WO2020262253A1 - 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板 - Google Patents

樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板 Download PDF

Info

Publication number
WO2020262253A1
WO2020262253A1 PCT/JP2020/024212 JP2020024212W WO2020262253A1 WO 2020262253 A1 WO2020262253 A1 WO 2020262253A1 JP 2020024212 W JP2020024212 W JP 2020024212W WO 2020262253 A1 WO2020262253 A1 WO 2020262253A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
prepreg
group
composition according
composition
Prior art date
Application number
PCT/JP2020/024212
Other languages
English (en)
French (fr)
Inventor
大 佐々木
陽介 石川
一輝 松村
泰礼 西口
田宮 裕記
岸野 光寿
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020217041246A priority Critical patent/KR20220025729A/ko
Priority to US17/622,119 priority patent/US20220259378A1/en
Priority to CN202080040506.9A priority patent/CN114026177A/zh
Publication of WO2020262253A1 publication Critical patent/WO2020262253A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present disclosure relates to a resin composition, a prepreg, a method for producing a prepreg, a laminated board and a printed wiring board.
  • the present disclosure describes a resin composition containing a modified polyphenylene ether compound, a prepreg made from the resin composition, and the resin composition.
  • the present invention relates to a method for producing a prepreg to be used, a laminated board made from the resin composition, and a printed wiring board made from the resin composition.
  • Patent Document 1 discloses that a prepreg, a laminated board, and a printed wiring board are produced from a polyphenylene ether resin composition containing a modified polyphenylene ether and a thermosetting curing agent.
  • the subject of the present disclosure is a resin composition that is easily applicable to both a roll press method and a batch press method in manufacturing a laminated board or a printed wiring board, a prepreg made from this resin composition, and this resin. It is an object of the present invention to provide a method for producing a prepreg using a composition, a laminated board made from this resin composition, and a printed wiring board made from this resin composition.
  • the resin composition according to one aspect of the present disclosure includes a modified polyphenylene ether compound (A) having a group having an unsaturated double bond at the end, a cross-linking agent (B) having a carbon-carbon double bond, and a hindered amine system. It contains a polymerization inhibitor (C) and a solvent (D).
  • the resin composition according to another aspect of the present disclosure comprises a modified polyphenylene ether compound (A) having a group having an unsaturated double bond at the end, a cross-linking agent (B) having a carbon-carbon double bond, and a fluoropolymer. It contains a composite particle (I) having a core containing a resin, a shell containing a silicon oxide coating the core, and a solvent (D), and the silicon oxide is treated with phenylamino.
  • the prepreg according to one aspect of the present disclosure includes a dried product or a semi-cured product of the resin composition.
  • the method for producing a prepreg according to one aspect of the present disclosure includes an impregnation step of impregnating a base material with the resin composition, and a heating step of heating the resin composition after the impregnation step.
  • the heating step satisfies the heating conditions represented by the following mathematical formula (I).
  • i is the number of steps in which the heating temperatures included in the heating step are different from each other, and Tp n and Tm n are heating in the nth step of the i steps, respectively. Temperature (° C.) and heating time (seconds).
  • the laminated board according to one aspect of the present disclosure includes an insulating layer containing a cured product of the resin composition.
  • the printed wiring board according to one aspect of the present disclosure includes an insulating layer containing a cured product of the resin composition.
  • a polyphenylene ether fat composition containing a modified polyphenylene ether and a thermosetting curing agent as described in International Publication No. 2014/034103 prepares an insulating layer having good heat resistance and low dielectric constant and dielectric loss tangent. Available for
  • the resin flowability of the prepreg is required to be low in order to improve the thickness accuracy of the insulating layer made from the prepreg.
  • the insulating layer may not be sufficiently filled in the gap between the conductor wiring. Therefore, it is necessary to appropriately adjust the resin flowability of the prepreg.
  • the heating temperature of the resin composition is lowered, the solvent in the resin composition tends to remain in the prepreg, which increases the volatilization amount of the organic compound when manufacturing the laminated board from the prepreg.
  • the inventor can make it difficult for the insulating layer to vary in thickness when adopted in the continuous press method, and can easily fill the gaps between the conductor wirings in the gaps of the conductor wiring when adopted in the batch press method, and at the time of heating.
  • the present disclosure has been completed.
  • composition (X) is a modified polyphenylene ether compound (A) having a group having an unsaturated double bond at the end (hereinafter, also referred to as compound (A)). It contains a cross-linking agent (B) having a carbon-carbon double bond, a hindered amine-based polymerization inhibitor (C), and a solvent (D).
  • the hindered amine polymerization inhibitor (C) when the composition (X) is heated to be dried or semi-cured, the hindered amine polymerization inhibitor (C) does not easily proceed with the reaction between the compound (A) and the diene-based curing agent. it can. Therefore, even if the composition (X) is heated so that the solvent (D) is sufficiently volatilized from the composition (X), the reaction between the compound (A) and the diene-based curing agent does not easily proceed. Therefore, it is possible to easily prevent the resin flowability of the prepreg containing the dried or semi-cured product of the composition (X) from becoming too small. As a result, it is possible to easily obtain a prepreg in which the resin flowability is appropriately controlled while the residual amount of the solvent (D) is sufficiently reduced.
  • the thickness of the insulating layer is less likely to vary, and when the prepreg is used in the batch press method, the insulating layer can be easily filled in the gaps of the conductor wiring, and the prepreg is heated. Sometimes volatile matter can be less likely to be generated.
  • the composition (X) is a composite particle (I) having a compound (A), a cross-linking agent (B), a core containing a fluororesin, and a shell containing a silicon oxide coating the core, and a solvent (
  • the silicon oxide in the composite particle (I) may be treated with phenylamino, which contains D).
  • the composition (X) may or may not contain the hindered amine-based polymerization inhibitor (C).
  • the composite particles (I) have a linear expansion coefficient of an insulating layer made from a prepreg, while reducing the dielectric constant of the cured product, improving heat resistance and flame retardancy, and suppressing the increase in viscosity of the composition (X). It is possible to reduce (particularly the coefficient of linear expansion ⁇ 1 below the glass transition temperature) and toughen the cured product.
  • the reason why the composite particles (I) can reduce the linear expansion coefficient of the insulating layer is that the composite particles (I) reduce the elastic modulus of the cured product. Specifically, when the composite particles (I) reduce the elastic modulus of the cured product, the influence of the base material on the linear expansion coefficient of the insulating layer increases, so that the linear expansion coefficient of the entire insulating layer is considered to decrease.
  • the composite particles (I) can enhance the resin flowability of the prepreg produced from the composition (X), and therefore the resin flowability of the prepreg can be adjusted by using the composite particles (I). Therefore, it is possible to easily obtain a prepreg in which the resin flowability is appropriately controlled while the residual amount of the solvent (D) is sufficiently reduced. Therefore, when the prepreg is used in the continuous press method, the thickness of the insulating layer is less likely to vary, and when the prepreg is used in the batch press method, the insulating layer can be easily filled in the gaps of the conductor wiring, and the prepreg is heated. Sometimes volatile matter can be less likely to be generated. Further, when the silicon oxide in the composite particle (I) is treated with phenylamino, the composite particle (I) can hardly reduce the peel strength between the insulating layer made from the prepreg and the metal foil.
  • composition (X) The components of the composition (X) will be described in detail.
  • Compound (A) will be described.
  • the compound (A) can easily realize a low dielectric constant and a low dielectric loss tangent of the cured product of the composition (X).
  • Compound (A) is a polyphenylene ether terminal-modified with a group having an unsaturated double bond (carbon-carbon unsaturated double bond). That is, compound (A) has, for example, a polyphenylene ether chain and a group having an unsaturated double bond attached to the end of the polyphenylene ether chain.
  • Examples of the group having an unsaturated double bond include a substituent represented by the following formula (1).
  • n is a number from 0 to 10.
  • Z is an Airen group.
  • R 1 to R 3 are independently hydrogen atoms or alkyl groups.
  • Z is directly bonded to the end of the polyphenylene ether chain.
  • the arylene group is, for example, a monocyclic aromatic group such as a phenylene group, or a polycyclic aromatic group such as a naphthylene group. At least one hydrogen atom bonded to the aromatic ring in the arylene group may be substituted with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • the arylene group is not limited to the above.
  • the alkyl group for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • the alkyl group is, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group or the like.
  • the alkyl group is not limited to the above.
  • the group having an unsaturated double bond has, for example, a vinylbenzyl group (ethenylbenzyl group) such as a p-ethenylbenzyl group and an m-ethenylbenzyl group, a vinylphenyl group, an acrylate group, a methacrylate group and the like.
  • the group having an unsaturated double bond preferably has a vinylbenzyl group, a vinylphenyl group, or a methacrylate group. If the group having an unsaturated double bond has an allyl group, the reactivity of compound (A) tends to be low. Further, if the group having an unsaturated double bond has an acrylate group, the reactivity of the compound (A) tends to be too high.
  • a preferable specific example of the group having an unsaturated double bond is a functional group containing a vinylbenzyl group.
  • the group having an unsaturated double bond is, for example, a substituent represented by the following formula (2).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 is a single bond or an alkylene group having 1 to 10 carbon atoms.
  • R 2 is preferably an alkylene group having 1 to 10 carbon atoms.
  • the group having an unsaturated double bond may be a (meth) acrylate group.
  • the (meth) acrylate group is represented by, for example, the following formula (3).
  • R 4 is a hydrogen atom or an alkyl group.
  • the alkyl group is preferably an alkyl group having 1 to 18 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group is a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group or the like.
  • Alkyl groups are not limited to the above.
  • compound (A) has a polyphenylene ether chain in its molecule.
  • the polyphenylene ether chain has, for example, a repeating unit represented by the following formula (4).
  • R 5 to R 8 are independently hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, formyl groups, alkylcarbonyl groups, alkenylcarbonyl groups, or alkynylcarbonyl groups.
  • Each of R 5 to R 8 is preferably a hydrogen atom or an alkyl group.
  • the alkyl group for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • the alkyl group is, for example, a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group or the like.
  • the alkenyl group for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable.
  • the alkenyl group is, for example, a vinyl group, an allyl group, a 3-butenyl group, or the like.
  • alkynyl group for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable.
  • the alkynyl group is, for example, an ethynyl group, a propa-2-in-1-yl group (propargyl group), or the like.
  • the alkylcarbonyl group may be a carbonyl group substituted with an alkyl group, for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • the alkylcarbonyl group is, for example, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, a cyclohexylcarbonyl group and the like.
  • the alkenylcarbonyl group may be a carbonyl group substituted with an alkenyl group.
  • an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • the alkenylcarbonyl group is, for example, an acryloyl group, a methacryloyl group, a crotonoyl group, or the like.
  • the alkynylcarbonyl group may be a carbonyl group substituted with an alkynyl group, for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • the alkynylcarbonyl group is, for example, a propioloyl group or the like.
  • the alkyl group, alkenyl group, alkynyl group, formyl group, alkylcarbonyl group, alkenylcarbonyl group and alkynylcarbonyl group are not limited to the above.
  • the number average molecular weight of compound (A) is preferably 1000 or more and 5000 or less, more preferably 1000 or more and 4000 or less, and further preferably 1000 or more and 3000 or less.
  • the number average molecular weight is a polystyrene-converted value of the measurement results obtained by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • m in the formula (4) means that the number average molecular weight of the compound (A) is within the above preferable range. It is preferable that the value is such that Specifically, m is preferably 1 or more and 50 or less.
  • the compound (A) When the quantity average molecular weight of the compound (A) is within such a range, the compound (A) imparts excellent dielectric properties to the cured product of the composition (X) by the polyphenylene ether chain, and further heat resistance of the cured product. The property and moldability can be improved.
  • the possible reasons for this are as follows.
  • the number average molecular weight of the unmodified polyphenylene ether is about 1000 or more and 5000 or less, the polyphenylene ether has a relatively low molecular weight and tends to reduce the heat resistance of the cured product.
  • compound (A) since compound (A) has an unsaturated double bond at the terminal, it is considered that the heat resistance of the cured product can be enhanced.
  • the number average molecular weight of the compound (A) is 5000 or less, it is considered that the moldability of the composition (X) is not easily impaired. Therefore, it is considered that the compound (A) can not only improve the heat resistance of the cured product but also improve the moldability of the composition (X).
  • the number average molecular weight of the compound (A) is 1000 or less, the glass transition temperature of the cured product is unlikely to decrease, and therefore the cured product tends to have good heat resistance. Further, since the polyphenylene ether chain in the compound (A) is unlikely to be shortened, the excellent dielectric properties of the cured product due to the polyphenylene ether chain can be easily maintained.
  • the compound (A) when the number average molecular weight is 5000 or less, the compound (A) is easily dissolved in a solvent, and the storage stability of the composition (X) is unlikely to decrease. Further, the compound (A) does not easily increase the viscosity of the composition (X), so that good moldability of the composition (X) can be easily obtained.
  • the compound (A) does not contain a high molecular weight component having a molecular weight of 13000 or more, or the content of the high molecular weight component having a molecular weight of 13000 or more in the compound (A) is 5% by mass or less. That is, the content of the high molecular weight component having a molecular weight of 13000 or more in the compound (A) is preferably 0% by mass or more and 5% by mass or less.
  • the cured product can have particularly excellent dielectric properties, and the composition (X) can have particularly excellent reactivity and storage stability, and further particularly excellent fluidity. It is more preferable that the content of the high molecular weight component is 3% by mass or less.
  • the content of the high molecular weight component can be calculated based on the measured molecular weight distribution by measuring the molecular weight distribution using, for example, gel permeation chromatography (GPC).
  • the average number of groups having unsaturated double bonds (number of terminal functional groups) per molecule of compound (A) is preferably 1 or more, more preferably 1.5 or more, and 1 7. 7 or more is more preferable, and 1.8 or more is particularly preferable. In these cases, it is easy to secure the heat resistance of the cured product of the composition (X).
  • the average number of groups having unsaturated double bonds is preferably 5 or less, more preferably 3 or less, further preferably 2.7 or less, and particularly preferably 2.5 or less. preferable. In these cases, it is possible to prevent the reactivity and viscosity of the compound (A) from becoming excessively high, so that the storage stability of the composition (X) is lowered and the fluidity of the composition (X) is lowered.
  • the number of terminal functional groups of compound (A) is the average value of substituents per molecule in 1 mol of compound (A).
  • the number of terminal functional groups for example, when the compound (A) is synthesized by modifying the polyphenylene ether, the number of hydroxyl groups in the compound (A) is measured, and the number of hydroxyl groups in the compound (A) is the polyphenylene before modification. It is obtained by calculating the amount of decrease from the number of hydroxyl groups of ether.
  • the decrease from the number of hydroxyl groups of the polyphenylene ether before this modification is the number of terminal functional groups.
  • the number of hydroxyl groups remaining in compound (A) is determined by measuring the UV absorbance of a mixed solution obtained by adding a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to the solution of compound (A). Can be sought.
