WO2021004356A1 - 信号传输方法及其装置 - Google Patents

信号传输方法及其装置 Download PDF

Info

Publication number
WO2021004356A1
WO2021004356A1 PCT/CN2020/099793 CN2020099793W WO2021004356A1 WO 2021004356 A1 WO2021004356 A1 WO 2021004356A1 CN 2020099793 W CN2020099793 W CN 2020099793W WO 2021004356 A1 WO2021004356 A1 WO 2021004356A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
phase rotation
ini
signal
circuit
Prior art date
Application number
PCT/CN2020/099793
Other languages
English (en)
French (fr)
Inventor
胡远洲
丁梦颖
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021004356A1 publication Critical patent/WO2021004356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular to a signal transmission method and device.
  • the Internet of Things is the "Internet of Things Connected".
  • passive IoT terminal devices in the Internet of Things, referred to as passive devices, which are ultra-low-power and inexpensive terminal devices.
  • passive devices do not have stable power supply devices such as batteries, and use energy harvesting to collect and store external energy in capacitors and other devices as power supply devices to support passive devices to send data.
  • the backscatter communication system includes passive equipment, radio frequency derive (RF derive) and network equipment.
  • the radio frequency device sends a wireless electromagnetic wave to the passive device as the energy source of the passive device and a carrier signal that carries data.
  • the wireless electromagnetic wave may be a carrier signal. Since passive devices do not generate high-frequency carrier signals, passive devices transmit data by backscattering the carrier signals sent by radio frequency devices.
  • the backscatter communication system adopts time domain multiplexing (TDM) to support time division multiplexing of different passive devices to realize TDM-based backscatter transmission.
  • TDM time domain multiplexing
  • Time division multiplexing is simple to implement, but the system capacity is limited, that is, the number of passive devices that can support multiplexing is relatively limited. Therefore, how to increase the system capacity of the backscatter communication system is an urgent technical problem to be solved.
  • the embodiments of the present application provide a signal transmission method and device, which can support frequency division multiplexing of more passive devices, thereby improving the system capacity of the backscatter communication system.
  • the first aspect of the embodiments of the present application provides a signal transmission method, including:
  • the second data is obtained by repetitive processing and phase rotation processing on the first data, the second data is mixed with the carrier signal to obtain the mixed signal, and the mixed signal is sent to the network device.
  • Frequency domain multiplexing (FDM) backscatter transmission can increase the number of multiplexed passive devices, thereby increasing system capacity.
  • the first phase rotation factor set includes N first phase rotation factors.
  • Perform phase rotation processing on the third data according to the first phase rotation factor set specifically including using the nth first phase rotation factor in the first phase rotation factor set to phase rotate the nth element in the third data to obtain the first phase rotation factor set.
  • the phase rotation performed on the nth element in the third data may be a dot multiplication operation (or called a multiplication operation).
  • the nth first phase rotation factor in the first phase rotation factor set is multiplied by the nth element in the third data to obtain the nth element in the second data.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1]
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or Or it may be instructed by the network device for the passive device through signaling.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'-1]
  • k ini is an integer
  • K' is Is rounded up
  • p is a positive integer.
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or Or it may be instructed by the network device for the passive device through signaling. It is a positive integer, which can be predefined or indicated by the network device for the passive device through signaling.
  • the network device can configure the specific value of k for each passive device, so as to realize that the data sent by different passive devices are mapped to different frequency positions in the frequency domain, that is, between different passive devices Frequency division, while maintaining orthogonality will not interfere with each other.
  • the value of k configured by the network device may be the same or different, which is not limited in the embodiment of the present application.
  • the difference between the phase of the mixed signal and the phase of the carrier signal is the first phase rotation factor corresponding to that time, and the amplitude of the mixed signal is the same as the amplitude of the second data.
  • FDM-based backscatter transmission thereby improving system capacity.
  • the second data includes N'elements.
  • N upsample may be predefined, or may be indicated by the network device for the passive device through signaling.
  • the second phase rotation factor set includes N'second phase rotation factors
  • the n'th element in the third data is subjected to phase rotation processing according to the n'th first phase rotation factor in the second phase rotation factor set Get the n'th element in the second data.
  • the first data is oversampled, so that the mixed signal can reduce the number of harmonics, thereby reducing out-of-band leakage.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1 ]
  • k ini is an integer.
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or It can also be instructed by the network device for the passive device through signaling.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate k, so as to determine the first phase rotation factor set or the second phase rotation factor set.
  • the first indication information may be directly sent by the network device to the passive device, or may be sent by the network device to the passive device through the radio frequency device.
  • the network device indicates different k for different passive devices to realize frequency division multiplexing and Keep orthogonal without interfering with each other.
  • the mixed signal is sent to the network device in the time unit 1, that is, the mixed signal is located in the time unit 1.
  • the index corresponding to the start time unit for sending the mixed signal is l start
  • L consecutive time units are used to send the mixed signal
  • the index l of the aforementioned time unit l can also be used to determine k in the first phase rotation factor set, and then determine the first phase rotation factor set; or used to determine k in the second phase rotation factor set, and then determine the second phase rotation factor set.
  • the method further includes: modulating the first bit to obtain the first data, and determining the first phase rotation factor set according to the second bit.
  • the first bit and the second bit are included in the bits to be sent.
  • the first bit and the second bit are obtained by dividing the bits to be sent. Determine k according to the second bit, and then determine the first phase rotation factor set or the second phase rotation factor set.
  • the method further includes: modulating the bits to be sent to obtain the first data.
  • the first phase rotation factor set may be determined by the first indication information or the index 1 of the time unit 1 for sending the mixed signal.
  • a second aspect of the embodiments of the present application provides a signal transmission device, which includes an expansion circuit, a hybrid circuit, a signal input terminal, and a signal output terminal;
  • the first terminal of the hybrid circuit is coupled to the expansion circuit, the second terminal of the hybrid circuit is coupled to the signal input terminal, and the third terminal of the hybrid circuit is coupled to the signal output terminal;
  • the expansion circuit is used to perform repeated processing and phase rotation processing on the first data to obtain the second data, and input the second data into the mixing circuit;
  • the signal input terminal is used to receive the carrier signal from the radio frequency equipment and input the carrier signal into the mixing circuit;
  • a mixing circuit for mixing the carrier signal with the second data to obtain a mixed signal
  • the signal output terminal is used to send mixed signals to network devices.
  • the expansion circuit includes a replica circuit and an impedance circuit, and the output terminal of the replica circuit is coupled to the input terminal of the impedance circuit; the impedance circuit includes multiple impedances;
  • the copy circuit is used to repeatedly process the first data to obtain the third data and input the third data into the impedance circuit;
  • the first data includes M elements, where M is a positive integer;
  • the impedance circuit is used to control the switches of multiple impedances according to the first phase rotation factor set to obtain second data; the second data includes N elements, and each element in the second data corresponds to a first phase rotation factor.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1]
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'-1]
  • k ini is an integer
  • K' is Is rounded up
  • p is a positive integer
  • k ini is an integer. Is a positive integer.
  • the expansion circuit includes a replica circuit and an impedance circuit, and the output terminal of the replica circuit is coupled to the input terminal of the impedance circuit; the impedance circuit includes multiple impedances;
  • the copy circuit is used to repeatedly process the first data to obtain the third data, and input the third data into the impedance circuit;
  • the impedance circuit is used to control the switches of multiple impedances according to the second set of phase rotation factors to obtain second data; the second data includes N'elements, and each element in the second data corresponds to a second phase rotation factor.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1 ]
  • k ini is an integer.
  • the mixing circuit is specifically configured to multiply the carrier signal and the second data to obtain the mixed signal.
  • the signal output terminal is specifically used to send the mixed signal to the network device in the time unit 1.
  • k in the first phase rotation factor set is determined according to the index l of the aforementioned time unit l; or k in the second phase rotation factor set is determined according to the index l of the aforementioned time unit l.
  • a third aspect of the embodiments of the present application provides a signal transmission device.
  • the signal transmission device may be a passive device, a device in a passive device, or a device that can be used in conjunction with a passive device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplary,
  • the processing module is configured to perform repeated processing and phase rotation processing on the first data to obtain the second data;
  • Communication module used to receive carrier signal from radio frequency equipment
  • the processing module is also used for mixing the carrier signal with the second data to obtain a mixed signal
  • the communication module is also used to send mixed signals to network devices.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1]
  • k ini may be predefined or instructed by the network device for the passive device through signaling.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'-1]
  • k ini is an integer
  • K' is Is rounded up
  • p is a positive integer.
  • k ini may be predefined or instructed by the network device for the passive device through signaling.
  • N upsample may be predefined, or may be indicated by the network device for the passive device through signaling.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1 ]
  • k ini is an integer.
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or It can also be instructed by the network device for the passive device through signaling.
  • the communication module is further configured to receive first indication information, where the first indication information is used to indicate k.
  • the communication module when used to send the mixed signal to the network device, it is specifically used to send the mixed signal to the network device within the time unit 1.
  • the processing module is also used to determine k according to the index l of the time unit l.
  • the processing module is further configured to modulate the first bit to obtain the first data; and determine the first phase rotation factor set or the second phase rotation factor set according to the second bit.
  • the first bit and the second bit are included in the bits to be sent.
  • a fourth aspect of the embodiments of the present application provides a signal transmission device.
  • the device includes a processor for implementing the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and the other device may be a network device. , Radio frequency equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the processor is used to perform repetitive processing and phase rotation processing on the first data to obtain the second data; use the communication interface to receive the carrier signal from the radio frequency device; mix the carrier signal with the second data to obtain the mixed signal;
  • the communication interface sends mixed signals to network devices.
  • the processor is configured to perform repeated processing and phase rotation processing on the first data.
  • the specific data is obtained, the specific
  • the phase rotation factor set performs phase rotation processing on the third data to obtain the second data; the second data includes N elements.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1]
  • k ini may be predefined or instructed by the network device for the passive device through signaling.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'-1]
  • k ini is an integer
  • K' is Is rounded up
  • p is a positive integer.
  • k ini may be predefined or instructed by the network device for the passive device through signaling. It is a positive integer, which can be predefined or indicated by the network device for the passive device through signaling.
  • the processor is used to perform repeated processing and phase rotation processing on the first data, and when the second data is obtained, it is specifically used to perform repeated processing on the first data to obtain the third data;
  • the second data is obtained by phase rotation processing; the second data includes N'elements.
  • N upsample may be predefined, or may be indicated by the network device for the passive device through signaling.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1 ]
  • k ini is an integer.
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or It can also be instructed by the network device for the passive device through signaling.
  • the processor is further configured to use a communication interface to receive first indication information, where the first indication information is used to indicate k.
  • the processor when configured to use the communication interface to send the mixed signal to the network device, it is specifically configured to use the communication interface to send the mixed signal to the network device in the time unit 1.
  • the processor is further configured to determine k according to the index l of the time unit l.
  • the processor is further configured to modulate the first bit to obtain the first data; and determine the first phase rotation factor set or the second phase rotation factor set according to the second bit. Wherein, the first bit and the second bit are included in the bits to be sent.
  • the fifth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the first aspect.
  • a sixth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the first aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • a seventh aspect of the embodiments of the present application provides a signal transmission method, including:
  • the network device receives the mixed signal from the passive device; strips out the second data from the mixed signal; equalizes the second data through the channel response information to obtain an equalized result; sequentially performs de-phase rotation processing, de-duplication processing, and de-duplication on the equalized result Adjust to get the bits to be sent.
  • the eighth aspect of the embodiments of the present application provides a signal transmission device.
  • the signal transmission device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the seventh aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. Exemplary,
  • Communication module used to receive mixed signals from passive devices
  • the processing module is used to strip the second data from the mixed signal; equalize the second data through the channel response information to obtain an equalized result; perform de-phase rotation processing, de-duplication processing, and demodulation on the equalized result in sequence to obtain the to-be-sent Bits.
  • a ninth aspect of the embodiments of the present application provides a signal transmission device, which includes a processor, configured to implement the method described in the seventh aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the seventh aspect can be implemented.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and the other device may be a network device. , Radio frequency equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the processor is used to use the communication interface to receive the mixed signal from the passive device; to strip the second data from the mixed signal; to equalize the second data through the channel response information to obtain the equalized result; to sequentially de-phase the equalized result Processing, de-duplication processing and demodulation to obtain bits to be sent.
  • the tenth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the seventh aspect.
  • the eleventh aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the method provided in the seventh aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • a twelfth aspect of the embodiments of the present application provides a signal transmission system, which includes the passive device provided in the third aspect and the network device provided in the eighth aspect; or includes the passive device provided in the fourth aspect and the ninth aspect Network equipment.
  • the system also includes radio frequency equipment.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the interaction flow of a signal transmission method provided by an embodiment of the application.
  • FIG. 2a is a schematic diagram of the interaction flow of another signal transmission method provided by an embodiment of this application.
  • FIG. 3 is an example diagram of subcarrier positions of frequency domain data corresponding to third data provided by an embodiment of this application;
  • FIG. 4 is an example diagram of subcarrier positions of frequency domain data corresponding to second data provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of a process of a signal transmission method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a process of another signal transmission method provided by an embodiment of this application.
  • FIG. 7a is an example diagram of a second bit subcarrier provided by an embodiment of this application.
  • FIG. 7b is an example diagram of two second-bit subcarriers provided by an embodiment of this application.
  • FIG. 8 is a hardware implementation block diagram of a signal transmission device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a hardware circuit of a signal transmission device provided by an embodiment of the application.
  • 10 is an example diagram of the impedance sequence of a carrier signal in N clock cycles provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of a logical structure of a signal transmission device provided by an embodiment of the application.
  • FIG. 12 is a simplified schematic diagram of the physical structure of a signal transmission device provided by an embodiment of the application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish technical features that have substantially the same or similar functions and functions. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the method for passive devices to achieve frequency division multiplexing is to use a periodic square wave generated by a crystal oscillator to approximate a sine wave, and mix the square wave with the carrier signal generated by the radio frequency device After that, frequency shift can be realized to realize frequency division multiplexing.
  • the method of using a square wave to approximate a sine wave will generate odd harmonics, which will cause interference to terminal equipment of other frequencies, destroy the orthogonality of frequency division between different terminal equipment, and cause the loss of demodulation performance.
  • Frequency division multiplexing is used in the backscatter communication system, which can increase the system capacity of the backscatter communication system, ensure the orthogonality of frequency division, and reduce passive Interference between devices.
  • the schematic diagram of the system architecture may be a schematic diagram of the system architecture of a backscatter communication system, including a passive device 101, a radio frequency device 102 and a network device 103.
  • backscatter communication may also be referred to as reflection communication, passive communication, passive communication, or ambient communication.
  • the passive device 101 may be referred to as a terminal device in the passive Internet of Things, which does not generate a high-frequency carrier signal. Passive devices can be ultra-low-power, inexpensive devices. Passive device 101 can also be called reflector, backscatter terminal, reflective terminal, semi-passive device, ambient signal device, tag or tag device Wait.
  • the device used to implement the function of the passive device may be a passive device, or a device capable of supporting the passive device to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the technical solutions provided by the embodiments of the present application are described by taking as an example that the apparatus for implementing the function of the passive device is a passive device.
  • the radio frequency device 102 refers to a device that can generate a high-frequency carrier signal and can provide a carrier signal to the passive device 101.
  • the wireless radio frequency device 102 may also be called a radio frequency device, auxiliary device, auxiliary device, exciter, excitation source, radio frequency source, helper, interrogator, or reader, etc.
  • the device used to implement the function of the radio frequency device may be a radio frequency device, or a device capable of supporting the radio frequency device to implement the function, such as a chip system.
  • the device for realizing the functions of the radio frequency equipment is a radio frequency equipment as an example to describe the technical solutions provided by the embodiments of the present application.
  • the radio frequency device 102 may be a user equipment (user equipment, UE).
