JP2022022606A - 状態量推定装置およびサスペンション制御装置 - Google Patents

状態量推定装置およびサスペンション制御装置 Download PDF

Info

Publication number
JP2022022606A
JP2022022606A JP2020111935A JP2020111935A JP2022022606A JP 2022022606 A JP2022022606 A JP 2022022606A JP 2020111935 A JP2020111935 A JP 2020111935A JP 2020111935 A JP2020111935 A JP 2020111935A JP 2022022606 A JP2022022606 A JP 2022022606A
Authority
JP
Japan
Prior art keywords
vehicle
load
unit
estimation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020111935A
Other languages
English (en)
Inventor
祐一郎 水口
Yuichiro Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2020111935A priority Critical patent/JP2022022606A/ja
Publication of JP2022022606A publication Critical patent/JP2022022606A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】車両の状態量を高い精度で算出する技術を実現する。【解決手段】ECU(600)は、接地荷重推定部(622)、車両状態推定部(620)、接地荷重補正部(650)およびタイヤモデル部(670)を備える。車両状態推定部(620)および接地荷重補正部(650)のそれぞれにおいて、サスペンションジオメトリゲインおよびピッチゲインの少なくとも一方を用いて、車両の状態量を推定し、また接地荷重を補正する。タイヤモデル部(670)は、補正された接地荷重の値を用いてタイヤの状態量を推定する。【選択図】図2

