WO2021000651A1 - 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法 - Google Patents

一种氨基酸晶型控制剂控制氧化铁黄粘度的方法 Download PDF

Info

Publication number
WO2021000651A1
WO2021000651A1 PCT/CN2020/089761 CN2020089761W WO2021000651A1 WO 2021000651 A1 WO2021000651 A1 WO 2021000651A1 CN 2020089761 W CN2020089761 W CN 2020089761W WO 2021000651 A1 WO2021000651 A1 WO 2021000651A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
reaction
iron oxide
amino acid
control agent
Prior art date
Application number
PCT/CN2020/089761
Other languages
English (en)
French (fr)
Inventor
沈辉
李金花
钱晓晖
Original Assignee
浙江华源颜料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华源颜料股份有限公司 filed Critical 浙江华源颜料股份有限公司
Publication of WO2021000651A1 publication Critical patent/WO2021000651A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the invention relates to a low-viscosity yellow iron oxide pigment, in particular to the preparation of low-viscosity yellow iron oxide by adding an amino acid crystal form control agent during a controlled reaction process.
  • Iron oxide yellow also known as iron oxyhydroxide, has a molecular formula of FeOOH or Fe 2 O 3 ⁇ H 2 O. It is a yellow powder. Its particle shape is needle-like. It has high tinting power, hiding power, and is non-toxic and non-toxic. It is an environmentally friendly inorganic pigment with a light resistance of 6-7. Iron oxide yellow pigment is widely used in building materials, coatings, paints, plastics, rubber, electronics, industrial catalysts, tobacco, cosmetics and other industries.
  • Ordinary iron oxide yellow has higher viscosity due to different surface charge distribution and particle morphology, and has many limitations in the application of coatings. Compared with other shaft crystal systems, such as iron oxide red, which is spherical and iron oxide black, which is cubic, iron oxide yellow has a needle-like structure and has a large aspect ratio. Therefore, iron oxide yellow has great resistance to flow, so it has the highest viscosity in most media coating systems, which is also a big problem in the field of coatings and pigments.
  • the rheological properties of the coatings are strictly required from production to storage, from construction to film formation. At these stages, due to the different concentration of pigments and the different shearing forces and pressures experienced by the coatings, the viscosity or anti-flow properties are It is a key technical indicator of coatings. In the high-shear grinding stage, in order to maximize the pigment content in the grinding base and maximize production efficiency, it is hoped that the viscosity of the grinding base will be lower. In the mixing, transfer, and packaging of the paint In the process, it is also desirable to have a lower viscosity.
  • Zhejiang Huayuan Pigment discloses Application number ZL201610596145.1'a low viscosity iron oxide yellow' patent has a certain effect on reducing the viscosity of iron oxide yellow through high-pressure reaction and controlling the system temperature, but the high-pressure reaction is dangerous and consumes a lot of energy, due to the limitation of the size of the reactor , The output is low.
  • the object of the present invention is to provide a method for controlling the viscosity of yellow iron oxide with an amino acid crystal form control agent, which utilizes the chelating effect of amino acids to provide a stable nuclear site, and reduces the growth of iron oxide yellow crystals under the action of the crystal form control agent. Branching and reducing the aspect ratio, making the crystal smoother, thereby reducing the viscosity of the yellow iron oxide.
  • the material liquid is discharged, and the material liquid is suction filtered, rinsed, dried, and superfinely pulverized to obtain the finished product.
  • the crystal form controlling agent is aspartic acid, lysine or glutamic acid; preferably, the crystal form controlling agent is aspartic acid.
  • the mass ratio of aspartic acid to liquid material is 1:4000 to 1:1000; preferably, the mass ratio of aspartic acid to liquid material is 1:2000 to 1:1000.
  • step 1) the first 5-7 hours of the reaction solution through the bottom of the air, the air volume control in 230m 3 / h, after 7-10h, the air volume control in 460m 3 / h.
  • the air flow rate is 300 m 3 /h.
  • step 2) when the ferrous content is less than 1.0 mol/L, ferrous sulfate is added in small amounts several times to control the ferrous reaction content to be 1.0 molL to 1.5 mol/L.
  • step 2) the crystal form control agent amino acid is put into seed crystals to control the content of ferrous iron between 1.34 mol/L and 1.52 mol/L.
  • the inventor of the present invention has passed multiple demonstration tests, The concentration of ferrous iron leads to too high seed concentration, and too high seed concentration per unit volume will affect seed growth
  • the molar ratio of the ferrous sulfate to sodium hydroxide is 4-7, preferably 5-6.
  • 50m 3 of ferrous sulfate solution with a concentration of 1.5 mol/L is added to the stainless steel reaction tank, and 7m 3 of 2.5 mol/L sodium hydroxide solution is added, while controlling the reaction temperature to 30°C;
  • the total reaction time is controlled to 15h.