  • the UE can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • UEs include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • the UE can also be called a terminal or a terminal device.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, and a terminal device in unmanned driving.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminal wireless terminal in telemedicine, wireless terminal in smart grid, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the network device 103 refers to a device that receives mixed signals, and may also be called a receiver, a receiver, or a receiving device.
  • the network equipment 103 may include a base station.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point. It may be a base station in a long term evolution (LTE) system or a new air interface ( The base station in the new radio (NR) system may also be the base station in the future communication system.
  • LTE long term evolution
  • NR new radio
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device for implementing the functions of the network equipment is the network equipment as an example to describe the technical solutions provided by the embodiments of the present application.
  • NR may also be referred to as a fifth-generation system (5 th generation, 5G) system.
  • the radio frequency device 102 sends a carrier signal to the passive device 101.
  • the passive device 101 modulates the bits to be sent, mixes the modulated data with the received carrier signal to obtain a mixed signal, and reflects the mixed signal to the network device 103 through the antenna of the passive device 101.
  • This processing can be understood as modulating the data Carrier signal.
  • the network device 103 receives the mixed signal and demodulates the bits to be sent from the mixed signal.
  • the network device 103 may also send a variety of indication information to the passive device 101, for example, indication information indicating the length of the modulation data, indication information indicating k, and k is used to determine the phase rotation factor set.
  • the network device 103 sends information or signals to the passive device 101, it can be forwarded through the radio frequency device 102.
  • a radio frequency device 102 provides a carrier signal to a passive device 101 as an example.
  • a radio frequency device 102 can provide a carrier signal to multiple passive devices 101, and the multiple passive devices 101 can Called a group.
  • a radio frequency device 102 may provide carrier signals of the same center frequency to the passive devices 101 in a group at the same time.
  • the center frequency of the carrier signal provided by a radio frequency device 102 to each passive device 101 at the same time can be independently configured by the network device 103 for each passive device 101. How to configure the specific network device 103 Not limited.
  • the radio frequency device 102 may also mix its own modulation data with a carrier signal, and then send the mixed signal to the network device 103.
  • a backscatter communication system including three communication nodes is taken as an example.
  • the passive device 101, the radio frequency device 102, and the network device 103 are all deployed independently.
  • the radio frequency device 102 and the network device 103 can be combined.
  • the radio frequency device 102 is deployed in the network device 103.
  • the backscatter communication system includes two kinds of communication nodes.
  • the function of the passive device 101, another communication node realizes the functions of the radio frequency device 102 and the network device 103.
  • the embodiment of the present application uses the system architecture shown in FIG. 1 as an example to describe the technical solution provided by the embodiment of the present application.
  • a backscatter communication system includes a first device, a second device, and a third device.
  • the first device corresponds to the passive device 101
  • the second device corresponds to the radio frequency device 102
  • the third device corresponds to the network device 103.
  • the signal transmission method and device provided in the embodiments of this application can be applied to a backscatter communication system, and the backscatter communication system can be applied to systems of multiple communication standards, including but not limited to LTE system, NR system or future communication Standard system, etc.
  • FIG. 2 is a schematic diagram of the interaction flow of a signal transmission method according to an embodiment of this application.
  • the method may include but is not limited to the following steps:
  • Step 201 The passive device performs repeated processing and phase rotation processing on the first data to obtain second data.
  • the first data is obtained by modulation according to the bits to be sent.
  • the bits to be sent may be obtained from the original bit data, and the original bit data may be subjected to processing such as encoding, interleaving, and scrambling to obtain the bits to be sent.
  • the passive device determines the original bit data according to the service to be sent. For example, if the service to be sent is a voice service, the original bit data is determined according to the voice service.
  • the original bit data may also be referred to as a transport block (transport block, TB), which may be a transport block generated at the physical layer.
  • transport block transport block
  • the passive device directly modulates the bits to be sent to obtain the first data.
  • the passive device divides the bits to be sent to obtain the first bit and the second bit, and modulates the first bit to obtain the first data. The role of the second bit will be introduced in the process shown in Figure 6.
  • the modulation mode used by passive devices for modulation can be amplitude shift keying (ASK) modulation, phase shift keying (PSK) modulation, and binary phase shift keying (BPSK). ) Modulation, ⁇ /2 binary phase shift keying ( ⁇ /2-BPSK) modulation or quadrature phase shift keying (QPSK) modulation, etc.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • BPSK binary phase shift keying
  • Modulation ⁇ /2 binary phase shift keying
  • QPSK quadrature phase shift keying
  • the passive device After obtaining the first data, the passive device performs repeated processing and phase rotation processing on the first data to obtain the second data.
  • the passive device first performs repeated processing on the first data to obtain the third data.
  • Repetitive processing can be understood as copy processing, that is, the data amount of the third data is a positive integer multiple of the data amount of the first data.
  • the first data includes M elements, and M is a positive integer.
  • M may be pre-defined or indicated by the network device for the passive device through signaling.
  • K can be pre-defined, or it can be indicated by the network device for the passive device through signaling.
  • N may be pre-defined or indicated by the network device for the passive device through signaling.
  • the first data is consistent with the third data, and no repeated processing is required.
  • the first data includes M elements, the repetition multiple is K, and the third data includes N elements as an example.
  • the type of the element in the first data can be a complex number.
  • the complex number can be a real part that is 0, an imaginary part is not 0, a real part is not 0, and an imaginary part is 0, both real and imaginary parts are 0, or both real and imaginary parts.
  • the part is not 0, and there is no limitation in the embodiment of this application.
  • the first data includes M elements, which can be understood as including M data. Since the first data is obtained through modulation, the M data may be M modulated data.
  • the first data can be expressed as d
  • the m-th data in the first data can be expressed as d(m)
  • the third data can be expressed as y
  • the nth data in the third data can be expressed as y(n)
  • the relationship between the third data and the first data is as follows:
  • the third data can be regarded as time-domain data, and the third data can be converted into frequency-domain data through Fourier transform.
  • FIG. 3 is an example diagram of the subcarrier positions of the frequency domain data corresponding to the third data provided in this embodiment of the application.
  • the positions of the 12 subcarriers are represented by numbers -6, -5, ..., 5, which are used for example and do not constitute a limitation. For example, numbers 0, 1, ..., 11 may also be used.
  • the first data includes 1 data, numbered 1, and the third data includes 12 data.
  • the position of the subcarrier occupied by the frequency domain data corresponding to the third data Is "0".
  • the remaining unoccupied sub-carrier positions can be used by other passive devices. If each passive device sends one piece of data, 12 passive devices can be used for frequency division multiplexing, which can increase system capacity and reduce interference.
  • the first data includes two data, numbered 1 and 2, and the third data includes 12 data.
  • the frequency domain data corresponding to the third data occupies The carrier position is "-6" and "0".
  • each passive device sends two pieces of data, then 6 passive devices can be used for frequency division multiplexing.
  • the first data includes 12 data, numbered 1-12, and the third data includes 12 data. After Fourier transform is performed on the third data, the frequency domain data corresponding to the third data occupies these 12 data. Subcarrier positions.
  • each passive device when multiple passive devices are multiplexed, each passive device needs to determine which sub-carrier position or subcarriers it occupies. In the embodiment of the present application, it is determined by k in the phase rotation factor concentration.
  • the passive device After obtaining the third data, the passive device performs phase rotation processing on the third data according to the first phase rotation factor set to obtain the second data.
  • the first phase rotation factor set includes N first phase rotation factors.
  • the passive device performs phase rotation on the nth data in the third data according to the nth first phase rotation factor in the first phase rotation factor set to obtain the nth data in the second data.
  • Phase rotation can be a dot multiplication operation, which can also be called a multiplication operation. For example, multiply the nth data in the third data by the nth first phase rotation factor in the first phase rotation factor set to obtain the nth data in the second data, which is expressed as follows:
  • e j ⁇ n is the nth first phase rotation factor in the first phase rotation factor set.
  • the first phase rotation factor set can be expressed in the following manner 1 and manner 2. It should be noted that the first method and the second method are used as examples and do not constitute a limitation to the embodiment of the present application. In practical applications, other methods may also be used to represent the first phase rotation factor set.
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or Indicates rounding down.
  • the specific value of k can be pre-configured. Alternatively, the specific value of k may be indicated by the network device through indication information.
  • the network device indicates the specific value of k through the first indication information, so that the passive device determines the first set of phase rotation factors.
  • represents the pi
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'- 1], that is, k is any value in [k ini ,k ini +1,k ini +2,...,k ini +K'-1].
  • k ini is an integer
  • K' is Is rounded up
  • k ini can be predefined, that is, both passive devices and network devices are known, for example, 0 or Indicates rounding down.
  • the specific value of k can be pre-configured. Alternatively, the specific value of k may be indicated by the network device through indication information.
  • the network device indicates the specific value of k through the first indication information, so that the passive device determines the first set of phase rotation factors.
  • the first instruction information can be directly sent by the network device to the passive device, or the network device can first send the first instruction information to the radio frequency device, and then the radio frequency device can send the first instruction information to the passive device.
  • Source device The other indication information sent by the network device to the passive device can adopt these two methods. For example, when considering the combination of network equipment and radio frequency equipment, such as integrating the function of the radio frequency equipment in the network equipment, the network equipment can directly issue instructions to the passive equipment.
  • different values of k correspond to different frequency domain subcarrier positions.
  • different values of k can be configured by the network device, so as to realize that the data sent by different passive devices is frequency-divided, and orthogonality is maintained without interfering with each other.
  • Taking mode one as an example refer to the example diagram of the subcarrier positions of the frequency domain data corresponding to the second data shown in FIG. 4, which shows that different values of k correspond to different subcarrier positions.
  • up to 12 passive devices can be supported for frequency division multiplexing, that is, different passive devices occupy different subcarrier positions according to different values of k, so that the data sent by different passive devices are mapped To different sub-carriers, this can ensure the orthogonality between different passive devices and will not interfere with each other.
  • Step 202 The radio frequency device sends a carrier signal to the passive device.
  • the passive device receives the carrier signal from the radio frequency device.
  • the carrier signal may also be called incoming carrier signal or incoming radio frequency signal, etc.
  • the carrier signal is a high-frequency carrier signal, which is generated by radio frequency equipment, but not by passive equipment.
  • the carrier signal is used to carry the second data so that the passive device can send data to the network device.
  • the carrier signal is Take for example.
  • Step 203 The passive device performs mixing processing on the carrier signal and the second data to obtain a mixed signal.
  • the passive device performs mixing processing on the carrier signal and the second data to obtain a mixed signal. For example, multiplying the carrier signal and the second data to obtain a mixed signal. It can be understood that the passive device carries the second data on the carrier signal to obtain a mixed signal.
  • the expression for multiplying the carrier signal and the second data is as follows:
  • s(t) is a mixed signal
  • x(t) is a continuous form of the second data x(n).
  • the relationship between x(t) and x(n) in a possible implementation is as follows:
  • T s is a time unit, which can be considered as the time interval between two consecutive second data in the second data x(n).
  • the phase difference between it and the carrier signal at that time is the first phase rotation factor corresponding to the time, which is The amplitude ratio of the carrier signal at this moment is the amplitude of the second data corresponding to this moment.
  • the crystal oscillator can generate a clock, and the clock period of the generated clock is T s .
  • the clock period determines the minimum precision of discretized sampling of time-domain data, so within a duration of T s , the continuous form of the second data x(t) takes a value, so x(t) and x
  • Step 204 The passive device sends the mixed signal to the network device.
  • the network device receives the mixed signal from the passive device.
  • the passive device sends the mixed signal to the network device, that is, backscatters the mixed signal to the network device, that is, backscatters the carrier signal carrying the second data to the network device.
  • T s is the time interval between two consecutive second data in the second data x(n).
  • the second data includes N data, so the duration of the second data is N ⁇ T s .
  • the second data may be located in a time unit, that is, the duration of a time unit is N ⁇ T s .
  • the passive device mixes the second data in the first time unit with the carrier signal to obtain the mixed signal in the time unit, and backscatters the mixed signal in the time unit to the network device.
  • the mixed signal is backscattered to the network device within this time unit.
  • a time unit can be called a symbol or a time slot.
  • passive devices can also send mixed signals in multiple consecutive time units.
  • a time unit can be a symbol, a time slot, or a subframe.
  • the mixed signal is backscattered to the network device in a time unit 1 (also referred to as a time unit with an index of 1).
  • l is an integer.
  • the index corresponding to the start time unit for sending the mixed signal is l start
  • L consecutive time units are used to send the mixed signal
  • the index l of the aforementioned time unit l may also be used to determine k in the first phase rotation factor set, thereby determining the first phase rotation factor set.
  • k (k 0 +K step ⁇ l) mod K.
  • k 0 may be a predefined value, or may be indicated by the network device as a passive device through indication information, and k 0 represents an initial value.
  • K step can be instructed by the network device as a passive device through the instruction information, or it can be predefined, that is, both the network device and the passive device are known.
  • mod means modulo operation.
  • the k in the first phase rotation factor set can be directly indicated by the network device, that is, the above method 1 and method 2 directly indicate k through the first indication information; it can also be determined by the passive device itself, such as predefined or the network device indicates k through the indication information. 0 , the passive device determines k according to k 0 and l.
  • the network device When the network device receives the mixed signal, it strips the second data from the mixed signal, and sequentially performs phase rotation processing, deduplication processing, and demodulation on the second data to obtain bits to be sent.
  • the network device when receiving the mixed signal, the network device removes the carrier from the mixed signal to obtain the second data, and then uses the channel response information to equalize the second data to obtain the equalization result.
  • the equalization result is sequentially subjected to de-phase rotation processing, de-duplication processing, and demodulation to obtain the bits to be sent.
  • the channel response information can be obtained through channel estimation of the reference signal.
  • the second data in the mixed signal may be a reference signal sequence known by the network device.
  • the passive device sends the first mixed signal including the reference signal sequence and the second mixed signal including the bits to be sent to the network device.
  • the network device can perform channel estimation through known reference signal sequences to obtain channel response information.
  • de-carrier can be understood as down conversion. Down-conversion refers to reducing the frequency of the carrier signal in the mixed signal, for example, reducing the center frequency F c of the carrier signal to zero, so that the baseband signal remains.
  • the signal corresponds to the second data in the embodiment of this application.
  • the passive device performs repeated processing and phase rotation processing on the first data, which can realize that the data sent by different passive devices is frequency-divided and orthogonal, so that while increasing the system capacity, Can reduce interference between passive devices.
  • step 201 and step 202 can be executed in the same time unit; or step can be executed first 202, step 201 is performed afterwards; or step 201 can be performed first, and then step 201 is performed.
  • the center frequency F c of the carrier signal sent by the radio frequency device may be configured by the network device, and the network device may notify the radio frequency device of the configured center frequency of the carrier signal through signaling.
  • Network equipment can be configured with different center frequencies of carrier signals for different passive RF devices.
  • the network settings for the center frequency of the carrier signal configured for radio frequency device 1 is F c1
  • the center frequency of the carrier signal configured for radio frequency device 2 F c2 , F c1 and F c2 are different
  • network equipment can also configure different carrier signal center frequencies for the same radio frequency device in different time periods, for example, for radio frequency device 1 configured carrier signal center frequency in time period 1 F c1 , the center frequency of the carrier signal configured for the radio frequency device 1 in the time period 2 is F c2 , and F c1 and F c2 are different.
  • the radio frequency device can use different center frequencies to transmit carrier signals at different time units.
  • the radio frequency device may determine the center frequency of the carrier signal according to the signaling of the network device and the time unit index 1.
  • the center frequency F c of the carrier signal can be expressed as Pre-defined or indicated by network equipment signaling, F c (l) is determined by the time unit index l.
  • F c (l) is determined by the time unit index l.
  • the center frequency of a carrier signal sent by a radio frequency device is Then when the time unit index l is an even number, the center frequency is When the time unit index l is an odd number, the center frequency is In other words, the center frequency of the carrier signal of the radio frequency equipment is with Frequency hopping between.
  • the network equipment is configured with the center frequency of the carrier signal of the radio frequency equipment, which makes the frequency division multiplexing more flexible, and the number of passive equipment that can support multiplexing is larger, and the system capacity is further improved.
  • 12 passive devices can be supported for frequency division multiplexing at the center frequency F c shown in Figure 4, and 12 passive devices can be supported under another center frequency F c '
  • the source device performs frequency division multiplexing, and the other center frequency F c ′ can be the center frequency of carrier signals of other radio frequency devices, or the center frequencies of carrier signals of the same radio frequency device in different time periods.
  • FIG. 2 takes the backscatter system shown in FIG. 1 as an example, that is, the independent deployment of radio frequency equipment and network equipment is taken as an example for description.
  • the radio frequency device and the network device can be combined.
  • FIG. 2a is a schematic diagram of the interaction flow of another signal transmission method provided in an embodiment of this application.
  • Figure 2a includes passive devices and communication nodes, which can realize the functions of radio frequency devices and network devices.
  • the name of the communication node is used as an example and does not constitute a limitation to the embodiment of the application.
  • the communication node is called Network equipment, that is, the function of radio frequency equipment is integrated into the network equipment.