  • the intrinsic viscosity of compound (A) is preferably 0.03 dl / g or more and 0.12 dl / g or less, more preferably 0.04 dl / g or more and 0.11 dl / g or less, and 0.06 dl / g. It is more preferably g or more and 0.095 dl / g or less. In this case, the dielectric constant and the dielectric loss tangent of the cured product of the composition (X) are more likely to be lowered. Further, by imparting sufficient fluidity to the composition (X), the moldability of the composition (X) can be improved.
  • the intrinsic viscosity is the intrinsic viscosity measured in methylene chloride at 25 ° C., and more specifically, it is prepared by dissolving compound (A) in methylene chloride at a concentration of 0.18 g / 45 ml. The viscosity of the solution at 25 ° C. This viscosity is measured with a viscometer such as AVS500 Visco System manufactured by Schott, for example.
  • compound (A) can be synthesized by reacting polyphenylene ether with a compound in which a group having an unsaturated double bond and a halogen atom are bonded. More specifically, the polyphenylene ether and the compound in which a group having an unsaturated double bond and a halogen atom are bonded are dissolved in a solvent and stirred. As a result, the polyphenylene ether reacts with the compound in which the group having an unsaturated double bond and the halogen atom are bonded, and the compound (A) is obtained.
  • the cross-linking agent (B) having a carbon-carbon double bond forms a cross-linked structure by reacting with the compound (A).
  • the cross-linking agent (B) is derived from, for example, divinylbenzene, polybutadiene, alkyl (meth) acrylate, tricyclodecanol (meth) acrylate, fluorene (meth) acrylate, isocyanurate (meth) acrylate, and trimethylolpropane (meth) acrylate. Contains at least one component selected from the group.
  • the cross-linking agent (B) preferably contains polybutadiene from the viewpoint of reducing the dielectric constant.
  • the percentage of the cross-linking agent (B) is preferably 5% by mass or more and 70% by mass or less, and 10% by mass or more and 60% by mass or less, based on the total amount of the compound (A) and the cross-linking agent (B). More preferably, it is more preferably 10% by mass or more and 50% by mass or less.
  • the moldability of the composition (X) can be particularly improved, and the heat resistance of the cured product can be particularly improved, while the cured product maintains the excellent dielectric properties of the compound (A).
  • the composition (X) contains a hindered amine-based polymerization inhibitor (C).
  • the hindered amine-based polymerization inhibitor (C) can contain a compound called a hindered amine-based antioxidant or a hindered amine-based stabilizer. Since the hindered amine polymerization inhibitor (C) has a radical scavenging action, the curing reaction can be suppressed by inactivating the radically active species in the composition (X), the dried product or the semi-cured product.
  • the hindered amine polymerization inhibitor (C) is selected from the group consisting of, for example, 2,2,6,6-tetramethylpiperidine 1-oxyl and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl. Contains at least one component to be polymerized.
  • the components that can be contained in the hindered amine polymerization inhibitor (C) are not limited to the above.
  • the percentage of the hindered amine polymerization inhibitor (C) is preferably 0.001% by mass or more and 0.048% by mass or less with respect to the total amount of the compound (A) and the cross-linking agent (B).
  • this percentage is 0.001% by mass or more, the hindered amine-based polymerization inhibitor (C) can easily sufficiently suppress the curing reaction.
  • the percentage is 0.048% by mass or less, it is difficult to lower the glass transition temperature of the cured product, and it is also possible to realize that the glass transition temperature of the cured product is 180 ° C. or higher. As a result, as will be described later, the cured product can be easily applied to the insulating layer in the printed wiring board, particularly the package substrate.
  • the percentage of the hindered amine polymerization inhibitor (C) is preferably 0.001% by mass or more and 0.036% by mass or less, more preferably 0.002% by mass or more and 0.025% by mass or less, and 0.004. It is more preferable that the mass% is 0.015% by mass or less.
  • the composition (X) contains a solvent (D). It is preferable that the solvent (D) can satisfactorily dissolve or disperse the compound (A) and the cross-linking agent (B), and does not inhibit the reaction between the compound (A) and the cross-linking agent (B).
  • the solvent (D) preferably contains at least one component selected from the group consisting of an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and a ketone solvent, and particularly preferably contains toluene.
  • the components that can be contained in the solvent (D) are not limited to the above. Since the composition (X) contains a solvent, the base material can be easily impregnated with the composition (X) when a prepreg is produced from the composition (X).
  • the amount of the solvent in the composition (X) is preferably 100% by mass or more and 500% by mass or less with respect to the total solid content. In such a case, the composition (X) is homogenized, and the fibrous base material is easily impregnated.
  • the composition (X) may contain a flame retardant (E).
  • a flame retardant (E) contains at least one component selected from the group consisting of, for example, halogen-based flame retardants such as brominated flame retardants and phosphorus-based flame retardants.
  • the halogen-based flame retardant is a group consisting of, for example, a brominated flame retardant such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, and hexabromocyclododecane, and a chlorine-based flame retardant such as chlorinated paraffin. Contains at least one ingredient selected from.
  • the phosphorus flame retardant is, for example, a phosphoric acid ester such as a condensed phosphoric acid ester and a cyclic phosphoric acid ester, a phosphazene compound such as a cyclic phosphazene compound, and a phosphinate flame retardant such as a phosphinic acid metal salt such as a dialkylphosphinic acid aluminum salt.
  • a phosphoric acid ester such as a condensed phosphoric acid ester and a cyclic phosphoric acid ester
  • a phosphazene compound such as a cyclic phosphazene compound
  • a phosphinate flame retardant such as a phosphinic acid metal salt such as a dialkylphosphinic acid aluminum salt.
  • melamine-based flame retardants such as melamine phosphate and melamine polyphosphate.
  • the components that the flame retardant (E) can contain are not limited to the above.
  • the amount of the flame retardant (E) is preferably 5% by mass or more and 30% by mass or less with respect to the total amount of the compound (A) and the cross-linking agent (B). When such a flame retardant is contained, the flame resistance of the laminated board can be enhanced.
  • the composition (X) may contain an inorganic filler (F).
  • the inorganic filler (F) can enhance the heat resistance and flame retardancy of the cured product. Since the composition (X) contains the compound (A), the cured product of the composition (X) has a lower crosslink density than the cured product such as an epoxy resin composition for a general insulating base material. The coefficient of linear expansion, especially the coefficient of linear expansion ⁇ 1 below the glass transition temperature, tends to be high. However, when the composition (X) contains the inorganic filler (F), the cured product has a low dielectric constant, improved heat resistance and flame retardancy, and suppresses an increase in the viscosity of the composition (X). It is possible to reduce the linear expansion coefficient of the cured product (particularly the linear expansion coefficient ⁇ 1) and toughen the cured product.
  • the inorganic filler (F) contains at least one component selected from the group consisting of, for example, silica, alumina, talc, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, aluminum borate, barium sulfate, calcium carbonate and the like. Can be contained.
  • the inorganic filler (F) may be surface-treated with a silane coupling agent.
  • the silane coupling agent can increase the heat resistance of the insulating layer at the time of moisture absorption when the insulating layer in the laminated plate is prepared from the composition (X), and also increases the peel strength between the insulating layer and the metal foil overlapping the insulating layer. it can.
  • the silane coupling agent contains at least one component selected from the group consisting of, for example, vinylsilane, styrylsilane, methacrylsilane, and acrylicsilane.
  • the percentage of the inorganic filler (F) with respect to the total solid content of the composition (X) is preferably 5% by mass or more and 60% by mass or less. It is more preferably 10% by mass or more and 60% by mass or less, and further preferably 15% by mass or more and 50% by mass or less.
  • composition (X) may contain composite particles (I).
  • the composite particle (I) has a core containing a fluororesin and a shell containing a silicon oxide.
  • the core is preferably made of only a fluororesin, but may further contain components other than the fluororesin as long as the effects of the present embodiment are not impaired.
  • the shell is preferably composed of only silicon oxide, but may further contain components other than silicon oxide as long as the effects of the present embodiment are not impaired.
  • the average particle size of the core in the composite particle (I) is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size of the core is an arithmetic mean diameter obtained from the result of measuring the particle size distribution of only the core not covered with the shell by the laser diffraction method.
  • a core that is not covered with a shell can be obtained, for example, by treating composite particles with a desmear treatment solution.
  • the composite particle is photographed with a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM), and the longest diameter of the core portion of the composite particle is measured from the obtained image.
  • the arithmetic mean value of this measurement result can be regarded as the average particle size of the core.
  • the average particle size can be determined from the measurement results for at least 30 cores.
  • the silicon oxide in the composite particle (I) is treated with phenylamino. That is, the shell of the composite particles (I) preferably comprises a silicon oxide treated with a compound having a phenylamino group (C 6 H 5 -NH-). In this case, the peel strength of the insulating layer and the metal foil overlapping the insulating layer is less likely to decrease. Further, since the adhesion between the resin and the composite particles (I) in the cured product is increased, the insulation reliability of the insulating layer is likely to be improved.
  • the shell is made of, for example, silicon oxide particles having a particle size smaller than that of the core.
  • the silicon oxide particles are attached to the fluororesin particles to prepare a shell. it can.
  • a composite particle (I) having a core and a shell is obtained.
  • the method of producing the shell is not limited to the above.
  • Composite particles (I) can be obtained by adhering the silicon oxide particles to the fluororesin particles or precipitating the silicon oxide particles on the fluororesin particles.
  • a method of obtaining composite particles (I) by spraying silicon oxide particles onto molten fluororesin particles and combining them with the fluororesin particles, or when the fluororesin particles are dispersed in a liquid and then precipitated for example, a method of obtaining composite particles (I) by spraying silicon oxide particles onto molten fluororesin particles and combining them with the fluororesin particles, or when the fluororesin particles are dispersed in a liquid and then precipitated.
  • a method of obtaining composite particles (I) by precipitating silicon oxide on the surface of fluororesin particles can be mentioned.
  • the shell may be in a state in which silicon oxide particles are densely attached and supported around the core, or may form a layer in which silicon oxide is continuously connected around the core. Good.
  • the silicon oxide particle is phenylamino-treated before producing the composite particle (I).
  • the compound having a phenylamino group C 6 H 5 -NH-
  • silane compounds having a phenylamino group such as N- phenyl-3-aminopropyltrimethoxysilane.
  • silicon oxide particles are treated with a compound having a phenylamino group by a vapor phase method, a liquid phase method or the like.
  • the amount of the composite particles (I) is preferably 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the total amount of the compound (A) and the cross-linking agent (B).
  • the amount of the composite particles (I) is 10 parts by mass or more, the composite particles (I) tend to particularly increase the heat resistance and flame retardancy of the cured product, and particularly tend to lower the coefficient of linear expansion and the dielectric constant of the insulating layer. ..
  • the amount of the composite particles (I) is 200 parts by mass or less, the adhesion between the cured product and a metal such as copper is unlikely to be impaired, and the resin flowability of the prepreg is unlikely to be excessively increased.
  • the composition (X) may contain a silane coupling agent (G).
  • the silane coupling agent (G) in this case is a component that is not used for the surface treatment of the inorganic filler.
  • the silane coupling agent (G) can increase the heat resistance of the insulating layer at the time of moisture absorption when the insulating layer in the laminated plate is prepared from the composition (X), and the metal foil overlapping the insulating layer. The peel strength can be increased.
  • the silane coupling agent (G) contains at least one component selected from the group consisting of, for example, vinylsilane, styrylsilane, methacrylsilane, and acrylicsilane.
  • the percentage of the silane coupling agent (G) to the total amount of the compound (A) and the cross-linking agent (B) is preferably 0.3% by mass or more and 5% by mass or less. When such a silane coupling agent (G) is used, improvement in delamination strength can be expected.
  • the composition (X) may contain a reaction initiator (H).
  • the reaction initiator (H) can contain an appropriate compound capable of accelerating the curing reaction between the compound (A) and the cross-linking agent (B).
  • the reaction initiator (H) is, for example, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy).
  • reaction initiator (H) can contain at least one compound selected from the group consisting of monocarbonates and oxidizing agents such as azobisisobutyronitrile.
  • the reaction initiator (H) may contain a carboxylic acid metal salt or the like in addition to the oxidizing agent. In this case, the curing reaction can be further promoted.
  • the components that can be contained in the reaction initiator (H) are not limited to the above.
  • the reaction initiator (H) preferably contains ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene.
  • ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene since the reaction start temperature of ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene is relatively high, when the composition (X) is heated to be dried or semi-cured. The curing reaction can be prevented from proceeding excessively.
  • ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has low volatility, it is difficult to volatilize during storage and heating of the composition (X), and therefore, the composition (X) It does not easily impair the stability of.
  • the composition (X) may contain additives other than the above components.
  • Additives include, for example, dispersion of defoamers such as silicone-based defoamers and acrylic acid ester-based defoamers, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, and wet dispersants. It contains at least one component selected from the group consisting of agents and the like.
  • the components that the additive can contain are not limited to the above.
  • the gel time of the dried or semi-cured product of the composition (X) recovered from the prepreg is 200 seconds or more and 600 seconds or less at 170 ° C.
  • the viscosity of the composition (X) at 25 ° C. is preferably 200 mPa ⁇ s or more and 2000 mPa ⁇ s or less. In this case, the composition (X) is easily impregnated into the fibrous base material. This viscosity is measured with a B-type viscometer.
  • composition (X) can be realized within the range of the composition of the composition (X) described above.
  • the composition (X) is prepared, for example, as follows. First, a component that can be dissolved in an organic solvent, such as compound (A) and a cross-linking agent (B), is mixed with the organic solvent to prepare a mixture. At this time, heating may be performed if necessary. Then, if necessary, a component that does not dissolve in the organic solvent used, for example, an inorganic filler, is added to the mixture and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like to form a varnish-like composition. (X) is prepared.
  • a prepreg can be prepared from the composition (X).
  • the prepreg comprises a base material and a dried or semi-cured product of the composition (X) impregnated in the base material.
  • the prepreg is produced, for example, by a method including an impregnation step of impregnating a base material with the composition (X) and a heating step of heating the composition (X) after the impregnation step.
  • the base material is, for example, a fibrous base material.
  • the fibrous substrate is selected from the group consisting of, for example, glass cloth, aramid cloth, polyester cloth, glass non-woven fabric, aramid non-woven fabric, polyester non-woven fabric, pulp paper, linter paper and the like.
  • the fibrous base material is glass cloth, it is easy to improve the mechanical strength of the laminated board made from the prepreg.
  • the glass cloth is preferably flattened.
  • the thickness of the fibrous base material is, for example, 0.04 mm or more and 0.3 mm or less.
  • the base material can be impregnated with the composition (X), for example, by immersing the base material in the composition (X) or applying the composition (X) to the base material. If necessary, the base material may be immersed in the composition (X) multiple times, or the base material may be coated with the composition (X) multiple times.
  • the composition (X) impregnated in the base material is heated to dry or semi-cure the composition (X).
  • a prepreg containing a base material and a dried or semi-cured product of the composition (X) impregnated in the base material can be obtained.