  • Air is introduced to the bottom of the reaction liquid in the first 5-7 hours, and the air volume is controlled at 230m 3 /h, and the air volume is controlled at 460m 3 /h in the last 7-10h. .
  • the present invention has the following beneficial effects:
  • the present invention uses the chelating effect of amino acids to provide a stable core location.
  • the yellow iron oxide crystals are grown to reduce the branching and the aspect ratio, so that the crystals are smoother, thereby reducing iron oxide The viscosity of yellow.
  • Figure 1 is a schematic diagram of the structure of the reaction barrel provided by the present invention.
  • the reaction barrel used in the following embodiments has a reaction structure as shown in FIG. 1.
  • the reaction barrel includes an open barrel 1 and a ferrous sulfate pipe 2, a liquid caustic soda pipe 3.
  • the steam pipe 4 and the water pipe 5 add ferrous sulfate solution into the barrel through the ferrous sulfate pipe; add sodium hydroxide solution into the barrel through the liquid caustic soda pipe; the reaction liquid in the barrel can be steam heated through the steam pipe; Adding water to the water pipe can dilute the content of ferrous iron; the bottom of the barrel 1 also leads to an air pipe 6, which is equipped with an air flow meter 7, so as to effectively control the amount of air entering the reaction night.
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h ; The final reaction material is stored separately as a seed crystal;
  • A Put the prepared seed crystal into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and add aspartic acid as the crystal form control agent ,Provide nucleation site through chelation, the input ratio is 1:4000 of amino acid and total liquid material mass ratio;
  • the reactor valve is opened, the material liquid is discharged, and the material liquid is suction filtered, rinsed, dried, and ultra-finely crushed to obtain the finished product.
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystal into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and add aspartic acid as the crystal form control agent ,Provide nucleation site through chelation, the input ratio is aspartic acid and the total liquid material mass ratio is 1:2000;
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystal into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and add aspartic acid as the crystal form control agent ,Provide nucleation sites through chelation, the input ratio is 1:1000 aspartic acid to total liquid material mass ratio;
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystals into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and put lysine as the crystal form control agent.
  • the input ratio is that the mass ratio of lysine to total liquid material is 1:2000;
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystal into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and put glutamic acid as the crystal form control agent.
  • the input ratio is that the mass ratio of glutamic acid to total liquid material is 1:2000;
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystals into the reaction tank, then add a certain amount of water to dilute, control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L, and put in AlCl 3 as the crystal form control agent.
  • the ratio is that the mass ratio of AlCl 3 to the total liquid material is 1:2000;
  • Post-processing After the reaction reaches the specified time, open the reactor valve, discharge the material liquid, and perform suction filtration, rinsing, drying, and ultrafine pulverization to obtain the finished product.
  • a method for preparing iron oxide yellow includes the following steps:
  • Raw material configuration add 50m 3 of ferrous sulfate solution with a concentration of 1.5mol/L into the stainless steel reaction tank, then add a volume of 7m 3 of sodium hydroxide solution with a concentration of 2.5mol/L, while controlling the reaction temperature to 25- 35°C;
  • Air volume control control the total reaction time to be 14-17h. In the first 5-7 hours, pass air into the bottom of the reaction solution, the air volume is controlled at 230m 3 /h, and the latter 7-10h, the air volume is controlled at 460m 3 /h .
  • the final reaction materials are stored separately as seed crystals;
  • A Put the prepared seed crystals into the reaction tank, and then add a certain amount of water to dilute, and control the ferrous iron content between 1.34mol/L ⁇ 1.52mol/L;
  • Aspect ratio test (Scanning Electron Microscope SEM): Test Examples 1 to 6 obtain the aspect ratio of iron oxide yellow (SEM test).
  • Example 1 450:109 60
  • Example 2 340:110 37
  • Example 3 338:111 36
  • Example 4 522: 132 48
  • Example 6 602: 117 65 Blank control group 721:108 124
  • Tables 2 to 4 show that the difference between each sample obtained in Example 3 and the standard sample through the GB/T 1864-2012 color measurement method is ⁇ E ⁇ 0.2, which means that the color of the sample and the standard sample are similar or slightly similar.
  • the data in the table shows that the product produced by this method has less color change and is basically the same as the standard sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Cosmetics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

