WO2020261583A1 - 接地荷重推定装置、制御装置および接地荷重推定方法 - Google Patents

接地荷重推定装置、制御装置および接地荷重推定方法 Download PDF

Info

Publication number
WO2020261583A1
WO2020261583A1 PCT/JP2019/028203 JP2019028203W WO2020261583A1 WO 2020261583 A1 WO2020261583 A1 WO 2020261583A1 JP 2019028203 W JP2019028203 W JP 2019028203W WO 2020261583 A1 WO2020261583 A1 WO 2020261583A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
load
value
inertial load
unit
Prior art date
Application number
PCT/JP2019/028203
Other languages
English (en)
French (fr)
Inventor
祐一郎 水口
ワイバワ グプタ
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to CN201980096311.3A priority Critical patent/CN113811472B/zh
Priority to DE112019007494.6T priority patent/DE112019007494T5/de
Publication of WO2020261583A1 publication Critical patent/WO2020261583A1/ja
Priority to US17/522,084 priority patent/US20220063366A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/64Wheel forces, e.g. on hub, spindle or bearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1307Load distribution on each wheel suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1315Location of the centre of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • B60W2050/0035Multiple-track, 3D vehicle model, e.g. including roll and pitch conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/201Dimensions of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention relates to a ground load estimation device, a control device, and a ground load estimation method.
  • the above-mentioned conventional technique requires more sensors such as a roll rate sensor and a pitch rate sensor, which are indispensable for estimating the ground load, and may increase the cost.
  • sensors such as a roll rate sensor and a pitch rate sensor, which are indispensable for estimating the ground load, and may increase the cost.
  • One aspect of the present invention is to realize a technique capable of reducing the cost related to the sensor and estimating the ground contact load in the vehicle with sufficiently high accuracy.
  • the ground contact load estimation device is a ground contact load estimation device that estimates the ground contact load of a vehicle, and includes an acquisition unit that acquires a physical quantity related to the vehicle and the acquisition unit.
  • the reference includes a reference inertial load calculation unit that calculates a reference inertial load using the physical quantity acquired by the unit, and a correction value calculation unit that calculates an inertial load correction value using the physical quantity acquired by the acquisition unit. It is provided with an inertial load estimation unit that estimates the inertial load by adding the inertial load correction value to the inertial load.
  • the control device estimates the ground contact load acting on the vehicle and directly or indirectly uses the ground contact load to prepare for the vehicle.
  • a control device that controls one or more of the other devices, the acquisition unit that acquires the physical quantity related to the vehicle, and the reference inertial load calculation that calculates the reference inertial load using the physical quantity acquired by the acquisition unit.
  • Inertia that includes a unit and a correction value calculation unit that calculates an inertial load correction value using the physical quantity acquired by the acquisition unit, and estimates the inertial load by adding the inertial load correction value to the reference inertial load. It is provided with a load estimation unit.
  • the ground contact load estimation method is a ground contact load estimation method for estimating the ground contact load of a vehicle, and includes a step of acquiring a physical quantity related to the vehicle and acquisition. The step of calculating the reference inertial load using the physical quantity obtained, the step of calculating the inertial load correction value using the acquired physical quantity, and the step of adding the inertial load correction value to the reference inertial load to estimate the inertial load. Including steps to do.
  • the present invention it is possible to estimate the ground contact load in a vehicle with sufficiently high accuracy by using a sensor generally used for controlling the driving of the vehicle. Therefore, the cost related to the sensor can be reduced, and the ground contact load in the vehicle can be estimated with sufficiently high accuracy.
  • FIG. 2 It is a block diagram which shows an example of the functional structure of the road surface load estimation part in Embodiment 2 of this invention. It is a figure for demonstrating the physical quantity which concerns on the wheel of a vehicle. It is a figure which shows typically an example of the structure of the vehicle to which the ground contact load estimation device which concerns on embodiment of this invention is applied.
  • the ground contact load on the wheels of the vehicle is estimated with sufficiently high accuracy by referring to the physical quantity of the vehicle that can be obtained by using a sensor usually used for control for enhancing the running stability of the vehicle.
  • the term "reference" for a physical quantity is a general term for the direct or indirect use of the physical quantity, and means one or both of them.
  • the ground contact load estimation device estimates the ground contact load of the vehicle.
  • the ground load estimation device includes an acquisition unit and an inertial load estimation unit.
  • the acquisition unit is a device that acquires a physical quantity related to the vehicle.
  • the acquisition unit outputs the physical quantity to the inertial load estimation unit and the correction value calculation unit, which will be described later.
  • Examples of the acquisition unit include various sensors and a device that calculates and outputs the physical quantity.
  • the senor may be a sensor normally used for standard control related to the running of a vehicle (hereinafter, also referred to as a “general-purpose sensor”), and may not include a roll rate sensor and a pitch rate sensor.
  • the sensor (general-purpose sensor) as an acquisition unit include a front-rear acceleration sensor that acquires the front-rear acceleration of the vehicle, a lateral acceleration sensor that acquires the lateral acceleration of the vehicle, a wheel speed sensor that acquires the wheel angle speed of the vehicle, and a vehicle.
  • a turning information sensor which acquires turning information of the above, is included. Examples of turning information sensors include yaw rate sensors and steering angle sensors.
  • Examples of the above physical quantities include the value of the front-rear acceleration sensor, the value of the lateral acceleration sensor, the value of the wheel speed sensor, the value of the turning information sensor, the mass of the vehicle, the height of the center of gravity of the vehicle, the roll moment of inertia, the pitch moment of inertia, and the vehicle.
  • the distance between the front axle center of gravity, the distance between the vehicle rear axle center of gravity, the front tread length of the vehicle, and the rear tread length of the vehicle are included.
  • the inertial load estimation unit includes a reference inertial load calculation unit and a correction value calculation unit.
  • the inertial load estimation unit estimates the inertial load by adding the inertial load correction value calculated by the correction value calculation unit to the reference inertial load calculated by the reference inertial load calculation unit.
  • the inertial load means a fluctuation of the ground contact load due to the effect of turning the vehicle and the effect of acceleration / deceleration.
  • the reference inertial load calculation unit calculates the reference inertial load using the physical quantity acquired by the acquisition unit.
  • the reference inertial load means a solution of an equation representing the inertial load of a vehicle, which will be described later.
  • the inertial load correction value is a correction value for correcting the reference inertial load so as to reduce the deviation between the reference inertial load and the true inertial load.
  • the physical quantity used for calculating the reference inertial load may be the physical quantity acquired by the general-purpose sensor described above and the physical quantity peculiar to the vehicle.
  • the reference inertial load calculation unit includes the value of the front-rear acceleration sensor, the value of the lateral acceleration sensor, the mass of the vehicle, the height of the center of gravity of the vehicle, the roll moment of inertia, the pitch moment of inertia, the distance between the front axles of the vehicle and the rear axle of the vehicle.
  • the distance between the centers of gravity, the front tread length, and the rear tread length can be used to calculate the reference moment of inertia load on each wheel of the vehicle based on the vehicle model.
  • the above-mentioned “vehicle model” is a model for making the calculation of the reference inertial load feasible.
  • the model can be appropriately determined according to the mathematical formula for calculating the reference inertial load.
  • the vehicle model may be a model of the solution of the equation of motion represented by a linear system by the minimum norm method.
  • the correction value calculation unit calculates the inertial load correction value using the physical quantity acquired by the acquisition unit.
  • the physical quantity used by the correction value calculation unit to calculate the inertial load correction value may be the physical quantity acquired by the general-purpose sensor and the physical quantity peculiar to the vehicle.
  • the correction value calculation unit uses the mass of the vehicle, the height of the center of gravity of the vehicle, the value of the wheel speed sensor, the value of the turning information sensor, the roll moment of inertia, the front tread length, and the rear tread length to obtain the inertial load correction value. Can be calculated.
  • the value of the turning information sensor the value of the yaw rate sensor or the value of the steering angle sensor can be preferably used.
  • the ground load estimation device of the present embodiment may have a further configuration as long as the effect of the present invention can be obtained.
  • the ground contact load estimation device may further include a road surface load estimation unit that estimates the road surface load of the vehicle.
  • the road surface load means the fluctuation of the ground contact load due to the effect of the road surface such as the unevenness of the road surface.
  • the road surface load estimation unit is not limited, but estimating the road surface load using the physical quantity acquired by the general-purpose sensor and the physical quantity peculiar to the vehicle reduces the cost of the acquisition unit such as the sensor for estimating the road surface load. It is preferable from the viewpoint of For example, the road surface load estimating unit preferably estimates the road surface load by multiplying the tire effective radius variation described below by the first gain.
  • the above-mentioned acquisition unit preferably includes a wheel speed sensor that acquires the wheel angular velocity of the vehicle, and is preferably a device that acquires the physical quantity including the wheel angular velocity, the steady load of the vehicle, and the inertial load.
  • the road surface load estimation unit includes a first gain calculation unit and a tire effective radius fluctuation calculation unit.
  • the first gain calculation unit calculates the first gain from at least the steady load of the vehicle and the inertial load of the vehicle.
  • the first gain is at least a parameter indicating the rigidity of the wheels (for example, tires) provided in the vehicle.
  • the first gain is a value peculiar to the wheel, and can be obtained from an equation that substantially expresses the rigidity of the wheel when a specific ground contact load is applied to the wheel, as will be described later.
  • the tire effective radius fluctuation calculation unit calculates the tire effective radius fluctuation by multiplying the fluctuation of the wheel angular velocity by the second gain.
  • the tire effective radius fluctuation is a value representing the tire radius fluctuation due to the influence of the road surface by using the fluctuation of the wheel speed.
  • the fluctuation of the wheel angular velocity can be obtained by referring to the detection result of the wheel speed sensor.
  • the fluctuation of the wheel angular velocity may be an approximate value of the fluctuation as long as it substantially represents the fluctuation of the wheel angular velocity in the process of estimating the ground contact load.
  • the second gain is a parameter for reducing the influence of fluctuations in wheel angular velocity on the estimation results.
  • the deviation between the estimated result and the actual running state is so large that the condition regarding the actual running of the vehicle deviates from the predetermined condition regarding the normal running of the vehicle. It tends to grow.
  • the second gain is, for example, an experiment or simulation of an appropriate value such that the estimated value of the ground contact load is substantially the same as the measured value of the ground contact load of the vehicle under various conditions assumed for the running of the vehicle. It can be decided by deriving through.
  • the road surface load estimation unit may include a further configuration as long as the effect of the present embodiment can be obtained.
  • the road surface load estimation unit may further include a second gain correction unit.
  • the second gain correction unit calculates the vehicle slip ratio related value from the value of the wheel speed sensor, and corrects the second gain from at least the slip ratio related value and the jerk of the vehicle.
  • the acquisition unit further acquires the jerk of the vehicle.
  • the jerk can be acquired by, for example, an acceleration sensor.
  • the ground contact load of the vehicle includes a step of acquiring a physical quantity related to the vehicle, a step of calculating a reference inertial load using the physical quantity acquired by the acquisition unit, and an inertial load correction using the physical quantity acquired by the acquisition unit. It can be estimated by a method including a step of calculating a value and a step of adding an inertial load correction value to a reference inertial load to calculate an inertial load. The method of estimating the ground contact load of the vehicle can be carried out by using the above-mentioned ground contact load estimation device.
  • the estimated value of the ground contact load of the vehicle can be obtained by adding the inertial load estimated by the inertial load estimation unit and the steady load of the vehicle.
  • the steady-state load is a ground contact load in 1 G of the vehicle, and may be a calculated value based on the mass of the vehicle or a constant peculiar to the vehicle.
  • the ground contact load estimation device further includes the road surface load estimation unit
  • the ground contact load of the vehicle is estimated by adding the inertial load estimated by the inertial load estimation unit, the road surface load estimated by the road surface load estimation unit, and the steady load. You can get the value.
  • the control device estimates the ground contact load acting on the vehicle and directly or indirectly uses the ground contact load to control one or more other devices provided in the vehicle. ..
  • the control device of the present embodiment can be configured in the same manner as a known device that controls one or more devices provided in a vehicle based on the ground load, except that the control device of the present embodiment includes the above-mentioned ground load estimation device.
  • the case where the ground contact load is indirectly used includes, for example, a configuration in which a further estimation is performed using the estimated ground contact load and another device is controlled using the value of the result of the further estimation.
  • FIG. 1 is a block diagram showing an example of a functional configuration of the ground contact load estimation device according to the first embodiment of the present invention. As shown in FIG.
  • the ground contact load estimation device 100 includes an inertial load estimation unit 110, a road surface load estimation unit 120, a front-rear acceleration sensor and a lateral acceleration sensor (front-rear and lateral acceleration sensor) 131, a steering angle sensor or a yaw rate sensor ( It includes a steering angle / yaw rate sensor) 132, a wheel speed sensor 133, a steady load providing section 141, a delay section 142, and an adding section 143, 144.
  • an inertial load estimation unit 110 a road surface load estimation unit 120
  • a front-rear acceleration sensor and a lateral acceleration sensor (front-rear and lateral acceleration sensor) 131 a steering angle sensor or a yaw rate sensor ( It includes a steering angle / yaw rate sensor) 132, a wheel speed sensor 133, a steady load providing section 141, a delay section 142, and an adding section 143, 144.
  • the front-rear, lateral acceleration sensor 131, steering angle / yaw rate sensor 132, and wheel speed sensor 133 are connected to the inertial load estimation unit 110.
  • the front-rear and lateral acceleration sensors 131 and the wheel speed sensor 133 are connected to the road surface load estimation unit 120.
  • the front-rear, lateral acceleration sensor 131, steering angle / yaw rate sensor 132, and wheel speed sensor 133 provide physical quantities related to the vehicle to be acquired by the inertial load estimation unit 110, and the inertial load estimation unit 110 is referred to as an acquisition unit. It has become.
  • the inertial load estimation unit 110 outputs the calculated inertial load signal.
  • the inertial load estimation unit 110 is connected to the addition unit 143 via the delay unit 142.
  • the steady load providing unit 141 outputs a signal of the steady load.
  • the steady load providing unit 141 is also connected to the adding unit 143.
  • the addition unit 143 is connected to each of the addition unit 144 and the road surface load estimation unit 120.
  • the road surface load estimation unit 120 is connected to the addition unit 144.
  • the front-rear, lateral acceleration sensor 131, steering angle / yaw rate sensor 132, wheel speed sensor 133, steady-state load providing unit 141, and inertial load estimating unit 110 provide physical quantities related to the vehicle to be acquired by the road surface load estimating unit 120. It is an acquisition unit for the road surface load estimation unit 120.
  • the moment of inertia load estimation unit 110 and the road surface load estimation unit 120 are each connected to a control system network (for example, CAN described later) of the vehicle, and the mass of the vehicle is connected via the network.
  • a control system network for example, CAN described later
  • the network also corresponds to the acquisition unit in this embodiment.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the inertial load estimation unit according to the first embodiment of the present invention.
