WO2021000197A1 - 光纤线路板及其制造方法、信号传输装置及混合线路板 - Google Patents

光纤线路板及其制造方法、信号传输装置及混合线路板 Download PDF

Info

Publication number
WO2021000197A1
WO2021000197A1 PCT/CN2019/094097 CN2019094097W WO2021000197A1 WO 2021000197 A1 WO2021000197 A1 WO 2021000197A1 CN 2019094097 W CN2019094097 W CN 2019094097W WO 2021000197 A1 WO2021000197 A1 WO 2021000197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
bonding layer
circuit board
substrate
optical
Prior art date
Application number
PCT/CN2019/094097
Other languages
English (en)
French (fr)
Inventor
王国栋
罗昊
姚腾飞
武令
梁海斌
Original Assignee
深南电路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深南电路股份有限公司 filed Critical 深南电路股份有限公司
Priority to PCT/CN2019/094097 priority Critical patent/WO2021000197A1/zh
Priority to US17/117,144 priority patent/US20210096312A1/en
Publication of WO2021000197A1 publication Critical patent/WO2021000197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3608Fibre wiring boards, i.e. where fibres are embedded or attached in a pattern on or to a substrate, e.g. flexible sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • This application relates to the technical field of circuit boards, in particular to an optical fiber circuit board and a manufacturing method thereof, a multilayer optical fiber circuit board, an optical transmission device, a photoelectric hybrid circuit board and a signal transmission device.
  • Optical interconnection refers to the use of light guide media (optical fibers, optical waveguides, etc.) to realize signal connections between circuit boards and chips, which can realize data transmission with low power consumption, high speed, and complete signals between boards/in boards.
  • light guide media optical fibers, optical waveguides, etc.
  • Optical fiber circuit boards are a way to realize optical interconnection.
  • the commonly used optical fiber circuit boards in related technologies use adhesives to fix the optical fibers on the substrate.
  • Such circuit boards often have unstable positions of the optical fibers and tend to deviate from their original positions. The reliability of this type of circuit board is poor.
  • the application provides an optical fiber circuit board and a manufacturing method thereof, a multilayer optical fiber circuit board, an optical transmission device, an optoelectronic hybrid circuit board, and a signal transmission device, which can improve the reliability of the optical fiber circuit board.
  • a technical solution adopted in the present application is to provide an optical fiber circuit board, the optical fiber circuit board comprising: at least two substrates, an optical fiber assembly, and a bonding layer that are stacked and spaced apart; wherein each of the two adjacent substrates An optical fiber assembly is provided between; the optical fiber assembly includes at least one optical fiber, and the bonding layer is filled in the remaining space between the two adjacent substrates except for the optical fiber assembly, so that each of the optical fibers faces each other Fixed to the substrate.
  • the multilayer optical fiber circuit board includes a plurality of the above-mentioned optical fiber circuit boards and is arranged between two adjacent optical fiber circuit boards. Wherein, a plurality of the optical fiber circuit boards are stacked and connected together by the connector.
  • Another technical solution adopted in this application is to provide an optical transmission device, which includes the above-mentioned optical fiber circuit board, at least one of the above-mentioned multilayer optical fiber circuit boards, and a device An optical port at the end of the at least one circuit board, the optical port is used to connect with an optical docking device for optical signal transmission.
  • Another technical solution adopted in this application is to provide an optoelectronic hybrid circuit board, which includes at least one of the above-mentioned optical fiber circuit board and the above-mentioned multilayer optical fiber circuit board, And a circuit wire arranged on the at least one circuit board.
  • Another technical solution adopted in this application is to provide a signal transmission device, which includes the above-mentioned optical fiber circuit board, the above-mentioned multilayer optical fiber circuit board, and the above-mentioned optoelectronic hybrid circuit board.
  • the at least one circuit board, the signal transmission mechanism, and the fixing member in, wherein the fixing member is used to fixedly connect the at least one circuit board and the signal transmission mechanism.
  • Another technical solution adopted in this application is to provide a method for manufacturing an optical fiber circuit board, the method comprising: providing a first substrate with a first bonding layer on one side and a second substrate with a second bonding layer on one side. A substrate and at least one optical fiber; the optical fibers are arranged on the side of the first bonding layer away from the first substrate to form an optical fiber assembly, and the optical fiber assembly is covered with the second bonding layer The second substrate, so that the optical fiber assembly is sandwiched between the first bonding layer and the second bonding layer to form a first overall structure; the first overall structure is pressed together so that the The first bonding layer and the second bonding layer are fused with each other to coat the optical fiber assembly, and fill in the remaining space between the first substrate and the second substrate except for the optical fiber assembly, To obtain the optical fiber circuit board.
  • Another technical solution adopted by this application is to provide a method for manufacturing an optical fiber circuit board, the manufacturing method includes: providing a first substrate with a first bonding layer on one side, a second bonding layer on both sides, and At least one intermediate substrate of the third bonding layer and a second substrate provided with a fourth bonding layer on one side and at least two optical fibers; the optical fibers are arranged on the side of the first bonding layer away from the first substrate A first optical fiber assembly is formed, and the optical fibers are arranged on the side of the third bonding layer of each intermediate substrate away from the corresponding intermediate substrate to form a second optical fiber assembly; the first optical fiber assembly is arranged The first substrate, at least one of the intermediate substrates on which the second optical fiber components are arranged, and the second substrate are stacked in sequence to form a first overall structure, wherein the first overall structure The first optical fiber component is sandwiched between the first bonding layer and the corresponding second bonding layer, and the second optical fiber component is sandwiched between the corresponding third bonding layer and the second bond
  • the first overall structure is pressed together so as to be disposed on both sides of the first optical fiber assembly
  • the first optical fiber assembly is covered, and is filled between the first substrate and the adjacent intermediate substrate except for the first In the remaining space outside the optical fiber components, and so that the corresponding third bonding layer and one of the second bonding layers respectively disposed on both sides of each second optical fiber assembly are fused with each other to cover the second
  • the optical fiber assembly is filled in the remaining space between the two intermediate substrates on both sides of the second optical fiber assembly except for the second optical fiber assembly, and/or so that they are respectively arranged in the second optical fiber assembly
  • the corresponding third bonding layer and the fourth bonding layer on both sides of the optical fiber assembly are fused with each other to cover the second optical fiber assembly, and are filled in the intermediate substrate and the second optical fiber assembly located on both sides of the second optical fiber assembly.
  • the optical fiber circuit board of the present application includes: at least two substrates, an optical fiber assembly, and a bonding layer that are stacked; wherein, an optical fiber is provided between every two adjacent substrates.
  • the optical fiber assembly includes at least one optical fiber, and the bonding layer is filled in the remaining space between the two adjacent substrates except for the optical fiber assembly, so that each optical fiber is fixed relative to the substrate. Since the bonding layer is filled in the space between every two adjacent substrates except for the optical fiber assembly, the optical fiber can be fully wrapped by the bonding layer and firmly fixed between adjacent substrates to avoid long-term use. Displacement of the optical fiber due to insecure fixation occurs, thereby improving the reliability of the optical fiber circuit board.
  • Fig. 1 is a schematic structural diagram of an embodiment of an optical fiber circuit board of the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the optical fiber circuit board of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of the optical fiber circuit board of the present application.
  • FIG. 4 is a schematic diagram of a partial structure of an embodiment of an optical fiber circuit board of the present application.
  • FIG. 5 is another partial structural diagram of an embodiment of the optical fiber circuit board of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a multilayer optical fiber circuit board of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a multilayer optical fiber circuit board of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of the optical transmission device of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of the photoelectric hybrid circuit board of the present application.
  • FIG. 10 is a schematic structural diagram of an embodiment of a signal transmission device of the present application.
  • Figure 11 is a front view of a circuit board and a fixing member in an embodiment of the signal transmission device of the present application
  • Figure 12 is a side view of Figure 11;
  • FIG. 13 is a front view of a circuit board and a fixing member in another embodiment of the signal transmission device of the present application.
  • Figure 14 is a side view of Figure 13;
  • 15 is a schematic flowchart of an embodiment of a method for manufacturing an optical fiber circuit board according to the present application.
  • Figure 16 is a schematic diagram of the relevant structure in Figure 15;
  • 17 is a schematic flowchart of another embodiment of the method for manufacturing an optical fiber circuit board according to the present application.
  • Figure 18 is a schematic diagram of the relevant structure in Figure 17;
  • FIG. 19 is a schematic partial flowchart of an embodiment of a method for manufacturing an optical fiber circuit board according to the present application.
  • FIG. 20 is a related schematic diagram in FIG. 19;
  • FIG. 21 is a schematic partial flowchart of an embodiment of a method for manufacturing an optical fiber circuit board according to the present application.
  • FIG. 22 is a schematic diagram of the related structure in FIG. 21.
  • the optical fiber circuit board may be a circuit board that transmits only optical signals, or a circuit board that transmits mixed signals including optical signals (for example, electrical signals).
  • the optical fiber circuit board may include at least two substrates 11, at least one optical fiber component 12 and a bonding layer 13.
  • the number of substrates 11 may be two, or three or more.
  • the material of the substrate 11 may be a flexible composite material, such as polyimide, polyethylene terephthalate, polydimethylsiloxane, and the like.
  • the optical fiber circuit board can use a thinner substrate 11 to reduce the overall weight and thickness of the optical fiber circuit board and increase the flexibility of the optical fiber circuit board.
  • the surface topography of the formed optical fiber circuit board It may be uneven.
  • a relatively thick substrate 11 or a thinner optical fiber can also be selected according to actual requirements to improve the flatness of the optical fiber circuit board.
  • an optical fiber assembly 12 is provided between every two adjacent substrates 11.
  • the number of optical fiber assemblies 12 is one less than the number of substrates 11. That is, when the number of substrates 11 is n, the optical fiber The number of components 12 is n-1.
  • each optical fiber assembly 12 is arranged in a space sandwiched between two adjacent substrates 11. It should be pointed out that the optical fiber assembly 12 here refers to a structure formed by optical fibers arranged between two adjacent substrates 11 in a certain manner.
  • Each optical fiber assembly 12 includes at least one optical fiber 121, and specifically may be one or more optical fibers 121, one or more groups of optical fibers 121, and the like.
  • the number of optical fibers 121 in each group of optical fibers 121 can be set according to actual needs, such as the type of connectors to be connected, for example, it can be 1, 4, 8, 12, 24, etc.; optical fiber 121
  • the number of groups can also be set according to requirements, and there is no limit here.
  • the optical fiber assembly 12 may include a single-layered optical fiber 121, as shown in FIGS. 1 and 2, and may also include a stacked and cross-arranged multilayer optical fiber 121, such as a two-layer optical fiber 121, as shown in FIG. 3. Or, it may also include multiple layers of optical fibers 121 stacked in a staggered arrangement. Of course, in actual applications, it can be set according to specific requirements.
  • each optical fiber 121 may be arranged linearly or arranged in a curved shape.
  • the optical fiber 121 in the optical fiber assembly 12 may be a high-temperature optical fiber.
  • the outer surface of the fiber core is coated with a coating layer that can withstand high temperatures above 100 degrees.
  • the material of the coating layer may be high-temperature-resistant acrylic and Thermal silica gel, polyimide, metal, etc.; or the optical fiber 121 in the optical fiber assembly 12 can also be an ordinary optical fiber, and the material of the outer coating layer of the core can be epoxy acrylate or polyacrylate, etc., which will not be detailed here. limited.
  • the bonding layer 13 is filled in the remaining space between every two adjacent substrates 11 except for the optical fiber assembly 12 to fix each optical fiber 121 relative to the corresponding substrate 11.
