WO2021002690A1 - Test socket - Google Patents

Test socket Download PDF

Info

Publication number
WO2021002690A1
WO2021002690A1 PCT/KR2020/008625 KR2020008625W WO2021002690A1 WO 2021002690 A1 WO2021002690 A1 WO 2021002690A1 KR 2020008625 W KR2020008625 W KR 2020008625W WO 2021002690 A1 WO2021002690 A1 WO 2021002690A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
test socket
conductive
contact
elastic matrix
Prior art date
Application number
PCT/KR2020/008625
Other languages
French (fr)
Korean (ko)
Inventor
김학준
조병호
박상희
조용호
Original Assignee
주식회사 새한마이크로텍
주식회사 마이크로프랜드
김학준
조병호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새한마이크로텍, 주식회사 마이크로프랜드, 김학준, 조병호 filed Critical 주식회사 새한마이크로텍
Publication of WO2021002690A1 publication Critical patent/WO2021002690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present invention relates to a test socket used for measuring electrical properties of an electrical device.
  • a performance test of the manufactured semiconductor device is required.
  • a test socket that electrically connects the contact pad of the inspection device and the terminal of the semiconductor device is required.
  • test sockets equipped with an anisotropic conductive sheet with an insulating part that insulates and supports the contact parts in which conductive particles are arranged in the thickness direction of the silicone rubber and adjacent contacts, and absorbs mechanical shock or deformation, enabling flexible connection. And, there is an advantage that the manufacturing cost is low.
  • the anisotropic conductive sheet 5 of the conventional test socket is composed of an insulating portion 8 that insulates and supports the contact portion 6 in contact with the terminal 2 of the semiconductor element 1 and the adjacent contact portions 6 .
  • the upper and lower ends of the contact portion 6 are in contact with the terminal 2 of the semiconductor element 1 and the contact pad 4 of the semiconductor inspection device 3, respectively, and electrically connect the terminal 2 and the contact pad 4 to each other.
  • the contact part 6 is solidified by mixing silicon resin with small spherical conductive particles 7 and acts as a conductor through which electricity flows.
  • the cross-sectional area of the contact portion 6 decreases, and accordingly, the resistance of the contact portion 6 increases.
  • the loss of the signal due to the increase in resistance becomes an obstacle that decreases the inspection speed and accuracy.
  • the present invention has been made to improve the above-described problems, and an object thereof is to provide a test socket having a new structure with improved inspection speed and accuracy by minimizing signal loss.
  • the present invention is a test socket disposed between opposing terminals to electrically connect terminals, the first contact pins having both ends in contact with opposing power or signal terminals, and At least one second contact pin in contact with ground terminals facing opposite ends, at least one first bridge connecting the first contact pins to each other, and at least one connecting the first contact pin and the second contact pin to each other It provides a test socket including a second bridge of.
  • each of the first contact pins includes a first contact, a first shield electrode, and a first insulating support.
  • the first contactor includes a first elastic matrix in the form of a column, and a plurality of first conductive particles arranged in the first elastic matrix in the longitudinal direction of the first elastic matrix.
  • the first shield electrode has a cylindrical shape surrounding the side surface of the first contactor while being spaced apart from the side surface of the first contactor.
  • a first insulating support part is disposed between the first contact and the first shield electrode to connect the first contact and the first shield electrode in an electrically separated state.
  • the first bridge electrically connects the first shield electrodes adjacent to each other.
  • the present invention provides a test socket, wherein the first contactor further includes a conductive coil spring embedded in the first elastic matrix.
  • the first contact provides a test socket further comprising a conductive tip coupled to one end of the first elastic matrix.
  • the conductive tip provides a test socket including a conductive plate coupled to one end of the first elastic matrix and a conductive protrusion protruding from the conductive plate.
  • test socket having a metal layer formed on the surface of the conductive tip is provided.
  • test socket further comprising a conductive anchor portion protruding from the conductive plate to the inside of the first elastic matrix.
  • the second contact pin includes a second contactor having a second elastic matrix in the form of a column, and a plurality of second conductive particles arranged in the length direction of the second elastic matrix inside the second elastic matrix.
  • a test socket that includes.
  • the second contact pin may include a second shield electrode in a cylindrical shape surrounding a side surface of the second contactor in a state spaced apart from the side surface of the second contactor, and between the second contactor and the second shield electrode.
  • a second insulating support portion disposed on and a conductive connection portion electrically connecting the second contactor to the second shield electrode, and the second bridge is a test for connecting the first shield electrode and the second shield electrode Provides a socket for use.
  • the second bridge provides a test socket connecting the first shield electrode and the second contact.
  • test socket according to the present invention minimizes signal loss. Therefore, inspection speed and accuracy are improved.
  • FIG. 1 is a view showing a test socket according to the prior art.
  • FIG. 2 is a perspective view of a test socket according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the test socket shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of a test socket according to another embodiment of the present invention.
  • 5 to 7 are cross-sectional views of test sockets according to still other embodiments of the present invention.
  • FIG. 2 is a perspective view of a test socket according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the test socket shown in FIG. 2.
  • the test socket is disposed between opposing terminals and serves to electrically connect the terminals.
  • the test socket 100 serves to electrically connect the terminal 4 of the test apparatus 3 and the terminal 2 of the semiconductor element 1.
  • the test socket 100 includes a plurality of first contact pins 10, a second contact pin 50, and a first contact pin. At least one first bridge 90 connecting the 10 to each other, and at least one second bridge 95 connecting the first contact pin 10 and the second contact pin 50 to each other.
  • first contact pins 10 and one second contact pin 50 are shown in FIG. 2, the sum of the first contact pins 10 and the second contact pins 20 may be several tens to several hundred. have.
  • the first contact pin 10 serves to electrically connect power terminals or signal terminals 2a and 4a facing each other.
  • Each of the first contact pins 10 includes a first contactor 20, a first shield electrode 30, and a first insulating support portion 40.
  • the first contactor 20 serves to electrically connect the terminals 2a and 4a by contacting the terminals 2a and 4a.
  • the first shield electrode 30 serves to minimize signal loss of the first contactor 20.
  • the first insulating support part 40 serves to connect the first contactor 20 and the first shield electrode 30 to each other. Since the first insulating support part 40 is made of an electrically insulating material, the first contactor 20 and the first shield electrode 30 are connected in an electrically insulated state.
  • the first contactor 20 includes a first elastic matrix 21 and a plurality of first conductive particles 22.
  • the first elastic matrix 21 has a pillar shape having both ends 25 and 26 and side surfaces 27.
  • it may be in the form of a cylinder or a polygonal column such as a square, hexagon, or octagon.
  • the first elastic matrix 21 serves to support the first conductive particles 22.
  • the pressure applied to the terminals 2a and 4a is reduced, and the first contactor 20 is brought into close contact with the terminals 2a and 4a.
  • the first elastic matrix 21 may be formed of various types of polymer materials. For example, it may be implemented with a diene-type rubber such as silicone, polybutadiene, polyisoprene, SBR, NBR, and hydrogen compounds thereof. Further, it may be implemented with a block copolymer such as a styrene butadiene block copolymer, a styrene isoprene block copolymer, and a hydrogen compound thereof. In addition, it may be implemented with chloroprene, urethane rubber, polyethylene-type rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer, or the like. The first elastic matrix 21 can be obtained by curing a liquid resin.
  • a diene-type rubber such as silicone, polybutadiene, polyisoprene, SBR, NBR, and hydrogen compounds thereof.
  • a block copolymer such as a styren
  • the first conductive particles 22 are arranged in the longitudinal direction of the first elastic matrix 21.
  • the first conductive particles 22 contact each other to impart conductivity in the longitudinal direction of the first contactor 20.
  • the first contactor 20 is compressed in the longitudinal direction.