Description

本発明は、状態量推定装置およびサスペンション制御装置に関する。
従来、車両の状態量を推定し、推定結果を用いて車両の制動力および駆動力などを制御し、車両の走行安定性を高める技術が知られている。当該技術には、車両の車輪速に基づいて車両の状態量を算出し、当該状態量を用いて車両の懸架装置(サスペンション)の変動(ダンパストローク速度)を算出し、得られたダンパストローク速度を用いてサスペンションの制御を行う技術が知られている。車輪速から算出される状態量には、ばね下荷重が知られている。(例えば、特許文献1参照)。
国際公開第2014/002444号
しかしながら、特許文献1に記載の技術では、車輪速は、路面状態のみならずそれの車体への影響によっても変動し得ることから、当該影響を考慮していない場合では、ダンパストローク速度の演算精度が低下することがある。
本発明の一態様は、車両の状態量を高い精度で算出する技術を実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る状態量推定装置は、車両に生じる接地荷重の変動を推定する接地荷重推定部と、前記車両のサスペンションジオメトリの変化を推定結果に反映させるためのゲインであるサスペンションジオメトリゲイン、および、前記接地荷重推定部が推定した前記接地荷重、を用いて少なくとも前記車両のサスペンションにおけるダンパストローク速度を推定する車両状態推定部と、前記車両状態推定部が推定した前記ダンパストローク速度に前記サスペンションジオメトリゲインを乗じた値を用いて前記接地荷重推定部が推定した前記接地荷重を補正し、補正後接地荷重を演算する接地荷重補正部と、前記接地荷重補正部が演算した前記補正後接地荷重に基づいて前記車両のタイヤの状態を推定するタイヤモデル部と、を備える。
また、上記の課題を解決するために、本発明の一態様に係る状態量推定装置は、車両に生じる接地荷重の変動を推定する接地荷重推定部と、前記車両のピッチの変化を推定結果に反映させるためのゲインであるピッチゲイン、および、前記接地荷重推定部が推定した前記接地荷重、を用いて少なくとも前記車両のサスペンションにおけるダンパストローク速度を推定する車両状態推定部と、前記車両状態推定部が推定した前記ダンパストローク速度に前記ピッチゲインを乗じた値を用いて前記接地荷重推定部が推定した前記接地荷重を補正し、補正後接地荷重を演算する接地荷重補正部と、前記接地荷重補正部が演算した前記補正後接地荷重を用いて前記車両のタイヤの状態を推定するタイヤモデル部と、を備える。
さらに、上記の課題を解決するために、本発明の一態様に係るサスペンション制御装置は、上記の状態量推定装置を備え、前記状態量推定装置が供給する制御量に基づいて前記車両のダンパを制御する。
本発明の一態様によれば、車両の状態量を高い精度で算出することができる。
本発明の一実施形態における車両の構成の一例を模式的に示す図である。 本発明の一実施形態に係る状態量推定装置の機能的構成の一例を概略的に示す図である。 本発明の一実施形態における慣性荷重推定部の機能的構成の一例を示すブロック図である。 本発明の一実施形態における基準慣性荷重演算部の機能的構成の一例を示すブロック図である。 本発明の一実施形態におけるタイヤモデル部の機能的構成の一例を示すブロック図である。
〔実施形態1〕
以下、本発明の一実施形態について、詳細に説明する。図1は、本発明の実施形態における車両の構成の一例を模式的に示す図である。
[車両の構成]
図1は、本発明の一実施形態に係る車両900の構成の一例を模式的に示す図である。図1に示すように、車両900は、懸架装置(サスペンション)100、車体200、車輪300、タイヤ310、操舵部材410、ステアリングシャフト420、トルクセンサ430、舵角センサ440、トルク印加部460、ラックピニオン機構470、ラック軸480、エンジン500、ECU(Electronic Control Unit、状態量推定装置)600、発電装置700およびバッテリ800を備えている。なお、車両900としては、ガソリン車、ハイブリッド電気自動車(HEV車)、電気自動車(EV車)などを挙げることができる。
懸架装置100は、油圧緩衝装置、アッパーアームおよびロアーアームを備えている。また、油圧緩衝装置は、一例として、当該油圧緩衝装置が発生させる減衰力を調整する電磁弁であるソレノイドバルブを備えている。油圧緩衝装置は、減衰力を調整する電磁弁として、ソレノイドバルブ以外の電磁弁を用いてもよい。例えば、上記電磁弁は、電磁流体(磁性流体)を利用した電磁弁であってもよい。
タイヤ310が装着された車輪300は、懸架装置100によって車体200に懸架されている。車両900は四輪車である。このため、懸架装置100、車輪300およびタイヤ310は、それぞれ4つ設けられている。また、車両900は、車輪300毎に設けられ各車輪300の車輪速(車輪の角速度ω)を検出する車輪速センサ320を備えている。
なお、左側の前輪、右側の前輪、左側の後輪および右側の後輪のタイヤならびに車輪をそれぞれ、タイヤ310Aおよび車輪300A、タイヤ310Bおよび車輪300B、タイヤ310Cおよび車輪300C、ならびに、タイヤ310Dおよび車輪300D、とも称する。
エンジン500には、発電装置700が付設されており、発電装置700によって生成された電力がバッテリ800に蓄積される。車両900は、不図示の駆動力伝達装置を有している。駆動力伝達装置は、例えば、前輪または後輪における個々の車輪の回転数の差を状況に応じて与え、車両900の走行状況に応じて差動を制限する。
さらに、車両900は、車両900の横方向の加速度を検出する横Gセンサ330、車両900の前後方向の加速度を検出する前後Gセンサ340、車両900のヨーレートを検出するヨーレートセンサ350、エンジン500が発生させるトルクを検出するエンジントルクセンサ510、エンジン500の回転数を検出するエンジン回転数センサ520、およびブレーキ装置が有するブレーキ液に印加される圧力を検出するブレーキ圧センサ530を備える。これらの各種センサによる検出結果は、ECU600に供給される。
各種センサによる検出結果のECU600への供給、および、ECU600から各部への制御量の供給は、CAN(Controller Area Network)370を介して行われる。「制御量」の例には、電流値、デューティー比、減衰率および減衰比が含まれる。
また、車両900は、不図示のRAM(Random Access Memory)を有する。RAMは、車重、定常荷重、車両諸元などの定常値あるいは推定値、算出値を格納する。定常値は、例えば車両900に固有の物理量の値である。
さらに、車両900は、懸架装置100の動作を制御するための不図示のダンパECUを備えている。このように、車両900において、懸架装置100は、電子制御可能に構成されており、電子制御式サスペンションとも言える。
さらに、車両900は、制御可能な様々なブレーキシステムを備えている。当該システムの例には、ブレーキ時の車輪ロックを防ぐためのシステムであるABS(Antilock Brake System)、加速時などにおける車輪の空転を抑制するTCS(Traction Control System)、および、旋回時のヨーモーメント制御およびブレーキアシスト機能などのための自動ブレーキ機能を備えた車両挙動安定化制御システムであるVSA(Vehicle Stability Assist)が含まれる。
[機能的構成の概要]
図2は、本実施形態に係る状態量推定装置の機能的構成の一例を概略的に示すブロック図である。図2に示されるように、ECU600は、接地荷重推定部622、車両状態推定部620、接地荷重補正部650、ダンパECU660およびタイヤモデル部670を備える。また、ECU600には、ヨーレートセンサ350、車輪速センサ320、舵角センサ440、横Gセンサ330、前後Gセンサ340およびRAM601が接続されている。これらは、車両に関する物理量を取得するための取得部の一態様である。ECU600は、本発明における状態量推定装置の一態様である。また、ECU600および懸架装置100を含むサスペンションを制御する機構は、本発明におけるサスペンション制御装置の一態様である。
(接地荷重推定部)
ECU600は、慣性荷重推定部610および路面荷重算出部621をさらに備えている。本実施形態では、接地荷重推定部622は、慣性荷重推定部610が推定する慣性荷重および路面荷重算出部621が推定する路面荷重を参照して、車両900の接地荷重を推定する。慣性荷重とは、車両の慣性運動による荷重変動である。路面荷重は、路面の凹凸による接地荷重成分である。接地荷重とは、車両のばね下への鉛直方向の荷重変動である。本明細書において、接地荷重は、「dFz0」と表現される場合がある。
(慣性荷重推定部)
慣性荷重推定部610は、慣性荷重を推定する。図3は、本実施形態における慣性荷重推定部の機能的構成の一例を示すブロック図である。図3に示されるように、慣性荷重推定部610は、基準慣性荷重演算部611および補正値演算部612を備える。図4は、本実施形態における基準慣性荷重演算部611の機能的構成の一例を示すブロック図である。基準慣性荷重演算部611は、車両900から取得した車両900に関する物理量を用いて基準慣性荷重を演算する。