  • the above method can firmly fix the optical fiber 121 between adjacent substrates 11 to avoid long-term use. Displacement of the optical fiber 121 occurs due to the loose fixation, thereby improving the reliability of the optical fiber 121 circuit board.
  • the thickness refers to the thickness of the bonding layer 13 in a direction perpendicular to the plate surface of the substrate 11.
  • the thickness of the thinnest area of the bonding layer 13 between two adjacent substrates 11 is greater than one-tenth of the diameter of the optical fiber 121 and less than 10 times the diameter of the optical fiber 121, or greater than the diameter of the optical fiber 121
  • the thickness of the thinnest region of the bonding layer 13 between two adjacent substrates 11 is one-fifth, one-half, and the diameter of the optical fiber 121. 1 times, 2 times, 5 times, etc., there is no specific limitation here.
  • the thickness of the bonding layer 13 is not less than 50 ⁇ m, and can be 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, etc.
  • the peel strength between adjacent substrates 11 is not less than 15 N/cm.
  • the bonding layer 13 may be solid and flexible in the first temperature range and/or the first pressure range, and may have certain fluidity in the second temperature range and/or the second pressure range, specifically, Under normal temperature and normal pressure, or close to normal temperature and normal pressure, the bonding layer 13 is solid and flexible, and has a certain fluidity when it is heated to a certain temperature and/or a certain pressure is applied.
  • the bonding layer 13 may be a thermosetting material or a thermoplastic material.
  • the bonding layer 13 of different materials can be selected according to the actual use environment of the optical fiber circuit board.
  • the optical fiber 121 may be a high temperature optical fiber
  • the material of the bonding layer 13 may be at least one of an epoxy resin system, an acrylic system, and a silica gel system.
  • the substrate 11 is also The substrate 11 made of high temperature resistant material can be used to adapt the optical fiber circuit board to the harsh high temperature environment and be used in special fields such as aerospace, military, etc.; and when it only needs to operate in a normal temperature environment, as described above, the optical fiber 121 can If a common optical fiber is used, the material of the bonding layer 13 may be at least one of an acrylic system or a silica gel system, and the substrate 11 may also be a substrate 11 of common material.
  • the bonding layer 13 of the above material when heating and/or pressurizing the optical fiber circuit board, the bonding layer 13 can flow, coat the periphery of the optical fiber, and fill the space between adjacent substrates 11 except for the optical fiber 121 In this way, the optical fiber 121 is fixed more firmly, so as to reduce the loosening and displacement of the optical fiber 121 due to improper fixation during long-term use, thereby improving the reliability of the optical fiber circuit board.
  • the number of substrates 11 is two, and the number of layers is arranged at intervals; the number of optical fiber assembly 12 is one, and the optical fiber assembly 12 is fixed between the two substrates 11 by the bonding layer 13.
  • the first substrate 11a, the second substrate 11b, and the third substrate 11c are stacked and spaced apart; wherein the first optical fiber assembly 12a is provided between the first substrate 11a and the second substrate 11b.
  • the first bonding layer 13a is filled in the remaining space between the first substrate 11a and the second substrate 11b except for the first optical fiber assembly 12a, and the first optical fiber assembly 12a is fixed to the first substrate 11a and the second substrate Between 11b; the second optical fiber component 12b is disposed between the second substrate 11b and the third substrate 11c, and the second bonding layer 13b is filled between the second substrate 11b and the third substrate 11c except for the second optical fiber component 12b In the remaining space, the second optical fiber assembly 12b is fixed between the second substrate 11a and the third substrate 11c.
  • the substrate 11 includes a substrate body 111 and a fiber exit port 112, and the fiber exit port 112 is disposed at an end of the substrate body 111 along the extending direction of the optical fiber 121.
  • the fiber outlet 112 can be provided at one end, two ends, three ends, or four ends of the substrate main body 111, and there is no specific limitation here.
  • the optical fiber 121 may extend from the fiber outlet 112, that is, in the extending direction of the optical fiber 121, the length of the optical fiber 121 is greater than the length of the substrate 11, so that the extended optical fiber 121 is further connected to the optical connector.
  • the optical fiber 121 may include a main body part 121a and an extension part 121b that are connected to each other.
  • the main body part 121a is disposed in an area covered by two adjacent substrates 11, and the extension part 121b is disposed on an area covered by two adjacent substrates 11. Outside of the area.
  • the optical fiber circuit board may further include a protective layer 121c wrapped around the periphery of the extension part 121b.
  • a protective layer 121c may be provided on the periphery of the extension 121b of each optical fiber 121, or a protective layer 121c may be provided on the periphery of the extension 121b of a group of optical fibers 121, which is not limited here.
  • the protective layer 121c may be glue coated on the periphery of the extension 121b of the optical fiber 121, such as acrylic, resin, polyurethane, silicone glue, etc., or a protective sleeve sheathed on the periphery of the extension 121b of the optical fiber 121 , Such as heat shrinkable tube, silicone sheath, spiral wound tube, etc.
  • the number of the fiber outlets 112 may be multiple, and the plurality of fiber outlets 112 are formed by protruding and extending from the substrate body 111 to the periphery along the extending direction of the optical fiber 121, and are arranged at intervals.
  • the outer edge of each fiber outlet 112 can be arranged flush, and each fiber outlet 112 can correspond to a group of optical fibers 121 or multiple groups of optical fibers 121 spaced apart from each other.
  • each fiber outlet 112 is arranged at intervals, the orientation of each fiber outlet 112 can be set according to actual needs. As shown in FIG. 4, the two fiber outlets 112 on the far right The extension direction is not the same as the extension direction of the fiber outlet 112 on the left; moreover, each fiber outlet 112 can also be arranged in the same direction, and the corresponding fiber outlet 112 can be bent according to actual needs. Twisting and other operations can cause the corresponding optical fiber 121 to exit in different directions, as shown in FIG. 5.
  • the lengths of the plurality of fiber outlets 112 along the extension direction of the optical fiber 121 may be the same or different.
  • the direction to be set is consistent with the original extension direction of the fiber 121 at the fiber outlet 112, a shorter fiber outlet 112 can be set; and the direction to be set is the same as that of the fiber 121 originally at the fiber outlet 112.
  • the extending direction has a certain angle, or even when the direction is opposite, a certain bending is required, so a longer fiber outlet 112 can be provided.
  • the fiber outlets 112 are multiple and are arranged at intervals, so that the fiber outlets 112 share the stress generated by the fiber circuit board during deformation, thereby effectively reducing the connection of the optical fiber 121 between the main body 121a and the extension portion. It is possible to set multiple fiber exit directions according to use requirements, or to bend the fiber exit 112 to achieve large-angle deformation, which is beneficial to processing, installation and use.
  • FIG. 6 is a schematic structural diagram of an embodiment of the multilayer optical fiber circuit board of the present application
  • FIG. 7 is a schematic structural diagram of another embodiment of the multilayer optical fiber circuit board of the present application.
  • the multilayer optical fiber circuit board may include a plurality of optical fiber circuit boards 10 and a connecting member 20 disposed between two adjacent optical fiber circuit boards 10, and the plurality of optical fiber circuit boards 10 may be stacked and connected to each other through the connecting member 20 together.
  • the number of optical fiber circuit boards 10 may be two, three or more, which is not limited here.
  • optical fiber circuit board 10 is the same as the optical fiber circuit board in the foregoing embodiment of the optical fiber circuit board of the present application.
  • optical fiber circuit board 10 is the same as the optical fiber circuit board in the foregoing embodiment of the optical fiber circuit board of the present application.
  • connection area 14 is used to connect to other optical fiber circuit boards 10, and the stripping area 15 is not connected to other optical fiber circuit boards 10. Therefore, the stripping area 15 can be bent and so on according to actual needs to be located where required.
  • the location may specifically depend on the thickness of the substrate 11 and the bonding layer 13.
  • the specific positional relationship between the connection area 14 and the stripping area 15 on the optical fiber circuit board 10 can be set according to actual needs. For example, one end is the connection area 14 and the other end is the stripping area 15, or the middle is the connection area 14. The end is the peeling zone 15, etc., which is not limited here.
  • optical fiber circuit board 10 not every optical fiber circuit board 10 has a stripping area 15, and part of the optical fiber circuit board 10 may not include the stripping area 15, and the whole is used for adjacent optical fiber circuit boards. 10 connections, the specific settings can be set according to the actual situation.
  • the connecting member 20 can be sandwiched between the two connecting areas 14 of two adjacently arranged optical fiber circuit boards 10 for connecting the two connecting areas 14 of two adjacently arranged optical fiber circuit boards 10 to Connect two adjacent optical fiber circuit boards 10 together.
  • the connecting areas 14 of two adjacent optical fiber circuit boards 10 are connected by a connecting member 20, so that each peeling area 15 can be bent and arranged relative to the adjacent peeling area 15.
  • the connecting member 20 may be an adhesive layer, and the connecting areas 14 of two adjacent optical fiber circuit boards 10 are attached to each other through the adhesive layer.
  • the adhesive layer can be acrylic, epoxy, polyurethane, silicone, nitrile, etc.
  • the form of the adhesive layer can be liquid, solid, film (such as tape), etc.
  • the adhesive layer is solid in the normal use state of the multilayer optical fiber circuit board.
  • a mounting hole 16 may be provided on the optical fiber circuit board 10, as shown in FIG. 4.
  • the connector 20 can be a screw, rivet, pin, etc., and the connector 20 is inserted into the mounting hole 16
  • the optical fiber circuit boards 10 arranged adjacently are fixed together.
  • the fixing method in this application scenario can make the fixing between adjacent optical fiber circuit boards 10 more reliable and easier to disassemble.
  • an optical fiber circuit board 10 can be divided into a plurality of stacked optical fiber circuit boards 10 according to actual needs.
  • Each optical fiber circuit board 10 can be processed, tested, and replaced independently, thereby reducing costs and improving efficiency.
  • a certain circuit board is damaged, it can be disassembled and replaced, thereby effectively reducing the risk of scrapping the entire circuit board.
  • the connection areas 14 of the adjacent optical fiber circuit boards 10 are connected together, so that the two adjacent optical fiber circuit boards 10 are partially connected and partially peeled off, so as to facilitate further setting of the peeling area 15 according to actual use requirements.
  • the location provides technical support and convenience for the three-dimensional installation of multilayer optical fiber circuit boards.
  • FIG. 8 is a schematic structural diagram of an embodiment of an optical transmission device of the present application.
  • the optical transmission device includes an optical fiber circuit board and/or a multi-layer optical fiber circuit board (unifiedly identified as a circuit board 30) and a circuit board 30
  • the optical port 40 of the end 301 is used to receive the optical fiber 12 in the circuit board 30, and is further connected to the optical docking device 200 for optical signal transmission.
  • the optical docking device 200 is specifically a light energy converter or an optical transmission medium.
  • the light energy converter is further a photoelectric converter; the light transmission medium is optical fiber, organic waveguide, inorganic waveguide, etc.
  • the circuit board 30 please refer to the above-mentioned embodiments respectively, which will not be repeated here.
  • FIG 9 is a schematic structural diagram of an embodiment of the photoelectric hybrid circuit board of the present application.
  • the photoelectric hybrid circuit board includes an optical fiber circuit board and/or a multilayer optical fiber circuit board (the optical fiber circuit board 10 is taken as an example in Figure 9 for drawing Show) and circuit wires 50 arranged on the optical fiber circuit board and/or multilayer optical fiber circuit board.
  • the optical fiber is responsible for the transmission of massive high-speed signals
  • the circuit wires are responsible for the transmission of low-frequency signals and control signals.
  • the circuit wire 50 is a metal wire; specifically, the metal wire is a copper wire.
  • the circuit wires 50 can be arranged on any one or more substrates 11 of the optical fiber circuit board 10.
  • the substrate 11 provided with the circuit wires 50 is coated with a protective layer 60 for covering the circuit wires 50 to protect the formed circuit wires 50.
  • the protective layer 60 may be a liquid photoresist.
  • the protective layer 60 is generally provided on the outer surface of the substrate 11 away from the optical fiber 121, but not on the inner surface of the substrate 11 close to the optical fiber 121. Specifically, the protective layer 60 is disposed on the outer surface of the top substrate 11 and the outer surface of the bottom substrate 11 of the photoelectric hybrid circuit board.