  • the inertial load estimation unit 110 includes a reference inertial load calculation unit 111 and a correction value calculation unit 112.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the reference inertial load calculation unit according to the first embodiment of the present invention.
  • the reference inertial load calculation unit 111 includes a system matrix unit 301, an input matrix unit 302, an addition unit 303, and a delay unit 304.
  • the system matrix unit 301 is connected to the addition unit 303
  • the addition unit 303 is connected to the delay unit 304
  • the delay unit 304 is connected to the system matrix unit 301.
  • the input matrix unit 302 is connected to the outside, for example, the above-mentioned network, and is connected to the addition unit 303.
  • the road surface load estimation unit 120 is composed of a known device that estimates the road surface load.
  • the road surface load estimation unit 120 is a device that estimates the road surface load from an image or the like taken by a camera (not shown).
  • the ground contact load in this embodiment is represented by the following equation (1).
  • F z0nom represents the ground contact load in the 1G state
  • dF z0, inertia represents the inertial load
  • dF z0, road represents the road surface load.
  • the inertial load means the fluctuation of the ground contact load due to the effect of turning the vehicle and the effect of acceleration / deceleration
  • the road surface load means the fluctuation of the ground contact load due to the effect of the road surface such as the unevenness of the road surface. ..
  • FIG. 4 is a diagram for explaining a physical quantity related to the roll behavior of the vehicle body.
  • FIG. 5 is a diagram for explaining a physical quantity related to the pitch behavior of the vehicle body.
  • FIG. 6 is a diagram for explaining the roll angular acceleration around the center of gravity of the vehicle body.
  • Equation (2A) expresses vertical motion
  • Equation (2B) expresses roll behavior
  • Equation (2C) expresses pitch behavior.
  • the position of the wheel is represented by “f” for the front, “r” for the back, “r” for the right, and “l” for the left.
  • the front-rear direction is represented by “x”
  • the lateral direction is represented by “y”
  • the vertical direction is represented by "z”.
  • m represents the mass of the vehicle
  • h 0 represents the height of the center of gravity of the vehicle
  • a x represents the longitudinal acceleration of the vehicle
  • a y represents the lateral acceleration of the vehicle
  • a z represents the vertical acceleration of the vehicle.
  • I 1 and I 2 represent correction values for calculating the moment of inertia around the road surface point using the moment of inertia around the axis passing through the centers of gravity COG 1 and COG 2 , respectively.
  • the center of gravity COG1 represents the center of gravity in the width direction of the vehicle body 200
  • the center of gravity COG2 represents the center of gravity of the vehicle body 200 in the front-rear direction.
  • I x + I 1 represents the roll moment of inertia around the road point
  • I x represents the moment of inertia about the roll axis through the center of gravity COG1
  • t rr of the vehicle Represents half the length of the rear tread (rear tread length multiplied by 1/2)
  • trf is half the length of the front tread of the vehicle (front tread length multiplied by 1/2).
  • the p-dot represents the roll angular acceleration centered on the road surface point.
  • I y + I 2 represents the pitch moment of inertia around the road surface point
  • I y represents the moment of inertia around the pitch axis passing through the center of gravity COG 2.
  • l f represents the distance between the center of gravity COG 2 of the vehicle body 200 and the front axle in the front-rear direction
  • l r represents the distance between the center of gravity COG 2 and the rear axle
  • l f + l r represents the wheelbase.
  • the q dot is a pitch angular acceleration centered on the road surface point.
  • equations (2A) to (2C) are transformed into a matrix, it is represented by the following equation (4), and the following equation (5) is derived from the equation (4).
  • the 3x3 matrix on the right side of equation (5) is also called the matrix K', and the 3x1 matrix in parentheses on the right side is also called the matrix a'.
  • the equation (3) is represented by the following equation (6).
  • Z is a variable that satisfies the equations (2A) to (2C).
  • the 4 ⁇ 1 matrix in the first term on the right side of the equation (6) represents the vector a.
  • the 4 ⁇ 3 matrix in the second term on the right side in the equation (6) is also referred to as a matrix K, and the 3 ⁇ 1 matrix of the same term is also referred to as a matrix U.
  • the vector a is represented by the matrix of the equation (7) by using the matrix K'and the matrix a'in the equation (5).
  • the matrix K in the equation (6) is represented by the matrix of the equation (8) by using the matrix K'in the equation (5).
  • equation (6) is expressed by the following equation (9).
  • dF est, p represents an arbitrary solution in equations (2A) to (2C).
  • equation (9) the equations of motion (2A) to (2C) described above are represented by the equation (9). That is, the solutions of the equations of motion (2A) to (2C) are represented by a linear equation, and the calculated value of the ground contact load to be obtained exists in any of the straight lines represented by the equation.
  • equation (11) is derived from equation (9) as shown below.
  • the a hat is a unit vector of the vector a.
  • U represents an input value
  • A represents a system matrix
  • B represents an input matrix
  • the vector dFest , p is represented by the product of the matrix K and the matrix U.
  • the matrix K and the matrix U are represented as follows, and A and B are each represented as follows using a matrix.
  • the matrix U includes a vertical acceleration az , a roll angular acceleration p dot, and a pitch angular acceleration q dot, which are not calculated from the detection values of the general-purpose sensor described above.
  • a predetermined value for example, zero
  • the solution of equation (13) can be obtained, but on the other hand, it is necessary to correct the influence of az , p-dot and q-dot.
  • the inertial load correction value can be calculated from an appropriate formula according to the magnitude and frequency of the effects of az , p-dots and q-dots using physical quantities that can be obtained from a general-purpose sensor.
  • the inertial load correction value dF Z0, corr is expressed by the following equation (15).
  • K p represents the adjustment parameter
  • ⁇ F y0 represents the total tire lateral force when the vehicle rolls.
  • the vector p is represented by the equation (16). The portion other than ⁇ Fy 0 on the right side in the equation (15) corrects the influence of the p-dot and is important when the vehicle turns.
  • Kp is, for example, extended from the running conditions of the vehicle in which the measured value is measured by comparing the measured value of the ground contact load in the vehicle during turning with the estimated value of the ground contact load estimated using the equation (15).
  • the conditions can also be determined by appropriately setting the estimated value so as to be substantially valid.
  • FIG. 6 is a diagram for explaining the roll angular acceleration around the center of gravity of the vehicle body.
  • the p dot in FIG. 6 represents the roll angular velocity around the center of gravity COG1 of the vehicle body.
  • the p-dot around the center of gravity of the vehicle body is represented by the following equation (18).
  • the matrix product on the right side of equation (18) is negligibly small and can be regarded as zero.
  • FIG. 7 is a diagram for explaining a turning radius with respect to the actual steering angle of the vehicle.
  • FIG. 7 shows a case where the vehicle turns to the left.
  • FIG. 7 shows the turning of the vehicle steered only by the front wheels.
  • C is the turning center and O is the wheel center point.
  • R turn represents the turning radius and is the distance from the turning center C to the center of gravity COG3 of the vehicle.
  • R turn, l represents the distance from the turning center C in the width direction of the vehicle body to the intersection O of the wheels on the left side of the vehicle, and
  • R turn, r is from the turning center C in the width direction of the vehicle body to the right side of the vehicle. Represents the distance to the intersection O of the wheels.
  • is the actual rudder angle.
  • V fl vector and V fr vector is a traveling direction vector at the front wheels point
  • beta fl and beta fr is the front wheel slip angle
  • beta fl is represented by angle formed V fl vector with respect to the line L ⁇ fl
  • ⁇ fr is expressed by an angle formed by the V fr vector with respect to the line L ⁇ fr.
  • Dashed Eruomega fl is a line extending along the rolling direction of the wheel, is a straight line passing through the center O fl wheels.
  • Dashed Eruomega fr is a line extending along the rolling direction of the wheel, is a straight line passing through the center O fr wheels.
  • the V rl vector and the V rr vector are the traveling direction vectors at the rear wheel points.
  • ⁇ rl and ⁇ rr are rear wheel slip angles, and are represented by angles formed by the V rl vector and the V rr vector with respect to the front-rear direction of the vehicle body 200.
  • beta fl and beta fr is corrected appropriately in consideration of the steering in the rear wheel.
  • R turn, l is represented by the formula (25).
  • R turn, r is represented by equation (26).
  • R turn is sufficiently large compared to the wheelbase of the vehicle and both ⁇ and ⁇ are sufficiently small.
  • R turn is represented by equation (27) using equations (25) and (26).
  • equation (27) the product of the differences of ⁇ between the front and rear wheels between the left and right wheels of the vehicle is sufficiently small and can be regarded as zero.
  • f ( ⁇ ) obtained by subtracting the sum of ⁇ on the rear wheels from the sum of ⁇ on the front wheels of the vehicle is also sufficiently smaller than the R turn and is regarded as zero. be able to. Therefore, "R turn " is expressed by the above-mentioned equation (20).
  • the front-rear and lateral acceleration sensor 131 detects and outputs the front-rear acceleration and the lateral acceleration in the vehicle
  • the (steering angle / yaw rate sensor) 132 detects and outputs the steering angle or yaw rate in the vehicle
  • the wheel speed sensor 133 Detects and outputs the wheel speed on the wheels of the vehicle.
  • the above-mentioned network outputs various physical quantities related to the vehicle. In this way, the above-mentioned acquisition unit acquires and outputs the physical quantity related to the vehicle.
  • Reference inertial load calculating section 111 calculates a reference inertial load dF est (k) by using the physical quantity acquisition unit has acquired.
  • the correction value calculation unit 112 calculates the inertial load correction values dF Z0, corr using the physical quantity acquired by the acquisition unit. Specifically, the correction value calculation unit 112 calculates an inertial load correction value for correcting the influence of the p-dot during turning based on the above equation (15).
  • the inertial load estimation unit 110 adds the inertial load correction value calculated by the correction value calculation unit 112 to the reference inertial load calculated by the reference inertial load calculation unit 111 to obtain the estimated inertial load dF Z0, inertia . Specifically, the inertial load estimation unit 110 obtains an estimated value of the inertial load based on the above equation (14).
  • the inertial load estimation unit 110 outputs the inertial load dF Z0, inertia to the delay unit 142.
  • the delay unit 142 outputs the inertial load by delaying it at an appropriate timing according to the subsequent control, if necessary. For example, the delay of the moving average processing in the road surface load estimation unit 120, which will be described later, is delayed so as to be synchronized.
  • the addition unit 143 adds up the steady load F Z0nom output from the steady load providing unit 141 and the inertial load. The total value of the steady load and the inertial load is output to the road surface load estimation unit 120 and the addition unit 144.
  • the road surface load estimation unit 120 outputs an estimated value of the road surface load.
  • the road surface load estimation unit 120 can refer to the total value of the steady load and the inertial load.
  • an estimated value of the road surface load can be obtained with reference to the steady load and the inertial load.
  • the road surface load estimation value output from the road surface load estimation unit 120 is added up with the above total value in the addition unit 144.
  • the total value of the steady load, the inertial load and the road surface load is obtained as the estimated value Fz 0 of the ground contact load of the vehicle.
  • the reference inertial load is calculated and the inertial load correction value is calculated using the physical quantity that can be acquired by the general-purpose sensor. Therefore, the cost related to the sensor can be reduced. Further, the vehicle is equipped with a sensor that detects the ground contact load more directly, and the measured value of the ground contact load is obtained. On the other hand, the estimated value of the ground contact load according to the present embodiment is obtained. For example, it is possible to obtain an estimated value of the ground contact load F z0 having a high accuracy so as to substantially overlap the measured value.
  • the solution of the equation of motion obtained by applying the minimum norm method can be used. Therefore, it is more effective to estimate the ground contact load with high accuracy, and it is more effective to make a correction so that such an estimation can be applied to a wide range of traveling conditions of the vehicle.
  • the road surface load in estimating the road surface load, the steady load and the estimated inertial load are referred to. Therefore, the road surface load can be estimated with higher accuracy than when these are not referred to.
  • the inertial load correction values dF Z0, corr can be expressed by the following equation (30).
  • Paragraph in square brackets on the right side in the formula (30) (the product of K a and a vector) is for correcting an error of a z, p dots and q dots by minimum norm method.
  • the a vector is represented by the following formula (31)
  • the p vector is represented by the above formula (16).
  • K a is the adjusted parameter.
  • K a compares the measured value estimates obtained with the formula (30), substantially so that the same can be appropriately set in the estimation of the ground contact load of the vehicle estimate relative Found Can be determined by.
  • the front-rear and lateral acceleration sensor 131 detects and outputs the front-rear acceleration and the lateral acceleration in the vehicle
  • the (steering angle / yaw rate sensor) 132 detects and outputs the steering angle or yaw rate in the vehicle
  • the wheel speed sensor 133 Detects and outputs the wheel speed on the wheels of the vehicle.
  • the above-mentioned network outputs various physical quantities related to the vehicle. In this way, the above-mentioned acquisition unit acquires and outputs the physical quantity related to the vehicle.
  • Reference inertial load calculating section 111 calculates a reference inertial load dF est (k) by using the physical quantity acquisition unit has acquired. Specifically, the reference inertial load calculation unit 111 calculates the reference inertial load as a solution to which the minimum norm method is applied based on the above equation (13). For example, the system matrix unit 301 multiplies the aforementioned matrix A to the previous calculated value dF est of ground load (k-1) outputs to the adding unit 303, an input matrix 302, matrix B matrix U of the foregoing Is multiplied and output to the addition unit 303. The addition unit 303 adds these to calculate the reference inertial load. The reference inertial load is output from the reference inertial load calculation unit 111.
  • the delay unit 304 adjusts the timing so that the reference inertial load input to the system matrix unit 301 becomes the previously calculated value in the calculation of the reference inertial load in the next time, and outputs the reference inertial load input to the delay unit 304. To do.
  • the correction value calculation unit 112 calculates the inertial load correction values dF Z0, corr using the physical quantity acquired by the acquisition unit. Specifically, the correction value calculation unit 112 calculates an inertial load correction value for correcting the influence of p-dots, az, and q-dots based on the equation (30).
  • the inertial load estimation unit 110 adds the inertial load correction value calculated by the correction value calculation unit 112 to the reference inertial load calculated by the reference inertial load calculation unit 111 to obtain the estimated inertial load dF Z0, inertia . Specifically, the inertial load estimation unit 110 obtains an estimated value of the inertial load based on the above equation (14).
  • the inertial load estimation unit 110 outputs the inertial load dF Z0, inertia to the delay unit 142.
  • the delay unit 142 outputs the inertial load by delaying it at an appropriate timing according to the subsequent control, if necessary. For example, the delay of the moving average processing in the road surface load estimation unit 120, which will be described later, is delayed so as to be synchronized.
  • the addition unit 143 adds up the steady load F Z0nom output from the steady load providing unit 141 and the inertial load. The total value of the steady load and the inertial load is output to the road surface load estimation unit 120 and the addition unit 144.
  • the road surface load estimation unit 120 outputs an estimated value of the road surface load.
  • the road surface load estimation unit 120 can refer to the total value of the steady load and the inertial load.
  • an estimated value of the road surface load can be obtained with reference to the steady load and the inertial load.
  • the road surface load estimation value output from the road surface load estimation unit 120 is added up with the above total value in the addition unit 144.
  • the total value of the steady load, the inertial load and the road surface load is obtained as the estimated value Fz 0 of the ground contact load of the vehicle.
  • the road surface load is estimated as described below.
  • its functional configuration and its logic will be described below.
  • FIG. 8 is a block diagram showing an example of the functional configuration of the road surface load estimation unit in the present embodiment.
  • the road surface load estimation unit 120 includes a tire effective radius fluctuation calculation unit 121, a first gain calculation unit 122, and a second gain correction unit 123, as shown in FIG.
  • a 1 represents the first gain
  • a 11 represents the first parameter
  • a 12 represents the second parameter.