  • the curing reaction of the composition (X) does not easily proceed. Therefore, it is easy to adjust the resin flowability of the prepreg while sufficiently volatilizing the solvent to reduce the residual amount of the solvent.
  • the evaluation of the resin flowability of the prepreg is 4% or more and 25% or less because the resin flowability of the prepreg is adjusted by adjusting the heating conditions in the heating step.
  • the method for evaluating the resin flowability will be described in Examples described later.
  • the evaluation of the resin flowability is 4% or more, when the laminated board is manufactured from the prepreg by the batch press method, especially when the prepreg is laminated on the conductor wiring, the insulating layer made from the prepreg is used as the conductor wiring. The gap can be easily filled sufficiently.
  • the thickness of the insulating layer produced from the prepreg is less likely to vary.
  • the evaluation of the resin flowability is more preferably 2% or more and 15% or less, and further preferably 3% or more and 13% or less.
  • the volatile content of the prepreg by volatile evaluation is less than 1.5% because the residual amount of the solvent in the prepreg is adjusted by adjusting the heating conditions. In this case, even if the prepreg is heated to produce the laminated board from the prepreg, outgas is less likely to be generated.
  • the method of evaluation of volatility will be described in Examples described later. It is particularly preferable that the volatile content is 0%.
  • the heating conditions of the composition (X) in the heating step that is, the heating conditions of the composition (X) for producing a dried product or a semi-cured product in the prepreg
  • evaluation of resin flowability and evaluation of volatility are preferably described above. It is set as appropriate so that it will be as shown.
  • the heating step may be a multi-stage step including a plurality of steps having different heating temperatures.
  • the heating step satisfies the heating condition represented by the following mathematical formula (I).
  • the heating step means a step of raising the temperature of the composition (X) by using a device such as a heater.
  • i is the number of steps in which the heating temperature included in the heating step is different from each other
  • Tp n and Tmn are the heating temperature (° C.) and Tm n in the nth step of the i steps, respectively.
  • Heating time seconds.
  • the resin flowability of the prepreg is adjusted so that the gaps in the conductor wiring are easily filled by the insulating layer in the batch press method and the thickness of the insulating layer is less likely to vary in the continuous press method. Cheap. Further, it is easy to reduce the residual amount of the solvent in the prepreg.
  • the heating temperature is preferably 100 ° C. or higher and 150 ° C. or lower.
  • a long prepreg and a long metal foil are continuously conveyed and laminated, and then these are continuously pressed by a roll press device, a double belt press device, or the like.
  • Heat press using the device The conditions for hot pressing are appropriately set, but the heating temperature is preferably 250 ° C. or higher and 300 ° C. or lower, the pressing force is preferably 1 MPa or higher and 5 MPa or lower, and the heating time is 4 minutes or longer and 10 minutes or lower. It is preferable to have.
  • a laminated board including an insulating layer made from the prepreg and a metal foil overlapping the insulating layer is manufactured.
  • composition (X) is applied to the base material while transporting a long base material, or the base material is immersed in the composition (X), and the composition (X) is further transported while continuously transporting the base material. ) May be heated to produce a long prepreg.
  • the laminated board may be manufactured in the same manner as described above while further continuously transporting the prepreg.
  • the thickness of the insulating layer is less likely to vary, and outgas is less likely to be generated during the production of the laminated plate.
  • a prepreg is laminated on a core material provided with an insulating layer and a conductor wiring so as to cover the conductor wiring, and then a metal foil is laminated on the prepreg to prepare a laminate.
  • the laminate may contain yet another prepreg, metal leaf, core material and the like. This laminate is placed between the hot plates and heat pressed.
  • the conditions for hot pressing are appropriately set, but the heating temperature is preferably 170 ° C. or higher and 220 ° C. or lower, the pressing force is preferably 1.5 MPa or higher and 5 MPa or lower, and the heating time is 60 minutes or longer and 150 minutes or lower. The following is preferable.
  • a laminated board including an insulating layer made from the prepreg and a metal foil overlapping the insulating layer is manufactured.
  • the laminated board may also include an insulating layer derived from the core material and conductor wiring.
  • the insulating layer is easily filled in the gaps of the conductor wiring, and outgas can be less likely to be generated during the manufacturing of the laminated board.
  • the laminated material does not have to contain the core material.
  • the laminate may include a prepreg and a metal foil that overlaps one side of the prepreg, or may include a prepreg and a metal foil that overlaps both sides of the prepreg.
  • a conductor wiring is manufactured by etching a metal foil that overlaps the insulating layer in the above-mentioned laminated board. This makes it possible to manufacture a printed wiring board including an insulating layer made from a prepreg and a conductor wiring.
  • the printed wiring board according to this embodiment is preferably a package substrate, for example. That is, it is preferable that the printed wiring board according to the present embodiment is used as a package substrate, and a semiconductor package is manufactured by mounting a chip component such as a semiconductor chip on the package substrate. In this case, a semiconductor package suitable for high frequency can be realized, and a semiconductor package suitable for high frequency can be realized while being thin.
  • the application of the printed wiring board according to this embodiment is not limited to the package substrate.
  • composition was obtained by mixing the components shown in Tables 1 and 2. The details of the components shown in Tables 1 and 2 are as follows. -The modified polyphenylene ether compound used was synthesized by the following procedure.
  • Polyphenylene ether was reacted with chloromethylstyrene to obtain modified polyphenylene ether.
  • a polyphenylene ether (a polyphenylene ether having a structure represented by the following formula (5), SABIC) is placed in a three-necked flask having a capacity of 1 liter equipped with a temperature controller, a stirrer, a cooling facility, and a dropping funnel.
  • reaction solution was stirred until polyphenylene ether, chloromethylstyrene, and tetra-n-butylammonium bromide were dissolved in toluene. At that time, the reaction solution was gradually heated until the solution temperature finally reached 75 ° C. Then, an aqueous sodium hydroxide solution (20 g of sodium hydroxide / 20 g of water) was added dropwise to the reaction solution as an alkali metal hydroxide over 20 minutes. Then, the reaction solution was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the reaction solution with an aqueous hydrochloric acid solution having a concentration of 10% by mass, a large amount of methanol was added.
  • the obtained solid was analyzed by 1H-NMR (400 MHz, CDCl 3 , TMS). As a result, a peak derived from ethenylbenzyl was confirmed at 5 to 7 ppm. As a result, it was confirmed that the obtained solid was a modified polyphenylene ether having a group represented by the formula (1) at the molecular terminal. Specifically, it was confirmed that the polyphenylene ether was ethenylbenzylated.
  • the modified polyphenylene ether was accurately weighed.
  • the weight of the modified polyphenylene ether at that time is defined as X (mg).
  • TEAH tetraethylammonium hydroxide
  • indicates the extinction coefficient, which is 4700 L / mol ⁇ cm in this test.
  • the OPL is the cell optical path length, which is 1 cm in this test.
  • the intrinsic viscosity (IV) of the methylene chloride solution of the modified polyphenylene ether was measured at 25 ° C. Specifically, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) of modified polyphenylene ether was measured with a viscometer (AVS500 Visco System manufactured by Schott). As a result, the intrinsic viscosity (IV) was 0.086 dl / g.
  • the molecular weight distribution of the modified polyphenylene ether was measured using GPC (gel permeation chromatography). From the obtained molecular weight distribution, the weight average molecular weight (Mw) and the content of high molecular weight components having a molecular weight of 13000 or more were calculated. Further, the content of the high molecular weight component was specifically calculated from the ratio of the peak area based on the curve showing the molecular weight distribution obtained by GPC. As a result, Mw was 2300. The content of the high molecular weight component was 0.1% by mass.
  • -Polybutadiene oligomer manufactured by Nippon Soda, product number B-1000.
  • -Flame Retardant 1 Phosphate compound (aluminum trisdiethylphosphinate), manufactured by Clariant Chemicals, product name Exolit OP935.
  • -Flame retardant 2 Phosphate ester compound (aromatic condensed phosphoric acid ester compound), manufactured by Daihachi Chemical Industry Co., Ltd., product number PX-200.
  • -Inorganic filler spherical silica, median diameter 3 ⁇ m, manufactured by Admatex, product number SC2300-SVJ.
  • -Silane coupling agent 3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM-503.
  • -Hindered amine polymerization inhibitor 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, manufactured by ADEKA, trade name ADEKA DESTAB LA-7RD.
  • -Composite particles 1 Composite particles having a core made of polytetrafluoroethylene (average particle size 3 ⁇ m) and a shell made of unsurface-treated silica particles (average particle size 0.01 ⁇ m).
  • -Composite particles 2 Prepared from a core made of polytetrafluoroethylene (average particle size 3 ⁇ m) and silica particles surface-treated with N-phenyl-3-aminopropyltrimethoxysilane (average particle size 0.01 ⁇ m). Composite particles with a shell.
  • -Composite particles 3 Prepared from a core made of polytetrafluoroethylene (average particle size 1 ⁇ m) and silica particles surface-treated with N-phenyl-3-aminopropyltrimethoxysilane (average particle size 0.01 ⁇ m). Composite particles with a shell.
  • -Composite particles 4 Prepared from a core made of polytetrafluoroethylene (average particle size 0.1 ⁇ m) and silica particles surface-treated with N-phenyl-3-aminopropyltrimethoxysilane (average particle size 0.01 ⁇ m). Composite particles with a shell.
  • -Composite particles 5 Prepared from a core made of polytetrafluoroethylene (average particle size 15 ⁇ m) and silica particles surface-treated with N-phenyl-3-aminopropyltrimethoxysilane (average particle size 0.01 ⁇ m). Composite particles with a shell.
  • prepreg having a resin content of 74% by mass is obtained by impregnating a glass cloth (manufactured by Nitto Boseki Co., Ltd., product number NE1017, thickness 14 ⁇ m) and then heating under the conditions shown in Tables 1 and 2. Was produced.
  • Volatile content (%) ⁇ (Wa-Wb) / Wa ⁇ x 100
  • the value up to the second decimal place obtained by rounding off the third decimal place of the value calculated by this formula was used as the evaluation value.
  • the prepreg was cut to obtain a plurality of test pieces having a size of 100 ⁇ 1 mm ⁇ 100 ⁇ 1 mm.
  • a laminate obtained by stacking a plurality of test pieces was weighed with an electronic balance, and the number of test pieces was adjusted so that the weight of the laminate was about 20 g.
  • the value up to the order of 0.01 g as a result of weighing the laminate was defined as A (g).
  • the laminate is sandwiched between the center of the release paper folded in half, sandwiched between the release films, and then sandwiched between iron plates, and then pressed with a press with an automatic temperature controller (flow tester) at a temperature of 170 ⁇ 2 ° C and pressure.
  • Resin flow (A x 1.03-2 x B) / (A x 1.03) x 100 (%) The value up to the first decimal place obtained by rounding off the second decimal place of the value calculated by this formula was used as the evaluation value.
  • the laminated board was cut to obtain five test pieces having a size of 50 mm ⁇ 50 mm.
  • the test piece was heated in a convection oven at 160 ° C. for 1 hour, and then the appearance of the test piece was confirmed.
  • all five test pieces had no appearance abnormality A
  • when 1 to 4 test pieces had appearance abnormality B all five test pieces had appearance abnormality.
  • the case was evaluated as C.
  • a copper foil having a thickness of 3 ⁇ m was prepared as the metal foil.
  • a printed wiring board having a copper conductor wiring as a core material, a conductor wiring thickness of 18 ⁇ m, and a residual copper ratio of 50% was prepared.
  • One prepreg was laminated on the core material so as to cover the conductor wiring with the prepreg, and a metal foil was further laminated on the prepreg to obtain a laminate.
  • the laminate was hot pressed using a hot platen.
  • the conditions of this hot press are a heating rate of 3 ° C./min, a maximum heating temperature of 200 ° C., and a holding time of 90 minutes. As a result, a laminated board having an insulating layer made from a prepreg was obtained.
  • the insulating layer was observed to confirm whether or not the insulating layer was filled in the gap of the conductor wiring. As a result, the case where no unfilling was observed was evaluated as A, the case where unfilling was observed partially was evaluated as B, and the case where unfilling was observed throughout was evaluated as C.
  • (3-4) Copper Foil Peel Strength A laminated plate was obtained by the same method as in the case of "(3-1) Oven heat resistance evaluation" described above.
  • the peel strength at the time of peeling the metal layer (metal foil) from the insulating layer in this laminated plate was measured according to JIS C 6481. In the measurement, the metal foil formed to have a width of 5 mm and a length of 100 mm was peeled off from the insulating layer at a speed of 50 mm / min by a tensile tester, and the peel strength at that time was measured.
  • a copper foil having a thickness of 18 ⁇ m was prepared as the metal foil.
  • a printed wiring board having a copper conductor wiring as a core material, a conductor wiring thickness of 18 ⁇ m, and a residual copper ratio of 50% was prepared. While continuously transporting the metal foil, the core material, and one prepreg, one prepreg is layered on the core material so as to cover the conductor wiring with the prepreg, and the metal foil is layered on the prepreg. It was hot pressed by passing it between hot rolls. The conditions of this hot press are a heating temperature of 250 ° C., a press pressure of 4 mPa, and a heating and pressurizing time of 5 minutes. As a result, a laminated board having an insulating layer made from a prepreg was obtained.
  • the insulating layer was observed to confirm whether or not the insulating layer was filled in the gap of the conductor wiring. As a result, the case where no unfilling was observed was evaluated as A, the case where unfilling was observed partially was evaluated as B, and the case where unfilling was observed throughout was evaluated as C.
  • Comparative Example 1 In Comparative Example 1 in which the hindered amine polymerization inhibitor was not used, the evaluation of oven heat resistance and the evaluation of filling property by the batch press method were poor. In Comparative Example 2 in which the heating conditions at the time of producing the prepreg were changed with the same composition, the evaluation of the filling property was improved, but the evaluation of volatility and the heat resistance were deteriorated. Further, in Comparative Example 3 in which none of the hindered amine-based polymerization inhibitor, the inorganic filler, and the composite particles was contained, the copper foil peel strength was high, but the linear expansion coefficient was high.
  • Example 5 in which the heating conditions at the time of preparing the prepreg were changed in the same composition as in Example 1 and the conditions shown in the formula (I) were not satisfied, the evaluation values of the resin flowability and the volatility evaluation were compared with those in Example 1. Although the evaluation value was high, the evaluation of heat resistance and filling property was sufficiently good, and the glass transition temperature was sufficiently high.
  • Example 6 in which the amount of the hindered amine polymerization inhibitor was reduced as compared with Example 1, the evaluation of the filling property in the batch press method was slightly lower, but the evaluation of the filling property was better than in Comparative Example 1.
  • Example 7 in which the heating conditions at the time of producing the prepreg were changed in the same composition as in Example 1 and the conditions shown in the formula (I) were not satisfied, the evaluation of the filling property in the batch press method was slightly lowered, but Comparative Example 1 The evaluation of the filling property was good as compared with the above.
  • Example 8 the component ratios of the polyphenylene ether and polybutadiene of Example 1 were changed, but the evaluation of heat resistance and filling property was good, and the glass transition temperature was sufficiently high.
  • Example 11 in which the composite particles and the hindered amine polymerization inhibitor were used in combination, the resin flowability of the prepreg could be appropriately improved. Further, in Example 11 in which the silica particles in the composite particles are subjected to the phenylamino treatment, high copper foil peel strength can be realized.
  • Examples 13 to 19 containing composite particles and not containing a hindered amine-based polymerization inhibitor in Examples 13 to 15 and 17 in which the blending amount was changed without changing the type of composite particles, the composite particles were used. The larger the amount, the lower the relative permittivity, but the copper foil peel strength tended to decrease. Further, according to Examples 13, 16, 18 and 19 in which the particle size of the core of the composite particle was changed without changing the blending amount of the composite particle, the larger the particle size of the core, the easier it was to reduce the coefficient of linear expansion. Good resin flowability can be easily obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示は、積層板又はプリント配線板を製造するにあたり、ロールプレス方式とバッチプレス方式とのいずれの方式にも適用しやすい樹脂組成物を提供する。樹脂組成物は、末端に不飽和二重結合を含む基を有する変性ポリフェニレンエーテル化合物(A)と、炭素-炭素二重結合を有する架橋剤(B)と、ヒンダードアミン系重合禁止剤(C)と、溶剤(D)とを含有する。