  • the circuit wire 50 may also be arranged between adjacent substrates 11, and specifically may be arranged in a space between two adjacent substrates 11 corresponding to the area outside the optical fiber assembly 12.
  • the circuit wires 50 provided between two adjacent substrates 11 may be a single layer, or may be two or more layers, and may be specifically set according to actual requirements.
  • a dielectric layer 70 may be provided between the circuit wires 50 of adjacent layers. The dielectric layer 70 can be used to at least partially separate the circuit wires 50 of different layers and maintain their insulation. Of course, the circuit wires 50 of different layers can be further connected together by punching.
  • the signal transmission device may include at least one of an optical fiber circuit board, a multilayer optical fiber circuit board, an optoelectronic hybrid circuit board (identified by the circuit board 80), a signal transmission mechanism 90, a fixing member 100, and the like.
  • the fixing member 100 is used for fixing the circuit board 80 and the signal transmission mechanism 90.
  • the signal transmission device in this embodiment can be used to transmit optical signals or photoelectric mixed signals, or mixed signals of optical signals and other signals.
  • the signal transmission mechanism 90 may specifically be a circuit board, a cabinet, a distribution frame, and the like.
  • optical fiber circuit board in this embodiment is the same as the optical fiber circuit board in the above-mentioned embodiment of the optical fiber circuit board of the present application
  • the multilayer optical fiber circuit board is the same as the multilayer optical fiber in the above-mentioned embodiment of the present application.
  • the circuit boards are the same, and the photoelectric hybrid circuit board is the same as the photoelectric hybrid circuit board in the foregoing embodiment of the photoelectric hybrid circuit board of the present application.
  • the fixing member 100 in this embodiment may be an adhesive layer, specifically acrylic, epoxy, polyurethane, or silicone. , Nitrile-based adhesive, etc.
  • the form of the adhesive layer can be liquid, solid, film (such as tape), etc.; or, mounting holes can be provided on the circuit board 80, at this time, the fixing member 100 can be a screw , Rivets, pins, etc. are fixedly connected to the circuit board 80 and the signal transmission mechanism 90 by being inserted into the mounting holes. In this way, the fixing between the circuit board 80 and the signal transmission mechanism 90 can be made more secure and the disassembly more convenient.
  • circuit board 80 and the signal transmission mechanism 90 can be connected and fixed by pressing.
  • the fixing member 100 can be a buckle, which is arranged on the outer edge of the circuit board 80, and the circuit board 80 can be fixed to the signal transmission mechanism through the buckle.
  • the fixing member 100 may include a pressing block and a screw.
  • the pressing block may be used to press the circuit board 80 against the signal transmission mechanism, and then the screw may be used to Both sides of the circuit board 80 fix the pressing block on the signal transmission mechanism, so that the circuit board 80 is pressed and clamped between the pressing block and the signal transmission mechanism.
  • the above screws can also be replaced by other components, such as rivets, pins, etc., which are not limited here.
  • FIG. 15 is a schematic flowchart of an embodiment of a method for manufacturing an optical fiber circuit board according to the present application
  • FIG. 16 is a schematic structural diagram of an embodiment of a method for manufacturing an optical fiber circuit board according to the present application.
  • the method of this embodiment can be used for Manufacturing the above-mentioned optical fiber circuit board including only two layers of substrates, specifically, the method includes:
  • Step S11 Provide a first substrate 111 with a first bonding layer 131 on one side, a second substrate 112 with a second bonding layer 132 on one side, and at least one optical fiber 121.
  • first substrate 111 and the second substrate 112 are provided with a bonding layer, and the other side is not provided with a bonding layer.
  • the first substrate 111 provided with the first bonding layer 131 on one side may be obtained by providing the first bonding layer 131 on one side of the first substrate 111, or the first substrate provided with the first bonding layer 131 may be directly obtained. 111. It is not limited here; similarly, the second substrate 112 with the second bonding layer 132 on one side can also be obtained in the above-mentioned manner.
  • Step S12 Arrange the optical fibers 121 on the side of the first bonding layer 131 away from the first substrate 111 to form the optical fiber assembly 12, and cover the optical fiber assembly 12 with a second substrate 112 with a second bonding layer 132 to make The optical fiber assembly 12 is sandwiched between the first bonding layer 131 and the second bonding layer 132 to form a first overall structure;
  • Step S13 Perform a pressing process on the first overall structure, so that the first bonding layer 131 and the second bonding layer 132 are fused with each other to cover the optical fiber assembly 12, and fill the space between the first substrate 111 and the second substrate 112. In the remaining space outside the optical fiber assembly 12 to obtain an optical fiber circuit board.
  • the pressing process can make the first bonding layer 131 and the second bonding layer 132 .
  • the bonding layer 132 is fused together and filled into the space between the first substrate 111 and the second substrate 112 except for the optical fiber assembly 12, thereby fixing the optical fiber 121 more firmly, so as to reduce the lack of fixation of the optical fiber 121 during long-term use. It is firm with looseness and displacement, and can discharge the air bubbles in the bonding layer and between the bonding layer and the optical fiber or the bonding from the substrate during the pressing process, thereby improving the reliability of the optical fiber circuit board.
  • the optical fiber circuit board manufactured by the above method is not easy to delamination and foaming under repeated bending and thermal shock, and has good stability.
  • the first overall structure can be further baked, so that each substrate and the optical fiber 121 can be firmly combined into one body.
  • FIG. 17 is a schematic flowchart of another embodiment of the method for manufacturing an optical fiber circuit board according to the present application
  • FIG. 18 is a schematic diagram of the structure of another embodiment of the method for manufacturing an optical fiber circuit board according to the present application. It can be used to manufacture the above-mentioned optical fiber circuit boards including three or more substrates. Specifically, the method includes:
  • Step S21 Provide a first substrate 111 with a first bonding layer 131 on one side, at least one intermediate substrate 113 with a second bonding layer 132 and a third bonding layer 133 on both sides, and a fourth bonding layer on one side 134 second substrate 112 and at least two optical fibers;
  • the first substrate 111 provided with the first bonding layer 131 on one side may be obtained by providing the first bonding layer 131 on the side of the first substrate 111, or it may be directly provided with the first bonding layer.
  • the first substrate 111 of 131 is not limited here; similarly, an intermediate substrate 113 with a second bonding layer 132 and a third bonding layer 133 on both sides, and a second substrate 112 with a fourth bonding layer 134 on one side All can be obtained by the above methods.
  • Step S22 Arrange the optical fibers 121 on the side of the first bonding layer 131 away from the first substrate 111 to form the first optical fiber assembly 12a, and on the third bonding layer 133 of each intermediate substrate 113 away from the corresponding intermediate substrate 113
  • the optical fibers 121 are arranged laterally to form the second optical fiber assembly 12b;
  • Step S23 Lay the first substrate 111 on which the first optical fiber components 12a are arranged, at least one intermediate substrate 113 on which the second optical fiber components 12b are arranged, and the second substrate 112 in order to form a first overall structure;
  • the first optical fiber component 12a is sandwiched between the first bonding layer 131 and a corresponding second bonding layer 132, and the second fiber component 12b is sandwiched between the corresponding third bonding layer 133 and a first bonding layer 132. Between the two bonding layers 132, or between the corresponding third bonding layer 133 and the fourth bonding layer 134;
  • the arrangement of the first optical fiber assembly 12a and the second optical fiber assembly 12b may be the same or different, and when the number of the intermediate substrates 113 is two or more, the arrangement of the optical fiber assemblies 12 corresponding to the different intermediate substrates 113
  • the method can also be the same or different, and can be set according to actual needs.
  • Step S24 Perform a pressing process on the first overall structure, so that the first bonding layer 131 and the corresponding second bonding layer 132 respectively disposed on both sides of the first optical fiber assembly 12a are fused with each other and then coat the first optical fiber assembly 12a, And fill in the remaining space between the first substrate 111 and the adjacent intermediate substrate 113 except for the first optical fiber assembly 12a, and make the corresponding third joints respectively disposed on both sides of each second optical fiber assembly 12b
  • the layer 133 and a second bonding layer 132 are fused with each other to cover the second optical fiber assembly 12b, and fill the remaining portion between the two intermediate substrates 113 on both sides of the second optical fiber assembly 12b except for the second optical fiber assembly 12b.
  • the second optical fiber assembly 12b is covered and filled in two optical fiber assemblies 12b.
  • the number of intermediate substrates 113 in this embodiment may be one or more than one.
  • the intermediate substrate 113 is disposed between the first substrate 111 and the second substrate 112.
  • the first optical fiber assembly 12a and the corresponding bonding layer are disposed on the first substrate 111 and the intermediate substrate 112.
  • the second optical fiber assembly 12b and the corresponding bonding layer are disposed between the second substrate 112 and the intermediate substrate 113; and when the number of the intermediate substrates 113 is two, the two intermediate substrates 113 are stacked on the first substrate 111 And the second substrate 112.
  • the two intermediate substrates 113 are respectively the first substrate 111 and the other intermediate substrate 113, and the second substrate 112 and the other intermediate substrate 113.
  • the first optical fiber assembly 12a The arrangement of its corresponding bonding layer is the same as that described above, and one of the second optical fiber components 12b and its corresponding bonding layer is disposed between the two intermediate substrates 113, and the other second optical fiber component 12b and its corresponding bonding layer are It is arranged between the intermediate substrate 113 and the second substrate 112.
  • the step of arranging optical fibers on the bonding layer of each substrate includes:
  • Step S31 Use a heating device to heat the bonding layer 13 to make the bonding layer 13 fluid
  • a heating device may be used to directly heat the bonding layer 13, or a heating device may be used to heat the substrate 11 to realize the heating treatment of the bonding layer 13.
  • the heating device may be a local heating device 300 or a full heating device 400, for example, a heating base, or a combination of the two.
  • the heating treatment of the bonding layer 13 may be one of heat gun heating, thermal conductor contact heating, infrared radiation heating, ultrasonic vibration heating, etc., or a combination of several, for example, the entire substrate 11 Perform overall heating, and then concentrate heating in the area where the optical fibers 121 need to be arranged, thereby improving the heating and fiber distribution efficiency.
  • Step S32 arranging the optical fibers 121 on the bonding layer using the fiber arranging device 500.
  • the bonding layer 13 includes the first bonding layer 131 provided on the first substrate 111 and the third bonding layer 133 provided on the intermediate substrate 113 in the above-mentioned embodiment of the method for manufacturing an optical fiber circuit board of the present application.
  • optical fiber circuit board please refer to the foregoing embodiment of the optical fiber circuit board of the present application, which is not repeated here.
  • the step of arranging optical fibers on the bonding layer of the substrate includes:
  • Step S41 arranging the optical fibers 121 on the pyrolysis tape 600 using a fiber cloth device;
  • the pyrolysis tape 600 has viscosity at room temperature, and can become a state of very low viscosity after heating at a certain temperature, and can be easily separated from the surface to which it is attached.
  • Step S42 cover the corresponding substrate 11 on the arranged optical fibers, so that the bonding layer of the corresponding substrate contacts the arranged optical fibers, so as to obtain a second overall structure;
  • Step S43 heat and/or pressurize the second overall structure to make the bonding layer 13 fluid and at least fill the space formed by the arranged optical fibers and the corresponding substrate, and make the pyrolytic tape
  • the viscosity of 600 is reduced to the preset viscosity
  • the heating and/or pressurizing treatment here is the same as that in the above-mentioned embodiment.
  • the preset viscosity of the pyrolysis tape 600 refers to a viscosity that can be easily removed from the optical fiber 121.
  • Step S44 Remove the pyrolysis tape 600.
  • the bonding layer 13 includes the first bonding layer 131 provided on the first substrate 111 and the third bonding layer 133 provided on the intermediate substrate 113 in the above-mentioned embodiment of the method for manufacturing an optical fiber circuit board of the present application.
  • optical fiber circuit board please refer to the foregoing embodiment of the optical fiber circuit board of the present application, which is not repeated here.

