (ja) 流体圧縮機
CN108350879A (zh) 具有非圆形管的回油管
CN109196227B (zh) 涡旋压缩机
JP2005264828A (ja) 圧縮機
WO2018159449A1 (ja) 圧縮機
JP2006090180A (ja) 密閉型圧縮機
US20200109711A1 (en) Scroll compressor
JP2020045845A (ja) 密閉型電動圧縮機
JP6627557B2 (ja) 軸受ハウジング、および、回転機械
JP2005163637A (ja) スクロール圧縮機
JP2008215220A (ja) 圧縮機
WO2022054551A1 (ja) 圧縮機
JP2006214399A (ja) 密閉型圧縮機
JP2703521B2 (ja) 密閉形スクロール流体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020836964

Country of ref document: EP

Effective date: 20211214