Description

樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板
 本開示は樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板に関し、詳しくは変性ポリフェニレンエーテル化合物を含有する樹脂組成物、前記樹脂組成物から作製されるプリプレグ、前記樹脂組成物を用いるプリプレグの製造方法、前記樹脂組成物から作製される積層板、及び前記樹脂組成物から作製されるプリント配線板に関する。
 特許文献1には、変性ポリフェニレンエーテルと熱硬化型硬化剤とを含むポリフェニレンエーテル樹脂組成物から、プリプレグ、積層板及びプリント配線板を作製することが開示されている。
国際公開第2014/034103号
 本開示の課題は、積層板又はプリント配線板を製造するにあたり、ロールプレス方式とバッチプレス方式とのいずれの方式にも適用しやすい樹脂組成物、この樹脂組成物から作製されるプリプレグ、この樹脂組成物を用いるプリプレグの製造方法、この樹脂組成物から作製される積層板、及びこの樹脂組成物から作製されるプリント配線板を提供することである。
 本開示の一態様に係る樹脂組成物は、不飽和二重結合を有する基を末端に有する変性ポリフェニレンエーテル化合物(A)と、炭素-炭素二重結合を有する架橋剤(B)と、ヒンダードアミン系重合禁止剤(C)と、溶剤(D)とを含有する。
 本開示の別の態様に係る樹脂組成物は、不飽和二重結合を有する基を末端に有する変性ポリフェニレンエーテル化合物(A)と、炭素-炭素二重結合を有する架橋剤(B)と、フッ素樹脂を含むコアと、前記コアを被覆するケイ素酸化物を含むシェルとを有する複合粒子(I)と、溶剤(D)とを含有し、前記ケイ素酸化物がフェニルアミノ処理されている。
 本開示の一態様に係るプリプレグは、前記樹脂組成物の乾燥物又は半硬化物を含む。
 本開示の一態様に係るプリプレグの製造方法は、前記樹脂組成物を基材に含浸させる、含浸工程と、前記含浸工程の後に前記樹脂組成物を加熱する、加熱工程とを含む。前記加熱工程は、下記数式(I)で示す加熱条件を満たす。
Figure JPOXMLDOC01-appb-M000002
 ここで、数式(I)中、iは前記加熱工程に含まれる加熱温度の互いに異なる工程の数であり、Tpn及びTmnは、それぞれi個の前記工程のうちのn番目の工程における加熱温度(℃)及び加熱時間(秒)である。
 本開示の一態様に係る積層板は、前記樹脂組成物の硬化物を含む絶縁層を備える。
 本開示の一態様に係るプリント配線板は、前記樹脂組成物の硬化物を含む絶縁層を備える。
 まず、本開示の完成に至るまでの経緯の概略を説明する。
 国際公開第2014/034103号に記載のような変性ポリフェニレンエーテルと熱硬化型硬化剤とを含むポリフェニレンエーテル脂組成物は、耐熱性が良好でありかつ誘電率及び誘電正接が低い絶縁層を作製するために利用できる。
 ところで、積層板の製造方法には、長尺なプリプレグ、金属箔といった材料を搬送しながら積層してロールプレスなどで連続的にプレスする方式(連続プレス方式)と、プリプレグ、金属箔といった材料を積層して熱盤などでプレスする方式(バッチプレス方式)とがある。
 変性ポリフェニレンエーテルと熱硬化型硬化剤とを含む樹脂組成物からプリプレグを作製し、このプリプレグを用いて積層板を作製する場合に、発明者はまず連続プレス方式に適用することを検討し、続いてバッチプレス方式にも適用することを検討した。
 連続プレス方式の場合は、プリプレグから作製される絶縁層の厚み精度を良好にするためにプリプレグの樹脂流れ性が低いことが要求される。一方、バッチプレス方式の場合には、プリプレグを導体配線に重ねて積層する場合、プリプレグの樹脂流れ性が低すぎると導体配線の隙間に絶縁層が十分に充填されなくなることがある。そのため、プリプレグの樹脂流れ性を適切に調整する必要がある。
 連続プレス方式に適用される樹脂組成物から作製されるプリプレグの樹脂流れ性を高めてバッチプレス方式に適用するために、プリプレグを作製する際の樹脂組成物の加熱温度を低くすることも考えられる。
 しかし、樹脂組成物の加熱温度を低くすると、プリプレグ中に樹脂組成物中の溶剤が残存しやすいため、プリプレグから積層板を製造する際に有機化合物の揮発量を増大させてしまう。
 このため、連続プレス方式が採用される場合とバッチプレス方式が採用される場合とで、それぞれ異なる組成の樹脂組成物を準備しなければならず、製造上の負担になっていた。
 そこで、発明者は、連続プレス方式に採用した場合に絶縁層に厚みのばらつきを生じにくくでき、かつバッチプレス方式に採用した場合に導体配線の隙間に絶縁層が充填されやすくでき、しかも加熱時に揮発分が発生しにくいプリプレグ、及びこのプリプレグを作製するための樹脂組成物を得るべく、鋭意研究開発を行った結果、本開示の完成に至った。
 以下、本開示の実施形態について説明する。
 本実施形態に係る樹脂組成物(以下、組成物(X)ともいう)は、不飽和二重結合を有する基を末端に有する変性ポリフェニレンエーテル化合物(A)(以下、化合物(A)ともいう)と、炭素-炭素二重結合を有する架橋剤(B)と、ヒンダードアミン系重合禁止剤(C)と、溶剤(D)とを含有する。
 本実施形態によると、組成物(X)を乾燥し又は半硬化させるために加熱した場合、ヒンダードアミン系重合禁止剤(C)は、化合物(A)とジエン系硬化剤との反応を進行させにくくできる。このため、組成物(X)から溶剤(D)が十分に揮発するように組成物(X)を加熱しても、化合物(A)とジエン系硬化剤との反応は進行しにくい。そのため、組成物(X)の乾燥物又は半硬化物を備えるプリプレグの樹脂流れ性が小さくなり過ぎることを、容易に防ぐことができる。これにより、溶剤(D)の残存量を十分に小さくしながら、樹脂流れ性が適切に制御されたプリプレグを、容易に得ることができる。このため、プリプレグを連続プレス方式に採用した場合に絶縁層に厚みのばらつきを生じにくくでき、かつバッチプレス方式に採用した場合に導体配線の隙間に絶縁層が充填されやすくでき、しかもプリプレグの加熱時に揮発分を発生しにくくできる。
 組成物(X)は、化合物(A)と、架橋剤(B)と、フッ素樹脂を含むコアと、前記コアを被覆するケイ素酸化物を含むシェルとを有する複合粒子(I)と、溶剤(D)とを含有し、複合粒子(I)におけるケイ素酸化物がフェニルアミノ処理されていてもよい。この場合、組成物(X)は、ヒンダードアミン系重合禁止剤(C)を含有してもよく、含有しなくてもよい。複合粒子(I)は、硬化物の低誘電率化、耐熱性向上及び難燃性向上、並びに組成物(X)の粘度上昇抑制を実現しながら、プリプレグから作製される絶縁層の線膨張係数(特にガラス転移温度未満での線膨張係数α1)の低減、及び硬化物の強靭化を実現しうる。
 なお、複合粒子(I)が絶縁層の線膨張係数を低減しうるのは、複合粒子(I)が硬化物の弾性率を低減することによるものと推察される。詳しくは、複合粒子(I)が硬化物の弾性率を低減すると、基材が絶縁層の線膨張係数に与える影響が大きくなるので、絶縁層全体の線膨張係数が小さくなると考えられる。
 また、複合粒子(I)は組成物(X)から作製されるプリプレグの樹脂流れ性を高めることができ、このため複合粒子(I)を利用してプリプレグの樹脂流れ性を調整できる。そのため、溶剤(D)の残存量を十分に小さくしながら、樹脂流れ性が適切に制御されたプリプレグを、容易に得ることができる。このため、プリプレグを連続プレス方式に採用した場合に絶縁層に厚みのばらつきを生じにくくでき、かつバッチプレス方式に採用した場合に導体配線の隙間に絶縁層が充填されやすくでき、しかもプリプレグの加熱時に揮発分を発生しにくくできる。さらに、複合粒子(I)におけるケイ素酸化物がフェニルアミノ処理されていると、複合粒子(I)はプリプレグから作製される絶縁層と金属箔とのピール強度を低下させにくくできる。
 組成物(X)の成分について、詳しく説明する。
 化合物(A)について説明する。化合物(A)は、組成物(X)の硬化物の低誘電率化及び低誘電正接化を実現しやすい。化合物(A)は、不飽和二重結合(炭素-炭素不飽和二重結合)を有する基により末端変性されたポリフェニレンエーテルである。すなわち、化合物(A)は、例えばポリフェニレンエーテル鎖と、ポリフェニレンエーテル鎖の末端に結合している不飽和二重結合を有する基とを、有する。
 不飽和二重結合を有する基としては、例えば、下記式(1)で表される置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、nは、0~10の数である。Zはアリーレン基である。R1~R3は、各々独立に、水素原子又はアルキル基である。式(1)において、nが0である場合は、Zがポリフェニレンエーテル鎖の末端に直接結合している。
 アリーレン基は、例えばフェニレン基等の単環芳香族基、又はナフチレン基等の多環芳香族基等である。アリーレン基における芳香族環に結合する少なくとも一つの水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換されていてもよい。アリーレン基は、前記のみには限られない。
 アルキル基は、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、アルキル基は、例えば、メチル基、エチル基、プロピル基、ヘキシル基、又はデシル基等である。アルキル基は、前記のみには限られない。
 不飽和二重結合を有する基は、例えばp-エテニルベンジル基、m-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、又はメタクリレート基等を有する。不飽和二重結合を有する基は、特にビニルベンジル基、ビニルフェニル基、又はメタクリレート基を有することが好ましい。不飽和二重結合を有する基がアリル基を有すれば、化合物(A)の反応性が低い傾向がある。また、不飽和二重結合を有する基がアクリレート基を有すれば、化合物(A)の反応性が高すぎる傾向がある。
 不飽和二重結合を有する基の好ましい具体例としては、ビニルベンジル基を含む官能基が挙げられる。具体的には、不飽和二重結合を有する基は、例えば下記式(2)に示す置換基である。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R1は、水素原子又は炭素数1~10のアルキル基であり、R2は単結合又は炭素数1~10のアルキレン基である。R2は炭素数1~10のアルキレン基であることが好ましい。
 不飽和二重結合を有する基は、(メタ)アクリレート基でもよい。(メタ)アクリレート基は、例えば、下記式(3)で示される。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R4は、水素原子又はアルキル基である。アルキル基は、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、アルキル基は、メチル基、エチル基、プロピル基、ヘキシル基、又はデシル基等である。アルキル基は前記のみには制限されない。
 化合物(A)は、上記のとおり、ポリフェニレンエーテル鎖を分子中に有している。ポリフェニレンエーテル鎖は、例えば、下記式(4)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000006
 式(4)において、mは、1~50の数である。R5~R8は、各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基である。R5~R8の各々は、水素原子又はアルキル基であることが好ましい。アルキル基は、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、アルキル基は、例えば、メチル基、エチル基、プロピル基、ヘキシル基、又はデシル基等である。アルケニル基は、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、アルケニル基は、例えば、ビニル基、アリル基、又は3-ブテニル基等である。アルキニル基は、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、アルキニル基は、例えば、エチニル基、又はプロパ-2-イン-1-イル基(プロパルギル基)等である。アルキルカルボニル基は、アルキル基で置換されたカルボニル基であればよく、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、アルキルカルボニル基は、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、又はシクロヘキシルカルボニル基等である。アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であればよく、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、アルケニルカルボニル基は、例えば、アクリロイル基、メタクリロイル基、又はクロトノイル基等である。アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であればよく、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、アルキニルカルボニル基は、例えば、プロピオロイル基等である。アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基及びアルキニルカルボニル基は、前記のみには制限されない。
 化合物(A)の数平均分子量は、1000以上5000以下であることが好ましく、1000以上4000以下であることがより好ましく、1000以上3000以下であることがさらに好ましい。数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)で得られた測定結果をポリスチレン換算した値である。化合物(A)が、式(4)で表される繰り返し単位を分子中に有している場合、式(4)中のmは、化合物(A)の数平均分子量が上記の好ましい範囲内になるような数値であることが好ましい。具体的には、mは、1以上50以下であることが好ましい。化合物(A)の数量平均分子量がこのような範囲内であると、化合物(A)は、ポリフェニレンエーテル鎖によって組成物(X)の硬化物に優れた誘電特性を付与し、更に硬化物の耐熱性及び成形性を向上させることができる。その理由として、以下のことが考えられる。変性されていないポリフェニレンエーテルは、その数平均分子量が1000以上5000以下程度であると、比較的低分子量であるので、硬化物の耐熱性を低下させる傾向がある。これに対し、化合物(A)は、末端に不飽和二重結合を有するので、硬化物の耐熱性を高められると考えられる。また化合物(A)の数平均分子量が5000以下であると、組成物(X)の成形性が阻害されにくいと考えられる。よって、化合物(A)は、硬化物の耐熱性を向上できるだけではなく、組成物(X)の成形性を向上できると考えられる。なお、化合物(A)の数平均分子量が1000以下であると、硬化物のガラス転移温度が低下しにくく、このため硬化物が良好な耐熱性を有しやすい。さらに、化合物(A)におけるポリフェニレンエーテル鎖が短くなりにくいため、ポリフェニレンエーテル鎖による硬化物の優れた誘電特性が維持されやすい。また、数平均分子量が5000以下であると、化合物(A)は溶剤に溶解しやすく、組成物(X)の保存安定性が低下しにくい。また、化合物(A)は組成物(X)の粘度を上昇させにくく、そのため組成物(X)の良好な成形性が得られやすい。