  • the embodiment shown in Figure 2a may include but is not limited to the following steps:
  • Step 201a The passive device performs repeated processing and phase rotation processing on the first data to obtain second data.
  • Step 202a The communication node sends a carrier signal to the passive device.
  • the passive device receives the carrier signal from the communication node.
  • Step 203a the passive device performs mixing processing on the carrier signal and the second data to obtain a mixed signal.
  • Step 204a the passive device sends the mixed signal to the communication node.
  • the communication node receives the mixed signal from the passive device.
  • step 201a and step 203a please refer to the detailed description of step 201 and step 203 in the embodiment shown in FIG. 2;
  • step 202a the communication node implements the function of a radio frequency device and provides a carrier signal to the passive device;
  • step 204a the communication node Realize the function of network equipment and receive mixed signals from passive equipment.
  • the communication node When receiving the mixed signal, the communication node downloads the mixed signal to obtain the second data, and then uses the channel response information to equalize the second data to obtain the equalization result. For details, refer to the specific description of the mixed signal received by the network device in step 204.
  • the passive device performs repeated processing and phase rotation processing on the first data, which can realize that the data sent by different passive devices is frequency-divided and orthogonal, thereby increasing the system capacity while simultaneously Reduce interference between passive devices.
  • Radio frequency equipment and network equipment can be combined to make the implementation easier.
  • the embodiment shown in FIG. 2 is mainly based on a scenario in which the passive device directly modulates the bits to be sent to obtain the first data.
  • the passive device modulates the bits to be sent to obtain the first data; performs repeated processing on the first data to obtain the third data; performs phase rotation processing on the third data to obtain the second data;
  • the carrier signal is received, the carrier signal and the second data are mixed to obtain the mixed signal; the mixed signal is backscattered to the network device.
  • the network device receives the mixed signal, the second data is obtained from the mixed signal.
  • FIG. 6 is a schematic diagram of another signal transmission method, based on a scenario where the passive device first performs segmentation processing on the bits to be sent to obtain the first bit and the second bit, and then modulates the first bit to obtain the first data.
  • the embodiment of the present application does not limit the manner in which the bits to be transmitted are divided.
  • the data amount of the first data and the first bit may be the same or different, which is specifically related to the modulation mode.
  • the first bit includes M data and the modulation mode is BPSK, then the first data includes M data.
  • the first phase rotation factor set for phase rotation processing in FIG. 6 is different from the first phase rotation factor set for phase rotation processing in FIG. 5.
  • the first phase rotation factor set in FIG. 5 may be predefined, and may be determined according to the first indication information of the network device, or may be determined according to the index 1 of the time unit 1.
  • the first phase rotation factor set in FIG. 6 can be determined according to the second bit, and specifically k can be determined according to the second bit, and then the first phase rotation factor set is determined.
  • the second bit in a time unit can be expressed as b 2nd , and b 2nd includes N 2nd bits. According to N 2nd bits, it can be determined Different values of k, that is, the frequency domain data corresponding to the second data has Different sub-carrier positions.
  • k has at most K different values
  • k has at most K'different values
  • K' is Is rounded up.
  • n 0,1,2,...,N-1 as an example.
  • the relationship between the value of k and the N 2nd second bits is as follows:
  • k start is the starting sub-carrier position of the frequency domain bandwidth occupied by the passive device.
  • the passive device can send mixed signals in multiple time units, and the k value determined by the second bit corresponding to different time units can be independently configured (for example, it can be the same or different, and the embodiment of the application does not limit it).
  • passive devices can actually be used
  • the frequency domain bandwidth of three sub-carriers sends mixed signals.
  • the passive device selects the M subcarriers to carry data through the second bit.
  • k start is this The starting subcarrier position in subcarriers.
  • N 2nd 2 bits
  • M 1 of which is selected to carry the second data through the second bit in each time unit.
  • the corresponding subcarrier position occupied by frequency domain data is -3.
  • the subcarrier position occupied by the frequency domain data corresponding to the second data is not fixed and single, and can be obtained from multiple subcarriers.
  • the position of the subcarrier used to carry the second data is selected from the carrier position. It is understandable that for a passive device, the available sub-carrier position is not fixed and single, and is related to the number of second bits and the value of the second bit, so that the passive device can be used
  • the position of the sub-carrier can carry more data and improve the utilization of frequency domain resources.
  • the relationship between the value of k and the N 2nd second bits is as follows:
  • k end is the cut-off sub-carrier position of the frequency domain bandwidth occupied by the passive device.
  • K 2nd can also be expressed in other ways, for example:
  • the process shown in FIG. 6 can carry more data and improve the utilization of frequency domain resources.
  • FIG. 8 is a block diagram of the hardware implementation of the signal transmission device provided by this embodiment of the application.
  • the signal transmission device may be a passive device or a part of the device in the passive device.
  • the signal transmission device shown in FIG. 8 includes an expansion circuit 801, a mixing circuit 802, a signal input terminal 803, and a signal output terminal 804.
  • the first terminal of the hybrid circuit 802 is coupled to the expansion circuit 801, the second terminal of the hybrid circuit 802 is coupled to the signal input terminal 803, and the third terminal of the hybrid circuit 802 is coupled to the signal output terminal 804.
  • One end of the extension circuit 801 is coupled to the hybrid circuit 802, and the other end is used to receive the first data.
  • the specific circuit from which the first data comes is not limited in the embodiment of the present application.
  • the device shown in FIG. 8 is used to implement the foregoing method embodiment, and may include: an expansion circuit 801, configured to perform repeated processing and phase rotation processing on the first data to obtain second data, and input the second data into the 802 mixing circuit;
  • the input terminal 803 is used to receive the carrier signal from the radio frequency device and input the carrier signal to the mixing circuit 802; the mixing circuit 802 is used to mix the carrier signal with the second data to obtain a mixed signal;
  • the signal output terminal 804 is used to Send mixed signals to network devices.
  • the signal output terminal 804 can be connected to an antenna, and the mixed signal is sent to the network device through the antenna. Or the signal output terminal 804 is an antenna.
  • the mixing circuit 802 is specifically configured to multiply the carrier signal and the second data to obtain a mixed signal.
  • the expansion circuit 801 in FIG. 8 includes a replication circuit 8011 and an impedance circuit 8012.
  • the output terminal of the replication circuit 8011 is coupled to the input terminal of the impedance circuit 8012;
  • the impedance circuit 8012 includes multiple impedances;
  • the copy circuit 8011 is used to repeatedly process the first data to obtain the third data, and input the third data into the impedance circuit;
  • the first data includes M elements, where M is a positive integer;
  • the impedance circuit 8012 is used to control the switches of multiple impedances according to the first phase rotation factor set to obtain second data; the second data includes N elements, and each element in the second data corresponds to a first phase rotation factor.
  • the expansion circuit 801 in FIG. 8 includes a replication circuit 8011 and an impedance circuit 8012.
  • the output terminal of the replication circuit 8011 is coupled to the input terminal of the impedance circuit 8012;
  • the impedance circuit 8012 includes one or more impedances;
  • the copy circuit 8011 is used to repeatedly process the first data to obtain the third data, and input the third data into the impedance circuit;
  • the impedance circuit 8012 is configured to control the switches of multiple impedances according to the second set of phase rotation factors to obtain second data; the second data includes N'elements, and each element in the second data corresponds to a second phase rotation factor.
  • the signal output terminal 804 is specifically used to send a mixed signal to the network device in the time unit 1.
  • the hardware implementation block diagram, the division of each circuit, and the name of each circuit shown in FIG. 8 do not constitute a limitation on the embodiment of the present application.
  • the impedance circuit 8012 and the hybrid circuit 802 can be deployed together and executed simultaneously.
  • phase rotation processing and the mixing processing can be implemented through a switch.
  • the switch is used to control the impedance of the carrier signal and the sequence of the impedance, so as to realize the combination with other passive devices in the backscatter system. Perform frequency division multiplexing to increase system capacity.
  • the carrier signal can be converted into the form of alternating current through the circuit.
  • the alternating current corresponding to the carrier signal passes through the corresponding impedance, and the amplitude and phase of the alternating current can be changed.
  • the amplitude and phase are changed.
  • impedance can be expressed as Z.
  • the amplitude changes from 1 to A, and the difference in phase change is e j ⁇ ⁇ , that is, the phase difference between the carrier signal after the impedance and the carrier signal before the impedance is e j ⁇ ⁇ .
  • the amplitude A can be understood as the amplitude of the first data
  • the phase difference can be understood as the phase difference between the carrier signal and the mixed signal.
  • FIG. 9 is a schematic diagram of the hardware circuit of the signal transmission device provided by the embodiment of the application.
  • Figure 9 includes a switch, which is used to implement phase rotation processing and mixing processing, and to send a mixed signal to a network device through an antenna.
  • the switch is controlled by a clock whose period is T s and can be generated by a crystal oscillator.
  • These 12 phase values are also the phase values of 12-PSK modulation, that is to say, all possible values of the phase rotation factor correspond to the phase values of N-PSK modulation.
  • the 12 impedances Z 0 , Z 1 ,..., Z 11 in Figure 9 correspond to 12 phase values respectively
  • the signal transmission device determines the carrier signal controlled by the switch to pass through one of the 12 impedances through the first phase rotation factor in the first phase rotation factor set, thereby realizing the mixing of the carrier signal and the third data.
  • the duration of the nth clock cycle is n ⁇ T s ⁇ t ⁇ (n+1) ⁇ T s
  • the amplitude of the nth data in the second data can be determined by the n mod Mth of the M modulation data included in the first data.
  • the magnitude of the data (ie d(n mod M)) is determined, and the phase of the nth data in the second data can be determined by the phase and phase rotation factor of the nth data in the first data determine.
  • one of the M modulation data is 1 or -1, and the amplitude of the second data is 1.
  • the switching control carrier signal passes through the impedance Z i in the nth clock cycle, where the first phase rotation factor set corresponding to Z i is
  • the switching control carrier signal passes through the impedance Z i , where the first phase rotation factor set corresponding to Z i
  • the switching control carrier signal passes through the impedance Z i , where the first phase rotation factor set corresponding to Z i
  • the first set of phase rotation factors Corresponding phase value All possible values of the 12 are still In this way, the phase change of the carrier signal after the impedance Z i is equal to the phase corresponding to the second data x(n), thus completing the mixing process of the second data and the carrier
  • a mixed signal can be generated. Since the phase of the second data corresponding to each clock cycle of the N clock cycles may be different, the carrier signal of the N clock cycles may be controlled by the switch to pass through different impedances, so it can be achieved by controlling the sequence of the carrier signal passing through the impedance The mixing of the second data and the carrier signal simultaneously realizes the mapping of the frequency domain data corresponding to the second data to the corresponding frequency domain position through phase rotation.
  • the impedance sequence of the carrier signal in N clock cycles can be seen in FIG. 10.
  • the subcarrier positions occupied by the frequency domain data corresponding to the second data are different.
  • the mixed signal may generate more harmonic components, resulting in performance loss of out of band (OOB) leakage.
  • OOB out of band
  • the first phase rotation factor set includes with The two values correspond to the impedances Z 0 and Z 6 of the carrier signal during hardware implementation. At this time, only two different phase rotation factors are used, so that the mixed signal will generate more harmonic components, resulting in performance loss of out-of-band leakage.
  • N upsample is a positive integer
  • the first data includes 1 data
  • the data amount of the third data is N ⁇ N upsample times the data amount of the first data.
  • the representation of the third data is as follows:
  • phase rotation processing is performed on the third data to obtain the second data, and the second data includes N'pieces of data.
  • the k in the second phase rotation factor set may be determined according to the first indication information of the network device, may also be determined according to the index l of the time unit 1, or may be determined according to the second bit obtained by dividing the bit to be sent.
  • the N different phase rotation factors are realized by N different impedances.
  • phase rotation factors The number of different phase rotation factors that can be used in practical applications may be less than N or greater than N. Express the number of phase rotation factors that can actually be used as Then the second set of phase rotation factors can be expressed as:
  • Time Can be a positive integer
  • Time Can be a positive integer
  • the carrier signal and the second data are mixed to obtain a mixed signal.
  • M the expression for multiplying the carrier signal and the second data is as follows:
  • s(t) is the mixed signal
  • x(t) is the continuous form of the second data x(n').
  • the relationship between x(t) and x(n) is as follows:
  • a second data x (n ') in the time between two successive changes to the second data interval T s / N upsample, the number of sampling points (i.e., x (n' The length of )) is N ⁇ N upsample .
  • the period of the clock generated by the crystal oscillator in hardware implementation is T s /N upsample .
  • the order in which the carrier signal passes through the impedance is determined according to the second set of phase rotation factors acting on the second data x(n').
  • N upsample 4 as an example, 12 impedances Z 0 , Z 1 ,..., Z 11 are needed to achieve the corresponding 12 phase values
  • passive devices and network devices may include hardware structures and/or software modules, which are implemented in the form of hardware structures, software modules, or hardware structures plus software modules.
  • FIG. 11 is a schematic diagram of the logical structure of a signal transmission device provided in an embodiment of this application.
  • the signal transmission device 90 includes a processing module 901 and a communication module 902.
  • the signal transmission apparatus can realize the function of the passive device 101 in the embodiment of this application, can also realize the function of the network device 103 in the embodiment of this application, and can also integrate the functions and functions of the radio frequency device 102 in the embodiment of this application.
  • the function of the network device 103 is a device.
  • the signal transmission device 90 is used to implement the function of the passive device 101 in the embodiment of the present application:
  • the processing module 901 is configured to perform repeated processing and phase rotation processing on the first data to obtain second data;
  • the communication module 902 is used to receive a carrier signal from a radio frequency device
  • the processing module 901 is further configured to perform mixing processing on the carrier signal and the second data to obtain a mixed signal;
  • the communication module 902 is also used to send mixed signals to the network device.
  • the processing module 901 is configured to perform repeated processing and phase rotation processing on the first data, and when the second data is obtained, it is specifically configured to perform repeated processing on the first data to obtain the third data;
  • the data includes M elements, M is a positive integer;
  • the third data is phase-rotated according to the first phase rotation factor set to obtain the second data ;
  • the second data includes N elements.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1]
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K'-1]
  • k ini is an integer
  • K' is Is rounded up
  • p is a positive integer.
  • the value range of k is [k ini ,k ini +1,k ini +2,...,k ini +K-1 ]
  • k ini is an integer.
  • the communication module 902 is further configured to receive first indication information, where the first indication information is used to indicate k.
  • the communication module 902 when used to send the mixed signal to the network device, it is specifically used to send the mixed signal to the network device within the time unit 1.
  • the processing module 901 is further configured to determine k according to the index l of the time unit l.
  • the processing module 901 is further configured to modulate the first bit to obtain first data; and determine the first phase rotation factor set or the second phase rotation factor set according to the second bit. Wherein, the first bit and the second bit are included in the bits to be sent.
  • the signal transmission device 90 is used to implement the network device 103 in the embodiment of the present application or is a device that integrates the function of the radio frequency device 102 and the function of the network device 103 in the embodiment of the present application:
  • the communication module 902 is used to receive mixed signals from passive devices
  • the processing module 901 is used for stripping the second data from the mixed signal; equalizing the second data through the channel response information to obtain an equalization result; sequentially performing phase rotation processing, deduplication processing, and demodulation on the equalization result to obtain Send bits.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 12 is a schematic diagram of the logical structure of the signal transmission device provided by the embodiment of this application.
  • the signal transmission device 100 shown in FIG. 12 can be used to realize the function of the passive device in the above method.
  • the device can be a passive device, a device in a passive device, or a device matched with a passive device. .
  • the signal transmission device 100 can also be used to implement the function of the network device in the above method.
  • the device can be a network device, a device in a network device, or a device matched with a network device.
  • the signal transmission apparatus 100 may also be used to implement the functions of the network equipment and the functions of the radio frequency equipment in the above method.
  • the signal transmission device 100 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the signal transmission device 100 includes at least one processor 1020.
  • the processor 1020 may execute steps 201 and 203 in the embodiment shown in FIG. 2; and steps 201a and 201a and in the embodiment shown in FIG. 2a Step 203a.
  • the processor 1020 may obtain second data for the mixed signal download wave, and for the second data Perform equalization to obtain an equalization result, and sequentially perform dephase rotation processing, deduplication processing, and demodulation on the equalization result to obtain the bits to be sent.
  • the signal transmission device 100 may also include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 to operate.
  • the processor 1020 may execute program instructions stored in the memory 1030. At least one of the at least one memory may be included in the processor.
  • the signal transmission device 100 may further include a communication interface 1010 for communicating with other devices through a transmission medium, so that the signal transmission device 100 can communicate with other devices.
  • the communication interface may be a transceiver, an interface, a bus, a circuit, or a device capable of implementing the transceiver function.
  • the other device may be a network device or a radio frequency device, and the processor 1020 uses the communication interface 1010 to receive a carrier signal and send a mixed signal.
  • the processor 1020 may control the implementation of the hardware circuit shown in FIG. 9, for example, the processor 1020 controls the switch in FIG. 9; the communication interface 1010 may be the one in FIG. Antenna, carrier signal input terminal.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1010, the processor 1020, and the memory 1030.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. 12, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a signal transmission system, which may include passive equipment, network equipment, and radio frequency equipment.
  • a signal transmission system which may include passive equipment, network equipment, and radio frequency equipment.
  • the system includes passive equipment and the communication node.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • the embodiments can be mutually cited.
  • methods and/or terms between method embodiments can be mutually cited, such as functions and/or functions between device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请实施例提供一种信号传输方法及其装置,其中方法包括如下步骤:对第一数据进行重复处理和相位旋转处理,得到第二数据;从无线射频设备接收载波信号,将所述载波信号与所述第二数据进行混合处理,得到混合信号;向网络设备发送所述混合信号。采用本申请实施例,可以支持更多的无源设备复用,从而可以提高反向散射通信系统的系统容量。