基準慣性荷重演算部611は、図4に示されるように、システム行列部6111、入力行列部6112、加算部6113および遅延部6114を含む。システム行列部6111は、加算部6113に接続しており、加算部6113は、遅延部6114に接続しており、遅延部6114は、システム行列部6111に接続している。入力行列部6112は、外部、例えば車両900における情報ネットワークに接続されており、かつ加算部6113に接続している。
(車両状態推定部)
車両状態推定部620は、サスペンションジオメトリゲイン、ピッチゲインおよび接地荷重を用いて、少なくともダンパストローク速度を推定する。サスペンションジオメトリゲインおよびピッチゲインについては後述する。接地荷重は、接地荷重推定部622が推定した接地荷重である。
図2に示されるように、車両状態推定部620は、タイヤストローク算出部623、観測量構成部624、減算部625および演算部626を備える。また、車両状態推定部620は、演算部631、入力量構成部632、演算部633、および加算部634、635を備える。さらに、車両状態推定部620は、遅延部636、演算部637、638、抽出部639およびマップ640を備える。マップ640は、ダンパストローク速度およびダンパ電流とダンパ減衰量との相関性を示す。当該相関性は、グラフまたは式として表され得る。
(接地荷重補正部)
接地荷重補正部650は、接地荷重推定部622が推定した接地荷重を補正する。接地荷重の補正において、接地荷重補正部650は、車両状態推定部620が推定したダンパストローク速度にサスペンションジオメトリゲインおよびピッチゲインを乗じた値を用いる。図2に示されるように、接地荷重補正部650は、演算部651および加算部652を備える。
(ダンパECU)
ダンパECU660は、車両900の状態量の算出値を用いて懸架装置100を制御する。ダンパECU660は、車両900が備える懸架装置100を制御するサスペンション制御装置に該当する。
(タイヤモデル部)
タイヤモデル部670は、接地荷重補正部650で補正した接地荷重(以下、「補正後接地荷重」とも言う)に基づいて車両のタイヤの状態を推定する。図5は、本実施形態におけるタイヤモデル部670の機能的構成の一例を示すブロック図である。図5に示されるように、タイヤモデル部670は、タイヤ前後/横力計算部671およびタイヤ有効半径算出部672を備える。
[状態量推定のロジック]
次に、本実施形態における車両に係る状態量の推定についてのロジックを説明する。なお、以下の説明は、本発明を限定するものではない。
(車両の状態量の推定)
<状態量の定義>
本実施形態における車両900の状態量Xの一例は、下記式で表される。ここで、状態量Xはn×1の行列で表されるベクトルであり、本実施例ではn=16である。なお、本明細書において、下付きの添え字fl、fr、rlおよびrrは、それぞれ、車両900における左前輪、右前輪、左後輪および右後輪を表す。また、下付きの添え字iiは、車両900における上記の車輪のうちの任意の一以上を表す。
Figure 2022022606000002
上記式中、wは、ばね上重心点上下速度であり、車体200のばね上速度のz軸方向成分である。p、q、rは、それぞれ、ロールレート、ピッチレートおよびヨーレートであり、例えば、車体200のばね上角速度のx軸回転方向、y軸回転方向およびz軸回転方向の成分である。なお、本実施形態において、x軸は車体200の前後方向、y軸は車体200の横方向、z軸は車体200の鉛直方向を示す。
また、上記式中、w1fl、w1fr、w1rlおよびw1rrは、各車輪におけるばね下上下速度である。DampStfl、DampStfr、DampStrlおよびDampStrrは、各車輪におけるダンパストローク変位である。TireStfl、TireStfr、TireStrlおよびTireStrrは、各車輪におけるタイヤストローク変位である。
<状態量に関する運動方程式>
状態量Xを構成する各要素の運動方程式の一例は、以下の式(1)~(7)で表される。各物理量の上に付されたドット「・」は時間微分を表す。
Figure 2022022606000003
式(1)中、ΣRは車体200の重心に作用する鉛直方向力、mは車体200のばね上質量、uは車体200の前後方向のばね上速度、そして、vは車体200の横方向のばね上速度、を表す。
式(2)~(4)中、Izxは車体200のばね上における横方向(例えばy軸)の慣性乗積、Iは車体200の重心を通るx軸周りの慣性モーメント、Iは車体200の重心を通るy軸周りの慣性モーメント、そして、Iは車体200の重心を通るz軸周りの慣性モーメント、を表す。また、式(2)~(4)中、Mは車体200の重心に作用するx軸周りのモーメント、Mは車体200の重心に作用するy軸周りのモーメント、そして、Mは車体200の重心に作用するz軸周りのモーメント、を表す。
Figure 2022022606000004
式(5)中、m1iiは任意の車輪のばね下質量、Rziiは各車輪のばね下にかかるサスペンション反力、そしてk1iiは任意の車輪のタイヤばね定数、を表す。
(サスペンションジオメトリゲイン、ピッチゲイン)
本実施形態では、車両の状態量の推定およびタイヤの状態量の推定において、サスペンションジオメトリゲインCgeoiiおよびピッチゲインCpitchiiの両方を参照する。以下、これらのゲインについて説明する。
本実施形態において、サスペンションジオメトリ運動およびピッチ運動は、いずれも、車両900におけるばね上とばね下との近接離間に伴う、車輪300の中心の軸を中心とした、車輪300と車体200との間の相対的な回転運動である。
サスペンションジオメトリゲインは、懸架装置100の伸縮(サスペンションジオメトリ運動)による車輪速センサが検出する値に関するゲインである。一方で、ピッチゲインは、車体200のばね上運動(ピッチ運動)による車輪速センサが検出する値に関するゲインである。
より詳しくは、式(5)中右辺第一項で表される、タイヤ310の径変化を表すTireSTii(後述)は、演算する際、接地荷重(dFz0)を利用して演算するが、図2に記載の通り、接地荷重(dFz0)の演算には車輪速センサ320が検出する値が必要となる。
ここで、車輪速センサ320は、車輪300の車体200に関する回転を検出するものであるが、前述の通り、サスペンションジオメトリ運動およびピッチ運動は、いずれも、車輪300と車体200との間の相対的な回転運動であるから、これらによる回転運動をも車輪速センサ320は検出することとなる。
そして、これらの運動による車輪300と車体200との間の相対的な回転運動は、車体200のばね下(車輪300)鉛直方向の荷重によるものではない。
従って、車輪速センサ320が検出する値から接地荷重(dFz0)を演算、TireSTiiを演算する場合、これらの運動による車輪300と車体200との間の相対的な回転運動の影響を補正することが好ましい。
サスペンションジオメトリゲインは「Cgeo」とも言い、ピッチゲインは「Cpitch」とも言う。Cgeo、Cpitchは、いずれも、式(5)中右辺第一項の分子で表される、タイヤ310の径変化を表すTireSTii(後述)による接地荷重変動の精度を高めるためのゲインである。
式(5)中右辺第三項の分子で表されるCgeoを含む項が、サスペンションジオメトリ運動による接地荷重変動を補正する式である。
式(5)中右辺第四項の分子で表されるCpitchを含む項が、ピッチ運動による接地荷重変動を補正する式である。
本実施形態において、Cgeo、Cpitchは、いずれも、車両900に固有の定数であり、車両900の設計あるいは車両諸元に応じて同定作業を行うことにより設定することが可能である。
Figure 2022022606000005
式(6)中、DampViiは、各車輪のダンパストローク速度を表し、wiiは、各車輪のばね上におけるサスポイントの上下速度を表す。式(7)中、TireViiは、各車輪におけるタイヤストローク速度を表し、w0iiは、任意の車輪点における路面変位の微分値を表す。wiiは、以下の式(6a)~(6d)で表される。式(6a)~(6d)中、tr、trは車体200の前後トレッド半長を表し、l、lは車体200の前後車軸重心間距離を表す。
Figure 2022022606000006
<外力/モーメントを表す式>
上記の運動方程式中の外力あるいはモーメントについては、例えば以下に説明する式(8)~(23)で表される。たとえば、サスペンション反力は、以下の式(8)~(11)で表される。
Figure 2022022606000007
式(8)~(11)中、Rzfl,zfr,zrl,zrrは各車輪におけるサスペンション反力を表し、DampFfl,DampFfr,DampFrl,DampFrrは各車輪におけるダンパ減衰力を表す。また、式(8)~(11)中、k2f、k2rは前輪および後輪の懸架ばねのばね定数、C2f、C2rは前輪および後輪に関する後述する車両モデルの安定性を高めるためのパラメータ、そしてkaf、karは前輪および後輪におけるスタビライザの剛性、を表す。