  • the electrical conductivity in the longitudinal direction of the first contactor 20 is further increased.
  • the first conductive particles 22 may be implemented with a single conductive metal material such as iron, copper, zinc, chromium, nickel, silver, cobalt, aluminum, or the like, or an alloy material of two or more of these metal materials.
  • the first conductive particles 22 may be implemented by coating the surface of the core metal with a metal such as gold, silver, rhodium, palladium, platinum, or silver and gold, yin and rhodium, silver and palladium having excellent conductivity. .
  • the first shield electrode 30 has a cylindrical shape surrounding the side surface 27 of the first contactor 20. As shown in FIG. 2, the first shield electrode 30 may have a cylindrical shape or a polygonal cylindrical shape such as a square or hexagon. The inner surface 31 of the first shield electrode 30 is spaced apart from the side surface 27 of the first contactor 20 at regular intervals.
  • the first shield electrode 30 may be made of, for example, nickel or nickel cobalt alloy.
  • the first insulating support part 40 is disposed in a space between the inner side surface 31 of the first shield electrode 30 and the side surface 27 of the first contactor 20.
  • the first insulating support 40 may be made of an electrically insulating polymer material.
  • the first insulating support part 40 may be made of polydimethylsiloxane (PDMS).
  • the length of the first shield electrode 30 and the first insulating support portion 40 is shorter than that of the first contactor 20. This is because the end of the first contactor 20 must protrude compared to the first insulating support part 40 to facilitate contact with the terminal. As shown in FIG. 2, the end 25 facing the terminal 2a of the semiconductor element 1 may protrude from the end portions 25 and 26 of the first contactor 20.
  • the second contact pin 50 connects the ground terminals 2b and 4b facing each other.
  • Each of the second contact pins 50 includes a second contactor 60, a second shield electrode 70, and a second insulating support 80.
  • the second contactor 60 serves to electrically connect the terminals 2b and 4b by contacting the terminals 2b and 4b.
  • the second insulating support 80 serves to connect and support the second contact 60 and the second shield electrode 70.
  • the second contact pin 50 is electrically connected to the second contact 60 and the second shield electrode 70 through the conductive connection part 85.
  • the first bridge 90 electrically connects the first shield electrodes 30 of the first contact pins 10 to each other.
  • the first bridge 90 may be made of, for example, nickel or nickel cobalt alloy.
  • the shape of the first bridge 90 is not particularly limited. As shown in FIGS. 2 and 3, the first bridge 90 may have a bar shape having a uniform thickness.
  • the second bridge 95 electrically connects the first shield electrode 30 of the first contact pin 10 with the second contact pin 50 to each other.
  • the second bridge 95 is similar to the first bridge 90. It may be made of nickel or nickel cobalt alloy, and may be in the form of a bar having a uniform thickness.
  • the second contact pin 50 is connected to the ground electrodes 2b and 4b, and the second contact pin 50 is connected to the first shield electrode 30 through the second bridge 95. Further, since the first shield electrode 30 is connected to the other first shield electrode 30 through the first bridge 90, all of the first shield electrodes 30 are connected to the ground.
  • FIG. 4 is a cross-sectional view of a test socket according to another embodiment of the present invention.
  • the first contactor 120 and the second contactor 160 further include conductive coil springs 129 and 169, and a first bridge (not shown) and a second bridge 195 Since the difference from the embodiment shown in Figs. 2 and 3 in that the thickness of is thick, only here will be described in detail.
  • the conductive coil springs 129 and 169 are embedded in the first elastic matrix 121 and the second elastic matrix 161.
  • the conductive coil springs 129 and 169 may be made of stainless steel, aluminum, bronze, phosphorus, nickel, gold, silver, palladium, or an alloy thereof. In addition, it may be a spring in which a plating layer having high conductivity is formed on a piano steel wire having a large elastic modulus.
  • the conductive coil springs 129 and 169 may be in the form of a cylindrical coil spring made by spirally winding a wire rod.
  • the lengths of the conductive coil springs 129 and 169 may be the same as or slightly shorter than the lengths of the first elastic matrix 121 and the second elastic matrix 161.
  • the conductive coil springs 129 and 169 restore the first elastic matrix 121 and the second elastic matrix 161 when the first elastic matrix 121 and the second elastic matrix 161 are compressed in the longitudinal direction. It serves to provide an elastic force in the direction.
  • the first elastic matrix 121 and the second elastic matrix 161 Is compressed, and at the same time, the conductive coil springs 129 and 169 embedded in the first elastic matrix 121 and the second elastic matrix 161 are also compressed.
  • the first elastic matrix 121 and the second elastic matrix 161 expand in the longitudinal direction to restore their original shape.
  • the conductive coil springs 129 and 169 provide elastic force in the direction in which the first elastic matrix 121 and the second elastic matrix 161 expand, so that the first elastic matrix 121 and the second elastic matrix 161 It plays a role of assisting in quicker recovery.
  • the cross section of the wire rod of the conductive coil springs 129 and 169 is shown to be circular, but the cross section of the wire rod of the conductive coil spring 129 and 169 may be square.
  • a wire rod having a rectangular cross-section (a rectangular cross-section whose vertical value is smaller than the horizontal value) is used as compared to a wire rod having a circular cross-section of the same cross-sectional area. It is preferable to use a spring manufactured by doing so.
  • Springs made using a wire rod with a rectangular cross section with a small secondary moment are more than a circular cross section wire spring with the same spring height (free length) and the same spring pitch (same cross-sectional area). Since it can have a long stroke, a stable low force contact pin can be implemented.
  • the first bridge (not shown) and the second bridge 195 are different from the first bridge 90 and the second bridge 95 shown in FIGS. 2 and 3, the first shield electrode 30 And as thick as the second shield electrode 70.
  • FIG. 5 is a cross-sectional view of a test socket according to another embodiment of the present invention.
  • the embodiment shown in FIG. 5 is different from the embodiment shown in FIGS. 2 and 3 in that the first contactor 220 further includes a conductive tip 228, and thus only here will be described in detail.
  • the conductive tip 228 includes a conductive plate 228a coupled to the lower end of the first elastic matrix 221, a conductive protrusion 228b protruding from the conductive plate 228a, and a metal layer formed on the lower surface of the conductive tip 228 ( 228c).
  • the conductive plate 228a and the conductive protrusion 228b may be made of, for example, nickel or nickel cobalt alloy.
  • the conductive plate 228a is a thin plate having the same cross-section as that of the first elastic matrix 221.
  • the conductive plate 228a contacts the first conductive particles 222 inside the first elastic matrix 221.
  • the conductive protrusion 228b extends toward the terminal 4 from the lower surface of the conductive plate 228a.
  • the conductive protrusion 228b is thicker than the conductive plate 228a, and may have a small disk shape.
  • a metal layer 228c made of a metal such as gold or silver having high electrical conductivity may be formed on the lower surface of the conductive protrusion 228b and the conductive plate 228a.
  • the second contactor 260 further includes a conductive tip 268.
  • FIG. 6 is a cross-sectional view of a test socket according to another embodiment of the present invention.
  • the embodiment shown in FIG. 6 is different from the embodiment shown in FIG. 5 in that it further includes a conductive anchor 328d extending from the conductive tip 328 to the inside of the first elastic matrix 321.
  • the conductive anchor 328d is installed in the center of the first elastic matrix 321 in the longitudinal direction.
  • the conductive anchor 328d has a shape of a cylinder or a polygonal column.
  • the conductive tip 368 of the second contactor 360 further includes a conductive anchor 368d.
  • FIG. 7 is a cross-sectional view of a test socket according to another embodiment of the present invention.
  • the embodiment shown in FIG. 7 is different from the embodiment shown in FIG. 1 in the form of the second contact pin 450.
  • the second contact pin 450 of the present embodiment does not include a second shield electrode or a second insulating support.
  • the second bridge 295 directly connects the second contact 460 of the second contact pin 450 and the first shield electrode 30. This embodiment has the advantage of a simple structure.
  • the length of the shield electrode and the insulating support is shorter than the length of the contactor, but may be longer than the length of the contactor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