Description

信号传输方法及其装置
本申请要求于2019年7月5日提交国家知识产权局、申请号为201910605806.6、申请名称为“信号传输方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种信号传输方法及其装置。
背景技术
物联网(internet of things,IoT)即“万物相连的互联网”。物联网中存在无源物联网(passive internet of things,passive IoT)的终端设备,简称无源设备,是一种超低功耗、廉价的终端设备。通常,无源设备无电池等稳定的供电器件,通过能量捕获(energy harvest)的方式将外部的能量收集存储在电容等器件中作为供电设备以支持无源设备进行数据发送。
为了支持无源设备的数据传输,提出反向散射(backscatter)通信(communication)。反向散射通信系统包括无源设备、无线射频设备(radio frequency derive,RF derive)和网络设备。无线射频设备向无源设备发送无线电磁波作为无源设备的能量来源和承载数据的载波信号,该无线电磁波可以是一个载波信号(carrier signal)。由于无源设备不产生高频率的载波信号,因此无源设备通过将无线射频设备发送的载波信号进行反向散射来传输数据。
目前,反向散射通信系统采用时分复用(time domain multiplexing,TDM)方式支持不同无源设备进行时分复用,实现基于TDM的反向散射传输。时分复用实现简单,但是系统的容量有限,即可以支持复用的无源设备数目比较有限。因此,如何提高反向散射通信系统的系统容量是亟待解决的技术问题。
发明内容
本申请实施例提供一种信号传输方法及其装置,可以支持更多的无源设备频分复用,从而可以提高反向散射通信系统的系统容量。
本申请实施例第一方面提供一种信号传输方法,包括:
对第一数据进行重复处理和相位旋转处理,得到第二数据;
从无线射频设备接收载波信号,将该载波信号与第二数据进行混合处理,得到混合信号;
向网络设备发送混合信号。
本申请实施例第一方面,通过对第一数据进行重复处理和相位旋转处理,得到第二数据,将第二数据与载波信号进行混合,得到混合信号,向网络设备发送混合信号,可以实现基于频分复用(frequency domain multiplexing,FDM)的反向散射传输,可以提高复用的无源设备数量,从而提高系统容量。
在一种可能的实现方式中,对第一数据进行重复处理,得到第三数据,第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;根据第一相 位旋转因子集对第三数据进行相位旋转处理,得到第二数据,第二数据包括N个元素。即第三数据和第二数据所包括的元素个数为第一数据所包括的元素个数的K倍。
其中,第一相位旋转因子集包括N个第一相位旋转因子。根据第一相位旋转因子集对第三数据进行相位旋转处理,具体包括采用第一相位旋转因子集中的第n个第一相位旋转因子对第三数据中的第n个元素进行相位旋转,得到第二数据中的第n个元素。对第三数据中的第n个元素进行的相位旋转可以是点乘操作(或称为乘法运算)。换言之,将第一相位旋转因子集中的第n个第一相位旋转因子与第三数据中的第n个元素进行乘法运算,得到第二数据中的第n个元素。第n个元素为N个元素中的任意一个,n=0,1,2,...,N-1。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000001
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000002
或者可以是网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000003
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
Figure PCTCN2020099793-appb-000004
的向上取整,
Figure PCTCN2020099793-appb-000005
p为正整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000006
或者可以是网络设备通过信令为无源设备指示的。
Figure PCTCN2020099793-appb-000007
为正整数,可以是预定义的,也可以是由网络设备通过信令为无源设备指示的。
对于上述两种第一相位旋转因子集,不同k的取值对应不同的频域子载波位置。对于不同的无源设备,可以由网络设备配置各无源设备特定的k的取值,从而实现不同无源设备发送的数据在频域映射在不同的频率位置,即不同无源设备之间是频分的,同时保持正交不会彼此干扰。对于不同的无源设备,网络设备为其配置的k的取值可以是相同的,也可以是不同的,本申请实施例不做限制。
在一种可能的实现方式中,对于第t个时刻,混合信号的相位与载波信号的相位之差为该时刻对应的第一相位旋转因子,混合信号的幅度与第二数据的幅度相同,实现基于FDM的反向散射传输,从而提高系统容量。
在一种可能的实现方式中,在第一数据包括M=1个元素的情况下,对第一数据进行重复处理,得到第三数据;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数。即在M=1的情况下,对这一个元素复制K次,得到K个元素,N=K,对K个元素进行过采样处理,得到N'个元素,N'=K×N upsample=N×N upsample。 根据第二相位旋转因子集对第三数据进行相位旋转处理得到第二数据;第二数据包括N'个元素。其中,N upsample可以是预定义的,也可以是由网络设备通过信令为无源设备指示的。
其中,第二相位旋转因子集包括N'个第二相位旋转因子,根据第二相位旋转因子集中的第n'个第一相位旋转因子对第三数据中的第n'个元素进行相位旋转处理得到第二数据中的第n'个元素。第n'个为N'个中的任意一个,n'=0,1,2,...,N'-1。
在M=1的情况下,对第一数据进行过采样处理,使得混合信号可以减少谐波的数目,从而降低带外泄露。
在一种可能的实现方式中,在M=1的情况下,第二相位旋转因子集为
Figure PCTCN2020099793-appb-000008
Figure PCTCN2020099793-appb-000009
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000010
也可以是由网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,该方法还包括:接收第一指示信息,该第一指示信息用于指示k,以便确定第一相位旋转因子集或第二相位旋转因子集。该第一指示信息可以由网络设备直接向无源设备发送,也可以由网络设备通过无线射频设备向无源设备发送,网络设备针对不同的无源设备指示不同的k,实现频分复用且保持正交不会彼此干扰。
在一种可能的实现方式中,在时间单元l内向网络设备发送混合信号,即混合信号位于时间单元l内。例如,发送混合信号的起始时间单元对应的索引为l start,使用连续的L个时间单元发送混合信号,则发送混合信号的时间单元l的取值为l=l start,l start+1,...,l start+L-1。
上述时间单元l的索引l还可以用于确定第一相位旋转因子集中的k,进而确定第一相位旋转因子集;或用于确定第二相位旋转因子集中的k,进而确定第二相位旋转因子集。
在一种可能的实现方式中,该方法还包括:对第一比特进行调制,得到第一数据,根据第二比特确定第一相位旋转因子集。其中,第一比特和第二比特包括于待发送比特中。例如第一比特和第二比特为对待发送比特进行分割得到的。根据第二比特确定k,进而确定第一相位旋转因子集或第二相位旋转因子集。该方式下,在某个无源设备需要传输数据时,该无源设备可以从多个子载波中选择一个子载波传输该数据,剩余子载波可以承载其他数据,从而可以承载更多的数据。
在一种可能的实现方式中,该方法还包括:对待发送比特进行调制,得到第一数据。该方式下,第一相位旋转因子集可通过第一指示信息或发送混合信号的时间单元l的索引l确定。
本申请实施例第二方面提供一种信号传输装置,该装置包括扩展电路、混合电路、信号输入端和信号输出端;
混合电路的第一端耦合至扩展电路,混合电路的第二端耦合至信号输入端,混合电路的第三端耦合至信号输出端;
扩展电路,用于对第一数据进行重复处理和相位旋转处理,得到第二数据,并将第二数据输入混合电路;
信号输入端,用于从无线射频设备接收载波信号,将载波信号输入混合电路;
混合电路,用于将载波信号与第二数据进行混合处理,得到混合信号;
信号输出端,用于向网络设备发送混合信号。
在一种可能的实现方式中,扩展电路包括复制电路和阻抗电路,复制电路的输出端耦合至阻抗电路的输入端;阻抗电路包括多个阻抗;
复制电路,用于对第一数据进行重复处理,得到第三数据,并将第三数据输入阻抗电路;第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;
阻抗电路,用于根据第一相位旋转因子集控制多个阻抗的开关,得到第二数据;第二数据包括N个元素,第二数据中每个元素对应一个第一相位旋转因子。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000011
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000012
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
Figure PCTCN2020099793-appb-000013
的向上取整,
Figure PCTCN2020099793-appb-000014
p为正整数。k ini为整数。
Figure PCTCN2020099793-appb-000015
为正整数。
在一种可能的实现方式中,扩展电路包括复制电路和阻抗电路,复制电路的输出端耦合至阻抗电路的输入端;阻抗电路包括多个阻抗;
复制电路,用于对第一数据进行重复处理,得到第三数据,并将第三数据输入阻抗电路;第一数据包括M个元素,M=1;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数;
阻抗电路,用于根据第二相位旋转因子集控制多个阻抗的开关,得到第二数据;第二数据包括N'个元素,第二数据中每个元素对应一个第二相位旋转因子。
在一种可能的实现方式中,在M=1的情况下,第二相位旋转因子集为
Figure PCTCN2020099793-appb-000016
Figure PCTCN2020099793-appb-000017
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
在一种可能的实现方式中,混合电路,具体用于将载波信号与第二数据相乘,得到混合信号。
在一种可能的实现方式中,信号输出端,具体用于在时间单元l内向网络设备发送所述混合信号。
在一种可能的实现中,第一相位旋转因子集中的k是根据上述时间单元l的索引l确定的;或第二相位旋转因子集中的k是根据上述时间单元l的索引l确定的。
本申请实施例第三方面提供一种信号传输装置,该信号传输装置可以是无源设备,也可以是无源设备中的装置,或者是能够与无源设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性的,
处理模块,用于对第一数据进行重复处理和相位旋转处理,得到第二数据;
通信模块,用于从无线射频设备接收载波信号;
处理模块,还用于将载波信号与第二数据进行混合处理,得到混合信号;
通信模块,还用于向网络设备发送混合信号。
在一种可能的实现方式中,处理模块用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;根据第一相位旋转因子集对第三数据进行相位旋转处理,得到第二数据;第二数据包括N个元素。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000018
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,也可以是网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000019
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
Figure PCTCN2020099793-appb-000020
的向上取整,
Figure PCTCN2020099793-appb-000021
p为正整数。k ini可以是预定义的,也可以是网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,处理模块用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M=1;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数;根据第二相位旋转因子集对第三数据进行相位旋转处理得到第二数据;第二数据包括N'个元素。其中,N upsample可以是预定义的,也可以是由网络设备通过信令为无源设 备指示的。
在一种可能的实现方式中,第二相位旋转因子集为
Figure PCTCN2020099793-appb-000022
Figure PCTCN2020099793-appb-000023
Figure PCTCN2020099793-appb-000024
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000025
也可以是由网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,通信模块,还用于接收第一指示信息,该第一指示信息用于指示k。
在一种可能的实现方式中,通信模块用于向网络设备发送混合信号时,具体用于在时间单元l内向网络设备发送混合信号。处理模块还用于根据时间单元l的索引l确定k。
在一种可能的实现方式中,处理模块,还用于对第一比特进行调制,得到第一数据;根据第二比特确定第一相位旋转因子集或第二相位旋转因子集。其中,第一比特和第二比特包括于待发送比特中。
第三方面的各种可能实现方式可参见第一方面的各种可能实现方式的具体描述。
本申请实施例第四方面提供一种信号传输装置,该装置包括处理器,用于实现上述第一方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以实现上述第一方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备、无线射频设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于对第一数据进行重复处理和相位旋转处理,得到第二数据;利用通信接口,从无线射频设备接收载波信号;将载波信号与第二数据进行混合处理,得到混合信号;利用通信接口,向网络设备发送混合信号。
在一种可能的实现方式中,处理器,用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体
用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;根据第一相位旋转因子集对第三数据进行相位旋转处理,得到第二数据;第二数据包括N个元素。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000026
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,也可以是网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000027
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
Figure PCTCN2020099793-appb-000028
的向上取整,
Figure PCTCN2020099793-appb-000029
p为正整数。k ini可以是预定义的,也可以是网络设备通过信令为无源设备指示的。
Figure PCTCN2020099793-appb-000030
为正整数,可以是预定义的,也可以是由网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,处理器用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M=1;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数;根据第二相位旋转因子集对第三数据进行相位旋转处理得到第二数据;第二数据包括N'个元素。N upsample可以是预定义的,也可以是由网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,第二相位旋转因子集为
Figure PCTCN2020099793-appb-000031
Figure PCTCN2020099793-appb-000032
Figure PCTCN2020099793-appb-000033
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000034
也可以是由网络设备通过信令为无源设备指示的。
在一种可能的实现方式中,处理器,还用于利用通信接口,接收第一指示信息,该第一指示信息用于指示k。
在一种可能的实现方式中,处理器用于利用通信接口,向网络设备发送混合信号时,具体用于利用通信接口,在时间单元l内向网络设备发送混合信号。处理器还用于根据时间单元l的索引l确定k。
在一种可能的实现方式中,处理器,还用于对第一比特进行调制,得到第一数据;根据第二比特确定第一相位旋转因子集或第二相位旋转因子集。其中,第一比特和第二比特包括于待发送比特中。
第四方面的各种可能实现方式可参见第一方面的各种可能实现方式的具体描述。
本申请实施例第五方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的方法。
本申请实施例第六方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储 器,用于实现上述第一方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第七方面提供一种信号传输方法,包括:
网络设备从无源设备接收混合信号;从混合信号中剥离出第二数据;通过信道响应信息对第二数据进行均衡,得到均衡结果;对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
本申请实施例第八方面提供一种信号传输装置,该信号传输装置可以是网络设备,也可以是网络设备中的装置,或者是能够与网络设备匹配使用的装置。一种设计中,该装置可以包括执行第七方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。示例性的,
通信模块,用于从无源设备接收混合信号;
处理模块,用于从混合信号中剥离出第二数据;通过信道响应信息对第二数据进行均衡,得到均衡结果;对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