  • First gain a 1 shows the stiffness of a wheel of the vehicle.
  • First gain a 1 is represented by the spring constant in relation to the spring constant with respect to the ground load of the tire. Although the relationship is represented by a non-linear curve, it can be approximated to a linear equation as shown in equation (52).
  • the first parameter a 11 and the second parameter a 12 are both adjustment parameters for applying the first gain a 1 to a wide range of conditions.
  • the first parameter is represented by the slope in the linear equation according to the above approximation, and the second parameter is represented by the intercept of the linear equation.
  • FIG. 9 is a diagram for explaining a physical quantity related to an arbitrary wheel of the vehicle.
  • R e represents an effective radius of the tire
  • omega represents the angular velocity of the wheel
  • u 0 represents the parallel foil center point velocity on the road surface.
  • the effective radius R e of the tire is represented by the following formula (54).
  • the following equation (55) is derived from the total derivative of equation (54).
  • the equation (56) is derived from the equation (55), and the equation (57) is further derived.
  • a 2 denotes the second gain.
  • the second gain a 2 is a parameter for adjusting the influence of the fluctuation of the wheel angular velocity on the estimation result.
  • the second gain compares, for example, the measured value and the estimated value of the ground contact load of the vehicle traveling under the condition that the wheel angular velocity changes, and the estimated value is substantially equivalent to the measured value under various driving conditions. It can be decided by setting appropriately so that it becomes effective.
  • equation (57) The numbers in parentheses in equation (57) can be approximated as shown in equation (58).
  • equation (58) "movavg ( ⁇ )” represents a moving average of wheel angular velocities. Therefore, the equation (59) is derived from the equation (57).
  • equation (60) is derived.
  • the road surface load is calculated from the formula (60).
  • Formula (60) comprises moveavg ( ⁇ ).
  • the second gain a 2 can be expressed by the following equation (61).
  • a 21 represents the third parameter.
  • the third parameter a 21 is an adjustment parameter similar to the second gain.
  • the third parameter is eventually the same as the second gain.
  • the second gain can be expressed using, in addition to the third parameter, a further correction value to correct the effect of a particular vehicle condition on the tire.
  • the second gain can be expressed by equation (62).
  • F s represents a correction value for correcting the influence of the slip ratio
  • F jerk represents a correction value for correcting an error due to jerk
  • the third parameter is an adjustment parameter for alleviating the influence of the correction by the correction value when the vehicle is running other than the traveling conditions targeted by these correction values.
  • F s and F jer k may increase or decrease the calculated value of the slip ratio-related value by the second gain correction unit, which will be described later, or the jerk acquisition value by the acquisition unit, respectively, or are predetermined.
  • the calculated value or the acquired value may be substantially canceled according to the threshold value.
  • the road surface load can be calculated from the equation (63).
  • the road surface load estimation unit 120, the first gain calculator 122 calculates a first gain a 1 using at least constant load and inertial loads.
  • First gain a 1 is represented by rigidity (spring constant) of the wheel (tire) provided in the vehicle as described above, can be expressed by a linear expression that approximates the non-linear curve of the spring constant for the vertical load.
  • the ground contact load here is the total value of the steady load and the inertial load.
  • the first gain calculation unit 122 calculates the first gain by substituting the total value into the equation (52).
  • the second gain correction unit 123 further acquires the jerk of the vehicle from the acquisition unit. Specifically, the second gain correction unit 123 acquires the jerk of the vehicle via a network such as CAN.
  • the second gain correction unit 123 calculates the slip ratio-related value of the vehicle from the value of the wheel speed sensor. Specifically, the second gain correction unit 123 acquires the numerical value corresponding to F s in the equation (62).
  • the second gain correction unit 123 corrects the second gain based on at least the slip ratio related value and the jerk. It is assumed that the second gain is set as an adjustment parameter as described above. Specifically, the second gain correction unit 123 determines F s and F jerk to mitigate the effects of the slip ratio and jerk based on the equation (62), and uses them based on the equation (62). And correct the second gain.
  • F s when the effect of the change in the slip ratio related value on the estimation result is considered to be greater, it is possible to set so as to adjust its effects.
  • F s is a coefficient to be multiplied by a slip ratio-related value, which is 0 when the slip ratio-related value is lower than a predetermined value, and is adopted when the slip ratio-related value is greater than or equal to a predetermined value. As such, it may be 1.
  • the Jerk can be set to adjust when the change in jerk is considered to have a large effect on the estimation result.
  • F jerk is a coefficient to be multiplied by the acquired jerk , which is 0 when the jerk is larger than a predetermined value, and adopts the acquired jerk when it is less than or equal to the predetermined value. It may be 1.
  • the second gain correction unit 123 calculates the corrected second gain by multiplying F s and F jerk by the third parameter as shown in the equation (62).
  • the third parameter a 21 in Equation third parameter a 21 and equation in (61) (62) may be the same or may be different.
  • the tire effective radius fluctuation calculation unit 121 calculates the tire effective radius fluctuation by multiplying the fluctuation of the wheel angular velocity by the second gain.
  • the fluctuation of the wheel angular velocity is a numerical value including the fluctuation value d ⁇ of the wheel angular velocity ⁇ .
  • the tire effective radius variation calculation unit 121 by multiplying the other a 1 on the right side in equation (60), calculates the effective tire radius change.
  • the road surface load estimation unit 120 estimates the road surface load by multiplying the tire effective radius fluctuation calculated by the tire effective radius fluctuation calculation unit 121 by the first gain. Specifically, the road surface load estimation unit 120 obtains an estimated value of the road surface load by multiplying the tire effective radius variation by the first gain based on the equation (60).
  • the ground contact load estimation device 100 adds the steady load, the inertial load estimated by the inertial load estimation unit 110, and the road surface load estimated by the road surface load estimation unit 120 to obtain an estimated value of the ground contact load Fz0 of the vehicle.
  • the present embodiment further exerts the following effects.
  • the road surface load of the vehicle can be estimated with higher accuracy
  • the ground contact load of the vehicle can be estimated with higher accuracy by including the estimated value of the road surface load. ..
  • the estimation accuracy of the road surface load can be further improved.
  • Embodiment 3 Embodiment of control device of suspension device
  • An example of applying the physical quantity estimation device according to the present embodiment to a control device for controlling a suspension device of a vehicle will be described below.
  • the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
  • the control device of the present embodiment estimates the ground contact load acting on the vehicle having the suspension device, and controls the damping force of the suspension device according to the ground contact load.
  • the control device includes the above-mentioned ground load estimation device, and is configured in the same manner as a known control device in the suspension device, except that the damping force of the suspension device is controlled according to the ground load estimated by the ground load estimation device. It is possible.
  • FIG. 10 is a diagram schematically showing an example of the configuration of a vehicle having the above-mentioned ground contact load estimation device.
  • the vehicle 900 includes a suspension device (suspension) 150, a vehicle body 200, wheels 300, a vehicle speed sensor 450 for detecting vehicle speed (V), an engine 500, and an ECU (Electronic Control Unit) 600. ..
  • the ECU 600 corresponds to the processor described above, and includes the ground load estimation device described above.
  • a to E in the code represent the positions in the vehicle 900, respectively.
  • A represents the left front position of the vehicle 900
  • B represents the right front position of the vehicle 900
  • C represents the left rear of the vehicle 900
  • D represents the right rear of the vehicle 900
  • E represents the vehicle. It represents the back of 900.
  • the vehicle 900 has various sensors such as a front-rear acceleration sensor 340 that detects the acceleration of the vehicle 900 in the front-rear direction.
  • the sensor corresponds to the general-purpose sensor described above.
  • the vehicle 900 has a storage medium.
  • Various information required for estimating the physical quantity is stored in the storage medium. Examples of such information include various physical quantities related to the vehicle such as wheel radius and vehicle mass (vehicle weight).
  • CAN Controller Area Network
  • Each sensor may be newly provided for estimating the physical quantity described later, but from the viewpoint of cost, it is preferable that the sensor is an existing sensor in the vehicle 900.
  • the damping force of the suspension device is controlled based on an estimated value having the same accuracy as the measured value for the ground contact load of the vehicle. Therefore, the running stability of the vehicle can be sufficiently improved without using a special sensor other than the general-purpose sensor.
  • the damping force of the suspension device of the vehicle is controlled by directly using the ground contact load estimated by the control device.
  • the estimated ground contact load can be used to control various devices possessed by the vehicle. Examples of such devices include electronically controlled suspensions, steering devices, and electronically controlled driving force transmission devices, in addition to conventional suspension devices.
  • the estimated ground contact load can be used to control one or more of these devices in the vehicle.
  • the estimation result of the ground contact load may be used directly or indirectly in the control of the device as in the present embodiment.
  • the indirect use in the estimation result of the ground contact load is, for example, to convert to another state quantity and use the estimated value of the converted state quantity to control the other device.
  • the control block (particularly the inertial load estimation unit 110 and the road surface load estimation unit 120) of the ground load estimation device 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or software. It may be realized by.
  • the ground load estimation device 100 includes a computer that executes program instructions that are software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • non-temporary tangible medium such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • an arbitrary transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the configuration other than the inertial load estimation unit 110 can be appropriately omitted depending on the accuracy expected in the estimation of the ground contact load.
  • the road surface load estimation unit 120 and the addition unit 144 may be omitted.
  • the estimated value of the ground contact load is the sum of the steady load and the inertial load.
  • the second gain calculation unit may be omitted.
  • a part of the arithmetic processing may be omitted or integrated as appropriate for reasons such as simplification of the arithmetic processing.
  • a value obtained by multiplying the first gain a 1 and the second gain a 2 is obtained, and the obtained gain value is applied to, for example, the above equation (60) to obtain the road surface.
  • the load may be calculated.
  • the ground contact load estimation device (100) is a ground contact load estimation device that estimates the ground contact load of the vehicle (900), and is an acquisition unit that acquires a physical quantity related to the vehicle.
  • the reference inertial load calculation unit (111) that calculates the reference inertial load using the physical quantity acquired by the acquisition unit, and the correction value calculation unit (112) that calculates the inertial load correction value using the physical quantity acquired by the acquisition unit.
  • an inertial load estimation unit (110) is provided to estimate the inertial load by adding the inertial load correction value to the reference inertial load.
  • the cost related to the sensor can be reduced and the ground contact load in the vehicle can be estimated with sufficiently high accuracy.
  • the acquisition unit includes the value of the front-rear acceleration sensor (131) for acquiring the front-rear acceleration of the vehicle, the value of the lateral acceleration sensor (131) for acquiring the lateral acceleration of the vehicle, and the wheel angle speed of the vehicle.
  • the reference inertial load calculation unit includes the value of the front-rear acceleration sensor, the value of the lateral acceleration sensor, the mass of the vehicle, the height of the center of gravity of the vehicle, the roll moment of inertia, the pitch moment of inertia, the distance between the center of gravity of the front axle of the vehicle, and the rear axle of the vehicle.
  • the reference inertial load may be calculated based on the vehicle model using the distance between the centers of gravity, the front tread length, and the rear tread length.
  • correction value calculation unit uses the mass of the vehicle, the height of the center of gravity of the vehicle, the value of the wheel speed sensor, the value of the turning information sensor, the roll moment of inertia, the front tread length, and the rear tread length to calculate the inertial load correction value. You may calculate.
  • the above model may be a model of a solution of the equation of motion represented by a linear system by the minimum norm method.
  • the turning information sensor may be a yaw rate sensor or a steering angle sensor (132).
  • the acquisition unit includes a wheel speed sensor that acquires the wheel angular velocity of the vehicle, acquires the physical quantity including the wheel angular velocity, the steady load and the inertial load of the vehicle, and the ground contact load estimation device is the vehicle.
  • a road surface load estimation unit (120) for estimating the road surface load may be further provided.
  • the road surface load estimation unit uses at least a steady load and an inertial load to calculate at least the first gain indicating the rigidity of the wheel (300) of the vehicle, and the first gain calculation unit (122), and the fluctuation of the wheel angle speed.
  • the tire effective radius fluctuation calculation unit (121) that calculates the tire effective radius fluctuation by multiplying the second gain for reducing the influence of the wheel angle speed fluctuation on the estimation result is included, and the first gain is calculated for the tire effective radius fluctuation.
  • the road surface load may be estimated by multiplying.
  • the ground contact load estimation device may estimate the ground contact load of the vehicle by adding the inertial load estimated by the inertial load estimation unit and the road surface load estimated by the road surface load estimation unit.
  • the road surface load of the vehicle can be estimated with sufficiently high accuracy based on the physical quantity peculiar to the vehicle or can be acquired by a general-purpose sensor, and the road surface load including such a road surface load can be estimated with higher accuracy. It is possible to estimate the ground contact load.
  • the acquisition unit may further acquire the jerk of the vehicle, and the road surface contact load estimation unit may further include a second gain correction unit (123) for correcting the second gain.
  • the second gain correction unit may calculate the slip ratio-related value of the vehicle from the value of the wheel speed sensor, and may correct the second gain at least based on the slip ratio-related value and the jerk.
  • the control device is a control device that estimates the ground contact load acting on the vehicle and directly or indirectly uses the ground contact load to control one or more other devices provided in the vehicle.
  • the control device has an acquisition unit that acquires a physical quantity related to the vehicle, a reference inertial load calculation unit that calculates a reference inertial load using the physical quantity acquired by the acquisition unit, and an inertial load correction using the physical quantity acquired by the acquisition unit. It includes a correction value calculation unit for calculating a value, and includes an inertial load estimation unit that estimates an inertial load by adding an inertial load correction value to a reference inertial load.
  • the above-mentioned other device may be one or more devices selected from the group consisting of an electronically controlled suspension, a steering device, and an electronically controlled driving force transmission device.
  • the ground contact load estimation method in the embodiment of the present invention is a ground contact load estimation method for estimating the ground contact load of a vehicle, and includes a step of acquiring a physical quantity related to the vehicle and a step of calculating a reference inertial load using the acquired physical quantity. , The step of calculating the inertial load correction value using the acquired physical quantity and the step of estimating the inertial load by adding the inertial load correction value to the reference inertial load are included.
  • the cost related to the sensor can be reduced and the ground contact load in the vehicle can be estimated with sufficiently high accuracy.
  • Ground load estimation device 110 Inertial load estimation unit 111 Reference inertial load calculation unit 112 Correction value calculation unit 120 Road surface load estimation unit 121 Tire effective radius fluctuation calculation unit 122 First gain calculation unit 123 Second gain correction unit 131 Lateral acceleration sensor 132 Steering angle / yaw rate sensor 133 Wheel speed sensor 141 Constant load providing part 142, 304 Delay part 143, 144, 303 Adder part 200 Body 300 Wheels 301 System matrix part 302 Input matrix part 340 Front-rear acceleration sensor 450 Vehicle speed sensor 500 Engine 600 ECU 900 vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