The present invention relates to a test socket used for measuring electrical properties of an electric element. The present invention provides a test socket disposed between opposing terminals to electrically connect the terminals, the test socket comprising: first contact pins of which both ends are in contact with opposing power or signal terminals; second contact pins of which both ends are in contact with opposing ground terminals; at least one first bridge connecting the first contact pins to each other; and at least one second bridge connecting the first contact pins and the second contact pins to each other.

Description

테스트용 소켓Test socket
본 발명은 전기 소자의 전기적 특성 측정에 사용되는 테스트용 소켓에 관한 것이다.The present invention relates to a test socket used for measuring electrical properties of an electrical device.
반도체 소자가 제조되면, 제조된 반도체 소자에 대한 성능 검사가 필요하다. 반도체 소자의 검사에는 검사 장치의 접촉 패드와 반도체 소자의 단자를 전기적으로 연결하는 테스트용 소켓이 필요하다.When a semiconductor device is manufactured, a performance test of the manufactured semiconductor device is required. In the inspection of a semiconductor device, a test socket that electrically connects the contact pad of the inspection device and the terminal of the semiconductor device is required.
테스트용 소켓 중에서 전도성 입자들을 실리콘 고무의 두께 방향으로 배치한 접촉부와 인접한 접촉부들을 절연시키며 지지하는 절연부를 구비한 이방 전도성 시트를 구비한 테스트용 소켓은 기계적인 충격이나 변형을 흡수하여 유연한 접속이 가능하며, 제조 비용이 저렴하다는 장점이 있다.Among the test sockets, a test socket equipped with an anisotropic conductive sheet with an insulating part that insulates and supports the contact parts in which conductive particles are arranged in the thickness direction of the silicone rubber and adjacent contacts, and absorbs mechanical shock or deformation, enabling flexible connection. And, there is an advantage that the manufacturing cost is low.
도 1은 종래 기술의 테스트용 소켓을 나타내는 도면이다. 종래 기술의 테스트용 소켓의 이방 전도성 시트(5)는 반도체 소자(1)의 단자(2)와 접촉하는 접촉부(6)와 인접한 접촉부(6)들을 절연시키며 지지하는 절연부(8)로 구성된다. 접촉부(6)의 상단부와 하단부는 각각 반도체 소자(1)의 단자(2)와 반도체 검사 장치(3)의 접촉 패드(4)와 접촉하여, 단자(2)와 접촉 패드(4)를 전기적으로 연결한다. 접촉부(6)는 실리콘 수지에 크기가 작은 구형의 전도성 입자(7)들을 혼합하여 굳힌 것으로서 전기가 흐르는 도체로 작용한다.1 is a view showing a conventional test socket. The anisotropic conductive sheet 5 of the conventional test socket is composed of an insulating portion 8 that insulates and supports the contact portion 6 in contact with the terminal 2 of the semiconductor element 1 and the adjacent contact portions 6 . The upper and lower ends of the contact portion 6 are in contact with the terminal 2 of the semiconductor element 1 and the contact pad 4 of the semiconductor inspection device 3, respectively, and electrically connect the terminal 2 and the contact pad 4 to each other. Connect. The contact part 6 is solidified by mixing silicon resin with small spherical conductive particles 7 and acts as a conductor through which electricity flows.
그런데 반도체 소자(1)가 소형화될수록 접촉부(6)의 단면적이 감소하고, 이에 따라서 접촉부(6)의 저항도 증가한다. 저항 증가에 따른 신호의 손실은 검사 속도 및 정확도를 저하시키는 장애 요소가 된다.However, as the semiconductor device 1 becomes smaller, the cross-sectional area of the contact portion 6 decreases, and accordingly, the resistance of the contact portion 6 increases. The loss of the signal due to the increase in resistance becomes an obstacle that decreases the inspection speed and accuracy.
[선행기술문헌][Prior technical literature]
한국공개실용신안 제2009-0006326호Korea Open Utility Model No. 2009-0006326
한국공개특허 제10-2017-0066981호Korean Patent Publication No. 10-2017-0066981
한국등록특허 제10-0375117호Korean Patent Registration No. 10-0375117
본 발명은 상술한 문제점을 개선하기 위한 것으로서, 신호 손실을 최소화하여 검사 속도 및 정확도가 향상된 새로운 구조의 테스트용 소켓을 제공하는 것을 목적으로 한다.The present invention has been made to improve the above-described problems, and an object thereof is to provide a test socket having a new structure with improved inspection speed and accuracy by minimizing signal loss.
상술한 목적을 달성하기 위해서, 본 발명은, 마주보는 단자들 사이에 배치되어 단자들을 전기적으로 접속시키는 테스트 소켓으로서, 그 양단부가 마주보는 파워 또는 신호 단자들과 접촉하는 제1 접촉 핀들과, 그 양단부가 마주보는 접지 단자들과 접촉하는 제2 접촉 핀과, 상기 제1 접촉 핀들을 서로 연결하는 적어도 하나의 제1 브릿지와, 상기 제1 접촉 핀과 상기 제2 접촉 핀을 서로 연결하는 적어도 하나의 제2 브릿지를 포함하는 테스트 소켓을 제공한다.In order to achieve the above object, the present invention is a test socket disposed between opposing terminals to electrically connect terminals, the first contact pins having both ends in contact with opposing power or signal terminals, and At least one second contact pin in contact with ground terminals facing opposite ends, at least one first bridge connecting the first contact pins to each other, and at least one connecting the first contact pin and the second contact pin to each other It provides a test socket including a second bridge of.
그리고 각각의 상기 제1 접촉 핀은, 제1 접촉자와, 제1 쉴드 전극과 제1 절연지지부를 포함한다.In addition, each of the first contact pins includes a first contact, a first shield electrode, and a first insulating support.
제1 접촉자는 기둥 형태의 제1 탄성 매트릭스와, 상기 제1 탄성 매트릭스의 내부에 상기 제1 탄성 매트릭스의 길이방향으로 배열되는 다수의 제1 전도성 입자들을 구비한다.The first contactor includes a first elastic matrix in the form of a column, and a plurality of first conductive particles arranged in the first elastic matrix in the longitudinal direction of the first elastic matrix.
제1 쉴드 전극은 상기 제1 접촉자의 측면을 상기 제1 접촉자의 측면과 이격된 상태로 둘러싸는 통 형태이다.The first shield electrode has a cylindrical shape surrounding the side surface of the first contactor while being spaced apart from the side surface of the first contactor.
제1 절연지지부는 상기 제1 접촉자와 상기 제1 쉴드 전극의 사이에 배치되어 상기 제1 접촉자와 상기 제1 쉴드 전극을 전기적으로 분리된 상태로 연결한다.A first insulating support part is disposed between the first contact and the first shield electrode to connect the first contact and the first shield electrode in an electrically separated state.
그리고 제1 브릿지는, 서로 인접한 상기 제1 쉴드 전극들을 전기적으로 연결한다.In addition, the first bridge electrically connects the first shield electrodes adjacent to each other.
또한, 본 발명은 상기 제1 접촉자는, 상기 제1 탄성 매트릭스에 내장된 전도성 코일 스프링을 더 포함하는 테스트용 소켓을 제공한다.In addition, the present invention provides a test socket, wherein the first contactor further includes a conductive coil spring embedded in the first elastic matrix.
또한, 상기 제1 접촉자는, 상기 제1 탄성 매트릭스의 일단부에 결합하는 전도성 팁을 더 포함하는 테스트용 소켓을 제공한다.In addition, the first contact provides a test socket further comprising a conductive tip coupled to one end of the first elastic matrix.
또한, 상기 전도성 팁은, 상기 제1 탄성 매트릭스의 일단부에 결합하는 전도성 판과 상기 전도성 판으로부터 돌출된 전도성 돌기를 포함하는 테스트용 소켓을 제공한다.In addition, the conductive tip provides a test socket including a conductive plate coupled to one end of the first elastic matrix and a conductive protrusion protruding from the conductive plate.
또한, 상기 전도성 팁의 표면에는 금속 층이 형성된 테스트용 소켓을 제공한다.In addition, a test socket having a metal layer formed on the surface of the conductive tip is provided.
또한, 상기 전도성 판으로부터 상기 제1 탄성 매트릭스 안쪽으로 돌출된 전도성 앵커부를 더 포함하는 테스트용 소켓을 제공한다.In addition, it provides a test socket further comprising a conductive anchor portion protruding from the conductive plate to the inside of the first elastic matrix.
또한, 상기 제2 접촉 핀은, 기둥 형태의 제2 탄성 매트릭스와, 상기 제2 탄성 매트릭스의 내부에 상기 제2 탄성 매트릭스의 길이방향으로 배열되는 다수의 제2 전도성 입자들을 구비하는 제2 접촉자를 포함하는 테스트용 소켓을 제공한다.In addition, the second contact pin includes a second contactor having a second elastic matrix in the form of a column, and a plurality of second conductive particles arranged in the length direction of the second elastic matrix inside the second elastic matrix. Provides a test socket that includes.
또한, 상기 제2 접촉 핀은, 상기 제2 접촉자의 측면을 상기 제2 접촉자의 측면과 이격된 상태로 둘러싸는 통 형태의 제2 쉴드 전극과, 상기 제2 접촉자와 상기 제2 쉴드 전극의 사이에 배치되는 제2 절연지지부와, 상기 제2 접촉자와 상기 제2 쉴드 전극을 전기적으로 연결하는 전도성 접속부를 더 구비하며, 상기 제2 브릿지는 상기 제1 쉴드 전극과 제2 쉴드 전극을 연결하는 테스트용 소켓을 제공한다.In addition, the second contact pin may include a second shield electrode in a cylindrical shape surrounding a side surface of the second contactor in a state spaced apart from the side surface of the second contactor, and between the second contactor and the second shield electrode. A second insulating support portion disposed on and a conductive connection portion electrically connecting the second contactor to the second shield electrode, and the second bridge is a test for connecting the first shield electrode and the second shield electrode Provides a socket for use.