また、車体200の重心に作用する前後方向力ΣR、車体200の重心に作用する横方向力ΣRy、および重心に作用する鉛直方向力ΣR、はそれぞれ以下の式(12)~(14)で表される。
Figure 2022022606000008
式(12)、式(13)中、ΣFx0は、車両900の全タイヤの前後力を表し、ΣFy0は、車両900の全タイヤの横力を表す。
Figure 2022022606000009
式(15)~(17)中、MxRは、車体200の重心に作用するサスペンションのx軸周りの反力モーメントを表し、MyRは、車体200の重心に作用するサスペンションのy軸周りの反力モーメントを表し、MzRは、車体200の重心に作用するサスペンションのz軸周りの反力モーメントを表す。また、式(15)~(17)中、hは、車両900の重心から各輪のばね下までのz軸方向距離の平均を表す。
Figure 2022022606000010
式(18)~(20)中、Mxtireは、車体200の重心に作用するタイヤのx軸周りの反力モーメントを表し、Mytireは、車体200の重心に作用するタイヤのy軸周りの反力モーメントを表し、Mztireは重心に作用するタイヤのz軸周りの反力モーメントを表す。また、Rは、タイヤ半径を表す。なお、M、MおよびMは、下記式(21)~(23)で表される。
Figure 2022022606000011
<運動方程式の変形>
本実施形態におけるECU600への入力値は、例えば、以下の行列U、Uで表すことができる。ここで、UおよびUはq×1の行列で表されるベクトルであり、Uにおいてはq=8、Uにおいてはq=6である。また、ECU600への観測値は、以下の行列Yで表すことができる。ここで、Yはp×1の行列で表されるベクトルであり、例えば本実施形態においてはp=5である。
Figure 2022022606000012
上述した運動方程式は、以下の式(24)および式(25)で表すことができる。
Figure 2022022606000013
ヤコビ行列(J,J)を用い、式(24)から下記式(26)を導出し、式(25)から式(27)を導出する。式(26)および式(27)における右辺の最終項は、誤差を表している。
Figure 2022022606000014
ここで、f(X,U)=0、h(X)=0とすると、式(26)における右辺の第二項、第三項は、それぞれ式(28)、式(29)で表され、式(27)における右辺の第二項は、式(30)で表される。
Figure 2022022606000015
よって、式(24)は、下記式(31)で表される。このように、前述の運動方程式は、線形的に演算される線形システムで表される。ここで、式(31)を離散化すると、下記式(32)、式(33)および、式(34)が導出される。式(32)中、Aは、車両900の固有の特性を表すシステム行列として表される。式(33)中、Bは、入力による車両900への影響を表す入力行列として表される。式(34)中、Cは、車両900からの観測量を出力するための観測行列として表される。当該車両モデルは、状態量および上記行列U、Uから明らかなように車両900の要素を含んでおり、車両全体の挙動を示す単一のモデルとなっている。
Figure 2022022606000016
<行列の離散化>
Ac、BcおよびCc行列は、前述の通り下記式(32)、式(33)および、式(34)によって離散化される。つまり、Acは離散化されたシステム行列、Bcは離散化された入力行列および、Ccは離散化された観測行列を表す。なお、式(32)中、L-1は逆ラプラス演算処理を表し、sはラプラス演算子を表し、Iは単位行列を表す。また、式(33)中、Δtはサンプル時間を表す。
Figure 2022022606000017
<車両モデル>
本実施形態における車両の状態量を推定するための車両モデルは、下記式(35)、式(36)で表すことができる。当該車両モデルは、前述したように、車両900の要素を含む、車両全体の挙動を示す単一のモデルである。ここで、下付きのkは、離散状態における任意のステップを表しており、k-1は、kに対して1ステップ前のステップを表す。
Figure 2022022606000018
上記式(35)、式(36)において、Xハットは車両モデルの状態量、つまり推定車両状態量である。Xハットは、下記の行列で表される。
Figure 2022022606000019
また、Uハットは入力値であり、例えば下記式のU1ハット、U2ハットで表される。
Figure 2022022606000020
また、Yハットは観測量であり、すなわち推定車両観測量である。Yハットは下記の行列で表される。
Figure 2022022606000021
(タイヤの状態量の推定)
タイヤの状態量は、公知の方法によって推定することが可能であり、たとえば、マジックフォーミュラ(Magic Formula)に基づいて推定することが可能である。
タイヤ有効半径は、接地荷重dFz0および定常荷重Fz0nom(「Fz0nom_T」とも表される)などの車両諸元から、マジックフォーミュラに基づいて算出される。マジックフォーミュラに基づけば、タイヤ有効半径Rは、以下の式(37)に基づいて算出され得る。下記式中、「R」は、無荷重時のタイヤの半径を表す。また、下記式中、「BReff」、「DReff」および「FReff」は、いずれもマジックフォーミュラのパラメータであり、特定のキャンバ角と上下荷重との条件におけるタイヤの特性を示す第一の係数である。さらに、下記式中、「k」は、タイヤばね定数である。
Figure 2022022606000022
[状態量の推定]
(慣性荷重の推定)
慣性荷重推定部610は、車輪速センサ320が取得した車輪速Vw、舵角センサ440が取得した操舵角δ、横Gセンサ330が取得した横加速度a、前後Gセンサ340が取得した前後加速度a、ならびに、RAM601に格納されている車重mなどの車両諸元を入力値として各車輪の慣性荷重dFz0inertiafl,fr,rl,rrを算出する。なお、車両の物理量の前に「d」を伴う場合は、当該物理量の変動または差分を意味する。たとえば、慣性荷重推定部610は、基準慣性荷重演算部611により基準慣性荷重を演算し、補正値演算部612により慣性荷重補正値を演算し、基準慣性荷重および慣性荷重補正値を参照して慣性荷重を推定する。
基準慣性荷重演算部611は、車両900から取得した車両900に関する物理量、例えば車輪速Vw、舵角δ、前後加速度aおよび横加速度a、を用いて基準慣性荷重を演算する。
より具体的には、基準慣性荷重演算部611は、最小ノルム法を適用した解として、基準慣性荷重を演算する。システム行列部6111は、前回(例えばk-1ステップ)の接地荷重の算出値(図4中のベクトルdFest (k-1))に前述の行列Aを掛けて加算部6113に出力し、入力行列部6112は、前述の行列Uに行列Bを掛けて加算部6113に出力する。加算部6113は、これらを加算して基準慣性荷重を算出する。基準慣性荷重は、基準慣性荷重演算部611から出力される。遅延部6114は、次回における基準慣性荷重の算出において、システム行列部6111に入力する基準慣性荷重が前回の算出値となるようにタイミングを調整して、遅延部6114に入力した基準慣性荷重を出力する。
補正値演算部612は、上記の物理量を用いて慣性荷重補正値を演算する。より具体的には、補正値演算部612は、取得部が取得した物理量を用いて慣性荷重補正値dFZ0,corrを演算する。具体的には、補正値演算部612は、旋回時のpドットの影響を補正する慣性荷重補正値を算出する。なお、慣性荷重補正値とは、基準慣性荷重と、真の慣性荷重とのずれを低減するように基準慣性荷重を補正する補正値である。
慣性荷重推定部610は、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を推定する。
(接地荷重の推定)
路面荷重算出部621は、車輪速変動ΔVw、慣性荷重推定部610が算出した各車輪の慣性荷重dFz0inertiafl,fr,rl,rr、ならびに、RAM601に格納されている車重m、定常荷重Fz0nomおよび車両諸元など、を入力値として各車輪の路面荷重dFz0roadfl,fr,rl,rrを算出する。
接地荷重推定部622は、慣性荷重推定部610が算出した各車輪の慣性荷重dFz0inertiafl,fr,rl,rr、路面荷重算出部621が算出した各車輪の路面荷重dFz0roadfl,fr,rl,rr、および定常荷重Fz0nom(不図示)を入力値として、各車輪の接地荷重dFz0fl,fr,rl,rrを算出する。
(車両の状態量の推定)
各車輪のタイヤストローク変位TireStiiは、下記式(38)で表される。タイヤストローク算出部623は、接地荷重推定部622が算出した各車輪の接地荷重dFz0fl,fr,rl,rrとタイヤばね定数ゲインGとから、各車輪のタイヤストロークTireStfl,fr,rl,rrを算出する。タイヤストローク変位は、タイヤ半径の変化量であり、タイヤの変化量の一態様である。