センサに係るコストを削減可能であるとともに十分に高い精度で車両における接地荷重を推定可能な技術を実現する。接地荷重推定装置(100)は、車両に関する物理量を取得部で取得し、上記の物理量を用いて基準慣性荷重演算部(111)で基準慣性荷重を演算し、上記の物理量を用いて補正値演算部(112)で慣性荷重補正値を演算し、これらを慣性荷重推定部(110)で加算して慣性荷重を推定する。

Description

接地荷重推定装置、制御装置および接地荷重推定方法
 本発明は、接地荷重推定装置、制御装置および接地荷重推定方法に関する。
 従来、車両における車輪の接地荷重を推定し、当該推定結果を用いて車両の制動力および駆動力などを制御し、車両の走行安定性を高める技術が知られている。接地荷重の推定には、車両の走行安定性を高める観点から、十分に高い精度が求められている。当該接地荷重を推定する技術としては、ロールレートセンサで検出されたロール角速度とピッチレートセンサで検出されたピッチ角速度とを用いて接地荷重を推定する技術が知られている(例えば、特許文献1参照)。
日本国公開特許公報「特開2013-216278号公報」
 しかしながら、上述の従来技術は、ロールレートセンサおよびピッチレートセンサなどの接地荷重の推定に必須のセンサをより多く要し、コストが高くなることがある。このように、従来技術には、少なくともセンサに係るコスト削減の観点から、検討の余地が残されている。
 本発明の一態様は、センサに係るコストを削減可能であるとともに十分に高い精度で車両における接地荷重を推定可能な技術を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る接地荷重推定装置は、車両の接地荷重を推定する接地荷重推定装置であって、前記車両に関する物理量を取得する取得部と、前記取得部が取得した前記物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部、および、前記取得部が取得した前記物理量を用いて慣性荷重補正値を演算する補正値演算部を含み、前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部と、を備える。
 また、上記の課題を解決するために、本発明の一態様に係る制御装置は、車両に作用する接地荷重を推定して、前記接地荷重を直接的または間接的に用いて、前記車両に備えられた一または複数の他の装置を制御する制御装置であって、前記車両に関する物理量を取得する取得部と、前記取得部が取得した前記物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部、および、前記取得部が取得した前記物理量を用いて慣性荷重補正値を演算する補正値演算部を含み、前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部と、を備える。
 さらに、上記の課題を解決するために、本発明の一態様に係る接地荷重推定方法は、車両の接地荷重を推定する接地荷重推定方法であって、前記車両に関する物理量を取得するステップと、取得した前記物理量を用いて基準慣性荷重を演算するステップと、取得した前記物理量を用いて慣性荷重補正値を演算するステップと、前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定するステップと、を含む。
 本発明の一態様によれば、車両の運転の制御に汎用されるセンサを用いて車両における接地荷重を十分に高い精度で推定することが可能である。よって、センサに係るコストを削減することができ、かつ十分に高い精度で車両における接地荷重を推定することができる。
本発明の実施形態1に係る接地荷重推定装置の機能的構成の一例を示すブロック図である。 本発明の実施形態1における慣性荷重推定部の機能的構成の一例を示すブロック図である。 本発明の実施形態1における基準慣性荷重演算部の機能的構成の一例を示すブロック図である。 車体のロール挙動に係る物理量を説明するための図である。 車体のピッチ挙動に係る物理量を説明するための図である。 車体の重心周りにおけるロール角加速度を説明するための図である。 車両の旋回半径を説明するための図である。 本発明の実施形態2における路面荷重推定部の機能的構成の一例を示すブロック図である。 車両の車輪に係る物理量を説明するための図である。 本発明の実施形態に係る接地荷重推定装置が適用される車両の構成の一例を模式的に示す図である。
 本発明における実施形態では、車両の走行安定性を高めるための制御に通常使用されるセンサを用いて取得可能な車両の物理量を参照して、車両の車輪における接地荷重を十分に高い精度で推定する。なお、本明細書において物理量を「参照」とは、当該物理量を直接または間接的に使用することの総称であり、これらの一方または両方を意味する。
 〔接地荷重推定装置〕
 本発明の実施形態における接地荷重推定装置は、車両の接地荷重を推定する。当該接地荷重推定装置は、取得部と慣性荷重推定部とを備える。
 [取得部]
 取得部は、車両に関する物理量を取得する装置である。また、取得部は、後述する慣性荷重推定部および補正値演算部に、当該物理量を出力する。取得部の例には、各種センサ、および、当該物理量を演算して出力する装置、が含まれる。
 本実施形態において、センサは、車両の走行に係る標準的な制御に通常使用されるセンサ(以下「汎用センサ」とも言う)であってよく、ロールレートセンサおよびピッチレートセンサを含まなくてよい。取得部としてのセンサ(汎用センサ)の例には、車両の前後加速度を取得する前後加速度センサ、車両の横加速度を取得する横加速度センサ、車両の車輪角速度を取得する車輪速センサ、および、車両の旋回情報を取得する旋回情報センサ、が含まれる。旋回情報センサの例には、ヨーレートセンサおよび操舵角センサが含まれる。
 上記の物理量の例には、前後加速度センサの値、横加速度センサの値、車輪速センサの値、旋回情報センサの値、車両の質量、車両の重心高、ロール慣性モーメント、ピッチ慣性モーメント、車両の前車軸重心間距離、車両の後車軸重心間距離、車両のフロントトレッド長、および、車両のリアトレッド長、が含まれる。
 [慣性荷重推定部]
 慣性荷重推定部は、基準慣性荷重演算部と補正値演算部とを含む。慣性荷重推定部は、基準慣性荷重演算部で演算した基準慣性荷重に、補正値演算部で演算した慣性荷重補正値を加算して慣性荷重を推定する。慣性荷重とは、車両の旋回の効果および加減速の効果による接地荷重の変動を意味する。基準慣性荷重演算部は、取得部が取得した物理量を用いて基準慣性荷重を演算する。基準慣性荷重とは、後述する車両の慣性荷重を表す方程式の解を意味する。慣性荷重補正値とは、基準慣性荷重と、真の慣性荷重とのずれを低減するように基準慣性荷重を補正する補正値である。
 本実施形態において、基準慣性荷重の演算に使用する物理量は、前述の汎用センサで取得される物理量および車両に特有の物理量であってよい。たとえば、基準慣性荷重演算部は、前後加速度センサの値、横加速度センサの値、車両の質量、車両の重心高、ロール慣性モーメント、ピッチ慣性モーメント、車両の前車軸重心間距離、車両の後車軸重心間距離、フロントトレッド長、および、リアトレッド長を用いて、車両の各車輪における基準慣性荷重を、車両のモデルに基づき演算することができる。
 ここで、上記の「車両のモデル」とは、基準慣性荷重の演算について、それを実現可能にするためのモデルである。当該モデルは、基準慣性荷重を演算するための数式に応じて適宜に決めることができる。たとえば、車両のモデルは、線形システムで表される運動方程式の最小ノルム法による解のモデルであってよい。
 補正値演算部は、取得部が取得した物理量を用いて慣性荷重補正値を演算する。補正値演算部が慣性荷重補正値の演算に使用する物理量も、前述したように、汎用センサで取得される物理量および車両に特有の物理量であってよい。たとえば、補正値演算部は、車両の質量、車両の重心高、車輪速センサの値、旋回情報センサの値、ロール慣性モーメント、フロントトレッド長、および、リアトレッド長を用いて、慣性荷重補正値を演算することができる。旋回情報センサの値には、ヨーレートセンサの値、または、操舵角センサの値を好適に用いることができる。
 [路面荷重推定部]
 本実施形態の接地荷重推定装置は、本発明の効果が得られる範囲において、さらなる構成を有していてもよい。たとえば、接地荷重推定装置は、車両の路面荷重を推定する路面荷重推定部をさらに備えていてもよい。
 路面荷重とは、路面の凹凸などの路面の効果による接地荷重の変動を意味する。路面荷重推定部は、限定されないが、汎用センサで取得される物理量および車両に特有の物理量を使用して路面荷重を推定することが、路面荷重の推定についてのセンサなどの取得部のコストを削減する観点から好ましい。たとえば、路面荷重推定部は、以下に説明するタイヤ有効半径変動に第一ゲインを乗じて路面荷重を推定することが好ましい。この場合、前述の取得部は、車両の車輪角速度を取得する車輪速センサを含むことが好ましく、当該車輪角速度、車両の定常荷重および慣性荷重を含む前記物理量を取得する装置であることが好ましい。
 当該路面荷重推定部は、第一ゲイン演算部と、タイヤ有効半径変動演算部とを含む。第一ゲイン演算部は、少なくとも車両の定常荷重および車両の慣性荷重から第一ゲインを演算する。第一ゲインは、少なくとも、車両が備える車輪(たとえばタイヤ)の剛性を示すパラメータである。第一ゲインは、車輪に固有の値であり、後述するように、車輪に特定の接地荷重を印加した場合の車輪の剛性を実質的に表す式から求めることができる。
 タイヤ有効半径変動演算部は、車輪角速度の変動に、第二ゲインを乗じてタイヤ有効半径変動を演算する。タイヤ有効半径変動とは、車輪速の変動を用いて、路面の影響によるタイヤの半径変動を表した値である。車輪角速度の変動は、車輪速センサの検出結果を参照して求めることが可能である。当該車輪角速度の変動は、接地荷重の推定工程における車輪角速度の変動を実質的に表すものであればよく、当該変動の近似値であってもよい。
 第二ゲインは、車輪角速度の変動が推定結果に及ぼす影響を減らすためのパラメータである。一般に、車両の接地荷重のような車両の状態量の推定では、車両の実際の走行に関する条件が、車両の通常の走行に関する所定の条件から外れる程、推定結果と実際の走行状態とのずれが大きくなる傾向にある。第二ゲインは、例えば、接地荷重の推定値が、車両の走行について想定される様々な条件において、車両の接地荷重の実測値と実質的に同じとなるような適当な数値を、実験またはシミュレーションを通じて導き出すことにより決めることができる。
 路面荷重推定部は、本実施形態の効果が得られる範囲において、さらなる構成を含んでいてもよい。たとえば、路面荷重推定部は、第二ゲイン補正部をさらに含んでいてもよい。
 第二ゲイン補正部は、車輪速センサの値から車両のスリップ比関連値を演算し、少なくともスリップ比関連値および車両の加加速度から第二ゲインを補正する。この場合、上記の取得部は、車両の加加速度をさらに取得する。当該加加速度は、例えば加速度センサによって取得することが可能である。
 [接地荷重の推定方法]
 本実施形態において、車両の接地荷重は、車両に関する物理量を取得するステップと、取得部が取得した物理量を用いて基準慣性荷重を演算するステップと、取得部が取得した物理量を用いて慣性荷重補正値を演算するステップと、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を算出するステップとを含む方法によって推定することが可能である。車両の接地荷重を推定する当該方法は、前述した接地荷重推定装置を用いて実施することができる。
 本実施形態において、慣性荷重推定部が推定した慣性荷重と、車両の定常荷重とを足すことにより、車両の接地荷重の推定値が得られる。定常荷重とは、車両の1Gにおける接地荷重であり、例えば、車両の質量に基づく算出値であってもよいし、車両に特有の定数であってもよい。接地荷重推定装置が路面荷重推定部をさらに含む場合には、慣性荷重推定部が推定した慣性荷重と路面荷重推定部が推定した路面荷重と定常荷重とを足すことにより、車両の接地荷重の推定値を得ることができる。
 [制御装置]
 本発明の実施形態における制御装置は、車両に作用する接地荷重を推定して、前記接地荷重を直接的または間接的に用いて、前記車両に備えられた一または複数の他の装置を制御する。本実施形態の制御装置は、前述の接地荷重推定装置を含む以外は、車両が備える一以上の装置を接地荷重に基づいて制御する公知の装置と同様に構成することが可能である。なお、接地荷重を間接的に用いる場合とは、例えば、推定した接地荷重を用いて更なる推定を行い、該更なる推定の結果の値を用いて他の装置を制御する構成が含まれる。
 以下、本発明の一実施形態について、詳細に説明する。
 〔実施形態1:接地荷重推定装置の第一の実施形態〕
 [接地荷重推定装置の機能的構成]
 図1は、本発明の実施形態1に係る接地荷重推定装置の機能的構成の一例を示すブロック図である。図1に示されるように、接地荷重推定装置100は、慣性荷重推定部110、路面荷重推定部120、前後加速度センサおよび横加速度センサ(前後、横加速度センサ)131、操舵角センサまたはヨーレートセンサ(操舵角/ヨーレートセンサ)132、車輪速センサ133、定常荷重提供部141、遅延部142および加算部143、144を備えている。
 前後、横加速度センサ131、操舵角/ヨーレートセンサ132および車輪速センサ133は、慣性荷重推定部110に接続されている。前後、横加速度センサ131、および車輪速センサ133は、路面荷重推定部120に接続されている。前後、横加速度センサ131、操舵角/ヨーレートセンサ132および車輪速センサ133は、慣性荷重推定部110が取得すべき車両に関する物理量を提供しており、慣性荷重推定部110に対して、取得部となっている。