Abstract

本申请公开了一种光纤线路板及其制造方法、多层光纤线路板、光传输装置、光电混合线路板及信号传输装置,该光纤线路板包括:层叠间隔设置的至少两个基板、光纤组件及结合层;其中,每相邻的两个基板之间设置有光纤组件;光纤组件包括至少一条光纤;结合层填充于相邻设置的两个基板之间的除光纤组件之外的剩余空间内,以使各个光纤相对于基板固定。通过上述方式,本申请能够提高光纤线路板的可靠性。

Description

光纤线路板及其制造方法、信号传输装置及混合线路板 【技术领域】
本申请涉及线路板技术领域,特别是涉及一种光纤线路板及其制造方法、多层光纤线路板、光传输装置、光电混合线路板及信号传输装置。
【背景技术】
光互连是指使用导光介质(光纤、光波导等)实现电路板、芯片之间的信号连接,可以实现板间/板内功耗低、速率高、信号完整的数据传输。
光纤线路板是实现光互联的一种方式,相关技术中常用的光纤线路板是通过胶粘剂将光纤固定于基材上,此类线路板往往光纤的位置不牢靠,且容易偏离原来的位置,因此这类线路板的可靠性较差。
【发明内容】
本申请提供一种光纤线路板及其制造方法、多层光纤线路板、光传输装置、光电混合线路板及信号传输装置,能够提高光纤线路板的可靠性。
本申请采用的一个技术方案是:提供一种光纤线路板,所述光纤线路板包括:层叠间隔设置的至少两个基板、光纤组件及结合层;其中,每相邻的两个所述基板之间设置有光纤组件;所述光纤组件包括至少一条光纤,结合层填充于相邻设置的两个所述基板之间的除所述光纤组件之外的剩余空间内,以使各个所述光纤相对于所述基板固定。
本申请采用的另一个技术方案是:提供一种多层光纤线路板,所述多层光纤线路板包括多个如上所述的光纤线路板和设置于相邻的两个所述光纤线路板之间的连接件,其中,多个所述光纤线路板通过所述连接件层叠连接在一起。
本申请采用的另一个技术方案是:提供一种光传输装置,所述光传输装置包括如上所述的光纤线路板、如上所述的多层光纤线路板中的至少一种线路板,和设于所述至少一种线路板的端部的光学端口,所述光学端口用于与光对接装置连接,以进行光信号传输。
本申请采用的另一个技术方案是:提供一种光电混合线路板,所述光电混合线路板包括如上所述的光纤线路板、如上所述的多层光纤线路板中的至少一种线路板,以及设置在所述至少一种线路板上的电路导线。
本申请采用的另一个技术方案是:提供一种信号传输装置,所述信号传输装置包括如上所述的光纤线路板、如上所述的多层光纤线路板、如上所述的光电混合线路板中的至少一种线路板以及信号传输机构、固定件,其中,所述固定件用于将所述至少一种线路板与所述信号传输机构固定连接。
本申请采用的另一个技术方案是:提供一种光纤线路板的制造方法,所述方法包括:提供一侧设置有第一结合层的第一基板、一侧设置有第二结合层的第二基板以及至少一条光纤;在所述第一结合层远离所述第一基板的一侧排布所述光纤以形成光纤组件,并在所述光纤组件上盖设带有所述第二结合层的第二基板,以使所述光纤组件夹设于所述第一结合层和所述 第二结合层之间,形成第一整体结构;对所述第一整体结构进行压合处理,使得所述第一结合层及所述第二结合层相互融合后包覆所述光纤组件,并填充于所述第一基板和所述第二基板之间的除所述光纤组件之外的剩余空间内,以得到所述光纤线路板。
本申请采用的另一个技术方案是:提供一种光纤线路板的制造方法,所述制造方法包括:提供一侧设置有第一结合层的第一基板、两侧分别设置有第二结合层和第三结合层的至少一中间基板和一侧设置有第四结合层的第二基板以及至少两条光纤;在所述第一结合层远离所述第一基板的一侧排布所述光纤以形成第一光纤组件,并在每一所述中间基板的第三结合层的远离对应中间基板的一侧排布所述光纤以形成第二光纤组件;将排布有所述第一光纤组件的所述第一基板、排布有所述第二光纤组件的至少一所述中间基板及所述第二基板依次序层叠设置而形成第一整体结构,其中,所述第一整体结构中所述第一光纤组件夹设于所述第一结合层与对应的一所述第二结合层之间,所述第二光纤组件夹设于对应的所述第三结合层与一所述第二结合层之间,和/或对应的所述第三结合层与所述第四结合层之间;对所述第一整体结构进行压合处理,以使得分别设置于所述第一光纤组件两侧的所述第一结合层与对应的第二结合层相互融合后包覆所述第一光纤组件,并填充于所述第一基板及相邻的所述中间基板之间的除所述第一光纤组件之外的剩余空间内,及使得分别设置于每个所述第二光纤组件两侧的对应的所述第三结合层与一所述第二结合层相互融合后包覆所述第二光纤组件,并填充于位于所述第二光纤组件两侧的两个所述中间基板之间的除所述第二光纤组件之外的剩余空间内,和/或使得分别设置于所述第二光纤组件两侧的对应的所述第三结合层与所述第四结合层相互融合后包覆所述第二光纤组件,并填充于位于所述第二光纤组件两侧的所述中间基板与第二基板之间的除所述第二光纤组件之外的剩余空间内,以得到所述光纤线路板。
本申请的有益效果是:区别于现有技术的情况,本申请光纤线路板包括:层叠设置的至少两个基板、光纤组件及结合层;其中,每相邻的两个基板之间设置有光纤组件;光纤组件包括至少一条光纤,结合层填充于相邻设置的两个基板之间的除光纤组件之外的剩余空间内,以使各个光纤相对于基板固定。由于结合层填充于每两个相邻的基板之间除光纤组件之外的空间内,从而使得光纤能够被结合层充分包裹而牢靠地固定在相邻的基板之间,以避免长时间使用过程中光纤因固定不牢靠而产生位移的情况发生,从而提高光纤线路板的可靠性。
【附图说明】
图1是本申请光纤线路板一实施方式的结构示意图;
图2是本申请光纤线路板另一实施方式的结构示意图;
图3是本申请光纤线路板又一实施方式的结构示意图;
图4是本申请光纤线路板一实施方式的局部结构示意图;
图5是本申请光纤线路板一实施方式的另一局部结构示意图;
图6是本申请多层光纤线路板一实施方式的结构示意图;
图7是本申请多层光纤线路板一实施方式的结构示意图;
图8是本申请光传输装置一实施方式的结构示意图;
图9是本申请光电混合线路板一实施方式的结构示意图;
图10是本申请信号传输装置一实施方式的结构示意图;
图11是本申请信号传输装置一实施方式中线路板与固定件的主视图;
图12是图11的侧视图;
图13是本申请信号传输装置另一实施方式中线路板与固定件的主视图;
图14是图13的侧视图;
图15是本申请光纤线路板的制造方法一实施方式的流程示意图;
图16是图15中相关结构示意图;
图17是本申请光纤线路板的制造方法另一实施方式的流程示意图;
图18是图17中相关结构示意图;
图19是本申请光纤线路板的制造方法一实施方式的部分流程示意图;
图20是图19中相关示意图;
图21是本申请光纤线路板的制造方法一实施方式的部分流程示意图;
图22是图21中相关结构示意图。
【具体实施方式】
参阅图1,图1是本申请光纤线路板一实施方式的结构示意图。在本实施方式中,光纤线路板可以是仅传输光信号的线路板,也可以是传输包括光信号在内的混合信号(例如电信号)的线路板。
具体地,该光纤线路板可包括至少两个基板11、至少一个光纤组件12及结合层13。
其中,至少两个基板11层叠且间隔设置。具体地,基板11的数量可以为两个,也可以为三个或三个以上。其中,基板11的材质可以为柔性复合材料,例如可以为:聚酰亚胺、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷等。
其中,光纤线路板可以采用较薄的基板11,以减轻光纤线路板的整体重量、厚度,以及增加光纤线路板的柔性,然而,在这种情况下,所形成的光纤线路板的表面形貌可能会凹凸不平。在实际应用中,也可以根据实际需求而选择相对较厚的基板11,或者较细的光纤,以提高光纤线路板的平整度。
其中,每两个相邻的基板11之间均设置有光纤组件12,对应地,光纤组件12的数量与基板11的数量相比少一个,即,在基板11的数量为n个时,光纤组件12的数量为n-1个。具体地,每个光纤组件12设置在相邻的两个基板11所夹设的空间内。需要指出的是,此处的光纤组件12是指光纤通过一定的方式排布于相邻的两个基板11之间所形成的结构。每一光纤组件12包括至少一条光纤121,具体可以为一条或多条光纤121、一组或多组光纤121等。其中,每组光纤121中光纤121的数量可以根据实际需求,如根据需要连接的连接器的型号等进行设置,例如可以为1条、4条、8条、12条、24条等;光纤121的组数也可根据需求设置,此处不做限定。
具体地,光纤组件12可包括单层排布的光纤121,如图1和图2所示,也可以包括层叠交叉排布的多层光纤121,如两层光纤121,如图3所示,或者也可以包括层叠交错排布的多层光纤121,当然,实际应用中,可根据具体需求设置。另外,每根光纤121既可以呈直线型排布,也可以呈弯曲状排布。
具体地,光纤组件12中的光纤121可以是高温光纤,例如,在光纤的纤芯外表面涂覆可耐100度以上高温的涂覆层,该涂覆层的材质可以为耐高温丙烯酸、耐热硅胶、聚酰亚胺、 金属等;或者光纤组件12中的光纤121也可以是普通光纤,纤芯外围涂覆层的材质可以为环氧丙烯酸酯或聚丙烯酸酯等,此处不做具体限定。
结合层13填充于每两个相邻的基板11之间的除光纤组件12之外的剩余空间内,以使各个光纤121相对于对应的基板11固定。与相关技术中,将光纤121直接通过粘胶剂而粘接在基板11上的方式相比,上述方式能够将光纤121牢靠地固定于相邻的基板11之间,以避免长时间使用过程中光纤121因固定不牢固而产生位移的情况发生,从而提高光纤121线路板的可靠性。
需要指出的是,结合层13厚度过小时难以固定光纤121,而厚度过大时又难以保持光纤线路板的柔性。此处的厚度是指结合层13在垂直于基板11的板面的方向上的厚度。本实施方式中,相邻的两个基板11之间的结合层13的最薄区域的厚度大于光纤121的直径的十分之一且小于光纤121的直径的10倍,或者大于光纤121的直径的二分之一且小于光纤121的直径的2倍,例如相邻的两个基板11之间的结合层13的最薄区域的厚度为光纤121直径的五分之一、二分之一、1倍、2倍、5倍等,此处不做具体限定。