Figure 2022022606000023
観測量構成部624は、タイヤストローク算出部623が算出したタイヤストローク変位と、ヨーレートセンサ350が取得したヨーレートの検出値とを入力値として、観測量Yを構成する。観測量Yは、例えば、5×1行列であり、以下のように表される。ここで、添え字下付きのsensは、観測量であることを意味する。rsens kはヨーレートセンサ350の検出値であり、TireStii sens kはタイヤストローク算出部623が算出したタイヤストローク変位である。
Figure 2022022606000024
減算部625は、観測量構成部624が構成した観測量Yから、後述する演算部637が算出した推定観測量Yハットを減算して観測量の減算値を算出する。Yは、実測に基づく観測量であり、Yハットは推定された観測量と言える。
演算部626は、減算部625が算出した観測量の減算値にカルマンゲインKを乗じる。カルマンゲインKは、カルマンフィルタのゲインである。
演算部631は、例えば、横Gセンサ330が取得した横加速度a、前後Gセンサ340が取得した前後加速度a、ならびに、RAM601に格納されている車重mを入力値として、車体200の重心に作用する前後方向力ΣRおよび車体200の重心に作用する横方向力ΣRを算出する。
入力量構成部632は、演算部631が算出した前後方向力ΣRおよび横方向力ΣRと、後述するマップ640が出力したダンパ減衰量DampFfl,fr,rl,rrとを入力値として、入力量を構成する。当該入力量は、例えば、前述した行列Uで表される。
演算部633は、入力量構成部632が算出した入力量と入力行列Bとの積を算出する。
加算部634は、演算部633が算出した入力量と入力行列Bとの積と、後述する演算部638が算出した第二状態量X2k-1ハットとシステム行列Aとの積とを足し合わせて第一状態量X’2kハットを算出する。
加算部635は、加算部634が算出した第一状態量X’2kハットと、実測に基づく観測量から推定観測量を引いた差分にカルマンゲインKを乗じた数値とを足し合わせる。こうして補正された状態量として第二状態量X2kハットが算出される。第二状態量X2kハットは、前述した遅延部636に出力される。
遅延部636は、後述するステップkの第二状態量X2kハットを一ステップ前のステップk-1の第二状態量X2k-1ハットとする。遅延部636が出力するX2k-1ハットは、ダンパECU660に出力され、後述するダンパの制御に供される。
演算部637は、遅延部636が出力したn×1行列で表されるX2k-1ハットに、p×n行列で表される出力行列Cを乗じて、状態量から予測される予測観測量Yハットを算出する。
演算部638は、遅延部636が生成した第二状態量X2k-1ハットとシステム行列Aとの積を算出する。システム行列Aは、前述したCgeoおよびCpitchを一成分として含んでいる。このように、サスペンションジオメトリゲインおよびピッチゲインは、車両状態推定部が有する車両の挙動を示す車両モデルのシステム行列の値として、車両状態推定部において用いられる。CgeoおよびCpitchは、いずれも、車輪速センサの検出値において、懸架装置100の構造上の誤差となる値(前述の「サスペンションジオメトリゲイン、ピッチゲイン」の説明参照)を実質的に解消させるための値である。よって、演算部638の出力値は、上記の誤差が実質的に解消されており、このような誤差が解消されない場合に比べて、より高い精度を有する。
抽出部639は、第二状態量X2k-1ハットから各車輪のダンパストロークの成分を抽出し、抽出した成分を適宜に微分し、あるいは適当なゲインによって調整して、各車輪のダンパストローク速度DampVfl,fr,rl,rrを算出する。得られる算出値は、上記ダンパストローク速度で構成される4×1行列で表され、前述のマップ640の入力値となる。また、当該算出値は、ダンパECU660に出力され、後述するダンパの制御に供される。さらに、当該算出値は、接地荷重補正部650に出力され、後述する接地荷重の補正に供される。
マップ640は、例えば、後述する各車輪のダンパストローク速度DampVfl,fr,rl,rrおよび各車輪のダンパ電流DampCurfl,fr,rl,rrを入力値として、当該入力値に応じた各車輪のダンパ減衰量DampFfl,fr,rl,rrを出力する。ダンパ電流DampCurfl,fr,rl,rrは、ダンパECU660からのフィードバック値である。
(接地荷重の補正)
接地荷重補正部650における演算部651は、抽出部639から出力される各車輪のダンパストローク速度DampVfl,fr,rl,rrと、RAM601から出力されるCgeoおよびCpitchを参照(例えば積算)し、接地荷重に加算されるべき補正値を出力する。この出力される値は、前述したように、車両900の走行のための懸架装置100の作動による誤差となる値(前述の「サスペンションジオメトリゲイン、ピッチゲイン」の説明参照)が実質的に解消されたダンパストローク速度を表す。
このときのCgeo、Cpitchは、前述したシステム行列Aに含められる成分と実質的に同じ値であればよい。Cgeo、Cpitchは、演算の対象となるダンパストローク速度DampVに適当な形態の値であってよく、行列中の一成分の形態でなくてもよい。
接地荷重補正部650における加算部652は、演算部651の出力値と接地荷重推定部622から出力される接地荷重の推定値とを参照し(例えば足し合わせて)、補正後接地荷重dFz0_modを出力する。dFz0_modは、前述したように、車両900の走行のための懸架装置100の作動による誤差が実質的に解消された接地荷重を表す。dFz0_modは、タイヤモデル部670に出力され、タイヤモデルの推定に供される。
(タイヤの状態量の推定)
図5は、本実施形態におけるタイヤモデル部の機能的構成の一例を模式的に示す図である。図5に示されるように、タイヤモデル部670は、タイヤ前後/横力計算部671およびタイヤ有効半径算出部672を備える。タイヤモデル部670は、タイヤ310の種々の状態量をタイヤモデルに基づいて推定する。当該タイヤモデルには、車両900のタイヤの状態量を推定可能な公知のタイヤモデルを用いることが可能である。本実施形態では、タイヤモデル部670は、マジックフォーミュラ(Magic Formula)と呼ばれるタイヤモデルに基づいてタイヤの状態量を推定する。
タイヤモデル部670には、センサ群など前述した取得部あるいは車両の状態量を推定する他の推定部からスリップ比Sおよびスリップ角βが供給される。また、接地荷重補正部650から補正後接地荷重dFz0_modが供給される、さらに、車両諸元としてRAM601から定常荷重Fz0nomなどが供給される。タイヤモデル部670は、たとえばマジックフォーミュラを用いることができ、適宜必要な値を得ることができる。マジックフォーミュラを用いた一例として、タイヤの状態量として、タイヤ前後力、タイヤ横力およびセルフアライニングトルクが算出される。
タイヤ有効半径算出部672には、例えば補正後接地荷重dFz0_modおよび定常荷重Fz0nomが提供され、前述の式(37)に基づいて、タイヤの状態量の一態様であるタイヤの有効半径Rを算出する。このように、タイヤモデル部670は、補正された接地荷重に基づいて、車両のタイヤの状態を推定する。推定されたタイヤの状態量は、いずれも、車両900の走行のための懸架装置100の作動による誤差を含まない。よって、本実施形態で推定されるタイヤの状態量は、上記の誤差を含む車両の状態量を用いてタイヤの状態量を推定する場合に比べて、より高い精度を有する。
(ダンパの制御)
ダンパECU660は、状態量推定装置が供給する制御量に基づいて車両のダンパを制御する。また、ECU600は、さらに、ダンパECU660が懸架装置100を制御するのと同様に、車両状態推定部620が供給する制御量、および、タイヤモデル部670が算出する状態量、の一方または両方に基づいて、車両900に搭載されている種々の装置を制御する。ダンパECU660は、例えば、遅延部636から出力される第二状態量X2k-1ハット、および、抽出部639が第二状態量X2k-1ハットから抽出した各車輪のダンパストローク速度DampVfl,fr,rl,rr、を入力値として、懸架装置100の動作を、例えばスカイフック制御により制御する。このようにして快適な車両900の走行状態が実現される。
[作用効果]
車両900の懸架装置100では、懸架装置100における動きの車体200側の支点と懸架装置100における作用点とが車両900の前後方向における異なる位置にあることが多い。この場合、懸架装置100が振り子のように作動し、懸架装置100を作動させたときに、懸架装置100の懸架ばねの伸び縮みによって車体200が前後方向に移動する。
一方、車輪速センサなどの車両900の状態量を取得する取得部は、通常、車体200に配置される。この場合、車輪速センサ320は、車体200に対する車輪速を検出することから、懸架ばねの伸縮に起因する車輪速の変動も車輪速として検出する。