또한, 상기 제2 브릿지는 상기 제1 쉴드 전극과 제2 접촉자를 연결하는 테스트용 소켓을 제공한다.In addition, the second bridge provides a test socket connecting the first shield electrode and the second contact.
본 발명에 따른 테스트용 소켓은 신호 손실이 최소화된다. 따라서 검사 속도와 정확도가 향상된다.The test socket according to the present invention minimizes signal loss. Therefore, inspection speed and accuracy are improved.
도 1은 종래기술에 따른 테스트용 소켓을 나타내는 도면이다.1 is a view showing a test socket according to the prior art.
도 2는 본 발명의 일실시예에 따른 테스트용 소켓의 사시도이다.2 is a perspective view of a test socket according to an embodiment of the present invention.
도 3은 도 2에 도시된 테스트용 소켓의 단면도이다.3 is a cross-sectional view of the test socket shown in FIG. 2.
도 4는 본 발명의 다른 실시예에 따른 테스트용 소켓의 단면도이다.4 is a cross-sectional view of a test socket according to another embodiment of the present invention.
도 5 내지 7은 본 발명의 또 다른 실시예들에 따른 테스트용 소켓들의 단면도들이다.5 to 7 are cross-sectional views of test sockets according to still other embodiments of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples in order to sufficiently convey the spirit of the present invention to those skilled in the art. Therefore, the present invention is not limited to the embodiments described below and may be embodied in other forms. In addition, in the drawings, the width, length, thickness, etc. of the component may be exaggerated for convenience. The same reference numbers throughout the specification indicate the same elements.
도 2는 본 발명의 일 실시예에 따른 테스트용 소켓의 사시도이며, 도 3은 도 2에 도시된 테스트용 소켓의 단면도이다. 테스트용 소켓은 마주보는 단자들 사이에 배치되어 단자들을 전기적으로 접속시키는 역할을 한다. 예를 들어, 테스트용 소켓(100)은 검사 장치(3)의 단자(4)와 반도체 소자(1)의 단자(2)를 전기적으로 연결하는 역할을 한다.2 is a perspective view of a test socket according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the test socket shown in FIG. 2. The test socket is disposed between opposing terminals and serves to electrically connect the terminals. For example, the test socket 100 serves to electrically connect the terminal 4 of the test apparatus 3 and the terminal 2 of the semiconductor element 1.
도 2와 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 테스트용 소켓(100)은 복수의 제1 접촉 핀(10)들과, 제2 접촉 핀(50)과, 제1 접촉 핀(10)들을 서로 연결하는 적어도 하나의 제1 브릿지(90)와, 제1 접촉 핀(10)과 제2 접촉 핀(50)을 서로 연결하는 적어도 하나의 제2 브릿지(95)를 포함한다.2 and 3, the test socket 100 according to an embodiment of the present invention includes a plurality of first contact pins 10, a second contact pin 50, and a first contact pin. At least one first bridge 90 connecting the 10 to each other, and at least one second bridge 95 connecting the first contact pin 10 and the second contact pin 50 to each other.
도 2에는 세 개의 제1 접촉 핀(10)과 하나의 제2 접촉 핀(50)이 도시되어 있으나, 제1 접촉 핀(10)과 제2 접촉 핀(20)의 합은 수십 내지 수백개일 수도 있다.Although three first contact pins 10 and one second contact pin 50 are shown in FIG. 2, the sum of the first contact pins 10 and the second contact pins 20 may be several tens to several hundred. have.
제1 접촉 핀(10)은 서로 마주보는 전원 단자 또는 신호 단자들(2a, 4a)을 전기적으로 접속시키는 역할을 한다. 각각의 제1 접촉 핀(10)은 제1 접촉자(20)와 제1 쉴드 전극(30) 및 제1 절연지지부(40)를 포함한다.The first contact pin 10 serves to electrically connect power terminals or signal terminals 2a and 4a facing each other. Each of the first contact pins 10 includes a first contactor 20, a first shield electrode 30, and a first insulating support portion 40.
제1 접촉자(20)는 단자들(2a, 4a)과 접촉하여 단자들(2a, 4a)을 전기적으로 연결하는 역할을 한다. 제1 쉴드 전극(30)은 제1 접촉자(20)의 신호 손실을 최소화하는 역할을 한다. 제1 절연지지부(40)는 제1 접촉자(20)와 제1 쉴드 전극(30)을 서로 연결하는 역할을 한다. 제1 절연지지부(40)는 전기 절연성 물질로 이루어지므로, 제1 접촉자(20)와 제1 쉴드 전극(30)은 전기적으로 절연된 상태로 연결된다.The first contactor 20 serves to electrically connect the terminals 2a and 4a by contacting the terminals 2a and 4a. The first shield electrode 30 serves to minimize signal loss of the first contactor 20. The first insulating support part 40 serves to connect the first contactor 20 and the first shield electrode 30 to each other. Since the first insulating support part 40 is made of an electrically insulating material, the first contactor 20 and the first shield electrode 30 are connected in an electrically insulated state.
제1 접촉자(20)는 제1 탄성 매트릭스(21)와 다수의 제1 전도성 입자(22)들을 구비한다.The first contactor 20 includes a first elastic matrix 21 and a plurality of first conductive particles 22.
제1 탄성 매트릭스(21)는 양단부(25, 26)와 측면(27)을 구비한 기둥 형태이다. 예를 들어, 원기둥이나 사각, 육각, 팔각 등의 다각 기둥 형태일 수 있다. 제1 탄성 매트릭스(21)는 제1 전도성 입자(22)들을 지지하는 역할을 한다. 또한, 측정시에 탄성 변형되면서 단자들(2a, 4a)에 가해지는 압력을 감소시키면서, 제1 접촉자(20)를 단자들(2a, 4a)에 밀착시키는 역할을 한다.The first elastic matrix 21 has a pillar shape having both ends 25 and 26 and side surfaces 27. For example, it may be in the form of a cylinder or a polygonal column such as a square, hexagon, or octagon. The first elastic matrix 21 serves to support the first conductive particles 22. In addition, while being elastically deformed during measurement, the pressure applied to the terminals 2a and 4a is reduced, and the first contactor 20 is brought into close contact with the terminals 2a and 4a.
제1 탄성 매트릭스(21)는 다양한 종류의 고분자 물질로 형성할 수 있다. 예를 들어, 실리콘, 폴리부타디엔, 폴리이소프렌, SBR, NBR 등 및 그들의 수소화합물과 같은 디엔형 고무로 구현될 수 있다. 또한, 스티렌부타디엔 블럭코폴리머, 스티렌이소프렌 블럭코폴리머 등 및 그들의 수소 화합물과 같은 블럭코폴리머로 구현될 수도 있다. 또한, 클로로프렌, 우레탄 고무, 폴리에틸렌형 고무, 에피클로로히드린 고무, 에틸렌-프로필렌 코폴리머, 에틸렌프로필렌디엔 코폴리머 등으로 구현될 수도 있다. 제1 탄성 매트릭스(21)는 액상 수지를 경화하여 얻을 수 있다.The first elastic matrix 21 may be formed of various types of polymer materials. For example, it may be implemented with a diene-type rubber such as silicone, polybutadiene, polyisoprene, SBR, NBR, and hydrogen compounds thereof. Further, it may be implemented with a block copolymer such as a styrene butadiene block copolymer, a styrene isoprene block copolymer, and a hydrogen compound thereof. In addition, it may be implemented with chloroprene, urethane rubber, polyethylene-type rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer, or the like. The first elastic matrix 21 can be obtained by curing a liquid resin.
제1 전도성 입자(22)들은 제1 탄성 매트릭스(21)의 길이방향으로 배열된다. 제1 전도성 입자(22)들은 서로 접촉하여 제1 접촉자(20)의 길이방향으로 전도성을 부여한다. 반도체 소자(1)의 검사를 위해서 제1 접촉자(20)의 길이방향으로 압력이 가해지면, 제1 접촉자(20)가 길이방향으로 압축된다. 그리고 제1 전도성 입자(22)들이 서로 더욱 가까워지면서 제1 접촉자(20)의 길이방향 전기 전도도가 더욱 높아진다.The first conductive particles 22 are arranged in the longitudinal direction of the first elastic matrix 21. The first conductive particles 22 contact each other to impart conductivity in the longitudinal direction of the first contactor 20. When pressure is applied in the longitudinal direction of the first contactor 20 for inspection of the semiconductor device 1, the first contactor 20 is compressed in the longitudinal direction. In addition, as the first conductive particles 22 become closer to each other, the electrical conductivity in the longitudinal direction of the first contactor 20 is further increased.
제1 전도성 입자(22)들은 철, 구리, 아연, 크롬, 니켈, 은, 코발트, 알루미늄 등과 같은 단일 도전성 금속재 또는 이들 금속재료 둘 이상의 합금재로 구현될 수 있다. 또한, 제1 전도성 입자(22)들은 코어 금속의 표면을 전도성이 뛰어난 금, 은, 로듐, 팔라듐, 백금 또는 은과 금, 음과 로듐, 은과 팔라듐 등과 같은 금속으로 코팅하는 방법으로 구현할 수도 있다.The first conductive particles 22 may be implemented with a single conductive metal material such as iron, copper, zinc, chromium, nickel, silver, cobalt, aluminum, or the like, or an alloy material of two or more of these metal materials. In addition, the first conductive particles 22 may be implemented by coating the surface of the core metal with a metal such as gold, silver, rhodium, palladium, platinum, or silver and gold, yin and rhodium, silver and palladium having excellent conductivity. .