一种氨基酸晶型控制剂控制氧化铁黄粘度的方法,包括如下步骤:1)晶种制备;2)加入氨基酸晶型控制剂氧化;3)后道处理。利用氨基酸的螯合效应提供稳定的核定位点,在该晶型控制剂作用下使氧化铁黄晶体成长时减少分叉和缩小了长径比,让晶体更加光滑,从而降低了氧化铁黄的粘度。

Description

一种氨基酸晶型控制剂控制氧化铁黄粘度的方法 技术领域
本发明涉及低粘度氧化铁黄颜料,具体涉及控制反应过程中加入氨基酸晶型控制剂制备低粘度氧化铁黄。
背景技术
氧化铁黄,又称为羟基氧化铁,其分子式为FeOOH或Fe 2O 3·H 2O,呈黄色粉末,其粒子形状为针状,具有较高的着色力,遮盖力,且无毒无害,为环境友好型无机颜料,其耐光性达到6-7级。氧化铁黄颜料广泛应用于建材、涂料、油漆、塑料、橡胶、电子、工业催化剂、烟草、化妆品等行业。
普通氧化铁黄由于表面电荷分布和粒子形态不同,其粘度较高,在涂料应用领域有较多的局限性。相较于其他轴系晶系如氧化铁红为球形氧化铁黑为立方形相比,氧化铁黄为针状结构,拥有很大的长径比。因此氧化铁黄具有很大的抗流动性,所以在大多数介质的涂料系统中其粘度最大,也是涂料和颜料领域的一个大问题。
涂料的流变性能从生产到储存,从施工到成膜,自始至终都是有严格要求的,在这些阶段,由于颜料的浓度不同,涂料经受的剪切力和压力不同,所以粘度或者抗流动性能是涂料的一项关键技术指标,在高剪切力的研磨阶段,为了使磨基中颜料含量达到最高值,尽量提高生产效率,希望磨基的粘度低一些,在涂料的混合,转移、包装过程中也希望其粘度低一些。
涂料的所有组分对于粘度都有一定的影响,为获取要求的粘度特性,需要选择合适的颜料是一个关键因素。目前以高含固量低挥发性有机物是涂料行业的重要发展对象,而颜料粘度决定了含固量的大小,颜料黏度过高导致了涂料抗流动性过高,对生产极为不利。
目前,国内外相关文献报道显示,通过改变氧化铁黄粒子表面电荷或者缩小氧化铁黄粒子的长径比均能够对氧化铁黄的粘度进行改良,国内有浙江联合颜料公开的申请号201410767118.7的专利“一种低粘度氧化铁黄颜料”,其原理在于通过钢珠研磨,破坏部分氧化铁黄颜料粒子形状而且只是局部改善粉体长径比并且长径比一致性较差,而不能整体上缩小所有氧化铁黄粒子的长径比,这种方法虽一定程度上减小了颜料的粘度,但是效果不够明显破坏了结构使颜料的色相会有所改变;南通宝聚颜料公司公布专利号为ZL201310277999.X的‘一种降低氧化铁黄颜料粘度的方法’专利即通过改变氧化铁黄粒子表面的电荷来改良氧化铁黄的粘度,效果比较理想,但仍有改善的空间;浙江华源颜料公开的申请号ZL201610596145.1的‘一种低粘度氧化铁黄’专利通过高压反应以及控制体系温度降低氧化铁黄粘度有一定效果,但采用高压反应危险系度高且消耗能源大,由于反应釜体形限制,产量较低。
发明内容
本发明的目的在于提供一种氨基酸晶型控制剂控制氧化铁黄粘度的方法,利用氨基酸的 螯合效应提供稳定的核定位点,在该晶型控制剂作用下使氧化铁黄晶体成长时减少分叉和缩小了长径比,让晶体更加光滑,从而降低了氧化铁黄的粘度。
为了实现上述发明目的,采用如下技术方案:
1)晶种制备:
将2~3mol/L氢氧化钠溶液加入浓度为1~2mol/L硫酸亚铁溶液中,控制反应温度为125-35℃,反应时间为14~17h,向反应夜底部通入空气且空气量控制在200m 3/h~500m 3/h;
2)加入氨基酸晶型控制剂氧化
将晶型控制剂氨基酸投入上述晶种中,继续通入空气,空气量控制在250m 3/h~350m 3/h,加热至温度为60~65℃时,加入浓度为2~3mol/L氢氧化钠溶液,当pH达到4.0±0.3时停止加入氢氧化钠溶液,反应温度为80℃~88℃,反应时间控制在10h~14h;
3)后道处理:
反应达到规定时间之后,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
在一些优选实施例中,所述晶型控制剂为天冬氨酸、赖氨酸或谷氨酸;优选地,所述的晶型控制剂为天冬氨酸。
在一些优选实施例中,所述天冬氨酸和液料质量比为1:4000~1:1000;优选地,所述天冬氨酸和液料质量比为1:2000~1:1000。
在一些优选实施例中,步骤1)中,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。
在一些优选实施例中,步骤2)中,空气的通入量为300m 3/h。
在一些优选实施例中,步骤2)中,当亚铁含量低于1.0mol/L时,采用多次少量的方式补加硫酸亚铁,控制亚铁反应含量在1.0molL~1.5mol/L。
在一些优选实施例中,步骤2)中,晶型控制剂氨基酸投入晶种中,控制亚铁含量在1.34mol/L~1.52mol/L之间,本发明的发明人通过多次论证试验,亚铁浓度导致晶种浓度过高,单位体积晶种浓度过高会影响晶种成长
在一些优选实施例中,所述硫酸亚铁与氢氧化钠的摩尔比为4~7,优选为5~6。