他方、車輪速の検出値を参照して車両900の状態量を推定する場合では、車輪速を正確に検出することが、状態量の推定の精度を高める観点から重要である。ここで、車両900の状態量の推定に必要な検出値は、路面がタイヤを変形させたことによる車輪速の変動である。しかしながら、前述したように、車輪速センサ320は、懸架ばねの伸縮による車輪速の変動も検出する。すなわち、車輪速センサ320が検出する車輪速は、懸架ばねの伸縮による車輪速変動をノイズとして含む。
本実施形態では、車両900の状態量およびタイヤの状態量のそれぞれを推定するにあたり、車両の状態量の推定では、サスペンションジオメトリゲイン、ピッチゲインおよび、接地荷重推定部622が推定した接地荷重、を用いて少なくとも車両のサスペンションにおけるダンパストローク速度を推定する。また、タイヤの状態量の推定では、推定したダンパストローク速度にサスペンションジオメトリゲインおよびピッチゲインを乗じ、その値を用いて接地荷重を補正して車両のタイヤの状態量を推定する。したがって、本実施形態では、車両の車輪速に関わる状態量を、前述した懸架装置100の構造に起因する車輪速変動の影響を実質的には受けずに推定することが可能である。よって、当該状態量の推定では、路面の影響による車輪速の変動を用いることができることから、上記のノイズを含む場合に比べてより高い精度で当該状態量を推定することが可能である。
本実施形態において、サスペンションジオメトリゲインおよびピッチゲインは、それぞれ、車両状態推定部620が有する車両900の挙動を示す車両モデルのシステム行列の値として、車両状態推定部620において用いられる。よって、上記のゲインが車両の状態量の算出により直接的に反映され、前述の誤差がより高い精度で解消された推定結果を取得することが可能となる。
本実施形態において、接地荷重の算出に参照される慣性荷重が、基準慣性荷重に慣性荷重補正値を加算することにより推定される。慣性荷重の推定における精度がより一層高められ、また、推定のための情報処理の負荷がより一層軽減される。
本実施形態において、サスペンション制御装置は、上記のECU600を備え、ECU600が供給する制御量に基づいて車両900のダンパを制御する。この制御量は、車輪速変動の上記の誤差が実質的に解消された状態量に基づいて算出される。よって、サスペンション制御装置の制御による車両900の走行状態の制御に対する所期の効果がより一層正確に発現される。
[本実施形態のまとめ]
以上の説明から明らかなように、本実施形態の状態量推定装置(ECU600)は、車両(900)の状態量を推定する状態量推定装置であって、車両に生じる接地荷重の変動を推定する接地荷重推定部(622)と、車両のサスペンションジオメトリの変化を推定結果に反映させるためのゲインであるサスペンションジオメトリゲイン(Cgeo)、車両のピッチの変化を推定結果に反映させるためのゲインであるピッチゲイン(Cpitch)、および、接地荷重推定部が推定した接地荷重、を用いて少なくとも車両のサスペンションにおけるダンパストローク速度を推定する車両状態推定部(620)と、車両状態推定部が推定したダンパストローク速度にサスペンションジオメトリゲインおよびピッチゲインを乗じた値を用いて接地荷重推定部が推定した接地荷重を補正し、補正後接地荷重を演算する接地荷重補正部(650)と、接地荷重補正部で補正した接地荷重を用いて車両のタイヤの状態を推定するタイヤモデル部(670)と、を備える。したがって、車両の状態量を高い精度で算出する技術を実現することができる。
本実施形態において、サスペンションジオメトリゲインおよびピッチゲインは、それぞれ、車両状態推定部が有する車両の挙動を示す車両モデルのシステム行列の値として、車両状態推定部において用いられる。この構成は、車両の状態量の推定精度を高める観点からより一層効果的である。
本実施形態において、慣性荷重推定部は、車両から取得した車両に関する物理量を用いて基準慣性荷重を演算する基準慣性荷重演算部(611)と、取得した物理量を用いて慣性荷重補正値を演算する補正値演算部(612)と、を備え、基準慣性荷重に慣性荷重補正値を加算して慣性荷重を推定する。この構成は、慣性荷重の推定精度を高め、かつ推定処理の負荷を軽減する観点からより一層効果的である。
本実施形態のサスペンション制御装置は、上記の状態量推定装置を備え、状態量推定装置が供給する制御量に基づいて車両のダンパを制御する。したがって、高い精度で算出される車両の状態量に基づいて、車両の懸架装置(100)を所望の状態により正確に制御することができる。
〔実施形態2〕
前述の実施形態は、車両の状態量の推定および接地荷重の補正において、サスペンションジオメトリゲインおよびピッチゲインの一方のみが用いられる以外は、前述した実施形態1と同じである。サスペンションジオメトリゲインおよびピッチゲインのいずれを用いるか、は、状態量の推定における所望の精度に応じて適宜に決めてよい。
サスペンションジオメトリゲインおよびピッチゲインの一方のみを使用することは、状態量推定の情報処理の負荷を軽減しつつ所期の精度で状態量を推定する観点から有利である。また、サスペンションジオメトリゲインを使用することは、推定結果に路面状態の影響を強く反映させる観点からより一層効果的であり、ピッチゲインを使用することは、推定結果に運転者の運転による影響を強く反映させる観点からより一層効果的である。
〔ソフトウェアによる実現例〕
前述した実施形態において、ECU600の各制御ブロック(特に車両状態推定部620および接地荷重補正部650)は、集積回路(ICチップ)などに形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、ECU600は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。
上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)などの他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。
また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波など)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
〔変形例〕
本発明は、上述した各実施形態に限定されず、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
本発明では、サスペンションジオメトリゲインおよびピッチゲインのそれぞれを独立して用いてもよい。たとえば、車両の状態量の推定ではサスペンションジオメトリゲインを用い、タイヤの状態量の推定ではピッチゲインを用いてもよいし、その逆であってもよい。さらに、サスペンションジオメトリゲインおよびピッチゲインの両方を用いる場合では、車両の状態量の推定と、タイヤの状態量の推定のそれぞれにおいて、車両900の走行安定性の制御における所望の効果に応じて、両ゲインの重み付けを適宜に設定してもよい。
また、前述の実施形態では、サスペンションジオメトリゲインおよびピッチゲインの値は、それぞれ、車両状態推定部においてはシステム行列の値として使用し、接地荷重補正部では補正値として使用している。本発明では、サスペンションジオメトリゲインおよびピッチゲインの値は、これらに限定されず、車両の状態量または接地荷重の推定方法に応じて適宜に決めてよい。
また、前述の実施形態では、慣性荷重推定部は、基準慣性荷重と補正値との加算によって推定している。本発明では、慣性荷重の推定方法は上記の推定法に限定されず、それ以外の公知の方法であってもよい。
100 懸架装置(サスペンション)
200 車体
300、300A、300B、300C、300D 車輪
310、310A、310B、310C、310D タイヤ
320 車輪速センサ
330 横Gセンサ
340 前後Gセンサ
350 ヨーレートセンサ
410 操舵部材
420 ステアリングシャフト
430 トルクセンサ
440 舵角センサ
460 トルク印加部
470 ラックピニオン機構
480 ラック軸
500 エンジン
510 エンジントルクセンサ
520 エンジン回転数センサ
530 ブレーキ圧センサ
600 ECU(状態量推定装置)
601 RAM
610 慣性荷重推定部
611 基準慣性荷重演算部
612 補正値演算部
620 車両状態推定部
621 路面荷重算出部
622 接地荷重演算部
623 タイヤストローク算出部
624 観測量構成部
625 減算部
626、631、633、637、638、651 演算部
632 入力量構成部
634、635、652、6113 加算部
639 抽出部
636、6114 遅延部
640 マップ
650 接地荷重補正部
660 ダンパECU
670 タイヤモデル部
671 タイヤ前後/横力計算部
672 タイヤ有効半径算出部
700 発電装置
800 バッテリ
900 車両