 慣性荷重推定部110は、算出した慣性荷重の信号を出力する。慣性荷重推定部110は、遅延部142を介して加算部143に接続されている。定常荷重提供部141は、定常荷重の信号を出力する。定常荷重提供部141も加算部143に接続されている。加算部143は、加算部144および路面荷重推定部120のそれぞれに接続されている。路面荷重推定部120は、加算部144と接続されている。
 前後、横加速度センサ131、操舵角/ヨーレートセンサ132、車輪速センサ133、定常荷重提供部141および慣性荷重推定部110は、路面荷重推定部120が取得すべき車両に関する物理量を提供しており、路面荷重推定部120に対して、取得部となっている。
 また、図示しないが、慣性荷重推定部110および路面荷重推定部120は、それぞれ、車両が有する制御系のネットワーク(例えば後述のCANなど)に接続されており、当該ネットワークを介して、車両の質量、車両の重心の高さ、車両の重心に対応する路面上の点を基準とするロール慣性モーメント、当該路面上の点を基準とするピッチ慣性モーメント、前車軸重心間距離、後車軸重心間距離、フロントトレッド長、および、リアトレッド長などの、車両に特有の物理量を取得する。当該ネットワークも、本実施形態における取得部に該当する。
 図2は、本発明の実施形態1における慣性荷重推定部の機能的構成の一例を示すブロック図である。図2に示されるように、慣性荷重推定部110は、基準慣性荷重演算部111および補正値演算部112を有している。
 図3は、本発明の実施形態1における基準慣性荷重演算部の機能的構成の一例を示すブロック図である。基準慣性荷重演算部111は、図3に示されるように、システム行列部301、入力行列部302、加算部303および遅延部304を含む。システム行列部301は、加算部303に接続しており、加算部303は、遅延部304に接続しており、遅延部304は、システム行列部301に接続している。入力行列部302は、外部、例えば前述したネットワークに接続されており、かつ加算部303に接続している。
 路面荷重推定部120は、路面荷重を推定する公知の装置で構成される。たとえば、路面荷重推定部120は、不図示のカメラによって撮影した画像等から路面荷重を推定する装置である。
 [接地荷重推定のロジック]
 本実施形態における接地荷重は、以下の式(1)により表される。式(1)において、Fz0nomは、1G状態における接地荷重を表し、dFz0,inertiaは、慣性荷重を表し、dFz0,roadは、路面荷重を表す。前述したように、慣性荷重とは、車両の旋回の効果および加減速の効果による接地荷重の変動を意味し、路面荷重とは、路面の凹凸などの路面の効果による接地荷重の変動を意味する。
Figure JPOXMLDOC01-appb-M000001
 図4は、車体のロール挙動に係る物理量を説明するための図である。また、図5は、車体のピッチ挙動に係る物理量を説明するための図である。図6は、車体の重心周りにおけるロール角加速度を説明するための図である。
 dFz0,inertiaは、下記式(2A)、(2B)および(2C)の三つの運動方程式によって表される。式(2A)は、上下方向の運動を表現しており、式(2B)は、ロール挙動を表現しており、式(2C)は、ピッチ挙動を表現している。なお、本明細書において、車輪の位置について、前を「f」、後ろを「r」、右を「r」、左を「l」で表現する。また、車両に関する方向として、前後方向を「x」、横方向を「y」、上下方向を「z」で表現する。
Figure JPOXMLDOC01-appb-M000002
 図4および図5に示されるように、mは、車両の質量を表し、hは、車両重心の高さを表し、aは、車両の前後加速度を表す。aは、車両の横加速度を表す。aは、車両の鉛直加速度を表す。I、Iは、それぞれ、重心COG1、COG2を通る軸周りの慣性モーメントを用いて路面点周りでの慣性モーメントを算出するための補正値を表す。重心COG1は、車体200の幅方向における重心を表し、重心COG2は、車体200の前後方向における重心を表す。
 また、図4に示されるように、I+Iは、路面点周りでのロール慣性モーメントを表し、Iは、重心COG1を通るロール軸周りの慣性モーメントを表し、trrは、車両のリアトレッドの半分の長さ(リアトレッド長に1/2を乗じたもの)を表し、trfは、車両のフロントトレッドの半分の長さ(フロントトレッド長に1/2を乗じたもの)を表す。また、pドットは、路面点を中心とするロール角加速度を表す。
 さらに、図5に示されるように、I+Iは、路面点周りでのピッチ慣性モーメントを表し、Iは、重心COG2を通るピッチ軸周りの慣性モーメントを表す。また、lは、前後方向における車体200の重心COG2と前の車軸との距離を表し、lは、重心COG2と後ろの車軸との距離を表し、l+lは、ホイールベースを示す。また、qドットは、路面点を中心とするピッチ角加速度である。
 ある時点における接地荷重の変動の算出値をdFest (k)とすると、そのベクトルは以下の式(3)で表される。下記式(3)中、kは算出回数を表す。
Figure JPOXMLDOC01-appb-M000003
 また、式(2A)~(2C)を行列に変形すると、下記式(4)で表され、式(4)から下記式(5)が導き出される。式(5)中の右辺における3×3行列を行列K’とも言い、右辺かっこ内の3×1行列を行列a’とも言う。
Figure JPOXMLDOC01-appb-M000004
 ここで、「dFz0fl」を「Z」とすると、式(3)は、下記式(6)で表される。Zは、式(2A)~(2C)を満足する変数である。式(6)の右辺第一項における4×1行列は、ベクトルaを表している。式(6)中の右辺第二項における4×3行列を行列Kとも言い、同項の3×1行列を行列Uとも言う。ベクトルaは、式(5)における行列K’および行列a’を用いると、式(7)の行列で表される。また、式(6)中の行列Kは、式(5)における行列K’を用いると、式(8)の行列で表される。
Figure JPOXMLDOC01-appb-M000005
 式(6)の右辺における行列Kおよび行列Uの積をベクトルdFest,pとすると、式(6)は、下記式(9)で表される。dFest,pは、式(2A)~(2C)における任意の解を表す。このように、前述の運動方程式(2A)~(2C)は、式(9)で表される。すなわち、運動方程式(2A)~(2C)の解は、直線式で表され、求めるべき接地荷重の算出値は、当該式が表す直線のいずれかに存在する。
Figure JPOXMLDOC01-appb-M000006
 <最小ノルム法の適用>
 ところで、運動方程式(2A)~(2C)では、変数(dFz0fl、dFz0fr、dFz0rlおよびdFz0rr)が四つあり、それに対して方程式が三つである。そこで、式(9)に最小ノルム法(Minimum Norm Solution)を適用する。下記式(10)で表される条件、すなわち、上記運動方程式の解のうち、前回における接地荷重の変動の算出値との差分が最小になる値、を式(9)の解と定義する。式(10)中、dFest (k-1)は、接地荷重の前回の算出値を表す。dFest,pは、上記運動方程式の解のうちの任意の解を表している。
Figure JPOXMLDOC01-appb-M000007
 上記の定義を適用すると、式(9)から、以下に示すようにして式(11)が導き出される。なお、式(11)中、aハットはベクトルaの単位ベクトルである。
Figure JPOXMLDOC01-appb-M000008
 <線形モデル化>
 式(11)を線形モデルで表現すると、式(11)は下記式(12)で表され、さらに式(13)で表される。
Figure JPOXMLDOC01-appb-M000009
 上記式中、Uは入力値を表し、Aはシステム行列を表し、Bは入力行列を表す。以下に示すように、ベクトルdFest,pは、行列Kと行列Uの積で表される。なお、行列Kおよび行列Uは以下のように表され、AおよびBは、それぞれ、行列を用いて以下のように表される。
Figure JPOXMLDOC01-appb-M000010
 求めるべき変数dFest (k)は、上記の線形モデルである式(13)に行列Uを入力することによって取得できる。
 <補正値の算出>
 行列Uは、前述の汎用センサの検出値からでは算出されない鉛直加速度a、ロール角加速度pドットおよびピッチ角加速度qドットを含む。これらに所定の値(例えばゼロ)を代入すれば、式(13)の解を求めることができるが、その一方で、a、pドットおよびqドットの影響を補正することが必要となる。
 補正対象となる「dFest (k)」を以下「基準慣性荷重」とも言い、a、pドットおよびqドットの影響を補正するための補正値を以下「慣性荷重補正値」ともいい、「dFZ0,corr」で表す。求めるべき慣性荷重「dFZ0,inertia」は、下記式(14)で表される。なお、基準慣性荷重の初期値dFest (0)は「0」とする。
Figure JPOXMLDOC01-appb-M000011
 (ロール角加速度(pドット)の影響の補正)
 慣性荷重補正値は、汎用センサから取得可能な物理量を用い、a、pドットおよびqドットの影響の大きさおよび頻度に応じた適切な式から算出することが可能である。たとえば、慣性荷重補正値dFZ0,corrは、下記式(15)で表される。式(15)中、Kは調整パラメータを表し、ΣFy0は車両のロール時おけるタイヤ横力の総和を表す。ベクトルpは、式(16)で表される。式(15)中の右辺におけるΣFy以外部分は、pドットの影響を補正するものであり、車両の旋回時に重要となる。Kは、例えば、旋回時の車両における接地荷重の実測値と式(15)を用いて推定される接地荷重の推定値とを比較し、実測値を測定した車両の走行条件から拡張された条件においても当該推定値が実質的に有効になるように適宜に設定することにより決めることができる。
Figure JPOXMLDOC01-appb-M000012
 ここで、pドットの影響を「eのpドット」と表現すると、当該影響は下記式(17)で表される。式(17)の左辺がpドットの影響「eのpドット」である。式(17)中におけるBに乗じる3×1行列は、前述の行列Uにおいて、a、a、aおよびqドットのいずれもゼロとした行列である。
Figure JPOXMLDOC01-appb-M000013
 ここで、図6は、車体の重心周りにおけるロール角加速度を説明するための図である。図6に示されるように、図6中のpドットは、車体の重心COG1周りのロール角速度を表す。この車体の重心周りにおけるpドットは、下記式(18)で表される。式(18)中の右辺における行列の積は、無視できるほどに微小であり、ゼロと見なすことができる。
Figure JPOXMLDOC01-appb-M000014
 ΣFy0は、式(19)で表される。ここで、図7は、車両の実舵角に対する旋回半径を説明するための図である。図7は、車両が左に旋回する場合を示している。図7は、前輪のみで操舵する車両の旋回を示している。図7において、Cは旋回中心であり、Oは車輪中心点である。「Rturn」は、旋回半径を表し、旋回中心Cから車両の重心COG3までの距離である。「Rturn,l」は、車体の幅方向における旋回中心Cから車両左側の車輪の交点Oまでの距離を表し、「Rturn,r」は、車体の幅方向における旋回中心Cから車両右側の車輪の交点Oまでの距離を表す。δは実舵角である。
 VflベクトルおよびVfrベクトルは、前輪点での進行方向ベクトルであり、βflおよびβfrは前輪スリップ角である。βflは、線Lωflに対してVflベクトルがなす角度で表され、βfrは、線Lωfrに対してVfrベクトルがなす角度で表される。破線Lωflは、車輪の転がり方向に沿って延在する線であり、車輪の中心Oflを通る直線である。破線Lωfrは、車輪の転がり方向に沿って延在する線であり、車輪の中心Ofrを通る直線である。VrlベクトルおよびVrrベクトルは、後輪点での進行方向ベクトルである。βrlおよびβrrは後輪スリップ角であり、車体200の前後方向に対してVrlベクトルおよびVrrベクトルがなす角度で表される。なお、車両が前輪および後輪の両方で操舵する場合では、βflおよびβfrは、後輪での操舵を考慮して適宜に補正される。
 式(19)中の「Rturn」は、式(20)で表されることから、式(19)は、式(21)で表される。「Rturn」については、後に説明する。下記式(21)中、「u」は、全車輪の周速の平均値であり、式(22)で表される。式(22)中、ωは車輪の角速度を表し、「Re,init」は、タイヤ有効半径の初期値を表す。また、「δ」は、式(23)で表される。式(23)中、δsは、操舵角センサの検出値を表し、kδは、ステアリングギヤレシオを表す。
Figure JPOXMLDOC01-appb-M000015
 よって、pドットの影響を「eのpドット」とすると、当該「eのpドット」は、下記式(24)で表される。
Figure JPOXMLDOC01-appb-M000016
 ここで、式(20)について説明する。Rturn,lは、式(25)で表される。同様に、Rturn,rは、式(26)で表される。
Figure JPOXMLDOC01-appb-M000017