 化合物(A)は分子量13000以上の高分子量成分を含有せず、又は化合物(A)中の分子量13000以上の高分子量成分の含有量が5質量%以下であることが好ましい。すなわち、化合物(A)中の分子量13000以上の高分子量成分の含有量は0質量%以上5質量%以下であることが好ましい。この場合、硬化物は特に優れた誘電特性を有することができ、かつ組成物(X)は特に優れた反応性及び保存安定性を有することができ、更に特に流動性に優れる。高分子量成分の含有量が3質量%以下であればより好ましい。なお、高分子量成分の含有量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、分子量分布を測定し、測定された分子量分布に基づいて算出することができる。
 化合物(A)の1分子当たりの、不飽和二重結合を有する基の平均個数(末端官能基数)は、1個以上であることが好ましく、1.5個以上であることがより好ましく、1.7個以上であれば更に好ましく、1.8個以上であれば特に好ましい。これらの場合、組成物(X)の硬化物の耐熱性を確保しやすい。また不飽和二重結合を有する基の平均個数は5個以下であることが好ましく3個以下であればより好ましく、2.7個以下であれば更に好ましく、2.5個以下であれば特に好ましい。これらの場合、化合物(A)の反応性及び粘度が過度に高くなることを抑制でき、このため、組成物(X)の保存性が低下したり、組成物(X)の流動性が低下したりする不具合を起こりにくくできる。また組成物(X)の硬化後に、未反応の不飽和二重結合を残りにくくできる。なお、化合物(A)の末端官能基数は、化合物(A)1モル中の、1分子あたりの、置換基の平均値である。この末端官能基数は、例えば、ポリフェニレンエーテルを変性して化合物(A)を合成した場合、化合物(A)中の水酸基数を測定して、化合物(A)中の水酸基数の、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、得られる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。化合物(A)に残存する水酸基数は、化合物(A)の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加して得られる混合溶液のUV吸光度を測定することによって、求めることができる。
 化合物(A)の固有粘度は、0.03dl/g以上0.12dl/g以下であることが好ましく、0.04dl/g以上0.11dl/g以下であることがより好ましく、0.06dl/g以上0.095dl/g以下であることが更に好ましい。この場合、組成物(X)の硬化物の誘電率及び誘電正接を、より低下させやすい。また組成物(X)に充分な流動性を付与することで、組成物(X)の成形性を向上させることができる。
 なお、固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、化合物(A)を塩化メチレンに0.18g/45mlの濃度で溶解させて調製される溶液の、25℃における粘度である。この粘度は、例えばSchott社製のAVS500 Visco System等の粘度計で測定される。
 化合物(A)の合成方法に、特に制限はない。例えばポリフェニレンエーテルに、不飽和二重結合を有する基とハロゲン原子とが結合された化合物を反応させることで、化合物(A)を合成できる。より具体的には、ポリフェニレンエーテルと、不飽和二重結合を有する基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。これにより、ポリフェニレンエーテルと、不飽和二重結合を有する基とハロゲン原子とが結合された化合物とが反応し、化合物(A)が得られる。
 炭素-炭素二重結合を有する架橋剤(B)は、化合物(A)と反応することで架橋構造を形成する。
 架橋剤(B)は、例えばジビニルベンゼン、ポリブタジエン、アルキル(メタ)アクリレート、トリシクロデカノール(メタ)アクリレート、フルオレン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、及びトリメチロールプロパン(メタ)アクリレートからなる群から選択される少なくとも一種の成分を含有する。
 このなかでも、低誘電率化の観点から、架橋剤(B)はポリブタジエンを含有することが好ましい。架橋剤(B)の百分比は、化合物(A)と架橋剤(B)との合計量に対して5質量%以上70質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、10質量%以上50質量%以下であることが更に好ましい。これらの場合、硬化物が化合物(A)による優れた誘電特性を維持したまま、組成物(X)の成形性が特に向上でき、かつ硬化物の耐熱性も特に向上できる。
 組成物(X)は、ヒンダードアミン系重合禁止剤(C)を含有する。ヒンダードアミン系重合禁止剤(C)は、ヒンダードアミン系酸化防止剤又はヒンダードアミン系安定剤と呼ばれる化合物を含有できる。ヒンダードアミン系重合禁止剤(C)は、ラジカル捕捉作用を有するため、組成物(X)、乾燥物又は半硬化物中のラジカル活性種を不活性化することで、硬化反応を抑制しうる。
 ヒンダードアミン系重合禁止剤(C)は、例えば2,2,6,6-テトラメチルピペリジン 1-オキシル及び4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルからなる群から選択される少なくとも一種の成分を含有する。なお、ヒンダードアミン系重合禁止剤(C)が含みうる成分は前記のみには制限されない。
 ヒンダードアミン系重合禁止剤(C)の百分比は、化合物(A)と架橋剤(B)との合計量に対して0.001質量%以上0.048質量%以下であることが好ましい。この百分比が0.001質量%以上であることで、ヒンダードアミン系重合禁止剤(C)が硬化反応を十分に抑制しやすい。またこの百分比が0.048質量%以下であることで、硬化物のガラス転移温度を低下しにくくし、硬化物のガラス転移温度が180℃以上であることも実現可能である。これにより、後述するとおり、硬化物をプリント配線板、特にパッケージ基板における、絶縁層に適用しやすくできる。ヒンダードアミン系重合禁止剤(C)の百分比は、0.001質量%以上0.036質量%以下であることも好ましく、0.002質量%以上0.025質量%以下あればより好ましく、0.004質量%以上0.015質量%以下であれば更に好ましい。
 組成物(X)は、溶剤(D)を含有する。溶剤(D)は、化合物(A)及び架橋剤(B)を良好に溶解させ又は分散させることができ、かつ化合物(A)と架橋剤(B)との反応を阻害しないことが好ましい。例えば溶剤(D)は、脂肪族炭化水素系溶剤、芳香族炭化水素系溶解及びケトン系溶剤からなる群から選択される少なくとも一種の成分を含有することが好ましく、トルエンを含有すれば特に好ましい。なお、溶剤(D)が含有しうる成分は前記のみに制限されない。組成物(X)が溶剤を含有することで、組成物(X)からプリプレグを作製する際に、組成物(X)を基材に含浸させやすくできる。組成物(X)の中の溶剤の量は、固形分全量に対して100質量%以上500質量%以下であることが好ましい。このような場合、組成物(X)が均一化され、繊維質基材へ含浸がしやすくなる。
 組成物(X)は、難燃剤(E)を含有してもよい。この場合、組成物(X)の硬化物の難燃性を更に高めることができる。難燃剤(E)は、例えば、臭素系難燃剤等のハロゲン系難燃剤及びリン系難燃剤等からなる群から選択される少なくとも一種の成分を含有する。ハロゲン系難燃剤は、例えばペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、及びヘキサブロモシクロドデカン等の臭素系難燃剤、並びに塩素化パラフィン等の塩素系難燃剤等からなる群から選択される少なくとも一種の成分を含有する。リン系難燃剤は、例えば、縮合リン酸エステル及び環状リン酸エステル等のリン酸エステル、環状ホスファゼン化合物等のホスファゼン化合物、ジアルキルホスフィン酸アルミニウム塩等のホスフィン酸金属塩等のホスフィン酸塩系難燃剤、並びにリン酸メラミン及びポリリン酸メラミン等のメラミン系難燃剤等からなる群から選択される少なくとも一種の成分を含有する。なお、難燃剤(E)が含みうる成分は前記のみには制限されない。
 難燃剤(E)の量は、化合物(A)、架橋剤(B)の合計量に対して5質量%以上30質量%以下であることが好ましい。このような難燃剤を含有する場合、積層板の耐燃性を高めることができる。
 組成物(X)は、無機充填材(F)を含有してもよい。無機充填材(F)は、硬化物の耐熱性及び難燃性を高めうる。組成物(X)が化合物(A)を含むことで、組成物(X)の硬化物は、一般的な絶縁基材用のエポキシ樹脂組成物等の硬化物と比較すると、架橋密度が低く、線膨張係数、特に、ガラス転移温度未満での線膨張係数α1が高くなる傾向がある。しかし、組成物(X)が無機充填材(F)を含有すると、硬化物の低誘電率化、耐熱性向上及び難燃性向上、並びに組成物(X)の粘度上昇抑制を実現しながら、硬化物の線膨張係数(特に線膨張係数α1)の低減、及び硬化物の強靭化を実現しうる。
 無機充填材(F)は、例えばシリカ、アルミナ、タルク、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、ホウ酸アルミニウム、硫酸バリウム及び炭酸カルシウム等からなる群から選択される少なくとも一種の成分を含有できる。無機充填材(F)は、シランカップリング剤で表面処理されていてもよい。シランカップリング剤は、積層板における絶縁層を組成物(X)から作製した場合の、絶縁層の吸湿時における耐熱性を高くでき、かつ絶縁層とこれに重なる金属箔とのピール強度を高くできる。シランカップリング剤は、例えばビニルシラン、スチリルシラン、メタクリルシラン、及びアクリルシランからなる群から選択される少なくとも一種の成分を含有する。
 組成物(X)が無機充填材(F)を含有する場合、組成物(X)の固形分全量に対する無機充填材(F)の百分比は5質量%以上60質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、15質量%以上50質量%以下であることが更に好ましい。
 上述のとおり、組成物(X)は、複合粒子(I)を含有してもよい。
 上述のとおり、複合粒子(I)は、フッ素樹脂を含むコアと、ケイ素酸化物を含むシェルとを有する。コアは、フッ素樹脂のみからなることが好ましいが、本実施形態の作用効果を損なわない範囲内で、フッ素樹脂以外の成分を更に含有してもよい。また、シェルは、ケイ素酸化物のみからなることが好ましいが、本実施形態の作用効果を損なわない範囲内で、ケイ素酸化物以外の成分を更に含有してもよい。複合粒子(I)におけるコアの平均粒径は0.1μm以上20μm以下であることが好ましい。平均粒径が0.1μm以上であれば樹脂流れが過度に小さくなりにくく、平均粒径が20μm以下であれば絶縁層とこれに重なる金属箔とのピール強度が低下しにくい。この平均粒径は0.5μm以上5μm以下であれば、より好ましい。なお、コアの平均粒径は、シェルで覆われていないコアのみの粒度分布をレーザー回折法で測定した結果から得られる算術平均径である。シェルで覆われていないコアは、例えば複合粒子をデスミア処理液で処理することで得られる。また、複合粒子を透過電子顕微鏡(TEM)又は走査型透過電子顕微鏡(STEM)で撮影し、得られた画像から、複合粒子におけるコアの部分の最長径を測定する。この測定結果の算術平均値をコアの平均粒径とみなせる。少なくとも30個のコアについての測定結果から平均粒径が求められる。
 特に、複合粒子(I)におけるケイ素酸化物が、フェニルアミノ処理されていることが好ましい。すなわち、複合粒子(I)のシェルは、フェニルアミノ基(C65-NH-)を有する化合物で処理されたケイ素酸化物を含むことが好ましい。この場合、絶縁層とこれに重なる金属箔とのピール強度が特に低下しにくくなる。また、硬化物中での樹脂と複合粒子(I)との密着性が高くなることから、絶縁層の絶縁信頼性が向上しやすい。
 シェルは、例えばコアよりも小さい粒径を有するケイ素酸化物粒子から作製される。この場合、例えばコアのみからなる粒子(フッ素樹脂粒子)の表面にケイ素酸化物粒子を配置した状態で電子線を照射することで、フッ素樹脂粒子にケイ素酸化物粒子を付着させて、シェルを作製できる。これによりコアとシェルとを有する複合粒子(I)が得られる。なお、シェルを作製する方法は前記のみには限られない。ケイ素酸化物粒子をフッ素樹脂粒子に付着またはフッ素樹脂粒子上にケイ素酸化物粒子を析出させることで、複合粒子(I)が得られる。そのためには、例えば溶融したフッ素樹脂粒子にケイ素酸化物粒子を吹き付けてフッ素樹脂粒子と複合させることで複合粒子(I)を得る方法や、フッ素樹脂粒子を液中に分散させてから析出させる際に、フッ素樹脂粒子表面にケイ素酸化物を析出させることで複合粒子(I)を得る方法等が挙げられる。また、シェルは、ケイ素酸化物の粒子がコアの周辺に密な状態で付着・担持された状態であってもよいし、ケイ素酸化物がコアの周辺に連続につながる層を形成していてもよい。
 複合粒子(I)におけるケイ素酸化物がフェニルアミノ処理されている場合は、複合粒子(I)を作製する前に、ケイ素酸化物粒子をフェニルアミノ処理する。この場合、フェニルアミノ基(C65-NH-)を有する化合物として、例えばN-フェニル-3-アミノプロピルトリメトキシシラン等のフェニルアミノ基を有するシラン化合物を用いることができる。フェニルアミノ処理に当たっては、例えばケイ素酸化物粒子を気相法、液相法などで、フェニルアミノ基を有する化合物で処理する。