Claims (7)

  1. 車両に生じる接地荷重の変動を推定する接地荷重推定部と、
    前記車両のサスペンションジオメトリの変化を推定結果に反映させるためのゲインであるサスペンションジオメトリゲイン、および、前記接地荷重推定部が推定した前記接地荷重、を用いて少なくとも前記車両のサスペンションにおけるダンパストローク速度を推定する車両状態推定部と、
    前記車両状態推定部が推定した前記ダンパストローク速度に前記サスペンションジオメトリゲインを乗じた値を用いて前記接地荷重推定部が推定した前記接地荷重を補正し、補正後接地荷重を演算する接地荷重補正部と、
    前記接地荷重補正部が演算した前記補正後接地荷重に基づいて前記車両のタイヤの状態を推定するタイヤモデル部と、
    を備える、車両の状態量を推定する状態量推定装置。
  2. 前記サスペンションジオメトリゲインは、前記車両状態推定部が有する前記車両の挙動を示す車両モデルのシステム行列の値として、前記車両状態推定部において用いられる、請求項1に記載の状態量推定装置。
  3. 基準慣性荷重に慣性荷重補正値を加算して、前記車両の慣性運動による荷重変動である慣性荷重を推定する慣性荷重推定部をさらに備え、
    前記慣性荷重推定部は、
    前記車両から取得した前記車両に関する物理量を用いて前記基準慣性荷重を演算する基準慣性荷重演算部と、
    取得した前記物理量を用いて前記慣性荷重補正値を演算する補正値演算部と、を備える、請求項1または2に記載の状態量推定装置。
  4. 車両に生じる接地荷重の変動を推定する接地荷重推定部と、
    前記車両のピッチの変化を推定結果に反映させるためのゲインであるピッチゲイン、および、前記接地荷重推定部が推定した前記接地荷重、を用いて少なくとも前記車両のサスペンションにおけるダンパストローク速度を推定する車両状態推定部と、
    前記車両状態推定部が推定した前記ダンパストローク速度に前記ピッチゲインを乗じた値を用いて前記接地荷重推定部が推定した前記接地荷重を補正し、補正後接地荷重を演算する接地荷重補正部と、
    前記接地荷重補正部が演算した前記補正後接地荷重を用いて前記車両のタイヤの状態を推定するタイヤモデル部と、
    を備える、車両の状態量を推定する状態量推定装置。
  5. 前記ピッチゲインは、前記車両状態推定部が有する前記車両の挙動を示す車両モデルのシステム行列の値として、前記車両状態推定部において用いられる、請求項4に記載の状態量推定装置。
  6. 基準慣性荷重に慣性荷重補正値を加算して、前記車両の慣性運動による荷重変動である慣性荷重を推定する慣性荷重推定部をさらに備え、
    前記慣性荷重推定部は、
    前記車両から取得した前記車両に関する物理量を用いて前記基準慣性荷重を演算する基準慣性荷重演算部と、
    取得した前記物理量を用いて前記慣性荷重補正値を演算する補正値演算部と、を備える、請求項4または5に記載の状態量推定装置。
  7. 請求項1~6のいずれか一項に記載の状態量推定装置を備え、前記状態量推定装置が供給する制御量に基づいて前記車両のダンパを制御する、サスペンション制御装置。
JP2020111935A 2020-06-29 2020-06-29 状態量推定装置およびサスペンション制御装置 Pending JP2022022606A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020111935A JP2022022606A (ja) 2020-06-29 2020-06-29 状態量推定装置およびサスペンション制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020111935A JP2022022606A (ja) 2020-06-29 2020-06-29 状態量推定装置およびサスペンション制御装置