本申请实施例第九方面提供一种信号传输装置,该装置包括处理器,用于实现上述第七方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以实现上述第七方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备、无线射频设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从无源设备接收混合信号;从混合信号中剥离出第二数据;通过信道响应信息对第二数据进行均衡,得到均衡结果;对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
本申请实施例第十方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第七方面提供的方法。
本申请实施例第十一方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第七方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十二方面提供一种信号传输系统,该系统包括第三方面提供的无源设备和第八方面提供的网络设备;或包括第四方面提供的无源设备和第九方面提供的网络设备。该系统还包括无线射频设备。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1为本申请实施例提供的一种系统架构示意图;
图2为本申请实施例提供的一种信号传输方法的交互流程示意图;
图2a为本申请实施例提供的另一种信号传输方法的交互流程示意图;
图3为本申请实施例提供的第三数据对应的频域数据的子载波位置示例图;
图4为本申请实施例提供的第二数据对应的频域数据的子载波位置示例图;
图5为本申请实施例提供的一种信号传输方法的过程示意图;
图6为本申请实施例提供的另一种信号传输方法的过程示意图;
图7a为本申请实施例提供的一个第二比特的子载波示例图;
图7b为本申请实施例提供的两个第二比特的子载波示例图;
图8为本申请实施例提供的信号传输装置的硬件实现框图;
图9为本申请实施例提供的信号传输装置的硬件电路示意图;
图10为本申请实施例提供的N个时钟周期内载波信号经过阻抗顺序的示例图;
图11为本申请实施例提供的信号传输装置的逻辑结构示意图;
图12为本申请实施例提供的信号传输装置的实体结构简化示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同或相似的技术特征进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
鉴于反向散射通信系统采用时分复用的弊端,提出在反向散射通信系统中采用频分复用(frequency domain multiplexing,FDM),以提高反向散射通信系统的系统容量。在一种可能的实现方式中,无源设备实现频分复用的方法为:采用由晶体震荡器产生的一个周期性方波来近似正弦波,将方波与无线射频设备产生的载波信号混合后可以实现频移,从而实现频分复用。但是采用方波近似正弦波的方法会产生奇次谐波,对其他频率的终端设备会产生干扰,破坏了不同终端设备之间频分的正交性,造成解调性能的损失。
本申请实施例提供一种信号传输方法及其装置,在反向散射通信系统采用频分复用,可以提高反向散射通信系统的系统容量,还可以确保频分的正交性,减少无源设备之间的干扰。
请参见图1,为本申请实施例提供的一种系统架构示意图,该系统架构示意图可以为反向散射通信系统的系统架构示意图,包括无源设备101、无线射频设备102和网络设备103。
其中,反向散射通信也可以称为反射通信、被动通信、无源通信、或散射通信(ambient  communication)等。
无源设备101,可以被称为无源物联网中的终端设备,其不产生高频率载波信号。无源设备可以是超低功耗、廉价的设备。无源设备101也可以称为反射器、反向散射终端(backscatter terminal)、反射终端、半有源设备(semi-passive device)、散射信号设备(ambient signal device)、标签(Tag)或标签设备等。应用在本申请实施例中,用于实现无源设备的功能的装置可以是无源设备,也可以是能够支持无源设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例中,以用于实现无源设备的功能的装置是无源设备为例,描述本申请实施例提供的技术方案。
无线射频设备102,指的是可以产生高频率载波信号,可以向无源设备101提供载波信号的设备。无线射频设备102也可以称为射频设备、辅助设备、辅助装置、激励器、激励源、射频源、helper、询问器(interrogator)、或读写器(reader)等。应用在本申请实施例中,用于实现无线射频设备的功能的装置可以是无线射频设备,也可以是能够支持无线射频设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现无线射频设备的功能的装置是无线射频设备为例,描述本申请实施例提供的技术方案。
可选地,无线射频设备102可以是用户设备(user equipment,UE)。UE可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。UE还可以称为终端或终端设备,该终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备103,指的是接收混合信号的设备,也可以称为接收器、接收机或接收设备等。网络设备103可以包括基站,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等,可以是长期演进(long term evolution,LTE)系统中的基站,也可以是新空口(new radio,NR)系统中的基站,还可以是未来通信系统中的基站。应用在本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。其中,NR系统还可以称为第五代(5 th generation,5G)系统。
图1中,无线射频设备102向无源设备101发送载波信号。无源设备101对待发送比特进行调制,将调制数据与接收到的载波信号进行混合,得到混合信号,通过无源设备101的天线将混合信号反射至网络设备103,该处理可以理解为将调制数据承载在载波信号上。网络设备103接收混合信号,从混合信号中解调出待发送比特。应用在本申请实施例中,网络设备103还可以向无源设备101发送多种指示信息,例如指示调制数据的长度的指示信息,指示k的指示信息,k用于确定相位旋转因子集。网络设备103向无源设备101发送 信息或信号时,可以通过无线射频设备102进行转发。
图1中以一个无线射频设备102向一个无源设备101提供载波信号为例,实际应用中,一个无线射频设备102可以向多个无源设备101提供载波信号,这多个无源设备101可以称为一个组。在一种可能的实现方式中,一个无线射频设备102可以在相同时间向一个组的内无源设备101提供相同中心频率的载波信号。在另一种可能的实现方式中,一个无线射频设备102在相同时间内向各个无源设备101提供的载波信号的中心频率可由网络设备103为各无源设备101独立配置,具体网络设备103如何配置不限定。无线射频设备102也可以将其自身的调制数据与载波信号进行混合,再将混合后的信号发送至网络设备103。
图1中以反向散射通信系统包括三种通信节点为例,无源设备101、无线射频设备102和网络设备103均独立部署。在另一种可能的实现方式中,无线射频设备102与网络设备103可以合并,例如无线射频设备102部署在网络设备103中,这样反向散射通信系统包括两种通信节点,一种通信节点实现无源设备101的功能,另一种通信节点实现无线射频设备102和网络设备103的功能。本申请实施例以图1所示的系统架构为例,描述本申请实施例提供的技术方案。
需要说明的是,反向散射通信系统的名称以及该系统所包括的通信节点的名称,用于举例,并不构成对本申请实施例的限定。例如,反向散射通信系统包括第一设备、第二设备和第三设备,第一设备对应无源设备101,第二设备对应无线射频设备102,第三设备对应网络设备103。
本申请实施例提供的信号传输方法及其装置,可以应用于反向散射通信系统,反向散射通信系统可以应用于多种通信制式的系统,可以包括但不限于LTE系统、NR系统或未来通信制式的系统等。
下面将对本申请实施例提供的信号传输方法进行介绍。
以图1所示的系统架构示意图为例,请参见图2,为本申请实施例提供的一种信号传输方法的交互流程示意图,该方法可以包括但不限于如下步骤:
步骤201,无源设备对第一数据进行重复处理和相位旋转处理,得到第二数据。
可选地,第一数据为根据待发送比特进行调制得到的。示例性的,待发送比特可以由原始比特数据得到,原始比特数据可以经过编码、交织、加扰等处理得到待发送比特。无源设备根据将要发送的业务确定原始比特数据,例如将要发送的业务为语音业务,则根据语音业务确定原始比特数据。示例性地,该原始比特数据还可以称为传输块(transport block,TB),其可以是在物理层生成的传输块。
在一种可能的实现方式中,无源设备直接对待发送比特进行调制得到第一数据。在另一种可能的实现方式中,无源设备对待发送比特进行分割得到第一比特和第二比特,并对第一比特进行调制得到第一数据。第二比特的作用将在图6所示过程中进行介绍。
无源设备进行调制的调制方式可以是幅度移位键控(amplitude shift keying,ASK)调制、相位移位键控(phase shift keying,PSK)调制、二进制相移键控(binary phase shift keying,BPSK)调制、π/2的二进制相移键控(π/2 binary phase shift keying,π/2-BPSK)调制或正交相移键控(quadrature phase shift keying,QPSK)调制等。具体采用何种调制方式在本申请实施例中不作限定。
在得到第一数据之后,无源设备对第一数据进行重复处理和相位旋转处理,得到第二数据。无源设备先对第一数据进行重复处理,得到第三数据。重复处理可以理解为复制处理,即第三数据的数据量为第一数据的数据量的正整数倍。
示例性的,第一数据中包括M个元素,M为正整数。M可以是预定义的,也可以是网络设备通过信令为无源设备指示的。第三数据包括N个元素,N=K×M,K为正整数。K可以是预定义的,也可以是网络设备通过信令为无源设备指示的。N可以是预定义的,也可以是网络设备通过信令为无源设备指示的。K为重复倍数或复制倍数。特殊的,K=1时,N=M,该种情况下,第一数据与第三数据一致,不需要执行重复处理。本申请实施例以第一数据包括M个元素,重复倍数为K,第三数据包括N个元素为例进行介绍。第一数据中的元素的类型可以是复数,该复数可以是实部为0虚部不为0、实部不为0虚部为0、实部和虚部都为0、或者实部和虚部都不为0,本申请实施例不做限制。
第一数据包括M个元素,可以理解为包括M个数据,由于第一数据为经过调制得到的,那么M个数据可以是M个调制数据。第一数据可以表示为d,第一数据中第m个数据可以表示为d(m),m的取值范围为m=0,1,...,M-1。第三数据可以表示为y,第三数据中第n个数据可以表示为y(n),n的取值范围为n=0,1,...,N-1。第三数据与第一数据之间的关系如下所示:
y(n)=d(n mod M),n=0,1,...,N-1
第三数据可以看做时域数据,可通过傅里叶变换将第三数据转换为频域数据。可参见图3,为本申请实施例提供的第三数据对应的频域数据的子载波位置示例图。图3中,第三数据包括12个数据,即N=12,那么对第三数据进行傅里叶变换后,频域最多有12个子载波可以用于承载数据。这12个子载波位置采用编号-6,-5,…,5表示,用于举例,并不构成限定,例如还可以采用编号0,1,…,11表示。图3包括三个示例,分别为(a)M=1,K=12,N=12;(b)M=2,K=6,N=12;(c)M=12,K=1,N=12。
对于示例(a),第一数据包括1个数据,编号为1,第三数据包括12个数据,对第三数据进行傅里叶变换后,第三数据对应的频域数据占用的子载波位置为“0”。其余未被占用的子载波位置可供其他无源设备使用,若每个无源设备均发送一个数据,那么可供12个无源设备进行频分复用,从而可提高系统容量并减少干扰。
对于示例(b),第一数据包括两个数据,编号为1和2,第三数据包括12个数据,对第三数据进行傅里叶变换后,第三数据对应的频域数据占用的子载波位置为“-6”和“0”。该示例下,若每个无源设备均发送两个数据,那么可供6个无源设备进行频分复用。
对于示例(c),第一数据包括12个数据,编号为1-12,第三数据包括12个数据,对第三数据进行傅里叶变换后,第三数据对应的频域数据占用这12个子载波位置。
对于示例(a)和(b),在实现多个无源设备复用时,各个无源设备需确定各自占用哪个或哪些子载波位置。本申请实施例中,通过相位旋转因子集中的k来确定。
在得到第三数据之后,无源设备根据第一相位旋转因子集对第三数据进行相位旋转处理,得到第二数据。第一相位旋转因子集包括N个第一相位旋转因子。具体的,无源设备根据第一相位旋转因子集中的第n个第一相位旋转因子对第三数据中的第n个数据进行相位旋转,得到第二数据中的第n个数据。相位旋转可以是点乘操作,点乘操作也可称为乘 法运算。例如将第三数据中的第n个数据与第一相位旋转因子集中的第n个第一相位旋转因子点乘,得到第二数据中的第n个数据,表示如下:
x(n)=d(n mod M)×e j×α×n,n=0,1,...,N-1
其中,e j×α×n为第一相位旋转因子集中第n个第一相位旋转因子。
基于无源设备直接对待发送比特进行调制得到第一数据的场景,第一相位旋转因子集可通过如下方式一和方式二表示。需要说明的是,方式一和方式二用于举例,并不构成对本申请实施例的限定,实际应用中还可以采用其他方式来表示第一相位旋转因子集。
方式一,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000035
n=0,1,2,...,N-1,π表示圆周率,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],即k为[k ini,k ini+1,k ini+2,...,k ini+K-1]中的任意一个值。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000036
表示向下取整。k的具体数值可以是预配置的。或者,k的具体数值可由网络设备通过指示信息进行指示,应用在本申请实施例中,网络设备通过第一指示信息指示k的具体数值,以便无源设备确定第一相位旋转因子集。该方式下K的最大取值为K=N,那么第一指示信息中用于指示k的比特数最多为
Figure PCTCN2020099793-appb-000037
即最多采用
Figure PCTCN2020099793-appb-000038
个比特对k的具体数值进行指示,
Figure PCTCN2020099793-appb-000039
表示向上取整。
方式二,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000040
n=0,1,2,...,N-1,π表示圆周率,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],即k为[k ini,k ini+1,k ini+2,...,k ini+K'-1]中的任意一个值。k ini为整数,K'为
Figure PCTCN2020099793-appb-000041
的向上取整,k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000042
表示向下取整。k的具体数值可以是预配置的。或者,k的具体数值可由网络设备通过指示信息进行指示,应用在本申请实施例中,网络设备通过第一指示信息指示k的具体数值,以便无源设备确定第一相位旋转因子集。该方式下K的最大取值为K=N/2,那么第一指示信息中用于指示k的比特数最多为
Figure PCTCN2020099793-appb-000043
即最多采用
Figure PCTCN2020099793-appb-000044
个比特对k的具体数值进行指示,
Figure PCTCN2020099793-appb-000045
表示向上取整。其中,
Figure PCTCN2020099793-appb-000046
满足
Figure PCTCN2020099793-appb-000047
p为正整数。
Figure PCTCN2020099793-appb-000048
为正整数,可以是预定义的,也可以由网络设备通过指示信息进行指示。
上述两种方式中,第一指示信息可由网络设备直接发送至无源设备,也可以先由网络设备将第一指示信息发送至无线射频设备,再由无线射频设备将第一指示信息发送至无源设备。网络设备向无源设备发送的其他指示信息均可以采用这两种方式。例如,在考虑网络设备和无线射频设备合并的情况下,例如在网络设备中集成无线射频设备的功能,那么可由网络设备直接向无源设备下发指示信息。
上述两种方式中,不同k的取值对应不同的频域子载波位置。对于不同的无源设备,可以由网络设备配置不同k的取值,从而实现不同无源设备发送数据是频分的,且保持正交不会彼此干扰。以方式一为例,可参见图4所示的第二数据对应的频域数据的子载波位置示例图,该示例图示出不同k值对应不同子载波位置。
图4中,以M=1,K=12,N=12为例,第二数据对应的频域数据占用1个子载波。假设
Figure PCTCN2020099793-appb-000049
那么k的取值范围-6≤k<6。当k=-6时,第二数据对应的频域数据占用的子载波位置为-6;当k=-5时,第二数据对应的频域数据占用的子载波位置为-5,以此类推。基于图4所示的示例图,最多可支持12个无源设备进行频分复用,即不同无源设备根据不同k的取值占用不同的子载波位置,使得不同无源设备发送的数据映射到不同的子载波上,这样可以保证不同无源设备之间的正交性且不会彼此干扰。
步骤202,无线射频设备向无源设备发送载波信号。相应的,无源设备从无线射频设备接收载波信号。
其中,载波信号也可以称为输入载波信号(incoming carrier signal)或输入射频信号(incoming radio frequency signal)等。载波信号是一种高频载波信号,由无线射频设备产生,而无源设备不产生。载波信号用于承载第二数据,以便无源设备可以向网络设备发送数据。
载波信号可以是中心频率为F c的载波信号,表示为f in(t),那么中心频率为F c的载波信号可以表示为
Figure PCTCN2020099793-appb-000050
也可以表示为f in(t)=cos(2×π×F c×t),还可以表示为f in(t)=sin(2×π×F c×t)。应用在本申请实施例中,载波信号以
Figure PCTCN2020099793-appb-000051
为例。
步骤203,无源设备将载波信号与第二数据进行混合处理,得到混合信号。
无源设备将载波信号与第二数据进行混合处理,得到混合信号。例如,将载波信号与第二数据相乘得到混合信号。可以理解的是,无源设备将第二数据承载在载波信号上,得到混合信号。载波信号与第二数据相乘的表达式如下:
Figure PCTCN2020099793-appb-000052
其中s(t)为混合信号,x(t)是第二数据x(n)的连续形式,一种可能的实现方式中x(t)与x(n)的关系如下:
x(t)=x(n),n×T s≤t<(n+1)×T s
其中T s为时间单位,可以认为是第二数据x(n)中连续两个第二数据之间的时间间隔。
对于n×T s≤t<(n+1)×T s内的某个时刻的混合信号而言,其与该时刻的载波信号的相位差为该时刻对应的第一相位旋转因子,其与该时刻的载波信号的幅度比为该时刻对应的第二数据的幅度。
在反向散射通信系统中,晶体震荡器可以生成时钟,生成时钟的时钟周期即为T s。该时钟周期确定了时域数据进行离散化采样的最小精度,那么在一个T s的持续时间内,第二数据的连续形式x(t)的取值是一个值,因此x(t)与x(n)的关系可能为x(t)=x(n)。