具体地,结合层13的厚度不小于50μm,可以为50μm、60μm、70μm等,使用结合层13之后,相邻基板11之间的抗剥强度不小于15N/cm。
具体地,结合层13在第一温度范围和/或第一压力范围内可以为固态且为柔性,在第二温度范围和/或第二压力范围内可具有一定的流动性,具体地,在常温常压下,或者接近常温常压时,结合层13为固态且具有柔性,而在将其加热到一定的温度和/或施加一定的压力时,具有一定的流动性。具体地,结合层13可以热固性材料或热塑性材料。
其中,可以根据光纤线路板的实际使用环境选用不同材质的结合层13。具体地,在需适应高温环境时,如上所述,光纤121可采用高温光纤,结合层13的材质可以为环氧树脂体系、丙烯酸体系、硅胶体系中的至少一种,此时,基板11也可采用耐高温材质的基板11,以使光纤线路板适应恶劣的高温环境,而应用于航空航天、军事等特殊领域;而在仅需于普通常温环境下作业时,如上所述,光纤121可采用普通光纤,则结合层13的材质为丙烯酸体系、硅胶体系中的至少一种即可,基板11也采用普通材料的基板11即可。
采用上述材质的结合层13,在对光纤线路板加热和/或加压时,结合层13能够产生流动、包覆于光纤的外围,并填充相邻基板11之间除光纤121之外的空间内,从而将光纤121固定地更加牢靠,以减少长期使用时光纤121由于固定不牢靠而出现松动、发生位移的情况,从而提高光纤线路板的可靠性。
在一个应用场景中,如图1所示,基板11的数量为两个,且层叠间隔设置;光纤组件12的数量为一个,并通过结合层13而固定于两个基板11之间。
在另一应用场景中,如图2所示,第一基板11a、第二基板11b和第三基板11c层叠间隔设置;其中,第一光纤组件12a设置于第一基板11a和第二基板11b之间,第一结合层13a填充于第一基板11a、第二基板11b之间除第一光纤组件12a之外的剩余空间内,而将第一光纤组件12a固定于第一基板11a和第二基板11b之间;第二光纤组件12b设置于第二基板11b和第三基板11c之间,第二结合层13b填充于第二基板11b、第三基板11c之间除第二光纤组件12b之外的剩余空间内,而将第二光纤组件12b固定于第二基板11a和第三基板11c之间。
请参阅图3,在一实施方式中,基板11包括基板主体111和出纤口112,出纤口112沿光纤121的延伸方向设置于基板主体111的端部。需要指出的是,出纤口112可设置在基板 主体111的一端、两端、三端或四端等,此处不做具体限定。
其中,光纤121可由出纤口112延伸而出,即,在光纤121的延伸方向上,光纤121的长度大于基板11的长度,以便通过延伸而出的光纤121进一步与光连接器连接。具体地,光纤121可包括互相连接的主体部121a和延伸部121b,主体部121a设置于相邻的两个基板11所覆盖的区域内,延伸部121b设置于相邻的两个基板11所覆盖的区域外。
进一步地,光纤线路板还可包括包裹设置在延伸部121b外围的保护层121c。具体地,可以在每根光纤121的延伸部121b的外围均设置一个保护层121c,或者可以在一组光纤121的延伸部121b的外围设置一个保护层121c,此处不做限定。
具体地,保护层121c可以是涂覆在光纤121的延伸部121b外围的胶水,如丙烯酸类、树脂类、聚氨酯类、硅胶类胶水等,或者是套设在光纤121的延伸部外围的保护套,如热缩管、硅胶护套、螺旋缠绕管等。
进一步地,请参阅图4,出纤口112的数量可以多个,多个出纤口112沿光纤121的延伸方向由基板主体111向外围凸出并延伸形成,且彼此间隔设置。其中,每个出纤口112的外边缘可平齐设置,且每个出纤口112可对应一组光纤121或多组彼此间隔设置的光纤121。
需要指出的是,由于每个出纤口112间隔设置,因此,可以根据实际需求而设置每个出纤口112的朝向,如图4中所示,最右侧的两个出纤口112的延伸方向与左侧的出纤口112的延伸方向并不相同;而且,还可以将各出纤口112均设置成相同的朝向,而可根据实际需求对相应的出纤口112进行弯折、扭转等操作,从而可使得对应的光纤121朝向不同的方向出纤,如图5所示。
进一步地,多个出纤口112的沿光纤121的延伸方向上的长度可以相同,也可以不同。例如,在需要设置的方向与光纤121原本在出纤口112处的延伸方向一致时,可设置较短的出纤口112;而在需要设置的方向与光纤121原本在出纤口112处的延伸方向有一定的角度时,甚至方向相反时,由于需要一定的弯折,因此,可以设置较长的出纤口112。
上述方式中,出纤口112为多个,且彼此间隔设置,以使各出纤口112分摊光纤线路板在变形时所产生的应力,从而有效降低光纤121在主体部121a和延伸部的连接处断裂的风险;且能够根据使用需求设置多个出纤方向,或者对出纤口112进行弯折等实现大角度变形,从而有利于加工、安装和使用。
请参阅图6和图7,图6是本申请多层光纤线路板一实施方式的结构示意图,图7是本申请多层光纤线路板另一实施方式的结构示意图。其中,该多层光纤线路板可包括多个光纤线路板10以及设置于相邻的两个光纤线路板10之间的连接件20,多个光纤线路板10可通过该连接件20层叠连接在一起。具体地,光纤线路板10的数量可以为两个、三个或者更多个,此处不做限定。
其中,光纤线路板10与上述本申请光纤线路板实施方式中的光纤线路板相同,相关详细内容请参见上述实施方式,此处不再赘述。
进一步地,至少两个相邻的光纤线路板包括连接区14和剥离区15。其中,连接区14用于与其它光纤线路板10进行连接,剥离区15则不与其它光纤线路板10连接,因此,可以根据实际需求对剥离区15进行弯折等而使其位于所需求的位置,具体可取决于基板11和结合层13的厚度。具体地,连接区14和剥离区15在光纤线路板10上的具体位置关系可以根据实际需求进行设置,例如一端为连接区14,而另一端为剥离区15,或者中间为连接区14, 而端部为剥离区15等,此处不做限定。需要指出的是,多层光纤线路板中并不一定每一光纤线路板10均具有剥离区15,部分光纤线路板10也可以不包括剥离区15,而整体用于与相邻的光纤线路板10连接,具体则可根据实际情况设置。
进一步地,连接件20可夹设在相邻设置的两个光纤线路板10的两个连接区14之间,用于连接相邻设置的两个光纤线路板10的两个连接区14,以将相邻设置的两个光纤线路板10连接在一起。具体地,相邻设置的两个光纤线路板10的连接区14之间通过连接件20而连接设置,从而使得每一剥离区15能够相对于相邻的剥离区15弯折设置。
在一个应用场景中,连接件20可以为粘胶层,相邻置的两个光纤线路板10的连接区14之间通过粘胶层而贴合设置。具体地,粘胶层可以为丙烯酸类、环氧树脂类、聚氨酯类、硅胶类、丁腈类粘胶等,粘胶层的形态可以为液态、固态、膜状(如胶带)等,此处不做限定,通常在多层光纤线路板的正常使用状态下,粘胶层为固态。
在另一个应用场景中,光纤线路板10上可设置安装孔16,如图4所示,此时,连接件20可以为螺丝、铆钉、销钉等,连接件20通过插置于安装孔16内而将相邻设置的光纤线路板10固定在一起。本应用场景中的固定方式能够使得相邻的光纤线路板10之间的固定更加牢靠、拆卸也更方便。
需要指出的是,对于上述连接件20的各种形式,对于不同的光纤线路板10,可以根据具体情况,如基板的形状、尺寸、安装要求等,进行选择,此处不做限定。
通过上述方式,可以根据实际需求将一个光纤线路板10分为多个层叠设置的光纤线路板10,每张光纤线路板10可以独立进行加工、测试、更换,从而降低成本提高效率,且在其中某一线路板损坏的情况下,可对其拆卸并替换,从而有效降低整个线路板报废的风险。进一步地,将相邻设置的光纤线路板10的连接区14连接在一起,从而使得相邻设置的两个光纤线路板10部分连接,而部分剥离,以方便根据实际使用需求进一步设置剥离区15的位置,为多层光纤线路板的立体安装提供技术支持及便利。
参见图8,图8是本申请光传输装置一实施方式的结构示意图,该光传输装置包括光纤线路板和/或多层光纤线路板(统一标识为线路板30)和设于线路板30的端部301的光学端口40,光学端口40用于接收线路板30中的光纤12,并进一步与光对接装置200连接,以进行光信号传输。光对接装置200具体为光能转化器或光传介质。光能转化器进一步为光电转化器;光传介质为光纤、有机波导、无机波导等。线路板30的详细说明请分别参见上述各实施方式,在此不再赘述。
参见图9,图9是本申请光电混合线路板一实施方式的结构示意图,该光电混合线路板包括光纤线路板和/或多层光纤线路板(图9中以光纤线路板10为例进行绘示)以及设置在光纤线路板和/或多层光纤线路板上的电路导线50。光纤线路板和多层光纤线路板的详细说明请参见上述内容,在此不再赘述。光电混合线路板中,光纤负责传输海量高速信号,电路导线负责传输低频信号、控制信号等。
其中,电路导线50为金属线;具体地,金属线为铜线。其中,电路导线50可以设置在光纤线路板10的任意一个或多个基板11上。
其中,设置有电路导线50的基板11上涂覆有用以覆盖电路导线50的保护层60,以保护所形成的电路导线50。具体地,保护层60可以为液态光致阻焊剂。
需要指出的是,保护层60一般设置在基板11的远离光纤121的外表面上,而并不设置 于基板11靠近光纤121的内表面上。具体地,保护层60设置在光电混合线路板的顶部基板11的外表面及底部基板11的外表面上。
其中,电路导线50还可设置于相邻基板11之间,具体可设置在相邻两个基板11之间对应于光纤组件12之外的区域内的空间内。其中,设置于相邻两个基板11之间的电路导线50可为单层,也可以为两层或两层以上,具体可根据实际需求设置。其中,相邻层的电路导线50之间可设置介质层70。介质层70可用于至少部分分隔不同层的电路导线50、保持其绝缘性。当然,还可以进一步通过打孔的方式将不同层的电路导线50连接在一起。
请参阅图10,图10是本申请信号传输装置一实施方式的结构示意图。本实施方式中,信号传输装置可包括光纤线路板、多层光纤线路板、光电混合线路板中的至少一种线路板(统一用线路板80标识)以及信号传输机构90、固定件100等。其中,固定件100用于将线路板80与信号传输机构90固定连接。