 Rturnは、車両のホイールベースに比べて十分に大きく、βおよびδはいずれも十分に小さいと仮定できる。Rturnは、式(25)および(26)を用いると、式(27)で表される。式(27)の導出過程において、式(28)に示されるように、車両の左右の車輪間において、前後の車輪におけるβの差同士の積は十分に小さく、ゼロと見なすことができる。また、式(29)に示されるように、車両の前方の車輪におけるβの和から後方の車輪におけるβの和を引いたf(β)も、Rturnに比べると十分に小さく、ゼロと見なすことができる。よって、「Rturn」は、前述の式(20)で表される。
Figure JPOXMLDOC01-appb-M000018
 なお、「Rturn」を実舵角δで表現するように説明したが、実舵角δに代えてヨーレートを用いても、「Rturn」を適切に表現することができる。
 [接地荷重の推定]
 前後、横加速度センサ131は、車両における前後加速度および横加速度を検出して出力し、(操舵角/ヨーレートセンサ)132は、車両における操舵角またはヨーレートを検出して出力し、車輪速センサ133は、車両の車輪における車輪速を検出して出力する。また、前述のネットワークは、車両に関する種々の物理量を出力する。このように、前述の取得部は、車両に関する物理量を取得して出力する。
 基準慣性荷重演算部111は、取得部が取得した物理量を用いて基準慣性荷重dFest (k)を演算する。
 補正値演算部112は、取得部が取得した物理量を用いて慣性荷重補正値dFZ0,corrを演算する。具体的には、補正値演算部112は、前述の式(15)に基づいて、旋回時のpドットの影響を補正する慣性荷重補正値を算出する。
 慣性荷重推定部110は、基準慣性荷重演算部111が演算した基準慣性荷重に、補正値演算部112が演算した慣性荷重補正値を加算して慣性荷重の推定値dFZ0,inertiaを得る。具体的には、慣性荷重推定部110は、前述の式(14)に基づいて慣性荷重の推定値を得る。
 慣性荷重推定部110は、慣性荷重dFZ0,inertiaを遅延部142に出力する。遅延部142は、必要に応じて、その後の制御に応じた適当なタイミングとなるように遅らせて当該慣性荷重を出力する。たとえば、後述する路面荷重推定部120における移動平均処理の遅れに対して、同期するように遅らせる。加算部143は、定常荷重提供部141から出力された定常荷重FZ0nomと慣性荷重とを合算する。定常荷重と慣性荷重との合計値は、路面荷重推定部120および加算部144に出力される。
 一方で、路面荷重推定部120は、路面荷重の推定値を出力する。それに際して、路面荷重推定部120は、定常荷重と慣性荷重との合計値を参照することができる。この場合、定常荷重と慣性荷重とを参照した路面荷重の推定値が得られる。
 路面荷重推定部120から出力された路面荷重の推定値は、加算部144において、上記の合計値と合算される。この場合、定常荷重、慣性荷重および路面荷重の合計値が、車両の接地荷重の推定値Fzとして得られる。
 [作用効果]
 本実施形態では、汎用センサで取得可能な物理量を用いて基準慣性荷重を演算するとともに慣性荷重補正値を演算する。よって、センサに係るコストを削減することができる。また、車両に接地荷重をより直接的に検出するセンサを搭載し、接地荷重の実測値を求める一方で、本実施形態による接地荷重の推定値を求め、両者を比較すると、本実施形態によれば、当該実測値に実質的に重なるほどに高い精度を有する接地荷重Fz0の推定値を得ることができる。
 本実施形態では、最小ノルム法を適用して得られる運動方程式の解を用いることができる。よって、高い精度での接地荷重の推定により効果的であり、またそのような推定を、車両の幅広い走行条件に適用できるような補正を行うのにより効果的である。
 本実施形態では、路面荷重の推定において、定常荷重と推定した慣性荷重とを参照する。よって、これらを参照しない場合に比べて、路面荷重をより高い精度で推定することができる。
 〔実施形態2:接地荷重推定装置の第二の実施形態〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 (a、pドットおよびqドットの影響の補正)
 本実施例において、慣性荷重補正値dFZ0,corrは、下記式(30)で表すことができる。式(30)中の右辺における大かっこの中の第一項(Kとaベクトルの積)は、最小ノルム法によるa、pドットおよびqドットの誤差を補正するものである。式(30)中、aベクトルは下記式(31)で表され、pベクトルは、前述の式(16)で表される。
Figure JPOXMLDOC01-appb-M000019
 式(30)中、Kは、調整パラメータである。Kは、式(30)で得られる推定値と実測値とを比較して、推定値が実測値に対して車両の接地荷重の推定において実質的に同じになるように適宜に設定することにより決めることができる。
 [接地荷重の推定]
 前後、横加速度センサ131は、車両における前後加速度および横加速度を検出して出力し、(操舵角/ヨーレートセンサ)132は、車両における操舵角またはヨーレートを検出して出力し、車輪速センサ133は、車両の車輪における車輪速を検出して出力する。また、前述のネットワークは、車両に関する種々の物理量を出力する。このように、前述の取得部は、車両に関する物理量を取得して出力する。
 基準慣性荷重演算部111は、取得部が取得した物理量を用いて基準慣性荷重dFest (k)を演算する。具体的には、基準慣性荷重演算部111は、前述の式(13)に基づいて、最小ノルム法を適用した解として、基準慣性荷重を演算する。たとえば、システム行列部301は、前回の接地荷重の算出値dFest (k-1)に前述の行列Aを掛けて加算部303に出力し、入力行列部302は、前述の行列Uに行列Bを掛けて加算部303に出力する。加算部303は、これらを加算して基準慣性荷重を算出する。基準慣性荷重は、基準慣性荷重演算部111から出力される。遅延部304は、次回における基準慣性荷重の算出において、システム行列部301に入力する基準慣性荷重が前回の算出値となるようにタイミングを調整して、遅延部304に入力した基準慣性荷重を出力する。
 補正値演算部112は、取得部が取得した物理量を用いて慣性荷重補正値dFZ0,corrを演算する。具体的には、補正値演算部112は、式(30)に基づいて、pドット、aおよびqドットの影響を補正する慣性荷重補正値を算出する。
 慣性荷重推定部110は、基準慣性荷重演算部111が演算した基準慣性荷重に、補正値演算部112が演算した慣性荷重補正値を加算して慣性荷重の推定値dFZ0,inertiaを得る。具体的には、慣性荷重推定部110は、前述の式(14)に基づいて慣性荷重の推定値を得る。
 慣性荷重推定部110は、慣性荷重dFZ0,inertiaを遅延部142に出力する。遅延部142は、必要に応じて、その後の制御に応じた適当なタイミングとなるように遅らせて当該慣性荷重を出力する。たとえば、後述する路面荷重推定部120における移動平均処理の遅れに対して、同期するように遅らせる。加算部143は、定常荷重提供部141から出力された定常荷重FZ0nomと慣性荷重とを合算する。定常荷重と慣性荷重との合計値は、路面荷重推定部120および加算部144に出力される。
 一方で、路面荷重推定部120は、路面荷重の推定値を出力する。それに際して、路面荷重推定部120は、定常荷重と慣性荷重との合計値を参照することができる。この場合、定常荷重と慣性荷重とを参照した路面荷重の推定値が得られる。
 路面荷重推定部120から出力された路面荷重の推定値は、加算部144において、上記の合計値と合算される。この場合、定常荷重、慣性荷重および路面荷重の合計値が、車両の接地荷重の推定値Fzとして得られる。
 本実施形態において、路面荷重は、以下に説明するように推定される。本実施形態における路面荷重の推定について、その機能的構成およびそのロジックを以下に説明する。
 [路面荷重推定部の機能的構成]
 図8は、本実施形態における路面荷重推定部の機能的構成の一例を示すブロック図である。本実施形態において、路面荷重推定部120は、図8に示されるように、タイヤ有効半径変動演算部121、第一ゲイン演算部122および第二ゲイン補正部123を有している。
 [路面荷重推定のロジック]
 車両の車輪について、非線形なタイヤ特性は、線形に近似され、下記式(51)および式(52)で表される。式(52)においては、「Fz0」は、式(53)に示されるように、定常荷重と慣性荷重の和である。
Figure JPOXMLDOC01-appb-M000020
 上記式中、aは第一ゲインを表し、a11は第一パラメータを表し、a12は第二パラメータを表す。
 第一ゲインaは、車両が備える車輪の剛性を示す。第一ゲインaは、タイヤの接地荷重に対するバネ定数の関係におけるバネ定数で表される。当該関係は、非線形の曲線で表されるが、式(52)に示されるように、一次式に近似することが可能である。
 第一パラメータa11および第二パラメータa12は、いずれも、第一ゲインaを幅広い条件に適用させるための調整パラメータである。第一パラメータは、上記の近似による一次式における傾きで表され、第二パラメータは、当該一次式の切片で表される。
 図9は、車両の任意の車輪に係る物理量を説明するための図である。図9中、Rはタイヤの有効半径を表し、ωは車輪の角速度を表し、uは路面に平行なホイル中心点速度を表している。タイヤのスリップ比を考慮すると、タイヤの有効半径Rは、下記式(54)で表される。式(54)の全微分により下記式(55)が導き出される。
Figure JPOXMLDOC01-appb-M000021
 スリップ比が変化しないと仮定すると、式(55)から式(56)が導かれ、さらに式(57)が導き出される。該式(57)中、aは第二ゲインを表す。第二ゲインaは、車輪角速度の変動が推定結果に及ぼす影響を調整するパラメータである。第二ゲインは、例えば、車輪角速度が変化する条件で走行する車両の接地荷重について、実測値と推定値とを比較し、様々な走行条件において当該推定値が実測値に対して実質的に同等に有効になるように適宜に設定することにより決めることができる。
Figure JPOXMLDOC01-appb-M000022
 式(57)中のかっこ内は、式(58)に示されるように近似できる。式(58)中、「movavg(ω)」は、車輪角速度の移動平均を表す。よって、式(57)から式(59)が導き出される。
Figure JPOXMLDOC01-appb-M000023
 式(59)を式(51)に代入すると、式(60)が導き出される。式(60)より、路面荷重が算出される。式(60)は、movavg(ω)を含む。
Figure JPOXMLDOC01-appb-M000024
 第二ゲインaは、下記式(61)で表すことができる。式(61)中、a21は第三パラメータを表す。第三パラメータa21は、第二ゲインと同様の調整パラメータである。式(61)では、第三パラメータは、結果的には第二ゲインと同じとなる。
Figure JPOXMLDOC01-appb-M000025
 第二ゲインは、第三パラメータに加えて、特定の車両状態によりタイヤにもたらされる影響を補正するためのさらなる補正値を用いて表現することが可能である。たとえば、第二ゲインは式(62)で表すことが可能である。
Figure JPOXMLDOC01-appb-M000026
 式(62)中、Fは、スリップ比の影響を補正するための補正値を表し、Fjerkは、加加速度による誤差を補正するための補正値を表す。この場合、第三パラメータは、これらの補正値が対象とする走行条件以外の車両の走行時における、当該補正値による補正の影響を緩和するための調整パラメータである。F、Fjerkは、それぞれ、後述の第二ゲイン補正部によるスリップ比関連値の算出値、または、取得部による加加速度の取得値、を増減するものであってもよいし、所定の閾値に応じて当該算出値または取得値を実質的に取り消すものであってもよい。このような補正を行う場合、路面荷重は、式(63)から算出することができる。
Figure JPOXMLDOC01-appb-M000027
 [路面荷重の推定]
 路面荷重推定部120において、第一ゲイン演算部122は、少なくとも定常荷重および慣性荷重を用いて第一ゲインaを演算する。第一ゲインaは、前述したように車両が備える車輪(タイヤ)の剛性(バネ定数)で表され、接地荷重に対する当該バネ定数の非線形の曲線に近似する一次式で表すことができる。ここでの接地荷重は、前述したように、定常荷重と慣性荷重の合計値である。第一ゲイン演算部122は、式(52)に当該合計値を代入することにより、第一ゲインを演算する。
 第二ゲイン補正部123は、取得部から車両の加加速度をさらに取得する。具体的には、第二ゲイン補正部123は、CANなどのネットワークを介して車両の加加速度を取得する。
 また、第二ゲイン補正部123は、車輪速センサの値から車両のスリップ比関連値を演算する。具体的には、第二ゲイン補正部123は、式(62)におけるFに対応する数値を取得する。
 さらに、第二ゲイン補正部123は、少なくともスリップ比関連値および加加速度に基づいて第二ゲインを補正する。第二ゲインは、前述したように、調整パラメータとして設定されているとする。具体的には、第二ゲイン補正部123は、式(62)に基づいて、スリップ比および加加速度の影響を緩和するFおよびFjerkを決定し、それらを用いて式(62)に基づいて、第二ゲインを補正する。
 Fは、スリップ比関連値の変化が推定結果に及ぼす影響が大きいと考えられる場合に、その影響を調整するように設定することができる。たとえば、Fは、スリップ比関連値に掛ける係数であり、スリップ比関連値が所定の値を下回る場合には0であり、所定の値以上である場合には、そのスリップ比関連値を採用するように、1であってよい。