在一些优选实施例中,将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入到不锈钢反应桶中,再加入2.5mol/L的氢氧化钠溶液7m 3,同时控制反应温度为30℃;控制总的反应时间为15h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h对反应液底部通入空气,空气量控制在460m 3/h。
与现有技术相比,本发明具有以下有益效果:
本发明利用氨基酸的螯合效应提供稳定的核定位点,在该晶型控制剂作用下使氧化铁黄晶体成长时减少分叉和缩小了长径比,让晶体更加光滑,从而降低了氧化铁黄的粘度。
附图说明
图1为本发明提供的反应桶的结构示意图。
具体实施方式
以下实施例使用的反应桶具有如图1所示的反应结构,如图1所示,该反应桶包括敞口的桶体1以及通入该通体的硫酸亚铁管道2、液碱管道3、蒸汽管4以及水管5,通过硫酸亚铁管道向桶体内加入硫酸亚铁溶液;通过液碱管道向桶体内加入氢氧化钠溶液;通过蒸汽管能够对桶体内的反应液进行蒸汽加热;通过该水管加水可以稀释亚铁含量;所述桶体1的底部还通入空气管6,空气管6配备有空气流量计7,以便有效控制进入反应夜的空气量。
实施例1
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h;反应最终物料作为晶种单独储备存放;
2)加入氨基酸晶型控制剂氧化:
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入天冬氨酸作为晶型控制剂,通过螯合作用提供成核定位点,投入比例为氨基酸与总液料质量比为1:4000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃;
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间;
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右;
3)后道处理:
反应达到规定时间(根据标样颜色要求氧化铁颜料生产的反应时间产生变化)之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
实施例2
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)加入氨基酸晶型控制剂氧化:
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入天冬氨酸作为晶型控制剂,通过螯合作用提供成核定位点,投入比例为天冬氨酸与总液料质量比为1:2000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃;
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间;
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右;
3)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
实施例3
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)加入氨基酸晶型控制剂氧化:
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入天冬氨酸作为晶型控制剂,通过螯合作用提供成核定位点,投入比例为天冬氨酸与总液料质量比为1:1000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃;
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间;
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右;
3)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
实施例4
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)加入氨基酸晶型控制剂氧化:
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入赖氨酸作为晶型控制剂,投入比例为赖氨酸与总液料质量比为1:2000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃。
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间。
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右。
3)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
实施例5