其中,本实施方式中的信号传输装置可用于传输光信号或光电混合信号,或者光信号与其它信号的混合信号等。其中,信号传输机构90具体可以为电路板、机柜、配线架等。
需要指出的是,本实施方式中的光纤线路板与上述本申请光纤线路板实施方式中的光纤线路板相同,多层光纤线路板与上述本申请多层光纤线路板实施方式中的多层光纤线路板相同,光电混合线路板与上述本申请光电混合线路板实施方式中的光电混合线路板相同,相关详细内容请参见上述各实施方式,此处不再赘述。
另外,与上述本申请多层光纤线路板实施方式中的连接件20类似,本实施方式中的固定件100可以为粘胶层,具体可以为丙烯酸类、环氧树脂类、聚氨酯类、硅胶类、丁腈类粘胶等,粘胶层的形态可以为液态、固态、膜状(如胶带)等;或者,还可以在线路板80上设置安装孔,此时,固定件100则可以为螺丝、铆钉、销钉等通过插置于安装孔内而将线路板80与信号传输机构90固定连接。通过这种方式,能够使得线路板80与信号传输机构90之间的固定更加牢靠、拆卸也更方便。
需要指出的是,除了上述方式之外,可以通过压紧的方式对线路板80与信号传输机构90进行连接固定。
在一个应用场景中,请一并参阅图11、图12,固定件100可以为卡扣,该卡扣设置在线路板80的外边缘,通过该卡扣可将线路板80固定在信号传输机构上的缝隙、卡槽等位置,从而将二者压紧固定。
在另一个应用场景中,请一并参阅图13、图14,固定件100可包括压块以及螺丝,具体可使用压块将线路板80抵压在信号传输机构上,然后进一步通过螺丝,在线路板80两侧将压块固定在信号传输机构上,从而使得线路板80压紧夹设在压块与信号传输机构之间。其中,上述螺丝也可以采用其它构件代替,如铆钉、销钉等,此处不做限定。
通过上述压紧的方式,相较于在线路板80上设置安装孔的方式,无需设置孔位占用线路板80的板内线路空间,且安装更简便。
需要指出的是,对于上述固定件的各种形式,可以根据线路板80中的基板的形状、尺寸以及安装要求等,进行选择,此处不做限定。
参阅图15和图16,图15是本申请光纤线路板的制造方法一实施方式的流程示意图,图16是本申请光纤线路板的制造方法一实施方式的结构示意图,本实施方式的方法可用于制造上述的仅包括两层基板的光纤线路板,具体地,该方法包括:
步骤S11:提供一侧设置有第一结合层131的第一基板111、一侧设置有第二结合层132的第二基板112以及至少一条光纤121。
具体地,第一基板111和第二基板112均仅有一侧设置有结合层,而另一侧均不设置结合层。
其中,一侧设置有第一结合层131的第一基板111可以通过在第一基板111的一侧设置第一结合层131得到,或者也可以直接获取设置有第一结合层131的第一基板111,此处不做限定;类似地,一侧设置有第二结合层132的第二基板112也可由上述方式获取。
步骤S12:在第一结合层131远离第一基板111的一侧排布光纤121以形成光纤组件12,并在光纤组件12上盖设带有第二结合层132的第二基板112,以使光纤组件12夹设于第一结合层131和第二结合层132之间,形成第一整体结构;
步骤S13:对第一整体结构进行压合处理,使得第一结合层131及第二结合层132相互融合后包覆光纤组件12,并填充于第一基板111和第二基板112之间的除光纤组件12之外的剩余空间内,以得到光纤线路板。
需要指出的是,由于第一结合层131和第二结合层132在加热和/或加压条件下具有一定的流动性,因此,通过进行压合处理,能够使得第一结合层131和第二结合层132融合在一起并填充至第一基板111和第二基板112之间的除光纤组件12之外的空间内,从而将光纤121固定地更加牢固,以减少长期使用时光纤121由于固定不牢固而出现松动、发生位移的情况,且能够在压合时,将结合层内部的气泡以及结合层与光纤之间或者结合从与基板之间的气泡排出,从而提高光纤线路板的可靠性,且通过上述方式所制作的光纤线路板在反复弯折和冷热冲击下不易分层、起泡,具有良好的稳定性。
其中,对第一整体结构进行压合处理后,还可以进一步对第一整体结构进行烘烤处理,使得各基板与光纤121能够稳固地结合为一体。
参阅图17和图18,图17是本申请光纤线路板的制造方法另一实施方式的流程示意图,图18是本申请光纤线路板的制造方法另一实施方式的结构示意图,本实施方式的方法可用于制造上述的包括三层及以上基板的光纤线路板,具体地,该方法包括:
步骤S21:提供一侧设置有第一结合层131的第一基板111、两侧分别设置有第二结合层132和第三结合层133的至少一中间基板113和一侧设置有第四结合层134的第二基板112以及至少两条光纤;
与上述实施方式中相同,一侧设置有第一结合层131的第一基板111可以通过在第一基板111的一侧设置第一结合层131得到,或者也可以直接获取设置有第一结合层131的第一基板111,此处不做限定;类似地,两侧分别设置第二结合层132和第三结合层133的中间基板113、一侧设置有第四结合层134的第二基板112均可由上述方式获取。
步骤S22:在第一结合层131远离第一基板111的一侧排布光纤121以形成第一光纤组件12a,并在每一中间基板113的第三结合层133的远离对应中间基板113的一侧排布光纤121以形成第二光纤组件12b;
步骤S23:将排布有第一光纤组件12a的第一基板111、排布有第二光纤组件12b的至少一中间基板113及第二基板112依次序层叠设置而形成第一整体结构;
其中,第一整体结构中第一光纤组件12a夹设于第一结合层131与对应的一第二结合层132之间,第二光纤组件12b夹设于对应的第三结合层133与一第二结合层132之间,或对 应的第三结合层133与第四结合层134之间;
第一光纤组件12a和第二光纤组件12b的排布方式可以相同也可以不同,且在中间基板113的数量为两个或两个以上时,不同的中间基板113对应的光纤组件12的排布方式也可相同或者不同,具体可根据实际需求设置。
步骤S24:对第一整体结构进行压合处理,以使得分别设置于第一光纤组件12a两侧的第一结合层131与对应的第二结合层132相互融合后包覆第一光纤组件12a,并填充于第一基板111及相邻的中间基板113之间的除第一光纤组件12a之外的剩余空间内,及使得分别设置于每个第二光纤组件12b两侧的对应的第三结合层133与一第二结合层132相互融合后包覆第二光纤组件12b,并填充于位于第二光纤组件12b两侧的两个中间基板113之间的除第二光纤组件12b之外的剩余空间内,或使得分别设置于第二光纤组件12b两侧的对应的第三结合层133与第四结合层134相互融合后包覆第二光纤组件12b,并填充于位于第二光纤组件12b两侧的中间基板113与第二基板112之间的除第二光纤组件12b之外的剩余空间内,以得到光纤线路板。
需要指明的是,本实施方式中的中间基板113的数量可以为一个也可以为多个以上。在中间基板113的数量为一个时,该中间基板113设置于第一基板111和第二基板112之间,此时,第一光纤组件12a及对应结合层设置于第一基板111和中间基板112之间,而第二光纤组件12b及对应结合层设置于第二基板112和中间基板113之间;而在中间基板113的数量为两个时,两个中间基板113层叠设置于第一基板111和第二基板112之间,此时两个中间基板113两侧分别为第一基板111与另一中间基板113,和第二基板112与另一中间基板113,此时,第一光纤组件12a及其对应结合层的设置方式与上述方式相同,而其中一个第二光纤组件12b及其对应结合层设置于两个中间基板113之间,而另一个第二光纤组件12b及其对应结合层则设置于中间基板113与第二基板112之间。
其它相关内容与上述实施方式中的相同,此处不再赘述。
进一步地,请参阅图19,在一实施方式中,在上述各基板的结合层上排布光纤的步骤包括:
步骤S31:利用加热装置对结合层13进行加热处理,以使得结合层13具有流动性;
具体地,如图20所示,可以利用加热装置直接对结合层13进行加热处理,也可以利用加热装置对基板11进行加热处理,以实现对结合层13的加热处理。具体地,加热装置可以为局部加热装置300,也可以为全面加热装置400,例如可以是加热基台,还可以是二者的组合。进一步具体地,对结合层13的加热处理可以为热风枪加热、热导体接触加热、红外辐射加热、超声波振动加热等中的一种,或者还可以是几种的组合,例如可以先对整个基板11进行整体加热,然后再在需要排布光纤121的区域集中加热,从而提高加热、布纤效率。
步骤S32:利用布纤装置500在结合层上排布光纤121。
其中,结合层13包括上述本申请光纤线路板的制造方法实施方式中的设置于第一基板111上的第一结合层131和设置于中间基板113上的第三结合层133。
另外,光纤线路板的其它相关详细说明请参见上述本申请光纤线路板实施方式,在此不再赘述。
进一步地,参阅图21和图22,在另一实施方式中,在基板的结合层上排布光纤的步骤包括:
步骤S41:利用布纤装置在热解胶带600上排布光纤121;
其中,热解胶带600在常温下具有粘性,经过一定温度的加热可变成粘性非常低的状态,可以容易地从其所粘贴的表面分离。
步骤S42:将对应的基板11盖设在所排布的光纤上,使得对应的基板的结合层接触所排布的光纤,以得到第二整体结构;
步骤S43:对第二整体结构进行加热和/或加压处理,以使结合层13具有流动性,并至少填充于所排布的光纤与对应的基板所形成的空间内,并使得热解胶带600的粘度降低至预设粘度;
此处的加热和/或加压处理与上述实施方式中的相同,相关详细内容请参阅上述实施方式,此处不再赘述。
其中,热解胶带600的预设粘度是指能够较为方便地将其从光纤121上去除的粘度。
步骤S44:去除热解胶带600。
其中,结合层13包括上述本申请光纤线路板的制造方法实施方式中的设置于第一基板111上的第一结合层131和设置于中间基板113上的第三结合层133。
另外,光纤线路板的其它相关详细说明请参见上述本申请光纤线路板实施方式,在此不再赘述。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (30)