步骤204,无源设备向网络设备发送混合信号。相应的,网络设备从无源设备接收混合信号。
无源设备向网络设备发送混合信号,即向网络设备反向散射混合信号,即向网络设备反向散射承载有第二数据的载波信号。
T s是第二数据x(n)中连续两个第二数据之间的时间间隔,第二数据包括N个数据,那么第二数据的持续时间为N×T s。第二数据可以位于一个时间单元内,即一个时间单元的持续时间为N×T s。那么,无源设备将第一时间单元内的第二数据与载波信号进行混合,得到该时间单元内的混合信号,向网络设备反向散射该时间单元内的混合信号。换言之,在该时间单元内向网络设备反向散射混合信号。其中,一个时间单元可以称为一个符号或一个时隙等。
无源设备除了在一个时间单元内发送混合信号之外,还可以在连续的多个时间单元内发送混合信号。一个时间单元可以是一个符号、一个时隙或一个子帧等。示例性的,在时间单元l(也可以称为索引为l的时间单元)内向网络设备反向散射混合信号。其中,l为整数。例如,发送混合信号的起始时间单元对应的索引为l start,使用连续的L个时间单元发送混合信号,则发送混合信号的时间单元l的取值为l=l start,l start+1,...,l start+L-1。
在一种可能的实现方式中,上述时间单元l的索引l还可以用于确定第一相位旋转因子集中的k,进而确定第一相位旋转因子集。示例性的,以上述第一相位旋转因子集的方式一为例,k=(k 0+K step×l)mod K。k 0可以为预定义的值,或者可以由网络设备通过指示信息为无源设备进行指示,k 0表示初始值。K step可由网络设备通过指示信息为无源设备进行指示,也可以是预定义的,即网络设备和无源设备均知晓。mod表示求模运算。
第一相位旋转因子集中的k,可由网络设备直接指示,即上述方式一和方式二通过第一指示信息直接指示k;也可由无源设备自己确定,例如预定义或者网络设备通过指示信息指示k 0,无源设备根据k 0和l确定k。
网络设备在接收到混合信号时,从混合信号中剥离出第二数据,对第二数据进行依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
具体的,网络设备在接收到混合信号时,对混合信号去载波获得第二数据,然后利用信道响应信息对第二数据进行均衡,得到均衡结果。对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。其中,信道响应信息可以通过参考信号的信道估计获取。示例性的,混合信号中的第二数据可以是网络设备已知的参考信号序列。无源设备将包括参考信号序列的第一混合信号与包括待发送比特的第二混合信号发送给网络设备。网络设备可以通过已知的参考信号序列进行信道估计获得信道响应信息。其中,去载波可以理解为下变频(down conversion),下变频指的是将混合信号中载波信号的频率降低,例如将载波信号的中心频率F c降为零,这样便剩下基带信号,基带信号即对应本申请实施例中的第二数据。
在图2所示的实施例中,无源设备对第一数据进行重复处理和相位旋转处理,可以实现不同无源设备发送的数据是频分且正交的,从而在提高系统容量的同时,可减少无源设备之间的干扰。
图2所示实施例以及后续图2a所示实施例中的各步骤之间无执行先后顺序的限制,例 如图2中,步骤201和步骤202可以在同一个时间单元执行;也可以先执行步骤202,后执行步骤201;或者可以先执行步骤201,后执行步骤201。
作为一种可能的实施例,无线射频设备发送的载波信号的中心频率F c可由网络设备配置,网络设备可通过信令将配置的载波信号的中心频率告知无线射频设备。网络设备针对不同的无源射频设备可配置不同的载波信号的中心频率,例如网络设置针对无线射频设备1配置的载波信号的中心频率为F c1,针对无线射频设备2配置的载波信号的中心频率为F c2,F c1与F c2不同;网络设备针对同一无线射频设备在不同时间段也可以配置不同的载波信号的中心频率,例如针对无线射频设备1在时间段1配置的载波信号的中心频率为F c1,针对无线射频设备1在时间段2配置的载波信号的中心频率为F c2,F c1与F c2不同。
其中,不同时间段可以是不同时间单元。同一无线射频设备在不同的时间单元可以采用不同的中心频率发送载波信号。具体的,无线射频设备可以根据网络设备的信令和时间单元索引l确定载波信号的中心频率。示例性的,载波信号的中心频率F c可以表示为
Figure PCTCN2020099793-appb-000053
为预定义的或者由网络设备的信令指示,F c(l)由时间单元索引l确定。例如,某个无线射频设备发送载波信号的中心频率为
Figure PCTCN2020099793-appb-000054
那么在时间单元索引l为偶数时,中心频率为
Figure PCTCN2020099793-appb-000055
在时间单元索引l为奇数时,中心频率为
Figure PCTCN2020099793-appb-000056
换言之,无线射频设备的载波信号的中心频率在
Figure PCTCN2020099793-appb-000057
Figure PCTCN2020099793-appb-000058
之间进行跳频。
网络设备配置无线射频设备的载波信号的中心频率,使得频分复用更加灵活,可支持复用的无源设备的数量更多,进一步提高系统容量。例如,基于图4所示的示例图,在图4所示的中心频率F c下可支持12个无源设备进行频分复用,在另一个中心频率F c'下又可以支持12个无源设备进行频分复用,该另一个中心频率F c'可以是其他无线射频设备的载波信号的中心频率,也可以是同一无线射频设备的不同时间段的载波信号的中心频率。
图2所示的实施例以图1所示的反向散射系统为例,即以无线射频设备与网络设备独立部署为例进行描述。在一种可能的实现方式中,无线射频设备与网络设备可以合并。以该方式架构为例进行描述时,请参见图2a,为本申请实施例提供的另一种信号传输方法的交互流程示意图。图2a中包括无源设备和通信节点,该通信节点可以实现无线射频设备和网络设备的功能,该通信节点的名称用于举例,并不构成对本申请实施例的限定,例如该通信节点称为网络设备,即将无线射频设备的功能集成在网络设备中。
图2a所示的实施例可以包括但不限于如下步骤:
步骤201a,无源设备对第一数据进行重复处理和相位旋转处理,得到第二数据。
步骤202a,通信节点向无源设备发送载波信号。相应的,无源设备从通信节点接收载波信号。
步骤203a,无源设备将载波信号与第二数据进行混合处理,得到混合信号。
步骤204a,无源设备向通信节点发送混合信号。相应的,通信节点从无源设备接收混合信号。
其中,步骤201a和步骤203a可参见图2所示实施例中步骤201和步骤203的具体描述;步骤202a中通信节点实现无线射频设备的功能,向无源设备提供载波信号;步骤204a中通信节点实现网络设备的功能,从无源设备接收混合信号。
通信节点在接收到混合信号时,对混合信号下载波获得第二数据,然后利用信道响应 信息对第二数据进行均衡,得到均衡结果。具体可参见步骤204中网络设备接收到混合信号的具体描述。
图2a所示的实施例中,无源设备对第一数据进行重复处理和相位旋转处理,可以实现不同无源设备发送的数据是频分且正交的,从而在提高系统容量的同时,可减少无源设备之间的干扰。无线射频设备与网络设备可以合并,实现更加简便。
图2所示实施例主要基于无源设备直接对待发送比特进行调制得到第一数据的场景,该场景下的信号传输方法的过程示意图可参见图5。图5中,无源设备对待发送比特进行调制,得到第一数据;对第一数据进行重复处理,得到第三数据;对第三数据进行相位旋转处理,得到第二数据;在从无线射频设备接收到载波信号时,对载波信号和第二数据进行混合处理,得到混合信号;向网络设备反向散射混合信号。网络设备接收到混合信号时,从混合信号中获取第二数据。
请参见图6,为另一种信号传输方法的过程示意图,基于无源设备先对待发送比特进行分割处理得到第一比特和第二比特,再对第一比特进行调制得到第一数据的场景。本申请实施例不限定采用何种方式对待发送比特进行分割。
图6中,第一数据与第一比特的数据量可能相同,也可能不相同,具体与调制方式相关。例如第一比特包括M个数据,调制方式为BPSK,那么第一数据包括M个数据。
图6中进行相位旋转处理的第一相位旋转因子集与图5中进行相位旋转处理的第一相位旋转因子集有所不同。图5中的第一相位旋转因子集可是预定义的,可根据网络设备的第一指示信息确定,或者可根据时间单元l的索引l确定。而图6中的第一相位旋转因子集可根据第二比特确定,具体可根据第二比特确定k,进而确定第一相位旋转因子集。
一个时间单元内的第二比特可以表示为b 2nd,b 2nd包括N 2nd个比特。根据N 2nd个比特可以确定
Figure PCTCN2020099793-appb-000059
个不同的k值,即第二数据对应的频域数据有
Figure PCTCN2020099793-appb-000060
种不同的子载波位置。步骤201的方式一中,k最多有K个不同的取值,那么在方式一下
Figure PCTCN2020099793-appb-000061
步骤201的方式二中,k最多有K'个不同的取值,那么在方式一下
Figure PCTCN2020099793-appb-000062
K'为
Figure PCTCN2020099793-appb-000063
的向上取整。
Figure PCTCN2020099793-appb-000064
n=0,1,2,...,N-1为例,在一种可能的实现方式中,k的取值与N 2nd个第二比特之间的关系为如下:
Figure PCTCN2020099793-appb-000065
Figure PCTCN2020099793-appb-000066
其中b 2nd(i)表示第二比特b 2nd中的第i个比特。k start为无源设备占用频域带宽的起始子载波位置。无源设备可以在多个时间单元内发送混合信号,不同时间单元对应的第二比特所确定的k值可以是独立配置的(比如可以相同,也可以不同,本申请实施例不做限制)。例如,无源设备实际可使用
Figure PCTCN2020099793-appb-000067
个子载波的频域带宽发送混合信号。而对于一个时间单元内,无源设备通过第二比特选择其中的M个子载波承载数据。k start为这
Figure PCTCN2020099793-appb-000068
个子载波中的 起始子载波位置。
示例性的,M=1,第二比特包括1个比特,即N 2nd=1,这一个比特可以为“0”或“1”,两种取值。可参见图7a所示的一个第二比特时的子载波示例图。无源设备实际可使用
Figure PCTCN2020099793-appb-000069
个子载波的频域带宽,在每个时间单元内通过第二比特选择其中的M=1个子载波承载第二数据。如图7a所示,假设起始子载波位置k start=-6,当一个时间单元内的第二比特为“0”时,由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-6;当一个时间单元内的第二比特为“1”时,由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-5。
示例性的,M=1,第二比特包括2个比特,即N 2nd=2,这两个比特可以为“00”、“10”、“01”或“11”,四种取值。可参见图7b所示的两个第二比特的子载波示例图。无源设备实际使用
Figure PCTCN2020099793-appb-000070
个子载波的频域带宽,在每个时间单元内通过第二比特选择其中的M=1个子载波承载第二数据。如图7b所示,假设起始子载波位置k start=-6,当一个时间单元内的第二比特为“00”时(即b 2nd(0)=0,b 2nd(1)=0),由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-6;当一个时间单元内的第二比特为“01”时(即b 2nd(0)=1,b 2nd(1)=0),由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-5;当一个时间单元内的第二比特为“10”时(即b 2nd(0)=0,b 2nd(1)=1),由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-4;当一个时间单元内的第二比特为“01”时(即b 2nd(0)=1,b 2nd(1)=1),由上述k的取值与N 2nd个第二比特之间的关系可得,该时间单元内第二数据对应的频域数据占用的子载波位置为-3。
由上述两个示例可知,对于一个无源设备在一个时间单元内的第二数据而言,该第二数据对应的频域数据占用的子载波位置并不是固定的、单一的,可以从多个子载波位置中选择用于承载第二数据的子载波位置。可以理解的是,对于一个无源设备而言,其可用的子载波位置并不是固定的、单一的,与第二比特的个数以及第二比特的取值有关,使得该无源设备通过可用的子载波位置可用承载更多的数据,提高频域资源的利用率。
在另一种可能的实现方式中,k的取值与N 2nd个第二比特之间的关系为如下:
Figure PCTCN2020099793-appb-000071
Figure PCTCN2020099793-appb-000072
其中k end为无源设备占用频域带宽的截止子载波位置。
需要说明的是,上述两种k的取值与N 2nd个第二比特之间的关系并不构成对本申请实施例的限定,这两种关系中,K 2nd还可以用其他方式表示,例如:
Figure PCTCN2020099793-appb-000073
图6所示的过程相比图5所示的过程,可以承载更多的数据,提高频域资源的利用率。
请参见图8,为本申请实施例提供的信号传输装置的硬件实现框图,该信号传输装置可以是无源设备,也可以是无源设备内的一部分装置。图8所示的信号传输装置包括扩展电路801、混合电路802、信号输入端803和信号输出端804。
混合电路802的第一端耦合至扩展电路801,混合电路802的第二端耦合至信号输入端803,混合电路802的第三端耦合至信号输出端804。
扩展电路801的一端耦合至混合电路802,另一端用于接收第一数据,具体第一数据来自哪个电路在本申请实施例中不作限定。
图8所示装置用于实现上述方法实施例,可包括:扩展电路801,用于对第一数据进行重复处理和相位旋转处理,得到第二数据,并将第二数据输入802混合电路;信号输入端803,用于从无线射频设备接收载波信号,将载波信号输入混合电路802;混合电路802,用于将载波信号与第二数据进行混合处理,得到混合信号;信号输出端804,用于向网络设备发送混合信号。信号输出端804可连接天线,通过天线向网络设备发送混合信号。或者信号输出端804即为天线。
在一种可能的实现中,混合电路802,具体用于将载波信号与第二数据相乘,得到混合信号。
在一种可能的实现方式中,图8中扩展电路801包括复制电路8011和阻抗电路8012,复制电路8011的输出端耦合至阻抗电路8012的输入端;阻抗电路8012包括多个阻抗;
复制电路8011,用于对第一数据进行重复处理,得到第三数据,并将第三数据输入阻抗电路;第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;
阻抗电路8012,用于根据第一相位旋转因子集控制多个阻抗的开关,得到第二数据;第二数据包括N个元素,第二数据中每个元素对应一个第一相位旋转因子。
在一种可能的实现方式中,图8中扩展电路801包括复制电路8011和阻抗电路8012,复制电路8011的输出端耦合至阻抗电路8012的输入端;阻抗电路8012包括一个或多个阻抗;
复制电路8011,用于对第一数据进行重复处理,得到第三数据,并将第三数据输入阻抗电路;第一数据包括M个元素,M=1;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数;
阻抗电路8012,用于根据第二相位旋转因子集控制多个阻抗的开关,得到第二数据;第二数据包括N'个元素,第二数据中每个元素对应一个第二相位旋转因子。
在一种可能的实现中,信号输出端804,具体用于在时间单元l内向网络设备发送混合信号。
需要说明的是,图8所示的硬件实现框图、各个电路的划分、以及各电路的名称并不构成对本申请实施例的限定。例如,阻抗电路8012和混合电路802可合一部署,同时执行。
无源设备为了实现超低功耗与超低成本,其硬件结构都比较简单。本申请实施例可将相位旋转处理以及混合处理通过一个开关(switch)实现,该开关用于控制载波信号经过的阻抗以及经过阻抗的先后顺序,以实现在反向散射系统中与其他无源设备进行频分复用,从而提高系统容量。
无源设备在接收到载波信号之后,通过电路可以将载波信号转换为交流电流的形式,载波信号对应的交流电流通过相应的阻抗,可以改变该交流电流的幅度和相位,即实现对载波信号的幅度和相位进行改变。其中,阻抗可以表示为Z。
示例性的,载波信号
Figure PCTCN2020099793-appb-000074
经过阻抗Z后,幅度由1变为A,相位变化的差值为e j×β,即经过阻抗后的载波信号与经过阻抗前的载波信号之间的相位差为e j×β。幅度A可以理解为第一数据的幅度,相位差可以理解为载波信号与混合信号之间的相位差。
请参加图9,为本申请实施例提供的信号传输装置的硬件电路示意图。图9包括开关,该开关用于实现相位旋转处理和混合处理,并通过天线向网络设备发送混合信号。
该开关通过一个时钟控制,时钟的周期为T s,可以由一个晶体震荡器生成。图9中以第三数据包括12个数据为例,调制方式以BPSK为例,即N=12。假设第一相位旋转因子集为
Figure PCTCN2020099793-appb-000075
n=0,1,2,...,11,无论k和n如何取值,第一相位旋转因子集最多有12个不同的取值,即α×n的12种不同取值为
Figure PCTCN2020099793-appb-000076
这12个相位值也是12-PSK调制的相位值,也就是说相位旋转因子的所有可能值对应N-PSK调制的相位值。图9中12个阻抗Z 0,Z 1,...,Z 11分别对应12个相位值
Figure PCTCN2020099793-appb-000077
信号传输装置通过第一相位旋转因子集中的第一相位旋转因子确定由开关控制载波信号经过12个阻抗的某一个阻抗,从而实现将载波信号与第三数据的混合。
示例性的,第n个时钟周期持续时间为n×T s≤t<(n+1)×T s,在第n个时钟周期内,第二数据对应的数值为x(t)=x(n)。由公式x(n)=d(n mod M)×e j×α×n可知,第二数据中第n个数据的幅度可以由第一数据包括的M个调制数据中的第n mod M个数据(即d(n mod M))的幅度确定,第二数据中第n个数据的相位可以由第一数据中第n个数据的相位和相位旋转因子
Figure PCTCN2020099793-appb-000078
确定。以调制方式为BPSK调制为例,则M个调制数据中的一个调制数据为1或者-1,第二数据的幅度为1。当d(n mod M)=1时,可以知道x(n)对应的第一相位旋转因子集为
Figure PCTCN2020099793-appb-000079
此时在第n个时钟周期内开关控制载波信号经过阻抗Z i,其中Z i对应的第一相位旋转因子集为
Figure PCTCN2020099793-appb-000080
当d(n mod M)=-1时,可以知道x(n)对应的第一相位旋转因子集为
Figure PCTCN2020099793-appb-000081
此时在第n个时钟周期内开关控制载波信号经过阻抗Z i,其中Z i对应的第一相位旋转因子集
Figure PCTCN2020099793-appb-000082
可以知道,第一相位旋转因子集
Figure PCTCN2020099793-appb-000083
对应的相位值
Figure PCTCN2020099793-appb-000084