Publications (1)

Publication Number Publication Date
JP2022022606A true JP2022022606A (ja) 2022-02-07

Family

ID=80224910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020111935A Pending JP2022022606A (ja) 2020-06-29 2020-06-29 状態量推定装置およびサスペンション制御装置

Country Status (1)

Country Link
JP (1) JP2022022606A (ja)

Similar Documents

Publication Publication Date Title
US8649938B2 (en) System, program product, and method for dynamic control of vehicle
CN110312655B (zh) 控制装置及操纵装置
CN111615480B (zh) 车辆、车辆运动状态推断装置以及车辆运动状态推断方法
JP6286091B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
US8340881B2 (en) Method and system for assessing vehicle movement
US20220161781A1 (en) State quantity calculation device, control device, and vehicle
JP6360246B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
CN110290949B (zh) 悬架控制装置、以及悬架装置
CN113811472B (zh) 触地负荷推定装置、控制装置及触地负荷推定方法
JP2002053058A (ja) 車両の運転および動的パラメータの決定装置および方法
JP5088198B2 (ja) 重心高推定装置、及びこれを備えた車両挙動制御装置
KR102533560B1 (ko) 차량 운동 상태 추정 장치, 차량 운동 상태 추정 방법 그리고 차량
US11548344B2 (en) Suspension control device and suspension device
US20080167777A1 (en) Method for Controlling the Steering Orientation of a Vehicle
US20220314729A1 (en) Suspension control device and suspension device
JP2019166904A (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
JP2022022606A (ja) 状態量推定装置およびサスペンション制御装置
JP7450469B2 (ja) ダンパ制御装置、及びダンパ装置
US10759248B2 (en) Traveling control system for vehicle
JP2022129649A (ja) 車両運動制御装置、車両運動制御システムおよび車両
WO2020261584A1 (ja) 接地荷重推定装置、制御装置および接地荷重推定方法
JP2022007679A (ja) 状態量推定装置及びダンパ制御装置
JP2020001605A (ja) ステアリング制御装置及びステアリング装置
WO2022003987A1 (ja) 接地荷重推定装置、車両制御装置および接地荷重推定方法
JP2008030536A (ja) 車両状態量検出装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210325