제1 쉴드 전극(30)은 제1 접촉자(20)의 측면(27)을 둘러싸는 통 형태이다. 제1 쉴드 전극(30)은 도 2에 도시된 바와 같이, 원통형일 수도 있으며, 사각이나 육각 등 다각통형일 수도 있다. 제1 쉴드 전극(30)의 내측면(31)은 제1 접촉자(20)의 측면(27)과 일정한 간격으로 떨어져 있다. 제1 쉴드 전극(30)은, 예를 들어, 니켈, 니켈 코발트 합금 등으로 이루어질 수 있다.The first shield electrode 30 has a cylindrical shape surrounding the side surface 27 of the first contactor 20. As shown in FIG. 2, the first shield electrode 30 may have a cylindrical shape or a polygonal cylindrical shape such as a square or hexagon. The inner surface 31 of the first shield electrode 30 is spaced apart from the side surface 27 of the first contactor 20 at regular intervals. The first shield electrode 30 may be made of, for example, nickel or nickel cobalt alloy.
제1 절연지지부(40)는 제1 쉴드 전극(30)의 내측면(31)과 제1 접촉자(20)의 측면(27) 사이의 공간에 배치된다. 제1 절연지지부(40)는 전기 절연성 고분자 물질로 이루어질 수 있다. 예를 들어, 제1 절연지지부(40)는 폴리디메틸실록산(PDMS)로 이루어질 수 있다.The first insulating support part 40 is disposed in a space between the inner side surface 31 of the first shield electrode 30 and the side surface 27 of the first contactor 20. The first insulating support 40 may be made of an electrically insulating polymer material. For example, the first insulating support part 40 may be made of polydimethylsiloxane (PDMS).
본 실시예에서, 제1 쉴드 전극(30)과 제1 절연지지부(40)의 길이는 제1 접촉자(20)의 길이에 비해서 짧다. 제1 접촉자(20)의 단부가 제1 절연지지부(40)에 비해서 돌출되어야 단자와 접촉하기 용이하기 때문이다. 도 2에 도시된 바와 같이, 제1 접촉자(20)의 양단부 (25, 26)중에서 반도체 소자(1)의 단자(2a)를 향하는 단부(25)가 돌출될 수 있다.In this embodiment, the length of the first shield electrode 30 and the first insulating support portion 40 is shorter than that of the first contactor 20. This is because the end of the first contactor 20 must protrude compared to the first insulating support part 40 to facilitate contact with the terminal. As shown in FIG. 2, the end 25 facing the terminal 2a of the semiconductor element 1 may protrude from the end portions 25 and 26 of the first contactor 20.
제2 접촉 핀(50)은 서로 마주보는 접지 단자(2b, 4b)들을 연결한다. 각각의 제2 접촉 핀(50)은 제2 접촉자(60)와 제2 쉴드 전극(70) 및 제2 절연지지부(80)를 포함한다.The second contact pin 50 connects the ground terminals 2b and 4b facing each other. Each of the second contact pins 50 includes a second contactor 60, a second shield electrode 70, and a second insulating support 80.
제2 접촉자(60)는 단자들(2b, 4b)과 접촉하여 단자들(2b, 4b)을 전기적으로 접속시키는 역할을 한다. 제2 절연지지부(80)는 제2 접촉자(60)와 제2 쉴드 전극(70)을 서로 연결하여 지지하는 역할을 한다.The second contactor 60 serves to electrically connect the terminals 2b and 4b by contacting the terminals 2b and 4b. The second insulating support 80 serves to connect and support the second contact 60 and the second shield electrode 70.
제2 접촉 핀(50)은 제1 접촉 핀(20)과 달리 제2 접촉자(60)와 제2 쉴드 전극(70)이 전도성 접속부(85)를 통해서 전기적으로 연결된다.Unlike the first contact pin 20, the second contact pin 50 is electrically connected to the second contact 60 and the second shield electrode 70 through the conductive connection part 85.
제1 브릿지(90)는 제1 접촉 핀(10)들의 제1 쉴드 전극(30)들을 전기적으로 서로 연결한다. 제1 브릿지(90)는, 예를 들어, 니켈, 니켈 코발트 합금 등으로 이루어질 수 있다. 제1 브릿지(90)의 형태는 특별히 제한되지 않는다. 제1 브릿지(90)는 도 2와 3에 도시된 바와 같이, 균일한 두께의 바 형태일 수 있다.The first bridge 90 electrically connects the first shield electrodes 30 of the first contact pins 10 to each other. The first bridge 90 may be made of, for example, nickel or nickel cobalt alloy. The shape of the first bridge 90 is not particularly limited. As shown in FIGS. 2 and 3, the first bridge 90 may have a bar shape having a uniform thickness.
제2 브릿지(95)는 제1 접촉 핀(10)의 제1 쉴드 전극(30)을 제2 접촉 핀(50)과 전기적으로 서로 연결한다. 제2 브릿지(95)는, 제1 브릿지(90)와 마찬가지로. 니켈, 니켈 코발트 합금 등으로 이루어질 수 있으며, 균일한 두께의 바 형태일 수 있다.The second bridge 95 electrically connects the first shield electrode 30 of the first contact pin 10 with the second contact pin 50 to each other. The second bridge 95 is similar to the first bridge 90. It may be made of nickel or nickel cobalt alloy, and may be in the form of a bar having a uniform thickness.
제2 접촉 핀(50)은 접지 전극(2b, 4b)와 연결되어 있으며, 제2 접촉 핀(50)은 제2 브릿지(95)를 통해서, 제1 쉴드 전극(30)과 연결된다. 그리고 제1 쉴드 전극(30)은 제1 브릿지(90)를 통해서 다른 제1 쉴드 전극(30)과 연결되므로, 제1 쉴드 전극(30)들은 모두 접지와 연결된다.The second contact pin 50 is connected to the ground electrodes 2b and 4b, and the second contact pin 50 is connected to the first shield electrode 30 through the second bridge 95. Further, since the first shield electrode 30 is connected to the other first shield electrode 30 through the first bridge 90, all of the first shield electrodes 30 are connected to the ground.
도 4는 본 발명의 다른 실시예에 따른 테스트용 소켓의 단면도이다.4 is a cross-sectional view of a test socket according to another embodiment of the present invention.
도 4에 도시된 실시예는 제1 접촉자(120)와 제2 접촉자(160)가 전도성 코일 스프링(129, 169)을 더 포함한다는 점과 제1 브릿지(미도시)와 제2 브릿지(195)의 두께가 두껍다는 점에서 도 2와 3에 도시된 실시예와 차이가 있으므로, 여기에 대해서만 상세히 설명한다.In the embodiment shown in FIG. 4, the first contactor 120 and the second contactor 160 further include conductive coil springs 129 and 169, and a first bridge (not shown) and a second bridge 195 Since the difference from the embodiment shown in Figs. 2 and 3 in that the thickness of is thick, only here will be described in detail.
전도성 코일 스프링(129, 169)은 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)에 내장된다. 전도성 코일 스프링(129, 169)은 스테인리스 스틸, 알루미늄, 청동, 인동, 니켈, 금, 은, 팔라듐 등 또는 이들의 합금으로 이루어질 수 있다. 또한, 탄성계수가 큰 피아노 강선에 전도성이 높은 도금 층을 형성한 스프링일 수 있다. 전도성 코일 스프링(129, 169)은 선재를 나선형으로 감아서 만든 원통형의 코일 스프링 형태일 수 있다. 전도성 코일 스프링(129, 169)의 길이는 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)의 길이와 같거나, 약간 짧을 수 있다.The conductive coil springs 129 and 169 are embedded in the first elastic matrix 121 and the second elastic matrix 161. The conductive coil springs 129 and 169 may be made of stainless steel, aluminum, bronze, phosphorus, nickel, gold, silver, palladium, or an alloy thereof. In addition, it may be a spring in which a plating layer having high conductivity is formed on a piano steel wire having a large elastic modulus. The conductive coil springs 129 and 169 may be in the form of a cylindrical coil spring made by spirally winding a wire rod. The lengths of the conductive coil springs 129 and 169 may be the same as or slightly shorter than the lengths of the first elastic matrix 121 and the second elastic matrix 161.
전도성 코일 스프링(129, 169)은 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)가 길이 방향으로 압축되었을 때 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)를 원상회복 시키는 방향으로 탄성력을 제공하는 역할을 한다. 측정과정에서 제1 접촉자(120)의 양단부(125, 126) 및 제2 접촉자(160)의 양단부(165, 166)에 압력이 가해지면, 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)가 압축되고, 동시에 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)에 내장된 전도성 코일 스프링(129, 169)도 압축된다. 측정이 완료되어 접촉자(120)의 양단부(125, 126)에 가해진 압력이 제거되면, 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)는 길이방향으로 팽창하여 원상회복 된다. 전도성 코일 스프링(129, 169)은 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)가 팽창하는 방향으로 탄성력을 제공하여, 제1 탄성 매트릭스(121) 및 제2 탄성 매트릭스(161)가 더욱 빠르게 원상회복 되도록 보조하는 역할을 한다.The conductive coil springs 129 and 169 restore the first elastic matrix 121 and the second elastic matrix 161 when the first elastic matrix 121 and the second elastic matrix 161 are compressed in the longitudinal direction. It serves to provide an elastic force in the direction. When pressure is applied to both ends 125 and 126 of the first contactor 120 and both ends 165 and 166 of the second contactor 160 during the measurement process, the first elastic matrix 121 and the second elastic matrix 161 ) Is compressed, and at the same time, the conductive coil springs 129 and 169 embedded in the first elastic matrix 121 and the second elastic matrix 161 are also compressed. When the measurement is completed and the pressure applied to both ends 125 and 126 of the contactor 120 is removed, the first elastic matrix 121 and the second elastic matrix 161 expand in the longitudinal direction to restore their original shape. The conductive coil springs 129 and 169 provide elastic force in the direction in which the first elastic matrix 121 and the second elastic matrix 161 expand, so that the first elastic matrix 121 and the second elastic matrix 161 It plays a role of assisting in quicker recovery.