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)加入氨基酸晶型控制剂氧化:
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入谷氨酸作为晶型控制剂,投入比例为谷氨酸与总液料质量比为1:2000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃。
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间。
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右。
3)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
实施例6
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量 控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)加入氯化铝晶型控制剂氧化
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间,投入AlCl 3作为晶型控制剂,投入比例为AlCl 3与总液料质量比为1:2000;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃。
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间。
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右。
4)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
对照组
氧化铁黄的制备方法,该方法包括如下步骤:
1)晶种制作:
A.原料配置:将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入不锈钢反应桶中,再加入体积为7m 3浓度为2.5mol/L的氢氧化钠溶液,同时控制反应温度为25-35℃;
B:风量控制:控制总的反应时间为14-17h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。反应最终物料作为晶种单独储备存放;
2)、继续反应
A:将已制作好的晶种投入反应桶内,然后加入一定量的水兑稀,控制亚铁含量在1.34mol/L~1.52mol/L之间;
B:对反应桶料液从底部通入空气,控制空气流量300m 3/h,同时打开蒸汽阀门进行升温,当温度达到62±2℃时,停止升温,保证反应温度在62±2℃。
C:当温度稳定后,加入浓度为2.5mol/L的液碱,当pH达到4.0±0.3后停止加液碱,将反应温度控制在80℃~88℃之间。
D:当亚铁含量低于1.0mol/L时,补加硫酸亚铁,补加采用多次少量的方式操作,控制反应含量在1.0molL左右。
3)后道处理:反应达到规定时间之后,打开反应釜阀门,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
测试例1
斯托默粘度计测试方法:先在设备配套容器中加入BYK190和BYK024分别700g和30g,再加入270g蒸馏水后慢慢加入120g氧化铁黄颜料,用SFJ-400砂磨分散,搅拌多用机4500转搅拌45分钟后,测量温度在25℃下用KU-2VISCOMETER粘度计测出数据;依据上述方法对实施例1~6获得氧化铁黄进行粘度测定,粘度值如下表1所示:
长径比测试(扫描电镜SEM):测试实施例1~6获得氧化铁黄的长径比(SEM测试)。
表1
产品氧化铁黄 长径比(SEM测试) 粘度(Ku)
实施例1 450:109 60
实施例2 340:110 37
实施例3 338:111 36
实施例4 522:132 48
实施例5 556:119 60
实施例6 602:117 65
空白对照组 721:108 124
测试例2
通过GB/T 1864-2012测色方法,根据具体实施例2方法得到产品与标样颜色数据对比,详见表2~4
表2
  L a b
标样 59.1 14.09 42.74
试样批次1 58.96 14.13 42.85
△E=0.18 -0.14 0.04 0.11
表3
  L a b
标样 58.99 14.11 42.75
试样批次2 58.88 14.16 42.80
△E=0.13 -0.11 0.04 0.05
表4
  L a b
标样 59.17 14.01 42.68
试样批次3 59.11 14.08 42.77
△E=0.13 -0.06 0.07 0.09
表2~4显示,通过实施例3得到的各个试样通过GB/T 1864-2012测色方法与标样差异在△E<0.2,这表示试样与标样颜色近似或稍似,上述三个表中数据可知此方法制得产品颜色变化较小与标样基本相同。