 Fjerkは、加加速度の変化が推定結果に及ぼす影響が大きいと考えられる場合に、その調整するように設定することができる。たとえば、Fjerkは、取得した加加速度に掛ける係数であり、加加速度が所定の値よりも大きい場合には0であり、所定値以下である場合には、取得した加加速度を採用するように、1であってよい。
 第二ゲイン補正部123は、式(62)に示されるように、FおよびFjerkに第三パラメータを掛けて補正された第二ゲインを算出する。式(61)における第三パラメータa21と式(62)における第三パラメータa21とは、同じであってもよいし、異なっていてもよい。
 タイヤ有効半径変動演算部121は、車輪角速度の変動に第二ゲインを乗じてタイヤ有効半径変動を演算する。車輪角速度の変動は、車輪角速度ωの変動値dωを含む数値である。具体的は、タイヤ有効半径変動演算部121は、式(60)における右辺のa以外を掛けることにより、タイヤ有効半径変動を演算する。
 路面荷重推定部120は、タイヤ有効半径変動演算部121が演算したタイヤ有効半径変動に第一ゲインを乗じて路面荷重を推定する。具体的には、路面荷重推定部120は、式(60)に基づき、タイヤ有効半径変動に第一ゲインを乗じて路面荷重の推定値を得る。
 接地荷重推定装置100は、定常荷重、慣性荷重推定部110が推定した慣性荷重、および、路面荷重推定部120が推定した路面荷重を足して、車両の接地荷重Fz0の推定値を得る。
 [作用効果]
 本実施形態は、前述した実施形態1の効果に加えて、以下の効果をさらに奏する。本実施形態によれば、車両の路面荷重をより高い精度で推定することができ、またこのような路面荷重の推定値を含むことで車両の接地荷重をより一層高い精度で推定することができる。さらには、車輪の加減速の変化に応じて第二ゲインを補正することにより、路面荷重の推定精度をより一層高めることができる。
 〔実施形態3:懸架装置の制御装置の実施形態〕
 本実施形態に係る物理量推定装置を、車両が有する懸架装置を制御する制御装置に適用する例について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 本実施形態の制御装置は、懸架装置を有する車両に作用する接地荷重を推定して、前記懸架装置の減衰力を当該接地荷重に応じて制御する。当該制御装置は、前述した接地荷重推定装置を含み、当該接地荷重推定装置で推定した接地荷重に応じて懸架装置の減衰力を制御する以外は、懸架装置における公知の制御装置と同様に構成することが可能である。
 図10は、上記の接地荷重推定装置を有する車両の構成の一例を模式的に示す図である。図10に示されるように、車両900は、懸架装置(サスペンション)150、車体200、車輪300、車速(V)を検出する車速センサ450、エンジン500およびECU(Electronic Control Unit)600を備えている。ECU600は、前述したプロセッサに該当し、前述の接地荷重推定装置を含む。
 なお、符号中のアルファベットA~Eは、それぞれ、車両900における位置を表している。Aは、車両900の左前の位置を表し、Bは、車両900の右前の位置を表し、Cは、車両900の左後ろを表し、Dは、車両900の右後ろを表し、Eは、車両900の後ろを表している。
 また、車両900は、車両900の前後方向の加速度を検出する前後加速度センサ340などの各種センサを有している。当該センサは、前述した汎用センサに該当する。また、車両900は、記憶媒体を有している。記憶媒体には、物理量の推定に要する種々の情報が記憶されている。当該情報の例には、車輪半径および車両の質量(車重)などの車両に関する種々の物理量が含まれる。
 各種センサの出力値のECU600への供給、および、ECU600から各部への制御信号の伝達は、CAN(Controller Area Network)370を介して行われる。各センサは、後述の物理量の推定のために新たに設けられてもよいが、コストの面から、車両900に既存のセンサであることが好ましい。
 本実施形態によれば、車両の接地荷重について実測値と同等の精度を有する推定値に基づいて、懸架装置の減衰力が制御される。よって、汎用センサ以外の特別なセンサを用いずとも、車両の走行安定性を十分に高めることができる。
 なお、本実施形態では、制御装置において推定した接地荷重を直接的に用いて、車両の懸架装置の減衰力を制御している。本発明では、懸架装置と同様に、推定した接地荷重を、車両が有する種々の装置の制御に用いることができる。このような装置の例には、通常の懸架装置に加えて、電子制御式サスペンション、操舵装置、および、電子制御式駆動力伝達装置、が含まれる。推定した接地荷重は、車両におけるこれらの装置の一またはそれ以上の装置の制御に用いることが可能である。これらの装置の制御において、接地荷重の推定結果は、当該装置の制御に、本実施形態のように直接的に用いられてもよいし、間接的に用いられてもよい。接地荷重の推定結果における間接的な使用とは、例えば、他の状態量に変換し、変換後の状態量の推定値を当該他の装置の制御に用いること、である。上記の他の装置の制御において前述の接地荷重の推定値を用いることにより、本実施形態と同様に、汎用センサ以外の特別なセンサを用いずとも、車両の走行安定性を十分に、あるいはより一層高めることができる。
 〔ソフトウェアによる実現例〕
 接地荷重推定装置100の制御ブロック(特に慣性荷重推定部110および路面荷重推定部120)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、接地荷重推定装置100は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。
 上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。
 また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔変形例〕
 なお、本発明において、接地荷重を求める方法として、例えば特開2008-074184号公報の段落0024に記載の方法を用いてもよい。
 前述の実施形態1では、接地荷重の推定において期待する精度に応じて、慣性荷重推定部110以外の構成を適宜に省略することが可能である。たとえば、実施形態1では、路面荷重推定部120および加算部144を省略してもよい。この場合、接地荷重の推定値は、定常荷重と慣性荷重との和となる。
 前述の実施形態2では、接地荷重の推定において期待する精度に応じて、その一部の構成を適宜に省略することが可能である。たとえば、実施形態2では、第二ゲインの補正を実施しない場合は、第二ゲイン演算部を省略してもよい。
 あるいは、演算処理の簡略化などの理由から、演算処理の一部を適宜に省略または統合してもよい。たとえば、実施形態2において路面荷重を算出するにあたり、第一ゲインaおよび第二ゲインaを乗じた値を求め、得られたゲイン値を例えば前述の式(60)に適用することによって路面荷重を算出してもよい。
 〔まとめ〕
 以上の説明から明らかなように、本発明の実施形態における接地荷重推定装置(100)は、車両(900)の接地荷重を推定する接地荷重推定装置であって、車両に関する物理量を取得する取得部と、取得部が取得した物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部(111)、および、取得部が取得した物理量を用いて慣性荷重補正値を演算する補正値演算部(112)を含み、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部(110)とを備える。
 この構成によれば、センサに係るコストを削減可能であるとともに十分に高い精度で車両における接地荷重を推定することができる。
 本発明の実施形態において、取得部は、物理量として、車両の前後加速度を取得する前後加速度センサ(131)の値、車両の横加速度を取得する横加速度センサ(131)の値、車両の車輪角速度を取得する車輪速センサ(133)の値、車両の旋回情報を取得する旋回情報センサの値、車両の質量、車両の重心高、ロール慣性モーメント、ピッチ慣性モーメント、車両の前車軸重心間距離、車両の後車軸重心間距離、車両のフロントトレッド長、および、車両のリアトレッド長を取得してよい。また、基準慣性荷重演算部は、前後加速度センサの値、横加速度センサの値、車両の質量、車両の重心高、ロール慣性モーメント、ピッチ慣性モーメント、車両の前車軸重心間距離、車両の後車軸重心間距離、フロントトレッド長、および、リアトレッド長を用いて、基準慣性荷重を車両のモデルに基づき演算してよい。さらに、補正値演算部は、車両の質量、車両の重心高、車輪速センサの値、旋回情報センサの値、ロール慣性モーメント、フロントトレッド長、および、リアトレッド長を用いて慣性荷重補正値を演算してよい。
 この構成によれば、汎用センサで取得可能か、車両特有の物理量に基づいて十分に高い精度で接地荷重を推定することが可能である。
 本発明の実施形態において、上記のモデルは、線形システムで表される運動方程式の最小ノルム法による解のモデルであってもよい。
 この構成によれば、適切な運動方程式から適切な補正が施された解を用いて接地荷重の推定値を得ることが可能であるので、車両の幅広い走行条件に適用される接地荷重の推定値を高い精度で得る観点から、より一層効果的である。
 本発明の実施形態において、旋回情報センサは、ヨーレートセンサまたは操舵角センサ(132)であってもよい。
 この構成によれば、汎用センサで取得される物理量を用いて高い精度で車両の接地荷重を推定する観点からより一層効果的である。
 本発明の実施形態において、取得部は、車両の車輪角速度を取得する車輪速センサを含み、当該車輪角速度、車両の定常荷重および慣性荷重を含む物理量を取得し、接地荷重推定装置は、車両の路面荷重を推定する路面荷重推定部(120)をさらに備えてもよい。路面荷重推定部は、少なくとも定常荷重および慣性荷重を用いて、少なくとも車両が備える車輪(300)の剛性を示す第一ゲインを演算する第一ゲイン演算部(122)と、車輪角速度の変動に、車輪角速度の変動が推定結果に及ぼす影響を減らすための第二ゲインを乗じてタイヤ有効半径変動を演算するタイヤ有効半径変動演算部(121)と、を含み、タイヤ有効半径変動に第一ゲインを乗じて路面荷重を推定してもよい。そして、接地荷重推定装置は、慣性荷重推定部が推定した慣性荷重と、路面荷重推定部が推定した路面荷重とを足して車両の接地荷重を推定してもよい。
 この構成によれば、汎用センサで取得可能か、あるいは車両に特有の物理量に基づいて車両の路面荷重を十分に高い精度で推定することができ、またこのような路面荷重を含むより高い精度の接地荷重を推定することが可能となる。
 本発明の実施形態において、取得部は、車両の加加速度をさらに取得し、路面接地荷重推定部は、第二ゲインを補正する第二ゲイン補正部(123)をさらに備えてもよい。第二ゲイン補正部は、車輪速センサの値から車両のスリップ比関連値を演算し、少なくともスリップ比関連値および加加速度に基づいて第二ゲインを補正してもよい。
 この構成によれば、路面荷重の推定における精度を高める観点からより一層効果的である。
 本発明の実施形態における制御装置は、車両に作用する接地荷重を推定して、接地荷重を直接的または間接的に用いて、車両に備えられた一または複数の他の装置を制御する制御装置(ECU600)である。当該制御装置は、車両に関する物理量を取得する取得部と、取得部が取得した物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部、および、取得部が取得した物理量を用いて慣性荷重補正値を演算する補正値演算部を含み、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部とを備える。
 この構成によれば、センサに係るコストを削減可能であるとともに十分に高い精度で推定された接地荷重に基づいて車両における当該車両の運転状態を制御する上記の他の装置を制御することができ、車両の走行安定性を十分に高めることができる。
 本発明の実施形態において、上記の他の装置は、電子制御式サスペンション、操舵装置、および、電子制御式駆動力伝達装置、からなる群から選ばれる一以上の装置であってよい。
 この構成によれば、車両の走行安定性を高める観点からより一層効果的である。
 本発明の実施形態における接地荷重推定方法は、車両の接地荷重を推定する接地荷重推定方法であって、車両に関する物理量を取得するステップと、取得した物理量を用いて基準慣性荷重を演算するステップと、取得した物理量を用いて慣性荷重補正値を演算するステップと、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を推定するステップとを含む。
 この構成によれば、センサに係るコストを削減可能であるとともに十分に高い精度で車両における接地荷重を推定することができる。
 100 接地荷重推定装置
 110 慣性荷重推定部
 111 基準慣性荷重演算部
 112 補正値演算部
 120 路面荷重推定部
 121 タイヤ有効半径変動演算部
 122 第一ゲイン演算部
 123 第二ゲイン補正部
 131 横加速度センサ
 132 操舵角/ヨーレートセンサ
 133 車輪速センサ
 141 定常荷重提供部
 142、304 遅延部
 143、144、303 加算部
 200 車体
 300 車輪
 301 システム行列部
 302 入力行列部
 340 前後加速度センサ
 450 車速センサ
 500 エンジン
 600 ECU
 900 車両