도 4에는 전도성 코일 스프링(129, 169)의 선재의 단면이 원형인 것으로 도시되어 있으나, 전도성 코일 스프링(129, 169)의 선재의 단면은 사각형일 수도 있다. 특히, 다수의 접촉 핀(110, 150)들이 사용되는 경우에는 동일한 단면적의 원형 단면을 가진 선재에 비해서 단면 2차 모멘트가 작은 직사각형 단면(세로 값이 가로 값보다 작은 직사각형 단면)을 가진 선재를 이용하여 제작된 스프링을 사용하는 것이 바람직하다.In FIG. 4, the cross section of the wire rod of the conductive coil springs 129 and 169 is shown to be circular, but the cross section of the wire rod of the conductive coil spring 129 and 169 may be square. In particular, when a plurality of contact pins (110, 150) are used, a wire rod having a rectangular cross-section (a rectangular cross-section whose vertical value is smaller than the horizontal value) is used as compared to a wire rod having a circular cross-section of the same cross-sectional area. It is preferable to use a spring manufactured by doing so.
2차 모멘트가 작은 직사각형 단면(세로 값이 가로 값보다 작은 직사각형 단면)을 가진 선재를 이용하여 제작된 스프링은 동일한 스프링 높이(자유장)와 동일한 스프링 피치의 원형 단면 선재 스프링(동일 단면적)보다 더 긴 스트로크(stroke)를 가질 수 있어서 안정적인 낮은 힘(Low Force) 접촉 핀을 구현할 수 있다.Springs made using a wire rod with a rectangular cross section with a small secondary moment (a rectangular cross section with a vertical value less than a horizontal value) are more than a circular cross section wire spring with the same spring height (free length) and the same spring pitch (same cross-sectional area). Since it can have a long stroke, a stable low force contact pin can be implemented.
본 실시예에 있어서, 제1 브릿지(미도시)와 제2 브릿지(195)는 도 2와 3에 도시된 제1 브릿지(90) 및 제2 브릿지(95)와 달리 제1 쉴드 전극(30) 및 제2 쉴드 전극(70)만큼 두껍다.In this embodiment, the first bridge (not shown) and the second bridge 195 are different from the first bridge 90 and the second bridge 95 shown in FIGS. 2 and 3, the first shield electrode 30 And as thick as the second shield electrode 70.
도 5는 본 발명의 또 다른 실시예에 따른 테스트용 소켓의 단면도이다.5 is a cross-sectional view of a test socket according to another embodiment of the present invention.
도 5에 도시된 실시예는 제1 접촉자(220)가 전도성 팁(228)을 더 포함한다는 점에서 도 2와 3에 도시된 실시예와 차이가 있으므로, 여기에 대해서만 상세히 설명한다.The embodiment shown in FIG. 5 is different from the embodiment shown in FIGS. 2 and 3 in that the first contactor 220 further includes a conductive tip 228, and thus only here will be described in detail.
전도성 팁(228)은 제1 탄성 매트릭스(221)의 하단부에 결합하는 전도성 판(228a)과 전도성 판(228a)으로부터 돌출된 전도성 돌기(228b) 및 전도성 팁(228)의 하면에 형성된 금속 층(228c)을 포함한다.The conductive tip 228 includes a conductive plate 228a coupled to the lower end of the first elastic matrix 221, a conductive protrusion 228b protruding from the conductive plate 228a, and a metal layer formed on the lower surface of the conductive tip 228 ( 228c).
전도성 판(228a)과 전도성 돌기(228b)는, 예를 들어, 니켈, 니켈 코발트 합금 등으로 이루어질 수 있다. 전도성 판(228a)은 제1 탄성 매트릭스(221)의 단면과 동일한 단면을 가진 얇은 판이다. 전도성 판(228a)은 제1 탄성 매트릭스(221)의 내부의 제1 전도성 입자(222)들과 접촉한다.The conductive plate 228a and the conductive protrusion 228b may be made of, for example, nickel or nickel cobalt alloy. The conductive plate 228a is a thin plate having the same cross-section as that of the first elastic matrix 221. The conductive plate 228a contacts the first conductive particles 222 inside the first elastic matrix 221.
전도성 돌기(228b)는 전도성 판(228a)의 하면으로부터 단자(4)를 향해서 연장된다. 전도성 돌기(228b)는 전도성 판(228a)에 비해서 두꺼우며, 지름은 작은 원판 형태일 수 있다.The conductive protrusion 228b extends toward the terminal 4 from the lower surface of the conductive plate 228a. The conductive protrusion 228b is thicker than the conductive plate 228a, and may have a small disk shape.
전도성 돌기(228b)와 전도성 판(228a)의 하면에는 전기 전도도가 높은 금, 은 등의 금속으로 이루어진 금속 층(228c)이 형성될 수 있다.A metal layer 228c made of a metal such as gold or silver having high electrical conductivity may be formed on the lower surface of the conductive protrusion 228b and the conductive plate 228a.
제2 접촉자(260)도 제1 접촉자(220)과 마찬가지로, 전도성 팁(268)을 더 포함한다.Like the first contactor 220, the second contactor 260 further includes a conductive tip 268.
도 6은 본 발명의 또 다른 실시예에 따른 테스트용 소켓의 단면도이다.6 is a cross-sectional view of a test socket according to another embodiment of the present invention.
도 6에 도시된 실시예는 전도성 팁(328)에서 제1 탄성 매트릭스(321)의 내부로 연장된 전도성 앵커(328d)를 더 포함한다는 점에서 도 5에 도시된 실시예와 차이가 있다. 전도성 앵커(328d)는 제1 탄성 매트릭스(321)의 길이 방향 중심부에 설치된다. 전도성 앵커(328d)는 원기둥이나 다각 기둥 형태이다.The embodiment shown in FIG. 6 is different from the embodiment shown in FIG. 5 in that it further includes a conductive anchor 328d extending from the conductive tip 328 to the inside of the first elastic matrix 321. The conductive anchor 328d is installed in the center of the first elastic matrix 321 in the longitudinal direction. The conductive anchor 328d has a shape of a cylinder or a polygonal column.
제2 접촉자(360)의 전도성 팁(368)도 제1 접촉자(320)의 전도성 팁(328)과 마찬가지로, 전도성 앵커(368d)를 더 포함한다.Like the conductive tip 328 of the first contactor 320, the conductive tip 368 of the second contactor 360 further includes a conductive anchor 368d.
도 7은 본 발명의 또 다른 실시예에 따른 테스트용 소켓의 단면도이다.7 is a cross-sectional view of a test socket according to another embodiment of the present invention.
도 7에 도시된 실시예는 제2 접촉 핀(450)의 형태에서 도 1에 도시된 실시예와 차이가 있다. 본 실시예의 제2 접촉 핀(450)은 도 1에 도시된 제2 접촉 핀(50)과 달리 제2 쉴드 전극이나 제2 절연지지부를 구비하지 않는다. 그리고 본 실시예에서는 제2 브릿지(295)가 제2 접촉 핀(450)의 제2 접촉자(460)와 제1 쉴드 전극(30)을 직접 연결한다. 본 실시예는 구조가 간단하다는 장점이 있다.The embodiment shown in FIG. 7 is different from the embodiment shown in FIG. 1 in the form of the second contact pin 450. Unlike the second contact pin 50 shown in FIG. 1, the second contact pin 450 of the present embodiment does not include a second shield electrode or a second insulating support. In this embodiment, the second bridge 295 directly connects the second contact 460 of the second contact pin 450 and the first shield electrode 30. This embodiment has the advantage of a simple structure.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The above-described embodiments are merely describing preferred embodiments of the present invention, and the scope of the present invention is not limited to the described embodiments, and those skilled in the art within the scope of the technical spirit and claims of the present invention Various changes, modifications, or substitutions may be made by this, and such embodiments are to be understood as being within the scope of the present invention.
예를 들어, 쉴드 전극과 절연지지부의 길이는 접촉자의 길이에 비해서 짧은 것으로 설명하였으나, 접촉자의 길이에 비해서 길수도 있다.For example, it has been described that the length of the shield electrode and the insulating support is shorter than the length of the contactor, but may be longer than the length of the contactor.
또한, 접촉자의 양단부 중에서 반도체 소자(1)의 단자(2)를 향하는 단부가 돌출되는 것으로 설명하였으나, 양단부가 돌출되거나, 검사 장치(3)의 단자(4)를 향하는 단부가 돌출될 수도 있다.In addition, it has been described that an end of the contactor facing the terminal 2 of the semiconductor element 1 protrudes from both ends of the contactor, but both ends may protrude or an end facing the terminal 4 of the inspection device 3 may protrude.
[부호의 설명][Explanation of code]
100: 테스트용 소켓100: test socket
10, 110, 210, 310: 제1 접촉 핀10, 110, 210, 310: first contact pin
50, 150, 250, 350, 450: 제2 접촉 핀50, 150, 250, 350, 450: second contact pin
20, 120, 220, 320: 제1 접촉자20, 120, 220, 320: first contact
60, 160, 260, 360: 제2 접촉자60, 160, 260, 360: second contact
21, 121, 221, 321: 제1 탄성 매트릭스21, 121, 221, 321: first elastic matrix
22, 122, 222, 322: 제1 전도성 입자22, 122, 222, 322: first conductive particles
30: 제1 쉴드 전극30: first shield electrode
70: 제2 쉴드 전극70: second shield electrode
40: 제1 절연지지부40: first insulation support
80: 제2 절연지지부80: second insulation support
90: 제1 브릿지90: first bridge
95, 195, 295: 제2 브릿지95, 195, 295: second bridge
129, 169: 전도성 코일 스프링129, 169: conductive coil spring
228, 328, 268, 368: 전도성 팁228, 328, 268, 368: conductive tip