Claims (10)

  1. 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,包括如下步骤:
    1)晶种制备:
    将2~3mol/L氢氧化钠溶液加入浓度为1~2mol/L硫酸亚铁溶液中,控制反应温度为125-35℃,反应时间为14~17h,向反应夜底部通入空气且空气量控制在200m 3/h~500m 3/h;
    2)加入氨基酸晶型控制剂氧化:
    将晶型控制剂氨基酸投入上述晶种中,继续通入空气,空气量控制在250m 3/h~350m 3/h,加热至温度为60~65℃时,加入浓度为2~3mol/L氢氧化钠溶液,当pH达到4.0±0.3时停止加入氢氧化钠溶液,反应温度为80℃~88℃,反应时间控制在10h~14h;
    3)后道处理:
    反应达到规定时间之后,放出料液,对料液进行抽滤、漂洗、烘干、超细粉碎即得成品。
  2. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,所述晶型控制剂为天冬氨酸、赖氨酸或谷氨酸;优选地,所述的晶型控制剂为天冬氨酸。
  3. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,所述天冬氨酸和液料质量比为1:4000~1:1000;优选地,所述天冬氨酸和液料质量比为1:2000~1:1000。
  4. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,步骤1)中,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h,空气量控制在460m 3/h。
  5. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,步骤2)中,空气的通入量为300m 3/h。
  6. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,步骤2)中,当亚铁含量低于1.0mol/L时,采用多次少量的方式补加硫酸亚铁,控制亚铁反应含量在1.0molL~1.5mol/L。
  7. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,步骤2)中,晶型控制剂氨基酸投入晶种中,控制亚铁含量在1.34mol/L~1.52mol/L之间。
  8. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,所述硫酸亚铁与氢氧化钠的摩尔比为4~7,优选为5~6。
  9. 根据权利要求1所述的氨基酸晶型控制剂控制氧化铁黄粘度的方法,其特征在于,将50m 3浓度为1.5mol/L的硫酸亚铁溶液加入到不锈钢反应桶中,再加入2.5mol/L的氢氧化钠溶液7m 3,同时控制反应温度为30℃;控制总的反应时间为15h,前5-7小时对反应液底部通入空气,空气量控制在230m 3/h,后7-10h对反应液底部通入空气,空气量控制在460m 3/h。
  10. 根据权利要求1~9任意一项所述的制备方法制备得到的低粘度氧化铁黄。
PCT/CN2020/089761 2019-07-02 2020-05-12 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法 WO2021000651A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910589808.0A CN110342583B (zh) 2019-07-02 2019-07-02 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法
CN201910589808.0 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021000651A1 true WO2021000651A1 (zh) 2021-01-07

Family

ID=68177722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089761 WO2021000651A1 (zh) 2019-07-02 2020-05-12 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法

Country Status (2)