  1. 一种光纤线路板,其特征在于,所述光纤线路板包括:
    层叠间隔设置的至少两个基板,其中,每相邻的两个所述基板之间设置有光纤组件;所述光纤组件包括至少一条光纤;
    结合层,填充于相邻设置的两个所述基板之间的除所述光纤组件之外的剩余空间内,以使各个所述光纤相对于所述基板固定。
  2. 根据权利要求1所述的光纤线路板,其特征在于,所述结合层在第一温度范围和/或第一压力范围内为固态,在第二温度范围和/或第二压力范围内具有流动性,其中第一温度范围中的任意温度值不大于第二温度范围中的任意温度值。
  3. 根据权利要求2所述的光纤线路板,其特征在于,所述结合层为热固性材料或热塑性材料。
  4. 根据权利要求1所述的光纤线路板,其特征在于,所述结合层在第一温度范围和/或第一压力范围内为柔性材料。
  5. 根据权利要求1或4所述的光纤线路板,其特征在于,所述基板为柔性材料。
  6. 根据权利要求1所述的光纤线路板,其特征在于,所述光纤为普通光纤,所述结合层的材质为丙烯酸体系、硅胶体系中的至少一种。
  7. 根据权利要求1所述的光纤线路板,其特征在于,所述光纤为高温光纤,所述结合层的材质为环氧树脂体系、丙烯酸体系、硅胶体系中的至少一种。
  8. 根据权利要求1所述的光纤线路板,其特征在于,相邻设置的两个所述基板之间的所述结合层的最薄区域的厚度大于所述光纤的直径的十分之一且小于所述光纤的直径的10倍。
  9. 根据权利要求7所述的光纤线路板,其特征在于,相邻设置的两个所述基板之间的所述结合层的最薄区域的厚度大于所述光纤的直径的二分之一且小于所述光纤的直径的2倍。
  10. 根据权利要求1所述的光纤线路板,其特征在于,至少一所述光纤组件包括单层排布的至少一条光纤。
  11. 根据权利要求1所述的光纤线路板,其特征在于,至少一所述光纤组件包括呈层叠且交错排布,或者层叠且交叉排布的多条光纤。
  12. 根据权利要求1所述的光纤线路板,其特征在于,所述基板包括基板主体和出纤口,所述出纤口沿所述光纤的延伸方向设置于所述基板主体的端部,其中,所述光纤由所述出纤口延伸而出。
  13. 根据权利要求12所述的光纤线路板,其特征在于,所述出纤口的数量为多个,多个所述出纤口由所述基板主体向外围凸出并延伸形成,且彼此间隔设置。
  14. 根据权利要求1所述的光纤线路板,其特征在于,所述光纤包括:
    主体部,设置于对应的相邻两个基板所覆盖的区域内;
    延伸部,与所述主体部连接,且设置于对应的相邻两个基板所覆盖的区域外;
    所述光纤线路板还包括保护层,所述保护层包裹设置于所述延伸部的外围。
  15. 一种多层光纤线路板,其特征在于,包括多个如权利要求1-14任一项所述的光纤线路板和设置于相邻的两个所述光纤线路板之间的连接件,其中,多个所述光纤线路板通过所述连接件层叠连接在一起。
  16. 根据权利要求15所述的多层光纤线路板,其特征在于,所述连接件为粘胶层,至少两个相邻的所述光纤线路板包括连接区和剥离区;
    所述连接件夹设在相邻设置的两个所述光纤线路板的两个所述连接区之间,用于连接相邻设置的两个所述光纤线路板的两个所述连接区,以将相邻设置的两个所述光纤线路板连接在一起。
  17. 根据权利要求16所述的多层光纤线路板,其特征在于,相邻设置的两个所述光纤线路板的所述连接区之间通过所述连接件贴合设置,以使得每一所述剥离区能够相对于相邻的所述剥离区弯折设置。
  18. 一种光传输装置,其特征在于,包括如权利要求1-14任一项所述的光纤线路板、如权利要求15-17任一项所述的多层光纤线路板中的至少一种线路板,和设于所述至少一种线路板的端部的光学端口,所述光学端口用于与光对接装置连接,以进行光信号传输。
  19. 一种光电混合线路板,其特征在于,包括如权利要求1-14任一项所述的光纤线路板、如权利要求15-17任一项所述的多层光纤线路板中的至少一种线路板,以及设置在所述至少一种线路板上的电路导线。
  20. 根据权利要求19所述的光电混合线路板,其特征在于,所述电路导线为印制金属线。
  21. 根据权利要求19所述的光电混合线路板,其特征在于,所述电路导线设置在所述基板上。
  22. 根据权利要求21所述的光电混合线路板,其特征在于,所述基板上涂覆有用以覆盖所述电路导线的保护层;所述保护层为液态光致阻焊剂。
  23. 根据权利要求19所述的光电混合线路板,其特征在于,所述电路导线设置在相邻的两个基板之间对应所述光纤组件之外的区域内。
  24. 一种信号传输装置,其特征在于,包括如权利要求1-14任一项所述的光纤线路板、如权利要求15-19任一项所述的多层光纤线路板、如权利要求19-23任一项所述的光电混合线路板中的至少一种线路板以及信号传输机构、固定件,其中,所述固定件用于将所述至少一种线路板与所述信号传输机构固定连接。
  25. 一种光纤线路板的制造方法,其特征在于,所述制造方法包括:
    提供一侧设置有第一结合层的第一基板、一侧设置有第二结合层的第二基板以及至少一条光纤;
    在所述第一结合层远离所述第一基板的一侧排布所述光纤以形成光纤组件,并在所述光纤组件上盖设带有所述第二结合层的第二基板,以使所述光纤组件夹设于所述第一结合层和所述第二结合层之间,形成第一整体结构;
    对所述第一整体结构进行压合处理,使得所述第一结合层及所述第二结合层相互融合后包覆所述光纤组件,并填充于所述第一基板和所述第二基板之间的除所述光纤组件之外的剩余空间内,以得到所述光纤线路板。
  26. 根据权利要求25所述的制造方法,其特征在于,在所述第一结合层上排布光纤的步骤包括:
    利用加热装置对所述第一结合层进行加热处理,以使得所述第一结合层具有流动性;
    利用布纤装置在所述第一结合层上排布所述光纤。
  27. 根据权利要求25所述的制造方法,其特征在于,在所述第一结合层上排布光纤的步 骤包括:
    利用布纤装置在热解胶带上排布所述光纤;
    将所述第一基板盖设在所排布的所述光纤上,并使得所述第一基板的第一结合层接触所排布的所述光纤,以得到第二整体结构;
    对所述第二整体结构进行加热和/或加压处理,以使所述第一结合层具有流动性,并至少填充于所排布的所述光纤与所述第一基板所形成的空间内,并使得所述热解胶带的粘度降低至预设粘度;
    去除所述热解胶带。
  28. 一种光纤线路板的制造方法,其特征在于,所述制造方法包括:
    提供一侧设置有第一结合层的第一基板、两侧分别设置有第二结合层和第三结合层的至少一中间基板、一侧设置有第四结合层的第二基板以及至少两条光纤;
    在所述第一结合层远离所述第一基板的一侧排布所述光纤以形成第一光纤组件,并在每一所述中间基板的第三结合层的远离对应中间基板的一侧排布所述光纤以形成第二光纤组件;
    将排布有所述第一光纤组件的所述第一基板、排布有所述第二光纤组件的至少一所述中间基板及所述第二基板依次序层叠设置而形成第一整体结构,其中,所述第一整体结构中所述第一光纤组件夹设于所述第一结合层与对应的一所述第二结合层之间,所述第二光纤组件夹设于对应的所述第三结合层与一所述第二结合层之间,和/或对应的所述第三结合层与所述第四结合层之间;
    对所述第一整体结构进行压合处理,以使得分别设置于所述第一光纤组件两侧的所述第一结合层与对应的第二结合层相互融合后包覆所述第一光纤组件,并填充于所述第一基板及相邻的所述中间基板之间的除所述第一光纤组件之外的剩余空间内,及使得分别设置于每个所述第二光纤组件两侧的对应的所述第三结合层与一所述第二结合层相互融合后包覆所述第二光纤组件,并填充于位于所述第二光纤组件两侧的两个所述中间基板之间的除所述第二光纤组件之外的剩余空间内,和/或使得分别设置于所述第二光纤组件两侧的对应的所述第三结合层与所述第四结合层相互融合后包覆所述第二光纤组件,并填充于位于所述第二光纤组件两侧的所述中间基板与第二基板之间的除所述第二光纤组件之外的剩余空间内,以得到所述光纤线路板。
  29. 根据权利要求28所述的制造方法,其特征在于,在所述结合层上排布光纤的步骤包括:
    利用加热装置对所述结合层进行加热处理,以使得所述结合层具有流动性;
    利用布纤装置在所述结合层上排布所述光纤;
    其中,所述结合层包括设置于所述第一基板上的第一结合层和设置于所述中间基板上的第三结合层。
  30. 根据权利要求28所述的制造方法,其特征在于,在所述结合层上排布光纤的步骤包括:
    利用布纤装置在热解胶带上排布所述光纤;
    将对应的基板盖设在所排布的所述光纤上,使得所述对应的基板一侧的所述结合层接触所排布的所述光纤,以得到第二整体结构;
    对所述第二整体结构进行加热和/或加压处理,以使所述结合层具有流动性,并至少填充 于所排布的所述光纤与所述对应的基板所形成的空间内,并使得所述热解胶带的粘度降低至预设粘度;
    去除所述热解胶带;
    其中,所述结合层包括设置于所述第一基板上的第一结合层和设置于所述中间基板上的第三结合层。
PCT/CN2019/094097 2019-06-30 2019-06-30 光纤线路板及其制造方法、信号传输装置及混合线路板 WO2021000197A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/094097 WO2021000197A1 (zh) 2019-06-30 2019-06-30 光纤线路板及其制造方法、信号传输装置及混合线路板
US17/117,144 US20210096312A1 (en) 2019-06-30 2020-12-10 Optical fiber circuit board, multilayer optical fiber circuit board, and photo-electric hybrid circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094097 WO2021000197A1 (zh) 2019-06-30 2019-06-30 光纤线路板及其制造方法、信号传输装置及混合线路板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/117,144 Continuation US20210096312A1 (en) 2019-06-30 2020-12-10 Optical fiber circuit board, multilayer optical fiber circuit board, and photo-electric hybrid circuit board