的12种所有的可能取值仍是
Figure PCTCN2020099793-appb-000085
通过这种方式,载波信号经过阻抗Z i后相位的变化等于第二数据x(n)对应的相位,从完成第二数据与载波信号的混合过程。
经过N个时钟周期后,可以生成混合信号。由于N个时钟周期中每一个时钟周期对应的第二数据的相位可能是不同的,因此N个时钟周期载波信号可能会由开关控制经过不同的阻抗,因此通过控制载波信号经过阻抗的顺序可以实现第二数据与载波信号的混合,同时实现了通过相位旋转将第二数据对应的频域数据映射到相应的频域位置。
示例性的,N个时钟周期内载波信号经过阻抗顺序可参见图10所示。图10中假设M=1,K=12,N=12,即第二数据对应的频域数据占用1个子载波。同时假设调制方式为BPSK调制且d(n mod M)=1,即第二数据x(n)对应的相位因子为
Figure PCTCN2020099793-appb-000086
对于k不同的取值,第二数据对应的频域数据占用的子载波位置不同。如图10所示,当k=-6时,根据第一相位旋转因子集
Figure PCTCN2020099793-appb-000087
可以确定N=12个时钟周期内载波信号经过阻抗的顺序为Z 0,Z 6,Z 0,Z 6,Z 0,Z 6,Z 0,Z 6,Z 0,Z 6,Z 0,Z 6;当k=-5时,根据第一相位旋转因子集
Figure PCTCN2020099793-appb-000088
可以确定N=12个时钟周期内载波信号经过阻抗的顺序为Z 0,Z 7,Z 2,Z 9,Z 4,Z 11,Z 6,Z 1,Z 8,Z 3,Z 10,Z 5。依次类推可以确定其他k值下载波信号经过阻抗的顺序。
基于图5所示的过程,在M=1的情况下,可能会使得混合信号产生比较多的谐波(harmonic)分量,导致带外泄露(out of band,OOB)的性能损失。例如,在M=1,K=12,N=12,k=-6的情况下,以步骤201中的方式一为例,第一相位旋转因子集包括
Figure PCTCN2020099793-appb-000089
Figure PCTCN2020099793-appb-000090
两个取值,对应硬件实现时载波信号经过阻抗Z 0和Z 6。此时只使用了两个不同的相位旋转因子,使得混合信号会产生比较多的谐波分量,导致带外泄露的性能损失。
鉴于此,针对M=1的情况,无源设备对第一数据进行重复处理时,不是仅包括复制K次,而是对第一数据进行复制处理,得到K个元素,N=K,K为复制倍数,进行过采样处理,得到第三数据。过采样的倍数为N upsample,N upsample为正整数,第三数据包括N'个数据,N'=K×N upsample=N×N upsample。可以理解的是,第一数据包括1个数据,第三数据的数据量是第一数据的数据量的N×N upsample倍。该情况下,第三数据的表示如下:
x(n')=d(n' mod M)×e j×α×n',n'=0,1,...,N'-1
在得到第三数据之后,对第三数据进行相位旋转处理,得到第二数据,第二数据包括N' 个数据。本申请实施例将M=1的情况下进行相位旋转处理的相位旋转因子集称为第二相位旋转因子集。
特别的,N upsample=1时,执行的重复处理和相位旋转处理与步骤201相同。
Figure PCTCN2020099793-appb-000091
n=0,1,2,...,N-1为例,当可以使用的相位旋转因子数目为N时,第二相位旋转因子集可以是
Figure PCTCN2020099793-appb-000092
Figure PCTCN2020099793-appb-000093
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。k ini可以是预定义的,即无源设备和网络设备均知晓,例如为0或
Figure PCTCN2020099793-appb-000094
由于N=K,第二相位旋转因子集中的N可以替换为K。其中
Figure PCTCN2020099793-appb-000095
表示向下取整,
Figure PCTCN2020099793-appb-000096
表示向上取整。
第二相位旋转因子集中的k,可根据网络设备的第一指示信息确定,也可根据时间单元l的索引l确定,还可根据对待发送比特分割得到的第二比特确定。
由于可以使用的相位旋转因子数目为N,那么通过N个不同的阻抗实现这N个不同的相位旋转因子。
实际应用中可以使用的不同相位旋转因子的数目可能小于N或者大于N。将实际可以使用的相位旋转因子数目表示为
Figure PCTCN2020099793-appb-000097
那么第二相位旋转因子集可表示为:
Figure PCTCN2020099793-appb-000098
Figure PCTCN2020099793-appb-000099
其中,当
Figure PCTCN2020099793-appb-000100
时,
Figure PCTCN2020099793-appb-000101
可以为正整数;当
Figure PCTCN2020099793-appb-000102
时,
Figure PCTCN2020099793-appb-000103
可以为正整数。
在得到第二数据之后,将载波信号与第二数据进行混合处理,得到混合信号。M=1的情况下,载波信号与第二数据相乘的表达式如下:
Figure PCTCN2020099793-appb-000104
其中s(t)为混合信号,x(t)是第二数据x(n')的连续形式,一种可能的实现方式中x(t)与x(n)的关系如下:
x(t)=x(n'),n'×T s/N upsample≤t<(n'+1)×T s/N upsample
采用过采样倍数为N upsample的过采样之后,第二数据x(n')中连续两个第二数据之间的时间间隔变为T s/N upsample,采样点的数目(即x(n')的长度)为N×N upsample。第二数据的 连续形式x(t)的持续时间与未采用过采样的情况下第二数据的连续形式的持续时间是一致的,即持续时间均为(N×N upsample)×(T s/N upsample)=N×T s
采用过采样时,硬件实现中晶体振荡器生成的时钟的周期为T s/N upsample。硬件实现时根据作用于第二数据x(n')的第二相位旋转因子集确定载波信号经过阻抗的顺序。
示例性的,以相位因子
Figure PCTCN2020099793-appb-000105
N=12,N upsample=4为例,需要12个阻抗Z 0,Z 1,...,Z 11实现对应12个相位值
Figure PCTCN2020099793-appb-000106
当k=-6时,根据相位因子
Figure PCTCN2020099793-appb-000107
可以确定N×N upsample=48个时钟周期内载波信号经过阻抗的顺序为:Z 0,Z 10,Z 9,Z 7,Z 6,Z 4,Z 3,Z 1,Z 0,Z 10,Z 9,Z 7,Z 6,Z 4,Z 3,Z 1,Z 0,Z 10,Z 9,Z 7,Z 6,Z 4,Z 3,Z 1,...。
对于M=1的情况,未采用过采样时,k=-6时,载波信号只经过2个阻抗(即2个相位旋转因子);经过4倍过采样时,时钟周期更小,载波信号经过了8个阻抗(即8个相位旋转因子)。若时钟周期无限小时,可以认为此时的混合信号是理想的连续形式,因此采用过采样后混合信号更加接近理想的连续形式,进而可以减少谐波的数目,降低带外泄露。
上述本申请提供的实施例中,从交互的角度对本申请实施例提供的方法进行了介绍,还对本申请实施例提供的电路结构进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,无源设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
请参见图11,为本申请实施例提供的信号传输装置的逻辑结构示意图。图11中,信号传输装置90包括处理模块901和通信模块902。该信号传输装置可以实现本申请实施例中的无源设备101的功能,也可以实现本申请实施例中的网络设备103的功能,还可以是集成本申请实施例中无线射频设备102的功能和网络设备103的功能的装置。
对于信号传输装置90用于实现本申请实施例中的无源设备101的功能的情况:
处理模块901,用于对第一数据进行重复处理和相位旋转处理,得到第二数据;
通信模块902,用于从无线射频设备接收载波信号;
处理模块901,还用于将载波信号与第二数据进行混合处理,得到混合信号;
通信模块902,还用于向网络设备发送混合信号。
在一种可能的实现方式中,处理模块901用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M为正整数;第三数据包括N个元素,N=K×M,K为正整数;根据第一相位旋转因子集对第三数据进行相位旋转处理,得到第二数据;第二数据包括N个元素。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000108
n=0,1,2,...,N-1,k 的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
在一种可能的实现方式中,第一相位旋转因子集为
Figure PCTCN2020099793-appb-000109
n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
Figure PCTCN2020099793-appb-000110
的向上取整,
Figure PCTCN2020099793-appb-000111
p为正整数。
在一种可能的实现方式中,处理模块901用于对第一数据进行重复处理和相位旋转处理,得到第二数据时,具体用于对第一数据进行重复处理,得到第三数据;第一数据包括M个元素,M=1;第三数据包括N'个元素,N'=N×N upsample,N upsample为过采样的倍数,K为正整数,K=N;根据第二相位旋转因子集对第三数据进行相位旋转处理得到第二数据;第二数据包括N'个元素。
在一种可能的实现方式中,第二相位旋转因子集为
Figure PCTCN2020099793-appb-000112
Figure PCTCN2020099793-appb-000113
Figure PCTCN2020099793-appb-000114
n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
在一种可能的实现方式中,通信模块902,还用于接收第一指示信息,该第一指示信息用于指示k。
在一种可能的实现方式中,通信模块902用于向网络设备发送混合信号时,具体用于在时间单元l内向网络设备发送混合信号。处理模块901还用于根据时间单元l的索引l确定k。
在一种可能的实现方式中,处理模块901,还用于对第一比特进行调制,得到第一数据;根据第二比特确定第一相位旋转因子集或第二相位旋转因子集。其中,第一比特和第二比特包括于待发送比特中。
对于信号传输装置90用于实现本申请实施例中的网络设备103的情况或为集成本申请实施例中无线射频设备102的功能和网络设备103的功能的装置的情况:
通信模块902,用于从无源设备接收混合信号;
处理模块901,用于从混合信号中剥离出第二数据;通过信道响应信息对第二数据进行均衡,得到均衡结果;对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图12,为本申请实施例提供的信号传输装置的逻辑结构示意图。图12所示的 信号传输装置100可以用于实现上述方法中无源设备的功能,该装置可以是无源设备,也可以是无源设备中的装置,或者是和无源设备匹配使用的装置。信号传输装置100还可以用于实现上述方法中网络设备的功能,该装置可以是网络设备,也可以网络设备中的装置,或者是和网络设备匹配使用的装置。信号传输装置100还可以用于实现上述方法中网络设备的功能和无线射频设备的功能。
信号传输装置100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
信号传输装置100包括至少一个处理器1020。对于信号传输装置100用于实现无源设备的功能的情况,示例性的,处理器1020可以执行图2所示实施例中的步骤201和步骤203;图2a所示实施例中的步骤201a和步骤203a。对于信号传输装置100用于实现网络设备的情况,或用于实现网络设备+无线射频设备的功能的情况,示例性的,处理器1020可以对混合信号下载波获得第二数据,对第二数据进行均衡,得到均衡结果,对均衡结果依次进行去相位旋转处理、去重复处理以及解调,获得待发送比特。
信号传输装置100还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
信号传输装置100还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于信号传输装置100可以和其它设备进行通信。通信接口可以是收发器、接口、总线、电路或者能够实现收发功能的装置。示例性的,信号传输装置100用于实现无源设备的功能时,该其它设备可以是网络设备、无线射频设备,处理器1020利用通信接口1010接收载波信号,发送混合信号。
对于信号传输装置100用于实现无源设备的功能情况下,处理器1020可控制图9所示硬件电路的实现,例如处理器1020控制图9中的开关;通信接口1010可以是图9中的天线、载波信号输入端。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图12中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种信号传输系统,该系统可以包括无源设备、网络设备和无线射频设备。在网络设备和无线射频设备合并为一个通信节点的情况下,该系统包括无源设 备和该通信节点。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种信号传输方法,其特征在于,包括:
    对第一数据进行重复处理和相位旋转处理,得到第二数据;
    从无线射频设备接收载波信号,将所述载波信号与所述第二数据进行混合处理,得到混合信号;
    向网络设备发送所述混合信号。
  2. 根据权利要求1所述的方法,其特征在于,所述对第一数据进行重复处理和相位旋转处理,得到第二数据,包括:
    对第一数据进行重复处理,得到第三数据;所述第一数据包括M个元素,M为正整数;所述第三数据包括N个元素,N=K×M,K为正整数;
    根据第一相位旋转因子集对所述第三数据进行相位旋转处理,得到第二数据;所述第二数据包括N个元素。
  3. 根据权利要求2所述的方法,其特征在于,所述第一相位旋转因子集为
    Figure PCTCN2020099793-appb-100001
    n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
  4. 根据权利要求2所述的方法,其特征在于,所述第一相位旋转因子集为
    Figure PCTCN2020099793-appb-100002
    n=0,1,2,...,N-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K'-1],k ini为整数,K'为
    Figure PCTCN2020099793-appb-100003
    的向上取整,
    Figure PCTCN2020099793-appb-100004
    p为正整数,
    Figure PCTCN2020099793-appb-100005
    为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述对第一数据进行重复处理和相位旋转处理,得到第二数据,包括:
    对第一数据进行重复处理,得到第三数据;所述第一数据包括M个元素,M=1;所述第三数据包括N'个元素,N'=K×N upsample=N×N upsample,N upsample为过采样的倍数,K为正整数,K=N;
    根据第二相位旋转因子集对所述第三数据进行相位旋转处理得到第二数据;所述第二数据包括N'个元素。
  6. 根据权利要求5所述的方法,其特征在于,所述第二相位旋转因子集为
    Figure PCTCN2020099793-appb-100006
    Figure PCTCN2020099793-appb-100007
    n'=0,1,2,...,K×N upsample-1,k的取值范围为[k ini,k ini+1,k ini+2,...,k ini+K-1],k ini为整数。
  7. 根据权利要求3,4和6中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述k。
  8. 根据权利要求3,4和6中任一项所述的方法,其特征在于,所述向网络设备发送所述混合信号,包括:
    在时间单元l内向网络设备发送所述混合信号;
    所述方法还包括:
    根据所述时间单元l的索引l确定所述k。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述方法还包括:
    对第一比特进行调制,得到第一数据;
    根据第二比特确定所述相位旋转因子集;
    其中,所述第一比特和所述第二比特包括于待发送比特中。
  10. 一种信号传输装置,其特征在于,包括扩展电路、混合电路、信号输入端和信号输出端;
    所述混合电路的第一端耦合至所述扩展电路,所述混合电路的第二端耦合至所述信号输入端,所述混合电路的第三端耦合至所述信号输出端;
    所述扩展电路,用于对第一数据进行重复处理和相位旋转处理,得到第二数据,并将所述第二数据输入所述混合电路;
    所述信号输入端,用于从无线射频设备接收载波信号,将所述载波信号输入所述混合电路;
    所述混合电路,用于将所述载波信号与所述第二数据进行混合处理,得到混合信号;
    所述信号输出端,用于向网络设备发送所述混合信号。
  11. 根据权利要求10所述的装置,其特征在于,所述扩展电路包括复制电路和阻抗电路,所述复制电路的输出端耦合至所述阻抗电路的输入端;所述阻抗电路包括多个阻抗;
    所述复制电路,用于对第一数据进行重复处理,得到第三数据,并将所述第三数据输入所述阻抗电路;所述第一数据包括M个元素,M为正整数;所述第三数据包括N个元素,N=K×M,K为正整数;
    所述阻抗电路,用于根据第一相位旋转因子集控制所述多个阻抗的开关,得到第二数据;所述第二数据包括N个元素,所述第二数据中每个元素对应一个第一相位旋转因子。
  12. 根据权利要求10所述的装置,其特征在于,所述混合电路,具体用于将所述载波信号与所述第二数据相乘,得到混合信号。
  13. 一种信号传输装置,其特征在于,所述信号传输装置包括通信模块和处理模块,使得所述信号传输装置实现权利要求1-9任一项所述的方法。
  14. 一种信号传输装置,其特征在于,所述信号传输装置包括处理器和存储器,所述存储器和所述处理器耦合,使得所述信号传输装置执行权利要求1-9任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求1-9任一项所述的方法。
PCT/CN2020/099793 2019-07-05 2020-07-01 信号传输方法及其装置 WO2021004356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910605806.6 2019-07-05
CN201910605806.6A CN112187333B (zh) 2019-07-05 2019-07-05 信号传输方法及其装置