Country Link
CN (1) CN110342583B (zh)
WO (1) WO2021000651A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342583B (zh) * 2019-07-02 2021-07-13 浙江华源颜料股份有限公司 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026621A (ja) * 2002-06-28 2004-01-29 Chemi Light Kogyo Kk 板状のオキシ水酸化鉄、酸化鉄、マグネタイトおよびその製造方法
CN104559331A (zh) * 2014-12-12 2015-04-29 浙江联合颜料有限公司 一种低粘度氧化铁黄颜料
CN105948133A (zh) * 2016-07-14 2016-09-21 南通中兴多元复合钢管有限公司 降低氧化铁黄粘度的方法
CN106219611A (zh) * 2016-07-27 2016-12-14 升华集团德清华源颜料有限公司 一种低粘度氧化铁黄
CN106241885A (zh) * 2016-07-27 2016-12-21 升华集团德清华源颜料有限公司 一种低粘度氧化铁黄制备方法
CN108516575A (zh) * 2018-04-18 2018-09-11 成都新柯力化工科技有限公司 一种用于塑料润滑母料中的球形硫酸钡及制备方法
CN110342583A (zh) * 2019-07-02 2019-10-18 浙江华源颜料股份有限公司 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026621A (ja) * 2002-06-28 2004-01-29 Chemi Light Kogyo Kk 板状のオキシ水酸化鉄、酸化鉄、マグネタイトおよびその製造方法
CN104559331A (zh) * 2014-12-12 2015-04-29 浙江联合颜料有限公司 一种低粘度氧化铁黄颜料
CN105948133A (zh) * 2016-07-14 2016-09-21 南通中兴多元复合钢管有限公司 降低氧化铁黄粘度的方法
CN106219611A (zh) * 2016-07-27 2016-12-14 升华集团德清华源颜料有限公司 一种低粘度氧化铁黄
CN106241885A (zh) * 2016-07-27 2016-12-21 升华集团德清华源颜料有限公司 一种低粘度氧化铁黄制备方法
CN108516575A (zh) * 2018-04-18 2018-09-11 成都新柯力化工科技有限公司 一种用于塑料润滑母料中的球形硫酸钡及制备方法
CN110342583A (zh) * 2019-07-02 2019-10-18 浙江华源颜料股份有限公司 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法

Also Published As

Publication number Publication date
CN110342583A (zh) 2019-10-18
CN110342583B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN105236467A (zh) 一种大量制备纳米氧化锌的工艺及其应用
CN111117297B (zh) 亚微米级高纯二氧化钛的表面包覆工艺
WO2021000651A1 (zh) 一种氨基酸晶型控制剂控制氧化铁黄粘度的方法
CN106315536A (zh) 制备磷酸稀土的方法
CN100455630C (zh) 纳米钴蓝颜料的制备方法
BR112015005538B1 (pt) processo para preparar ésteres de ácido fosfórico hiper-ramificados
CN103305032B (zh) 一种降低氧化铁黄粘度的方法
CN105712865B (zh) 固体柠檬酸铝交联剂、其制备方法及其应用
CN102241528A (zh) 一种用水热法制备球状纳米尖晶石型钴蓝色料的方法
CN110255624B (zh) 一种缓冲体系控制氧化铁黄粘度的方法
CN108047795A (zh) 一种具有预警功能的硅酸锌防腐颜料
WO2023213069A1 (zh) 一种涂料用改性聚酰胺蜡的制备工艺和形成的涂料
WO2023201973A1 (zh) 一种宽色谱带氧化铁黄颜料的合成方法
CN105199562A (zh) 抗结块粉末涂料
CN102643072A (zh) 一种纳米无机不粘水性涂料及其制备方法
CN105692704A (zh) 一种耐温氧化铁黄的制备方法
CN101885928B (zh) 一种纳米氧化铁红水性印刷油墨及其制备方法
CN103525129A (zh) 一种水性涂料专用纳米改质剂的制备方法
CN111533951B (zh) 一种硅酸铝-白炭黑复合填料的制备方法
CN105670485B (zh) 一种纳米Al2O3改性聚氨酯树脂涂料及其制备方法
CN105176335A (zh) 一种抗结块粉末涂料
CN110183887B (zh) 一种用于水性涂料的防锈颜料及其制备方法
CN106009935A (zh) 一种水性分散剂及其制备方法和应用
CN104830100A (zh) 降低氧化铁黄粘度的方法
CN108047769A (zh) 降低三氧化二铁粘度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835485

Country of ref document: EP

Kind code of ref document: A1