 化合物(A)と架橋剤(B)との合計量100質量部に対する、複合粒子(I)の量は、10質量部以上200質量部以下であることが好ましい。複合粒子(I)の量が10質量部以上であると、複合粒子(I)は硬化物の耐熱性及び難燃性を特に高めやすく、かつ絶縁層の線膨張係数及び誘電率を特に低めやすい。また、複合粒子(I)の量が200質量部以下であると、硬化物と銅などの金属との密着性が損なわれにくく、かつプリプレグの樹脂流れ性が過度に大きくなりにくい。
 組成物(X)がシランカップリング剤(G)を含有してもよい。この場合のシランカップリング剤(G)は、無機充填材の表面処理に用いられていない成分である。この場合、シランカップリング剤(G)は、積層板における絶縁層を組成物(X)から作製した場合の、絶縁層の吸湿時における耐熱性を高くでき、かつ絶縁層とこれに重なる金属箔とのピール強度を高くできる。シランカップリング剤(G)は、例えばビニルシラン、スチリルシラン、メタクリルシラン、及びアクリルシランからなる群から選択される少なくとも一種の成分を含有する。
 シランカップリング剤(G)の化合物(A)及び架橋剤(B)の合計量に対する百分比は、0.3質量%以上5質量%以下であることが好ましい。このようなシランカップリング剤(G)を使用すると、層間剥離強度の向上が期待できる。
 組成物(X)は、反応開始剤(H)を含有してもよい。反応開始剤(H)は、化合物(A)と架橋剤(B)との硬化反応を促進できる適宜の化合物を含有できる。具体的には、反応開始剤(H)は、例えばα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、及びアゾビスイソブチロニトリル等の酸化剤からなる群から選択される少なくとも一種の化合物を含有できる。反応開始剤(H)は、必要により、酸化剤に加えて、カルボン酸金属塩等を含有してもよい。この場合、硬化反応を一層促進させることができる。なお、反応開始剤(H)が含有しうる成分は、前記には限られない。
 反応開始剤(H)は、特にα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンを含有することが好ましい。この場合、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンの反応開始温度は比較的に高いため、組成物(X)を乾燥し又は半硬化させるために加熱する場合に硬化反応が過度に進行しにくくできる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、組成物(X)の保存時及び加熱時に揮発しにくく、そのため、組成物(X)の安定性を損ないにくい。
 組成物(X)は、上記成分以外の添加剤を含有してもよい。添加剤は、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料及び顔料、滑剤、並びに湿潤分散剤等の分散剤等からなる群から選択される少なくとも一種の成分を含有する。なお、添加剤が含みうる成分は前記のみに限られない。
 JIS C6521に準じて測定される、プリプレグから回収した組成物(X)の乾燥物又は半硬化物のゲルタイムが、170℃において200秒以上600秒以下であることが好ましい。
 組成物(X)の固形分割合が68質量%に調整された場合における、組成物(X)の25℃での粘度は、200mPa・s以上2000mPa・s以下であることが好ましい。この場合、組成物(X)が繊維質基材へ含浸しやすくなる。この粘度はB型粘度計にて測定される。
 このような組成物(X)の好ましい特性は、上記説明した組成物(X)の組成の範囲内で実現可能である。
 組成物(X)は例えば次のように調製される。まず、化合物(A)及び架橋剤(B)等の、有機溶媒に溶解できる成分を、有機溶媒と混合して混合物を調製する。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる有機溶媒に溶解しない成分、例えば、無機充填材等を混合物に加えて、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて分散させることにより、ワニス状の組成物(X)が調製される。
 組成物(X)からプリプレグを作製できる。プリプレグは、基材と、基材に含浸している組成物(X)の乾燥物又は半硬化物とを備える。プリプレグは、例えば基材に組成物(X)を含浸させる含浸工程と、この含浸工程の後に組成物(X)を加熱する加熱工程とを含む方法で、作製される。
 基材は、例えば繊維質基材である。繊維質基材は、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙等からなる群から選択される。繊維質基材がガラスクロスであると、プリプレグから作製される積層板の機械強度を向上させやすい。ガラスクロスは偏平処理加工されていることが好ましい。繊維質基材の厚みは、例えば、0.04mm以上0.3mm以下である。
 含浸工程では、例えば基材を組成物(X)に浸漬し、又は基材に組成物(X)を塗布することで、基材に組成物(X)を含浸させることができる。必要により、基材を組成物(X)に複数回浸漬し、又は基材に組成物(X)を複数回塗布してもよい。
 続いて、加熱工程では、基材に含浸している組成物(X)を加熱することで、組成物(X)を乾燥させ又は半硬化させる。これにより、基材と、基材に含浸している組成物(X)の乾燥物又は半硬化物とを備えるプリプレグが得られる。
 本実施形態では、上述のとおり、組成物(X)を乾燥させ又は半硬化させるために加熱しても、組成物(X)の硬化反応が進行しにくい。そのため、溶剤を十分に揮発させて溶剤の残留量を低めながら、プリプレグの樹脂流れ性を調整しやすい。
 加熱工程での加熱条件を調整することでプリプレグの樹脂流れ性が調整されたことで、プリプレグの樹脂流れ性の評価が4%以上25%以下であることが好ましい。なお、樹脂流れ性の評価方法は、後掲の実施例において説明する。樹脂流れ性の評価が4%以上であることで、プリプレグからバッチプレス方式で積層板を製造した場合、特にプリプレグを導体配線に重ねて積層する場合、プリプレグから作製される絶縁層を導体配線の隙間に十分に充填されやすくできる。また、樹脂流れ性の評価が25%以下であると、プリプレグから連続プレス方式で積層板を製造した場合、プリプレグから作製される絶縁層に厚みのばらつきが生じにくくなる。この樹脂流れ性の評価は、2%以上15%以下であればより好ましく、3%以上13%以下であれば更に好ましい。
 また、加熱条件を調整することでプリプレグ中の溶剤の残留量が調整されたことで、プリプレグのボラタイル評価による揮発分が1.5%未満であることが好ましい。この場合、プリプレグから積層板を作製するためにプリプレグが加熱されてもアウトガスが生じにくくなる。なお、ボラタイル評価の方法は、後掲の実施例において説明する。揮発分が0%であれば特に好ましい。
 加熱工程での組成物(X)の加熱条件、すなわちプリプレグにおける乾燥物又は半硬化物を作製するための組成物(X)の加熱条件は、樹脂流れ性の評価及びボラタイル評価が好ましくは上述のとおりになるように、適宜設定される。また、加熱工程は、加熱温度の異なる複数の工程を含む多段工程であってもよい。
 特に、加熱工程が、下記数式(I)で示す加熱条件を満たすことが好ましい。なお、加熱工程とは、ヒータなどの装置を用いて組成物(X)の温度を上昇させる工程を意味する。数式(I)中、iは加熱工程に含まれる加熱温度の互いに異なる工程の数であり、Tpn及びTmnは、それぞれi個の工程のうちのn番目の工程における加熱温度(℃)及び加熱時間(秒)である。この数式(I)を満たす条件では、プリプレグの樹脂流れ性が、バッチプレス方式において絶縁層により導体配線の隙間が充填されやすくかつ連続プレス方式において絶縁層の厚みのばらつきが生じにくいように調整されやすい。さらに、プリプレグ中の溶剤の残留量を低めやすい。この加熱工程においては、加熱温度は100℃以上150℃以下であることが好ましい。
Figure JPOXMLDOC01-appb-M000007
 プリプレグを用いて積層板及びプリント配線板を製造する工程について説明する。本実施形態では、上述のとおり、プリプレグを用いて積層板及びプリント配線板を製造するにあたり、ロールプレス方式とバッチプレス方式とのいずれの方式にも適用しやすい。
 ロールプレス方式で積層板を製造する場合、例えば長尺なプリプレグと、長尺な金属箔とを連続的に搬送しながら積層してから、これらをロールプレス装置、ダブルベルトプレス装置などの連続プレス装置を用いて熱プレスする。熱プレスをする条件は適宜設定されるが、加熱温度は250℃以上300℃以下であることが好ましく、加圧力は1MPa以上5MPa以下であることが好ましく、加熱時間は4分以上10分以下であることが好ましい。これにより、プリプレグから作製された絶縁層と、この絶縁層に重なる金属箔とを備える積層板が製造される。
 また、長尺な基材を搬送しながら基材に組成物(X)を塗布し又は基材を組成物(X)に浸漬し、更にこの基材を連続的に搬送しながら組成物(X)を加熱することで長尺なプリプレグを作製してもよい。このプリプレグを更に連続的に搬送しながら、前述と同様にして積層板を製造してもよい。
 このように組成物(X)からロールプレス方式で積層板を作製すると、上述のとおり、絶縁層に厚みのばらつきが生じにくく、かつ積層板の製造時にアウトガスを生じにくくできる。
 バッチプレス方式で積層板を製造する場合、例えば絶縁層と導体配線とを備えるコア材にプリプレグを導体配線を覆うように重ね、更にプリプレグに金属箔を重ねて積層物を作製する。積層物は、更に別のプリプレグ、金属箔、コア材等を含んでもよい。この積層物を熱盤の間に配置して熱プレスする。熱プレスをする条件は適宜設定されるが、加熱温度は170℃以上220℃以下であることが好ましく、加圧力は1.5MPa以上5MPa以下であることが好ましく、加熱時間は60分以上150分以下であることが好ましい。これにより、プリプレグから作製された絶縁層と、この絶縁層に重なる金属箔とを備える積層板が製造される。なお、積層板はコア材に由来する絶縁層及び導体配線も備えうる。
 このように組成物(X)からバッチプレス方式で積層板を作製すると、上述のとおり、絶縁層が導体配線の隙間に充填されやすく、かつ積層板の製造時にアウトガスを生じにくくできる。
 なお、バッチプレス方式で積層板を製造する場合に、積層物がコア材を含まなくてもよい。例えば積層物はプリプレグとこのプリプレグの片面に重なる金属箔とを含んでもよく、プリプレグとこのプリプレグの両面の各々に重なる金属箔とを含んでもよい。
 プリント配線板を製造する場合、例えば上述の積層板における絶縁層に重なる金属箔にエッチング処理を施すことで、導体配線を作製する。これにより、プリプレグから作製された絶縁層と、導体配線とを備えるプリント配線板を製造できる。
 本実施形態に係るプリント配線板は、例えばパッケージ基板であることが好ましい。すなわち、本実施形態に係るプリント配線板を、パッケージ基板として使用し、パッケージ基板に半導体チップ等のチップ部品を搭載することで半導体パッケージを作製することが好ましい。この場合、高周波化に適した半導体パッケージを実現でき、薄型でありながら高周波化に適した半導体パッケージも実現できる。なお、本実施形態に係るプリント配線板の用途は、パッケージ基板には限られない。
 以下、本実施形態のより具体的な実施例について説明する。なお、本開示は以下の実施例のみに制限されるものではない。
 1.組成物の調製
 表1及び表2に示す成分を混合することで、組成物を得た。表1及び表2に示す成分の詳細は次のとおりである。
・変性ポリフェニレンエーテル化合物は、以下の手順で合成したものを用いた。
 ポリフェニレンエーテルと、クロロメチルスチレンとを反応させて変性ポリフェニレンエーテルを得た。
 具体的には、まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた容量1リットルの3つ口フラスコに、ポリフェニレンエーテル(下記式(5)に示す構造を有するポリフェニレンエーテル、SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、一分子当たりの末端水酸基数1.9個、重量平均分子量Mw2000)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、反応液を得た。
Figure JPOXMLDOC01-appb-C000008
 反応液を、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、最終的に液温が75℃になるまで、反応液を徐々に加熱した。そして、反応液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、反応液を75℃で4時間攪拌した。次に、濃度10質量%の塩酸水溶液で反応液を中和した後、多量のメタノールを投入した。そうすることによって、反応液に沈殿物を生じさせた。すなわち、反応液に含まれる生成物を再沈させた。そして、反応液から沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
 得られた固体を、1H-NMR(400MHz、CDCl3、TMS)で分析した。その結果、5~7ppmにエテニルベンジルに由来するピークが確認された。これにより、得られた固体が、分子末端に、式(1)で表される基を有する変性ポリフェニレンエーテルであることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。
 また、変性ポリフェニレンエーテルの末端官能数を、以下のようにして測定した。
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の変性ポリフェニレンエーテルの重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、得られた溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、溶液の318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの、重量当たりの末端水酸基量を算出した。
 末端水酸基量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×10
 ここで、εは、吸光係数を示し、本試験では4700L/mol・cmである。また、OPLは、セル光路長であり、本試験では1cmである。
 算出された末端水酸基量は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数に等しいことがわかった。つまり、変性ポリフェニレンエーテルの一分子当たりの末端官能数が、1.9個であった。