Claims (9)

  1. 마주보는 단자들 사이에 배치되어 단자들을 전기적으로 접속시키는 테스트 소켓으로서,As a test socket disposed between opposing terminals to electrically connect terminals,
    그 양단부가 마주보는 파워 또는 신호 단자들과 접촉하는 제1 접촉 핀들과,First contact pins contacting the power or signal terminals facing each other at both ends thereof,
    그 양단부가 마주보는 접지 단자들과 접촉하는 제2 접촉 핀과,A second contact pin whose both ends are in contact with the ground terminals facing each other,
    상기 제1 접촉 핀들을 서로 연결하는 적어도 하나의 제1 브릿지와,At least one first bridge connecting the first contact pins to each other,
    상기 제1 접촉 핀과 상기 제2 접촉 핀을 서로 연결하는 적어도 하나의 제2 브릿지를 포함하며, And at least one second bridge connecting the first contact pin and the second contact pin to each other,
    각각의 상기 제1 접촉 핀은,Each of the first contact pins,
    기둥 형태의 제1 탄성 매트릭스와, 상기 제1 탄성 매트릭스의 내부에 상기 제1 탄성 매트릭스의 길이방향으로 배열되는 다수의 제1 전도성 입자들을 구비하는 제1 접촉자와,A first contactor including a first elastic matrix in the form of a column and a plurality of first conductive particles arranged in the longitudinal direction of the first elastic matrix inside the first elastic matrix,
    상기 제1 접촉자의 측면을 상기 제1 접촉자의 측면과 이격된 상태로 둘러싸는 통 형태의 제1 쉴드 전극과,A first shield electrode in a cylindrical shape surrounding the side surface of the first contactor in a state spaced apart from the side surface of the first contactor,
    상기 제1 접촉자와 상기 제1 쉴드 전극의 사이에 배치되어 상기 제1 접촉자와 상기 제1 쉴드 전극을 전기적으로 분리된 상태로 연결하는 제1 절연지지부를 구비하며,A first insulating support portion disposed between the first contactor and the first shield electrode to connect the first contactor and the first shield electrode in an electrically separated state,
    상기 제1 브릿지는,The first bridge,
    서로 인접한 상기 제1 쉴드 전극들을 전기적으로 연결하는 테스트용 소켓.A test socket for electrically connecting the adjacent first shield electrodes to each other.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 접촉자는,The first contactor,
    상기 제1 탄성 매트릭스에 내장된 전도성 코일 스프링을 더 포함하는 테스트용 소켓.A test socket further comprising a conductive coil spring embedded in the first elastic matrix.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 접촉자는,The first contactor,
    상기 제1 탄성 매트릭스의 일단부에 결합하는 전도성 팁을 더 포함하는 테스트용 소켓.Test socket further comprising a conductive tip coupled to one end of the first elastic matrix.
  4. 제3항에 있어서,The method of claim 3,
    상기 전도성 팁은,The conductive tip,
    상기 제1 탄성 매트릭스의 일단부에 결합하는 전도성 판과 상기 전도성 판으로부터 돌출된 전도성 돌기를 포함하는 테스트용 소켓.A test socket comprising a conductive plate coupled to one end of the first elastic matrix and a conductive protrusion protruding from the conductive plate.
  5. 제3항에 있어서,The method of claim 3,
    상기 전도성 팁의 표면에는 금속 층이 형성된 테스트용 소켓.A test socket having a metal layer formed on the surface of the conductive tip.
  6. 제4항에 있어서,The method of claim 4,
    상기 전도성 판으로부터 상기 제1 탄성 매트릭스 안쪽으로 돌출된 전도성 앵커부를 더 포함하는 테스트용 소켓.A test socket further comprising a conductive anchor part protruding from the conductive plate into the first elastic matrix.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2 접촉 핀은,The second contact pin,
    기둥 형태의 제2 탄성 매트릭스와, 상기 제2 탄성 매트릭스의 내부에 상기 제2 탄성 매트릭스의 길이방향으로 배열되는 다수의 제2 전도성 입자들을 구비하는 제2 접촉자를 포함하는 테스트용 소켓.A test socket including a second contactor including a second elastic matrix in the form of a column and a plurality of second conductive particles arranged in the second elastic matrix in the longitudinal direction of the second elastic matrix.
  8. 제7항에 있어서,The method of claim 7,
    상기 제2 접촉 핀은,The second contact pin,
    상기 제2 접촉자의 측면을 상기 제2 접촉자의 측면과 이격된 상태로 둘러싸는 통 형태의 제2 쉴드 전극과,A second shield electrode in a cylindrical shape surrounding a side surface of the second contactor in a state spaced apart from the side surface of the second contactor,
    상기 제2 접촉자와 상기 제2 쉴드 전극의 사이에 배치되는 제2 절연지지부와,A second insulating support part disposed between the second contact and the second shield electrode,
    상기 제2 접촉자와 상기 제2 쉴드 전극을 전기적으로 연결하는 전도성 접속부를 더 구비하며,Further comprising a conductive connecting portion electrically connecting the second contact and the second shield electrode,
    상기 제2 브릿지는 상기 제1 쉴드 전극과 제2 쉴드 전극을 연결하는 테스트용 소켓.The second bridge is a test socket for connecting the first shield electrode and the second shield electrode.
  9. 제7항에 있어서,The method of claim 7,
    상기 제2 브릿지는 상기 제1 쉴드 전극과 제2 접촉자를 연결하는 테스트용 소켓.The second bridge is a test socket for connecting the first shield electrode and the second contact.
PCT/KR2020/008625 2019-07-03 2020-07-02 Test socket WO2021002690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190080265A KR102133675B1 (en) 2019-07-03 2019-07-03 Test socket
KR10-2019-0080265 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002690A1 true WO2021002690A1 (en) 2021-01-07