Publications (1)

Publication Number Publication Date
WO2021000197A1 true WO2021000197A1 (zh) 2021-01-07

Family

ID=74100473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094097 WO2021000197A1 (zh) 2019-06-30 2019-06-30 光纤线路板及其制造方法、信号传输装置及混合线路板

Country Status (2)

Country Link
US (1) US20210096312A1 (zh)
WO (1) WO2021000197A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279828A1 (zh) * 2021-07-09 2023-01-12 华为技术有限公司 光纤板结构及其制造方法、光纤互连板、布纤设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298111A (zh) * 1999-11-29 2001-06-06 莫列斯公司 光学互连设备及其制造方法
JP2002311252A (ja) * 2001-04-16 2002-10-23 Sumitomo Electric Ind Ltd 光ファイバ配線部材及びその製造方法
US6873781B2 (en) * 2003-03-11 2005-03-29 3M Innovative Properties Company Optical fiber wiring board
CN106461861A (zh) * 2014-04-17 2017-02-22 莫列斯有限公司 多层柔性光线路板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066034A (ja) * 1998-08-21 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> 光配線板
JP2003029058A (ja) * 2001-07-16 2003-01-29 Fujikura Ltd 光ファイバシートにおける保護チューブ引留め構造および引留め方法
JP4334211B2 (ja) * 2002-12-25 2009-09-30 スリーエム イノベイティブ プロパティズ カンパニー 光配線シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298111A (zh) * 1999-11-29 2001-06-06 莫列斯公司 光学互连设备及其制造方法
JP2002311252A (ja) * 2001-04-16 2002-10-23 Sumitomo Electric Ind Ltd 光ファイバ配線部材及びその製造方法
US6873781B2 (en) * 2003-03-11 2005-03-29 3M Innovative Properties Company Optical fiber wiring board
CN106461861A (zh) * 2014-04-17 2017-02-22 莫列斯有限公司 多层柔性光线路板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279828A1 (zh) * 2021-07-09 2023-01-12 华为技术有限公司 光纤板结构及其制造方法、光纤互连板、布纤设备

Also Published As

Publication number Publication date
US20210096312A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
CN101206288B (zh) 光电复合布线模块及信息处理装置
CN110308518A (zh) 光纤线路板及其制造方法、信号传输装置及混合线路板
US20060192278A1 (en) Interface module for connecting LSI packages, and LSI-incorporating apparatus
CN110308519B (zh) 光纤线路板及其制造方法、光传输装置
JP3909485B2 (ja) 光ファイバ相互接続装置及びその製造方法
WO2022007268A1 (zh) 线路板及其制作方法
CN209946449U (zh) 光纤线路板、光传输装置、信号传输装置及混合线路板
JP5522076B2 (ja) フレキシブルフラット光ケーブル
WO2021000197A1 (zh) 光纤线路板及其制造方法、信号传输装置及混合线路板
CN209946450U (zh) 光纤线路板、光传输装置、光电混合线路板
CN110208909A (zh) 光纤线路板及其制造方法、光传输装置、光电混合线路板
US6969806B2 (en) Cable and method
CN209946451U (zh) 光纤线路板及光传输装置
CN110187458A (zh) 光纤线路板及其制造方法、光传输装置及混合光纤线路板
JPH07288041A (ja) フレキシブルフラットケーブル
JP2018010967A (ja) フレキシブルプリント配線板及びその製造方法
US8491739B2 (en) Implementing interleaved-dielectric joining of multi-layer laminates
WO2014026490A1 (zh) 一种印制线路板压合结构及压合方法
JP5342341B2 (ja) プリント配線基板
US20120134625A1 (en) Optical module, optical module connector, and optical deflection member
CN114114528B (zh) 光纤线路板组件以及光电混合线路板
JP2011043535A (ja) 光接続装置、及びその製造方法
JP3199170B2 (ja) 光配線部品およびその製造方法
CN111796370B (zh) 光电混合线路板、光电对接装置以及光电传输系统
CN115348716A (zh) 光纤线路板组件以及光电混合线路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936340

Country of ref document: EP

Kind code of ref document: A1