 また、変性ポリフェニレンエーテルの塩化メチレン溶液の、25℃での固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、固有粘度(IV)は、0.086dl/gであった。
 また、変性ポリフェニレンエーテルの分子量分布を、GPC(ゲル浸透クロマトグラフィー)を用いて、測定した。得られた分子量分布から、重量平均分子量(Mw)及び分子量13000以上の高分子量成分の含有量を算出した。また、高分子量成分の含有量は、具体的には、GPCにより得られた分子量分布を示す曲線に基づくピーク面積の割合から算出した。その結果、Mwは、2300であった。また、高分子量成分の含有量は、0.1質量%であった。
・ポリブタジエンオリゴマー:日本曹達社製、品番B-1000。
・難燃剤1:ホスフィン酸塩化合物(トリスジエチルホスフィン酸アルミニウム)、クラリアントケミカルズ製、品名Exolit OP935。
・難燃剤2:リン酸エステル化合物(芳香族縮合リン酸エステル化合物)、大八化学工業社製、品番PX-200。
・無機充填剤:球状シリカ、メジアン径3μm、アドマテックス社製、品番SC2300-SVJ。
・シランカップリング剤:3-メタクリロキシプロピルトリメトキシシラン、信越化学社製、品番KBM-503。
・ヒンダードアミン系重合禁止剤:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、ADEKA社製、品名アデカデスタブ LA-7RD。
・複合粒子1:ポリテトラフルオロエチレンからなるコア(平均粒径3μm)と、表面処理がされていないシリカ粒子(平均粒径0.01μm)から作製されたシェルとを有する複合粒子。
・複合粒子2:ポリテトラフルオロエチレンからなるコア(平均粒径3μm)と、N-フェニル-3-アミノプロピルトリメトキシシランで表面処理されたシリカ粒子(平均粒径0.01μm)から作製されたシェルとを有する複合粒子。
・複合粒子3:ポリテトラフルオロエチレンからなるコア(平均粒径1μm)と、N-フェニル-3-アミノプロピルトリメトキシシランで表面処理されたシリカ粒子(平均粒径0.01μm)から作製されたシェルとを有する複合粒子。
・複合粒子4:ポリテトラフルオロエチレンからなるコア(平均粒径0.1μm)と、N-フェニル-3-アミノプロピルトリメトキシシランで表面処理されたシリカ粒子(平均粒径0.01μm)から作製されたシェルとを有する複合粒子。
・複合粒子5:ポリテトラフルオロエチレンからなるコア(平均粒径15μm)と、N-フェニル-3-アミノプロピルトリメトキシシランで表面処理されたシリカ粒子(平均粒径0.01μm)から作製されたシェルとを有する複合粒子。
 2.プリプレグの作製
 組成物をガラスクロス(日東紡績株式会社製、品番NE1017、厚み14μm)に含浸させた後、表1及び表2に示す条件で加熱することで、レジンコンテントが74質量%であるプリプレグを作製した。
 3.評価試験
 (1)ボラタイル評価
 ボラタイル評価は、JIS C6521(1990)5.6項に準拠し、次のように行った。プリプレグをカットして100±1mm×100±1mmの寸法の三枚の試験片を得た。試験片を電子天秤にて秤量した。この秤量した結果の、0.0001gオーダーまでの値をWa(g)とした。試験片を163±2℃に制御された循環熱風乾燥機に入れ、入れた時点から15分間経過時に、試験片を循環熱風乾燥機から出して速やかにデシケータに入れた。デシケータ内から試験片を取り出して電子天秤にて秤量した。この秤量した結果の0.0001gオーダーまでの値をWb(g)とした。揮発分を次の式で算出した。
 揮発分(%)={(Wa-Wb)/Wa}×100
 この式で算出された値の小数点以下第三位を四捨五入して得た、小数点以下第二位までの値を、評価値とした。
 (2)樹脂流れ性評価
 プリプレグをカットして100±1mm×100±1mmの寸法の複数枚の試験片を得た。複数枚の試験片を重ね合わせた積層物を電子天秤で秤量し、積層物の重量が約20gになるように、試験片の数を調整した。積層物を秤量した結果の0.01gのオーダーまでの値をA(g)とした。2つ折りにした離型紙の中央部に積層物を挟んだものを、離型フィルムに挟み、更に鉄板で挟んでから、自動温度調節機付プレス(フローテスター)で、温度170±2℃、圧力20±0.3kg/cm2の条件で15分間熱プレスした。続いて、積層物の中央部から、直径81.1±0.05(mm)の円盤を打ち抜き、この円盤を電子天秤で秤量した。この秤量した結果の0.01gのオーダーまでの値をB(g)とした。樹脂流れを次の式で算出した。
 樹脂流れ=(A×1.03-2×B)/(A×1.03)×100(%)
 この式で算出された値の小数点以下第二位を四捨五入して得た、小数点以下第一位までの値を、評価値とした。
 (3)バッチプレス方式評価
 (3-1)オーブン耐熱評価
 金属箔として厚み3μmの銅箔を用意した。二つの金属箔の間に2枚のプリプレグを挟んで積層物を得た。熱盤を用いて、積層物を熱プレスした。この熱プレスの条件は、昇温速度3℃/分、最高加熱温度200℃、保持時間90分間である。これにより、プリプレグから作製された絶縁層を備える積層板を得た。
 積層板をカットして50mm×50mmの寸法の5つの試験片を得た。試験片をコンベクションオーブンで160℃で1時間加熱してから、試験片の外観を確認した。その結果、5つの試験片のすべてで外観異常がみられない場合をA、1~4個の試験片で外観異常がみられた場合をB、5つの試験片のすべてで外観異常がみられた場合をCと、評価した。
 (3-2)充填性
 金属箔として厚み3μmの銅箔を用意した。コア材として銅製の導体配線を備え、導体配線の厚み18μm、残銅率50%であるプリント配線板を用意した。コア材に1枚のプリプレグを、プリプレグで導体配線を覆うように重ね、更にプリプレグに金属箔を重ねて、積層物を得た。熱盤を用いて、積層物を熱プレスした。この熱プレスの条件は、昇温速度3℃/分、最高加熱温度200℃、保持時間90分間である。これにより、プリプレグから作製された絶縁層を備える積層板を得た。
 この積層板における金属箔をエッチング処理ですべて取り除いてから、絶縁層を観察して、絶縁層が導体配線の隙間に充填されているか否かを確認した。その結果、未充填が認められない場合をA、部分的に未充填が認められる場合をB、全体にわたって未充填が認められる場合をCと、評価した。
 (3-3)誘電率(Dk)
 上述の「(3-1)オーブン耐熱評価」の場合と同じ方法で、積層板を得た。この積層板から金属箔をエッチング処理により除去することでアンクラッド板を作製した。このアンクラッド板の、試験周波数1GHzの場合での比誘電率を、IPC TM-650 2.5.5.5に基づいて測定した。測定に当たっては、測定装置として、アジレント・テクノロジー株式会社製のRFインピーダンスアナライザー(型番HP4291B)を用いた。
 (3-4)銅箔ピール強度
 上述の「(3-1)オーブン耐熱評価」の場合と同じ方法で、積層板を得た。この積層板における絶縁層から金属層(金属箔)を引き剥がす際のピール強度を、JIS C 6481に準拠して測定した。測定に当たっては、幅5mm、長さ100mmに形成した金属箔を、引っ張り試験機により50mm/分の速度で絶縁層から引き剥がし、その時のピール強度を測定した。
 (3-5)線膨張係数(CTE)
 上述の「(3-1)オーブン耐熱評価」の場合と同じ方法で、積層板を得た。この積層板から金属箔をエッチング処理により除去することでアンクラッド板を作製した。このアンクラッド板の、ガラス転移温度未満における厚み方向と直交する方向の線膨張係数α1を、JIS C6481に従ってTMA法(Thermo-mechanical analysis)により測定した。測定に当たっては、動的粘弾性測定装置(株式会社日立ハイテクサイエンス製の粘弾性スペクトロメータ、型番DMA7100)を用い、30℃から300℃までの温度範囲で測定し、得られた結果のうちガラス転移温度未満の部分に基づいて線膨張係数を求めた。
 (4)連続プレス方式評価
 (4-1)ガラス転移温度評価
 金属箔として厚み18μmの銅箔を用意した。二つの金属箔と2枚のプリプレグとを連続的に搬送しながら、金属箔の間に2枚のプリプレグを挟み、これらを二つの熱ロールの間に通すことで熱プレスした。この熱プレスの条件は、加熱温度250℃、プレス圧4mPa、加熱加圧時間5分間である。これにより、プリプレグから作製された絶縁層を備える積層板を得た。
 積層板から金属箔をエッチング処理によりすべて除去した。続いて、株式会社日立ハイテクサイエンス社製の粘弾性スペクトロメータ(DMA7100)の引っ張りモジュールを用い、周波数10Hz、昇温速度5℃/分、温度範囲室温から280℃の条件で、絶縁層の粘弾性測定を行った。これにより得られたtanδが極大値を示す温度を、ガラス転移温度とした。
 (4-2)充填性
 金属箔として厚み18μmの銅箔を用意した。コア材として銅製の導体配線を備え、導体配線の厚み18μm、残銅率50%であるプリント配線板を用意した。金属箔とコア材と1枚のプリプレグとを連続的に搬送しながら、コア材に1枚のプリプレグをプリプレグで導体配線を覆うように重ね、かつプリプレグに金属箔を重ねて、これらを二つの熱ロールの間に通すことで熱プレスした。この熱プレスの条件は、加熱温度250℃、プレス圧4mPa、加熱加圧時間5分間である。これにより、プリプレグから作製された絶縁層を備える積層板を得た。
 この積層板における金属箔をエッチング処理ですべて取り除いてから、絶縁層を観察して、絶縁層が導体配線の隙間に充填されているか否かを確認した。その結果、未充填が認められない場合をA、部分的に未充填が認められる場合をB、全体にわたって未充填が認められる場合をCと、評価した。
 (4-3)厚み精度評価
 上述の「(4-1)ガラス転移温度評価」の場合と同じ方法で、積層板を得た。この積層板における絶縁層の厚みをマイクロメーターで、TD(transverse direction)に沿って3cm間隔で12箇所測定した。得られた12個の測定値の平均値(Av)に対して測定値の最大値がAv×1.10以下かつ最小値がAv×0.9以上の場合を「A」、そうでない場合を「B」と評価した。
 (4-4)誘電率(Dk)
 上述の「(4-1)ガラス転移温度評価」の場合と同じ方法で、積層板を得た。この積層板から金属箔をエッチング処理により除去することでアンクラッド板を作製した。このアンクラッド板の、試験周波数1GHzの場合での比誘電率を、IPC TM-650 2.5.5.5に基づいて測定した。測定に当たっては、測定装置として、アジレント・テクノロジー株式会社製のRFインピーダンスアナライザー(型番HP4291B)を用いた。
 (4-5)銅箔ピール強度
 上述の「(4-1)ガラス転移温度評価」の場合と同じ方法で、積層板を得た。この積層板における絶縁層から金属層(金属箔)を引き剥がす際のピール強度を、JIS C 6481に準拠して測定した。測定に当たっては、幅5mm、長さ100mmに形成した金属箔を、引っ張り試験機により50mm/分の速度で絶縁層から引き剥がし、その時のピール強度を測定した。
 (4-6)線膨張係数(CTE)
 上述の「(4-1)ガラス転移温度評価」の場合と同じ方法で、積層板を得た。この積層板から金属箔をエッチング処理により除去することでアンクラッド板を作製した。このアンクラッド板の、ガラス転移温度未満における厚み方向と直交する方向の線膨張係数を、JIS C6481に従ってTMA法(Thermo-mechanical analysis)により測定した。測定に当たっては、動的粘弾性測定装置(株式会社日立ハイテクサイエンス製の粘弾性スペクトロメータ、型番DMA7100)を用い、30℃から300℃までの温度範囲で測定し、得られた結果のうちガラス転移温度未満の部分に基づいて線膨張係数を求めた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 ヒンダードアミン系重合禁止剤を使用しない比較例1では、オーブン耐熱性の評価及びバッチプレス方式での充填性の評価が悪かった。同じ組成でプリプレグ作製時の加熱条件を変更した比較例2では、充填性の評価は向上したが、ボラタイル評価と耐熱性が悪化した。また、ヒンダードアミン系重合禁止剤、無機充填材、及び複合粒子のいずれも含有しない比較例3では、銅箔ピール強度は高いが、線膨張係数が高かった。
 一方、ヒンダードアミン系重合禁止剤を使用し、数式(I)に示す条件を満たす実施例1~4では、耐熱性及び充填性の評価が良好であり、かつガラス転移温度が十分に高かった。ガラス転移温度はヒンダードアミン系重合禁止剤の量が低いほど高い傾向にあった。
 実施例1と同じ組成において、プリプレグ作製時の加熱条件を変更し、数式(I)に示す条件を満たさない実施例5では、実施例1と比べると、樹脂流れ性の評価値及びボラタイル評価の評価値が高くなったが、耐熱性及び充填性の評価は十分に良好であり、かつガラス転移温度が十分に高かった。
 実施例1よりもヒンダードアミン系重合禁止剤の量を減らした実施例6では、バッチプレス方式における充填性の評価がやや下がったが、比較例1と比べれば充填性の評価は良好であった。
 実施例1と同じ組成において、プリプレグ作製時の加熱条件を変更し、数式(I)に示す条件を満たさない実施例7でも、バッチプレス方式における充填性の評価がやや下がったが、比較例1と比べれば充填性の評価は良好であった。
 実施例8~10では、実施例1のポリフェニレンエーテル及びポリブタジエンの成分比率を変更したが、耐熱性及び充填性の評価が良好であり、かつガラス転移温度が十分に高かった。
 実施例11~19では、無機充填材を使用せず、複合粒子を使用した。これらの実施例11~19でも、耐熱性及び充填性の評価が良好であり、かつガラス転移温度が十分に高かった。
 特に複合粒子とヒンダードアミン系重合禁止剤とを併用した実施例11及び12では、プリプレグの樹脂流れ性を適度に高めることができた。さらに、特に複合粒子におけるシリカ粒子にフェニルアミノ処理が施されている実施例11では、高い銅箔ピール強度が実現できた。
 また、複合粒子を含有しかつヒンダードアミン系重合禁止剤を含有しない実施例13~19のうち、複合粒子の種類を変更せずに配合量を変更した実施例13~15、17では、複合粒子の配合量が多いほど比誘電率は低くなったが、銅箔ピール強度が低下する傾向が生じた。また、複合粒子の配合量を変更せずに複合粒子のコアの粒径を変更した実施例13、16、18及び19によると、コアの粒径が大きいほど線膨張係数を低減させやすく、かつ良好な樹脂流れ性が得られやすい。