Family

ID=71571019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008625 WO2021002690A1 (en) 2019-07-03 2020-07-02 Test socket

Country Status (2)

Country Link
KR (1) KR102133675B1 (en)
WO (1) WO2021002690A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357723B1 (en) 2021-09-15 2022-02-08 (주)새한마이크로텍 Signal Loss Prevented Test Socket
KR102389136B1 (en) 2021-12-27 2022-04-21 주식회사 새한마이크로텍 Signal Loss Prevented Test Socket
KR20230137677A (en) * 2022-03-22 2023-10-05 주식회사 새한마이크로텍 Signal Loss Prevented Test Socket
KR102525559B1 (en) 2023-01-02 2023-04-25 (주)새한마이크로텍 Signal Loss Prevented Test Socket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244872A1 (en) * 2009-03-31 2010-09-30 Takuto Yoshida Inspection socket and method of producing the same
JP2011252766A (en) * 2010-06-01 2011-12-15 3M Innovative Properties Co Contact holder
KR101193556B1 (en) * 2011-11-22 2012-10-22 주식회사 세미콘테스트 Test socket formed with a pcb
KR101735520B1 (en) * 2016-03-17 2017-05-24 주식회사 오킨스전자 Test socket having top metal plate bump and method for manufacturing thereof
KR20190037621A (en) * 2017-09-29 2019-04-08 주식회사 새한마이크로텍 Conductive contact and anisotropic conductive sheet with the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375117B1 (en) 1998-12-30 2003-08-19 제이에스알 가부시끼가이샤 Anisotropic Conductive Sheet With Positioning Part_
WO2000073905A2 (en) * 1999-05-27 2000-12-07 Nanonexus, Inc. Test interface for electronic circuits
KR100602442B1 (en) * 2004-05-18 2006-07-19 삼성전자주식회사 Test socket having connecting substrate
JP5379474B2 (en) * 2006-04-28 2013-12-25 日本発條株式会社 Conductive contact holder
KR101403082B1 (en) 2007-07-11 2014-06-27 주식회사 포스코 Apparatus for Treating Foreign Materials in Strip Coating Solution
KR101726399B1 (en) * 2016-03-17 2017-04-13 주식회사 오킨스전자 Test socket having bottom metal plate bump and method for manufacturing thereof
KR101770757B1 (en) 2015-12-07 2017-08-24 주식회사 아이에스시 Socket for test and manufacturing method for socket for test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244872A1 (en) * 2009-03-31 2010-09-30 Takuto Yoshida Inspection socket and method of producing the same
JP2011252766A (en) * 2010-06-01 2011-12-15 3M Innovative Properties Co Contact holder
KR101193556B1 (en) * 2011-11-22 2012-10-22 주식회사 세미콘테스트 Test socket formed with a pcb
KR101735520B1 (en) * 2016-03-17 2017-05-24 주식회사 오킨스전자 Test socket having top metal plate bump and method for manufacturing thereof
KR20190037621A (en) * 2017-09-29 2019-04-08 주식회사 새한마이크로텍 Conductive contact and anisotropic conductive sheet with the same

Also Published As

Publication number Publication date
KR102133675B1 (en) 2020-07-13

Similar Documents

Publication Publication Date Title
WO2021002690A1 (en) Test socket
WO2013151316A1 (en) Test socket having high-density conductive unit, and method for manufacturing same
WO2016126024A1 (en) Test socket having conductive particles in coupled form
WO2019066365A1 (en) Conductive contact portion and anisotropic conductive sheet comprising same
WO2017196094A1 (en) Testing socket and conductive particles
WO2023128428A1 (en) Test socket for signal loss protection
WO2012002612A1 (en) Probe
WO2018105896A1 (en) Test socket apparatus
KR101246301B1 (en) Socket for electrical test with micro-line
WO2017175984A1 (en) Anisotropic conductive sheet comprising conductive particles including different kinds of particles mixed therein
WO2014104782A1 (en) Test socket and socket body
US20060134378A1 (en) Anisotropic conductive sheet and its manufacturing method, adaptor device and its manufacturing method, and circuit device electric test instrument
WO2022186679A1 (en) Contactor and method for manufacturing same
WO2015156653A1 (en) Method for manufacturing test sheet, and test sheet
WO2011162430A1 (en) Insert for handler
KR102153221B1 (en) Anisotropic conductive sheet
WO2020096238A1 (en) Electroconductive particles and signal-transmitting connector having same
WO2018208117A1 (en) Inspection socket
WO2011099822A2 (en) Test socket
WO2013077671A1 (en) Test socket provided with stopper portion
WO2019245153A1 (en) Plate spring-type connecting pin
WO2023080533A1 (en) Test socket
KR20170108655A (en) Test socket and fabrication method thereof
WO2023042929A1 (en) Test socket for preventing signal loss
WO2015030357A1 (en) Anisotropic conductive connector, manufacturing method and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834493

Country of ref document: EP

Kind code of ref document: A1