Publications (1)

Publication Number Publication Date
WO2021004356A1 true WO2021004356A1 (zh) 2021-01-14

Family

ID=73914737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099793 WO2021004356A1 (zh) 2019-07-05 2020-07-01 信号传输方法及其装置

Country Status (2)

Country Link
CN (1) CN112187333B (zh)
WO (1) WO2021004356A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165842A1 (zh) * 2021-02-08 2022-08-11 深圳市汇顶科技股份有限公司 信号传输方法、电子设备及存储介质
WO2023039709A1 (zh) * 2021-09-14 2023-03-23 Oppo广东移动通信有限公司 资源配置方法、网络设备和零功耗终端
CN116266917A (zh) * 2021-12-16 2023-06-20 维沃移动通信有限公司 反向散射通信方法、终端及网络侧设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687307B1 (en) * 2000-02-24 2004-02-03 Cisco Technology, Inc Low memory and low latency cyclic prefix addition
CN101753511A (zh) * 2008-12-03 2010-06-23 株式会社Ntt都科摩 信号生成装置及信号生成方法
CN102202023A (zh) * 2010-03-26 2011-09-28 株式会社Ntt都科摩 信号生成装置和信号生成方法
CN102647724A (zh) * 2011-02-17 2012-08-22 株式会社Ntt都科摩 无线站、干扰避免方法和用于干扰避免的系统
US8995568B1 (en) * 2008-09-05 2015-03-31 Marvell International Ltd. Phase transformation of repeated signals
CN105052102A (zh) * 2012-11-30 2015-11-11 高通股份有限公司 用于对无线lan传输中的复制帧进行相位旋转的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100559786C (zh) * 2007-10-22 2009-11-11 清华大学 时域同步正交频分复用系统中的频分多址接入方法
JP5236807B2 (ja) * 2009-06-12 2013-07-17 三菱電機株式会社 通信装置
CN106506426B (zh) * 2016-10-11 2019-03-29 电子科技大学 基于ofdm载波的反向散射通信调制方法
CN109995692A (zh) * 2017-12-30 2019-07-09 华为技术有限公司 发送数据的方法及装置
CN109874134B (zh) * 2019-02-01 2022-05-17 重庆谷庚科技有限责任公司 基于ofdm的rf标签室内定位系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687307B1 (en) * 2000-02-24 2004-02-03 Cisco Technology, Inc Low memory and low latency cyclic prefix addition
US8995568B1 (en) * 2008-09-05 2015-03-31 Marvell International Ltd. Phase transformation of repeated signals
CN101753511A (zh) * 2008-12-03 2010-06-23 株式会社Ntt都科摩 信号生成装置及信号生成方法
CN102202023A (zh) * 2010-03-26 2011-09-28 株式会社Ntt都科摩 信号生成装置和信号生成方法
CN102647724A (zh) * 2011-02-17 2012-08-22 株式会社Ntt都科摩 无线站、干扰避免方法和用于干扰避免的系统
CN105052102A (zh) * 2012-11-30 2015-11-11 高通股份有限公司 用于对无线lan传输中的复制帧进行相位旋转的系统和方法

Also Published As

Publication number Publication date
CN112187333B (zh) 2022-06-14
CN112187333A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2021004356A1 (zh) 信号传输方法及其装置
CN115001923B (zh) 基于序列的信号处理方法及装置
CN109802908B (zh) 基于序列的信号处理方法、信号处理装置及计算机可读存储介质
CN108833070B (zh) 基于序列的信号处理方法及装置
WO2021254183A1 (zh) 用于传输信号的通信装置及信号传输方法
WO2020108653A1 (zh) 一种数据流复用的方法及终端
CN112054982B (zh) 一种信号的发送、接收方法及通信装置
WO2021258975A1 (zh) 数据调制方法、装置、设备和存储介质
CN115208544B (zh) 基于序列的信号处理方法、终端设备、通信装置以及计算机可读存储介质
WO2020143649A1 (zh) 基于序列的信号处理方法与装置
CN110971554B (zh) 数据传输方法及装置
WO2022214000A1 (zh) 调制和解调信号的方法、设备、存储介质和程序产品
WO2024140545A1 (zh) 反向散射通信方法、通信装置以及存储介质
WO2022262584A1 (zh) 一种通信方法及装置
WO2024146421A1 (zh) 一种通信方法及装置
CN110868279A (zh) 一种信号发送、接收方法及装置
WO2023202558A1 (zh) 信号发送方法、信号接收方法及装置
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
WO2023143159A1 (zh) 一种符号处理的方法与装置
WO2023174353A1 (zh) 一种安全ltf序列确定方法及相关装置
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
CN110999244B (zh) 基于序列的信号处理方法及装置
WO2020063364A1 (zh) 一种数据传输方法及装置
CN116545596A (zh) 一种数据处理方法、装置及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836894

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836894

Country of ref document: EP

Kind code of ref document: A1