Claims (9)

  1.  車両の接地荷重を推定する接地荷重推定装置であって、
     前記車両に関する物理量を取得する取得部と、
     前記取得部が取得した前記物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部、および、前記取得部が取得した前記物理量を用いて慣性荷重補正値を演算する補正値演算部を含み、前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部と、
    を備えることを特徴とする接地荷重推定装置。
  2.  前記取得部は、前記物理量として、前記車両の前後加速度を取得する前後加速度センサの値、前記車両の横加速度を取得する横加速度センサの値、前記車両の車輪角速度を取得する車輪速センサの値、前記車両の旋回情報を取得する旋回情報センサの値、前記車両の質量、前記車両の重心高、ロール慣性モーメント、ピッチ慣性モーメント、前記車両の前車軸重心間距離、前記車両の後車軸重心間距離、前記車両のフロントトレッド長、および、前記車両のリアトレッド長を取得し、
     前記基準慣性荷重演算部は、前記前後加速度センサの値、前記横加速度センサの値、前記車両の質量、前記車両の重心高、前記ロール慣性モーメント、前記ピッチ慣性モーメント、前記車両の前車軸重心間距離、前記車両の後車軸重心間距離、前記フロントトレッド長、および、前記リアトレッド長を用いて、前記基準慣性荷重を前記車両のモデルに基づき演算し、
     前記補正値演算部は、前記車両の質量、前記車両の重心高、前記車輪速センサの値、前記旋回情報センサの値、前記ロール慣性モーメント、前記フロントトレッド長、および、前記リアトレッド長を用いて前記慣性荷重補正値を演算する、
    請求項1に記載の接地荷重推定装置。
  3.  前記モデルは、線形システムで表される運動方程式の最小ノルム法による解のモデルである、請求項2に記載の接地荷重推定装置。
  4.  前記旋回情報センサは、ヨーレートセンサ、または、操舵角センサである、請求項2または3に記載の接地荷重推定装置。
  5.  前記取得部は、前記車両の車輪角速度を取得する車輪速センサを含み、当該車輪角速度、前記車両の定常荷重および慣性荷重を含む前記物理量を取得し、
     前記接地荷重推定装置は、前記車両の路面荷重を推定する路面荷重推定部をさらに備え、
     前記路面荷重推定部は、
      少なくとも前記定常荷重および前記慣性荷重を用いて、少なくとも前記車両が備える車輪の剛性を示す第一ゲインを演算する第一ゲイン演算部と、
      前記車輪角速度の変動に、車輪角速度の変動が推定結果に及ぼす影響を減らすための第二ゲインを乗じてタイヤ有効半径変動を演算するタイヤ有効半径変動演算部と、を含み、
      前記タイヤ有効半径変動に前記第一ゲインを乗じて路面荷重を推定し、
     前記接地荷重推定装置は、前記慣性荷重推定部が推定した慣性荷重と、前記路面荷重推定部が推定した路面荷重とを足して前記車両の接地荷重を推定する、
    請求項1~4のいずれか一項に記載の接地荷重推定装置。
  6.  前記取得部は、前記車両の加加速度をさらに取得し、
     前記路面荷重推定部は、前記第二ゲインを補正する第二ゲイン補正部をさらに備え、
     前記第二ゲイン補正部は、前記車輪速センサの値を用いて前記車両のスリップ比関連値を演算し、少なくとも前記スリップ比関連値および前記加加速度に基づいて前記第二ゲインを補正する、
    請求項5に記載の接地荷重推定装置。
  7.  車両に作用する接地荷重を推定して、前記接地荷重を直接的または間接的に用いて、前記車両に備えられた一または複数の他の装置を制御する制御装置であって、
      前記車両に関する物理量を取得する取得部と、
      前記取得部が取得した前記物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部、および、前記取得部が取得した前記物理量を用いて慣性荷重補正値を演算する補正値演算部を含み、前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定する、慣性荷重推定部と、を備える、
    制御装置。
  8.  前記他の装置は、電子制御式サスペンション、操舵装置、および、電子制御式駆動力伝達装置、からなる群から選ばれる一以上の装置である、請求項7に記載の制御装置。
  9.  車両の接地荷重を推定する接地荷重推定方法であって、
     前記車両に関する物理量を取得するステップと、
     取得した前記物理量を用いて基準慣性荷重を演算するステップと、
     取得した前記物理量を用いて慣性荷重補正値を演算するステップと、
     前記基準慣性荷重に前記慣性荷重補正値を加算して慣性荷重を推定するステップと、
    を含む接地荷重推定方法。
PCT/JP2019/028203 2019-06-25 2019-07-18 接地荷重推定装置、制御装置および接地荷重推定方法 WO2020261583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096311.3A CN113811472B (zh) 2019-06-25 2019-07-18 触地负荷推定装置、控制装置及触地负荷推定方法
DE112019007494.6T DE112019007494T5 (de) 2019-06-25 2019-07-18 Bodenlast-Schätzvorrichtung, Steuervorrichtung und Bodenlast-Schätzverfahren
US17/522,084 US20220063366A1 (en) 2019-06-25 2021-11-09 Grounding load estimation device, control device, and grounding load estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019117696A JP6695481B1 (ja) 2019-06-25 2019-06-25 接地荷重推定装置、制御装置および接地荷重推定方法
JP2019-117696 2019-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/522,084 Continuation US20220063366A1 (en) 2019-06-25 2021-11-09 Grounding load estimation device, control device, and grounding load estimation method

Publications (1)

Publication Number Publication Date
WO2020261583A1 true WO2020261583A1 (ja) 2020-12-30

Family

ID=70682443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028203 WO2020261583A1 (ja) 2019-06-25 2019-07-18 接地荷重推定装置、制御装置および接地荷重推定方法

Country Status (5)

Country Link
US (1) US20220063366A1 (ja)
JP (1) JP6695481B1 (ja)
CN (1) CN113811472B (ja)
DE (1) DE112019007494T5 (ja)
WO (1) WO2020261583A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748765B1 (ja) 2019-06-25 2020-09-02 株式会社ショーワ 接地荷重推定装置、制御装置および接地荷重推定方法
JP6817483B1 (ja) * 2020-06-29 2021-01-20 株式会社ショーワ 路面荷重推定装置、車両制御装置および路面荷重推定方法
JP7059341B1 (ja) 2020-11-26 2022-04-25 日立Astemo株式会社 サスペンション制御装置、車両およびサスペンション制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202780A (ja) * 2008-02-28 2009-09-10 Advics Co Ltd 制動力配分制御装置
JP2013216278A (ja) * 2012-04-11 2013-10-24 Mitsubishi Motors Corp 接地荷重推定装置
JP2018024265A (ja) * 2016-08-08 2018-02-15 日立オートモティブシステムズ株式会社 車両状態量推定装置
JP2019089504A (ja) * 2017-11-16 2019-06-13 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1148736A (ja) * 1997-08-06 1999-02-23 Honda Motor Co Ltd 接地荷重制御装置
JP3781114B2 (ja) * 2002-08-07 2006-05-31 トヨタ自動車株式会社 車両用接地荷重制御装置
KR100907031B1 (ko) * 2005-12-27 2009-07-10 혼다 기켄 고교 가부시키가이샤 차량 제어 장치
BR112014032887A2 (pt) * 2012-06-29 2017-06-27 Honda Motor Co Ltd sistema de controle de suspensão
JP5790883B2 (ja) * 2012-07-26 2015-10-07 トヨタ自動車株式会社 制駆動力制御装置
JP6024464B2 (ja) * 2013-01-11 2016-11-16 株式会社デンソー 車両制御装置
JP6275416B2 (ja) * 2013-08-30 2018-02-07 日立オートモティブシステムズ株式会社 車両挙動制御装置
JP2019117697A (ja) * 2017-12-26 2019-07-18 日本製鉄株式会社 透過電子顕微鏡用グリッド、圧縮試験用治具および分析ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202780A (ja) * 2008-02-28 2009-09-10 Advics Co Ltd 制動力配分制御装置
JP2013216278A (ja) * 2012-04-11 2013-10-24 Mitsubishi Motors Corp 接地荷重推定装置
JP2018024265A (ja) * 2016-08-08 2018-02-15 日立オートモティブシステムズ株式会社 車両状態量推定装置
JP2019089504A (ja) * 2017-11-16 2019-06-13 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置

Also Published As

Publication number Publication date
JP2021003949A (ja) 2021-01-14
US20220063366A1 (en) 2022-03-03
CN113811472B (zh) 2024-03-26
DE112019007494T5 (de) 2022-03-31
JP6695481B1 (ja) 2020-05-20
CN113811472A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
JP3060923B2 (ja) 車両状態推定装置
US6338012B2 (en) Roll over stability control for an automotive vehicle
US7571039B2 (en) Vehicle yaw/roll stability control with semi-active suspension
US6804594B1 (en) Active steering for handling/stability enhancement
US5931887A (en) Brake control method based on a linear transfer function reference model
US6922617B2 (en) Vehicle control device and vehicle control method
EP0983919A2 (en) A method for detecting a bank angle experienced by a moving vehicle
WO2020261583A1 (ja) 接地荷重推定装置、制御装置および接地荷重推定方法
JP2003306092A (ja) 車両状態量の推定方法
JP2001213345A (ja) 自動車の横転安定性の制御
JPS62137276A (ja) 車両用操舵系制御装置
JP2003146154A (ja) 車両状態量の推定方法
WO2020003550A1 (ja) ステアリング制御装置及びステアリング装置
US6543278B1 (en) Apparatus for estimating road friction coefficient
WO2020261584A1 (ja) 接地荷重推定装置、制御装置および接地荷重推定方法
JP6428497B2 (ja) 車両制御装置
KR20180068681A (ko) 차량의 거동 산출 시스템 및 방법
JP2009502621A (ja) 車両の操舵方向の制御方法
JP2020001605A (ja) ステアリング制御装置及びステアリング装置
WO2022003987A1 (ja) 接地荷重推定装置、車両制御装置および接地荷重推定方法
JP2004189117A (ja) 車両旋回状態制御装置
JP3775127B2 (ja) 車両運動制御装置
JP3704939B2 (ja) 制動力制御装置
JPH0966852A (ja) アンチスピン制御装置及びコントローラの設定方法
JP2022022606A (ja) 状態量推定装置およびサスペンション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19934866

Country of ref document: EP

Kind code of ref document: A1