Claims (18)

  1. 不飽和二重結合を有する基を末端に有する変性ポリフェニレンエーテル化合物(A)と、炭素-炭素二重結合を有する架橋剤(B)と、
    ヒンダードアミン系重合禁止剤(C)と、
    溶剤(D)とを含有する、
    樹脂組成物。
  2. 前記ヒンダードアミン系重合禁止剤(C)の百分比は、前記化合物(A)と前記架橋剤(B)との合計量に対して0.001質量%以上0.048質量%以下である、
    請求項1に記載の樹脂組成物。
  3. フッ素樹脂を含むコアと、前記コアを被覆するケイ素酸化物を含むシェルとを有する複合粒子(I)を更に含有する、
    請求項1又は2に記載の樹脂組成物。
  4. 前記ケイ素酸化物がフェニルアミノ処理されている、
    請求項3に記載の樹脂組成物。
  5. 不飽和二重結合を有する基を末端に有する変性ポリフェニレンエーテル化合物(A)と、炭素-炭素二重結合を有する架橋剤(B)と、
    フッ素樹脂を含むコアと、前記コアを被覆するケイ素酸化物を含むシェルとを有する複合粒子(I)と、
    溶剤(D)とを含有し、
    前記ケイ素酸化物がフェニルアミノ処理されている、
    樹脂組成物。
  6. 前記化合物(A)と前記架橋剤(B)との合計量100重量部に対する、前記複合粒子(I)の量は、10重量部以上200重量部以下である、
    請求項3から5のいずれか一項に記載の樹脂組成物。
  7. 前記複合粒子(I)における前記コアの平均粒径は0.1μm以上20μm以下である、請求項3から6のいずれか一項に記載の樹脂組成物。
  8. 難燃剤(E)を更に含有する、
    請求項1から7のいずれか一項に記載の樹脂組成物。
  9. 無機充填材(F)を更に含有する、
    請求項1から8のいずれか一項に記載の樹脂組成物。
  10. シランカップリング剤(G)を更に含有する、
    請求項1から9のいずれか一項に記載の樹脂組成物。
  11. 硬化物のガラス転移温度が180℃以上である、
    請求項1から10のいずれか一項に記載の樹脂組成物。
  12. 請求項1から11のいずれか一項に記載の樹脂組成物の乾燥物又は半硬化物を含む、
    プリプレグ。
  13. ボラタイル評価による揮発分が1.5%未満である、
    請求項12に記載のプリプレグ。
  14. 樹脂流れの評価が4%以上25%以下である、
    請求項12又は13に記載のプリプレグ。
  15. 請求項1から11のいずれか一項に記載の樹脂組成物を基材に含浸させる、含浸工程と、
    前記含浸工程の後に前記樹脂組成物を加熱する、加熱工程とを含み、
    前記加熱工程が、
    下記数式(I)で示す加熱条件を満たす、プリプレグの製造方法、
    Figure JPOXMLDOC01-appb-M000001
    ここで、数式(I)中、iは前記加熱工程に含まれる加熱温度の互いに異なる工程の数であり、Tpn及びTmnは、それぞれi個の前記工程のうちのn番目の工程における加熱温度(℃)及び加熱時間(秒)である。
  16. 請求項1から11のいずれか一項に記載の樹脂組成物の硬化物を含む絶縁層を備える、
    積層板。
  17. 請求項1から11のいずれか一項に記載の樹脂組成物の硬化物を含む絶縁層を備える、
    プリント配線板。
  18. パッケージ基板である、
    請求項17に記載のプリント配線板。
PCT/JP2020/024212 2019-06-26 2020-06-19 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板 WO2020262253A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217041246A KR20220025729A (ko) 2019-06-26 2020-06-19 수지 조성물, 프리프레그, 프리프레그의 제조 방법, 적층판 및 프린트 배선판
US17/622,119 US20220259378A1 (en) 2019-06-26 2020-06-19 Resin composition, prepreg, method for manufacturing prepreg, laminate, and printed wiring board
CN202080040506.9A CN114026177A (zh) 2019-06-26 2020-06-19 树脂组合物、预浸料、用于制造预浸料的方法、层压体和印刷线路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119109A JP2021004316A (ja) 2019-06-26 2019-06-26 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板
JP2019-119109 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262253A1 true WO2020262253A1 (ja) 2020-12-30

Family

ID=74060983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024212 WO2020262253A1 (ja) 2019-06-26 2020-06-19 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板

Country Status (5)

Country Link
US (1) US20220259378A1 (ja)
JP (1) JP2021004316A (ja)
KR (1) KR20220025729A (ja)
CN (1) CN114026177A (ja)
WO (1) WO2020262253A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053782A1 (ja) * 2021-09-30 2023-04-06 日鉄ケミカル&マテリアル株式会社 ハロゲンフリー難燃硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
EP4116375A4 (en) * 2021-05-28 2023-08-09 Bengbu Estone Polymer Composites Co., Ltd. PTFE COMPOSITE POWDER, METHOD FOR PREPARING AND COMPOSITE MATERIAL CONTAINING PTFE COMPOSITE POWDER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202325793A (zh) * 2021-12-24 2023-07-01 日商松下知識產權經營股份有限公司 樹脂組成物、預浸體、附樹脂之薄膜、附樹脂之金屬箔、覆金屬積層板及配線板
WO2023119803A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101137A (ja) * 2003-09-24 2005-04-14 Hitachi Chem Co Ltd 回路形成用支持基板と、半導体素子搭載用パッケージ基板及びその製造方法
JP2005298765A (ja) * 2004-04-15 2005-10-27 Kuraray Co Ltd アクリル系封止材および封止物
JP2006008750A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd 電気絶縁性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2009148962A (ja) * 2007-12-19 2009-07-09 Mitsui Mining & Smelting Co Ltd フィラー粒子含有樹脂層付銅箔及びそのフィラー粒子含有樹脂層付銅箔を用いた銅張積層板
JP2010189517A (ja) * 2009-02-17 2010-09-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物、ポリフェニレンエーテル系樹脂組成物の製造方法、ポリフェニレンエーテル系樹脂組成物の成形体
JP2018028078A (ja) * 2016-08-10 2018-02-22 パナソニックIpマネジメント株式会社 封止用アクリル組成物、シート材、積層シート、硬化物、半導体装置及び半導体装置の製造方法
JP2019001965A (ja) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2019023263A (ja) * 2017-07-25 2019-02-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290888A (en) * 1990-07-20 1994-03-01 Ciba-Geigy Corporation Process for stabilizing ethylenically unsaturated compounds and stabilized monomer compositions
WO2008038772A1 (fr) * 2006-09-29 2008-04-03 Zeon Corporation Objet moulé, son procédé de fabrication et article moulé réticulé et stratifié enrobé de cuivre obtenus chacun à partir de celui-ci
US8691994B2 (en) * 2011-02-03 2014-04-08 Nalco Company Multi-component polymerization inhibitors for ethylenically unsaturated monomers
CN102797157B (zh) * 2012-02-03 2014-09-03 金柏青 一种碳纤维浸渍液及制备方法以及预浸料生产工艺
CN104508005B (zh) 2012-08-29 2017-03-08 松下知识产权经营株式会社 改性聚苯醚、其制造方法、聚苯醚树脂组合物、树脂清漆、预浸料、覆金属箔层压板以及印刷布线板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101137A (ja) * 2003-09-24 2005-04-14 Hitachi Chem Co Ltd 回路形成用支持基板と、半導体素子搭載用パッケージ基板及びその製造方法
JP2005298765A (ja) * 2004-04-15 2005-10-27 Kuraray Co Ltd アクリル系封止材および封止物
JP2006008750A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd 電気絶縁性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2009148962A (ja) * 2007-12-19 2009-07-09 Mitsui Mining & Smelting Co Ltd フィラー粒子含有樹脂層付銅箔及びそのフィラー粒子含有樹脂層付銅箔を用いた銅張積層板
JP2010189517A (ja) * 2009-02-17 2010-09-02 Asahi Kasei Chemicals Corp ポリフェニレンエーテル系樹脂組成物、ポリフェニレンエーテル系樹脂組成物の製造方法、ポリフェニレンエーテル系樹脂組成物の成形体
JP2018028078A (ja) * 2016-08-10 2018-02-22 パナソニックIpマネジメント株式会社 封止用アクリル組成物、シート材、積層シート、硬化物、半導体装置及び半導体装置の製造方法
JP2019001965A (ja) * 2017-06-19 2019-01-10 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2019023263A (ja) * 2017-07-25 2019-02-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116375A4 (en) * 2021-05-28 2023-08-09 Bengbu Estone Polymer Composites Co., Ltd. PTFE COMPOSITE POWDER, METHOD FOR PREPARING AND COMPOSITE MATERIAL CONTAINING PTFE COMPOSITE POWDER
WO2023053782A1 (ja) * 2021-09-30 2023-04-06 日鉄ケミカル&マテリアル株式会社 ハロゲンフリー難燃硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板

Also Published As

Publication number Publication date
US20220259378A1 (en) 2022-08-18
KR20220025729A (ko) 2022-03-03
JP2021004316A (ja) 2021-01-14
CN114026177A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2020262253A1 (ja) 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板
JP6536993B2 (ja) 金属張積層板とその製造方法、樹脂付き金属箔、及びプリント配線板
WO2016038878A1 (ja) 硬化性組成物、プリプレグ、樹脂付き金属箔、金属張積層板、及びプリント配線板
JP6601675B2 (ja) 金属張積層板および樹脂付金属箔
JP7316572B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2015064064A1 (ja) 熱硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP6941786B2 (ja) 樹脂組成物、樹脂組成物の製造方法、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2014203511A1 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP2019023263A (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2014034103A1 (ja) 変性ポリフェニレンエーテル、その製造方法、ポリフェニレンエーテル樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2019131306A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP6635415B2 (ja) 硬化性組成物、プリプレグ、組成物付き金属箔、金属張積層板、及び配線板
JP7316570B2 (ja) プリプレグ、金属張積層板、及び配線板
JP7203386B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2017002319A1 (ja) 硬化性組成物、プリプレグ、組成物付き金属箔、金属張積層板、及び配線板
TW202108679A (zh) 樹脂組成物、預浸體、附樹脂之薄膜、附樹脂之金屬箔、覆金屬積層板及配線板
WO2020203320A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7378090B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2019044154A1 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
JP7281650B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021060046A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP7289074B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2018061736A1 (ja) 金属張積層板、プリント配線板および樹脂付金属箔
US11638349B2 (en) Metal-clad laminate and printed wiring board
JP7300613B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831273

Country of ref document: EP

Kind code of ref document: A1