WO2020261520A1 - 光中継装置 - Google Patents

光中継装置 Download PDF

Info

Publication number
WO2020261520A1
WO2020261520A1 PCT/JP2019/025742 JP2019025742W WO2020261520A1 WO 2020261520 A1 WO2020261520 A1 WO 2020261520A1 JP 2019025742 W JP2019025742 W JP 2019025742W WO 2020261520 A1 WO2020261520 A1 WO 2020261520A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring control
optical
channel light
unit
control channel
Prior art date
Application number
PCT/JP2019/025742
Other languages
English (en)
French (fr)
Inventor
小野 浩孝
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021528813A priority Critical patent/JP7299528B2/ja
Priority to PCT/JP2019/025742 priority patent/WO2020261520A1/ja
Priority to US17/618,827 priority patent/US11881895B2/en
Publication of WO2020261520A1 publication Critical patent/WO2020261520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0777Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems

Definitions

  • the present invention relates to an optical relay device used in an optical communication system.
  • a large-capacity optical transmission system employs a wavelength division multiplexing (WDM) transmission method in which multiple signal lights of different wavelengths are multiplexed and transmitted on a single fiber.
  • WDM wavelength division multiplexing
  • an optical relay device using an erbium-added fiber amplifier (EDFA) transmits the required distance while photoamplifying the attenuated signal light.
  • EDFA erbium-added fiber amplifier
  • FIG. 2 shows the configuration of the monitoring control circuit used in the conventional optical relay device.
  • the monitoring control channel receiving unit 921 that receives the monitoring control channel light
  • the monitoring control channel transmitting unit 922 that transmits the monitoring control channel light
  • the monitoring control information transferred by the monitoring control channel light are sent to the own device. It is composed of an information determination unit 923 for determining whether the light is addressed to another device or a monitoring control unit 924 (see, for example, Patent Document 1).
  • Such an optical relay device is one device that constitutes an optical transmission device, and is sometimes called an optical relay line card.
  • a multi-core EDFA using a multi-core erbium-added fiber, which is a core-excited MC-EDFA having an excitation light source for each core (see, for example, Non-Patent Document 1).
  • the multi-core erbium-added fiber (MC-EDF) has a double-clad structure, and a plurality of or all cores are provided with one or a smaller number of excitation light sources by clad excitation.
  • Non-Patent Document 2 Bundle type EDFA in which a plurality of erbium-added fibers (EDF) are bundled (see, for example, Non-Patent Document 3). 4) Using multiple EDFAs in parallel Here, the media for amplifying the signal light propagating through different cores of the multi-core fiber are different cores in 1) and 2), different fibers in 3), and different EDFAs in 4). is there. These will be collectively referred to as "amplified waveguide".
  • the optical relay device for a multi-core optical transmission system is composed of an optical amplifier module using such an EDFA and a monitoring control circuit. At this time, if the monitoring control circuit is designed in the same manner as in the conventional case, a monitoring control circuit is required for each different amplification waveguide, which causes problems that the size and power consumption of the optical relay device increase.
  • An object of the present invention is to reduce the size and power consumption of an optical relay device.
  • the optical relay device includes an amplifier module and a monitoring control circuit.
  • the optical amplifier module receives and excites the detection results from an amplifier optical circuit having a plurality of amplification cores for amplifying signal light propagating in different cores and an optical detector at a plurality of signal optical waveguide points of the amplifier optical circuit. It includes an optical amplifier control circuit that generates a control signal to a light source.
  • the monitoring control circuit determines whether the receiving unit that receives the monitoring control channel light, the transmitting unit that transmits the monitoring control channel light, and the monitoring control information received from the receiving unit are addressed to the own device or another device.
  • a monitoring control unit that receives monitoring control information from other devices via the information discrimination unit and the receiving unit and information discrimination unit, and transmits the monitoring control information of the own device to other devices via the transmitting unit and the information discrimination unit. And include.
  • the monitoring control circuit collectively processes the monitoring control channel light for each different core.
  • the size and power consumption of the optical relay device can be reduced, and as a result, the size and power consumption of the optical transmission device applied to the multi-core fiber transmission system can be reduced.
  • FIG. 1 is a diagram showing a configuration of a conventional optical relay device.
  • FIG. 2 is a diagram showing a configuration of a monitoring control circuit used in a conventional optical relay device.
  • FIG. 3 is a diagram showing a configuration of an optical relay device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a monitoring control circuit used in the optical relay device of the first embodiment.
  • FIG. 5 is a diagram showing a configuration of an optical relay device according to a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring control circuit used in the optical relay device of the second embodiment.
  • FIG. 7 is a diagram showing a configuration of an optical relay device according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a monitoring control circuit used in the optical relay device of the third embodiment.
  • FIG. 3 shows the configuration of the optical relay device according to the first embodiment of the present invention.
  • the optical relay device of the first embodiment is an optical relay device used in an optical transmission system that uses a multi-core fiber as a transmission fiber.
  • the optical relay device 101 includes an optical amplifier module 102 and a monitoring control circuit 103.
  • Inputs and outputs are fibers 104a and 104b of the same type as the transmission fiber of the optical transmission system to which the optical relay device 101 is connected.
  • the optical amplifier module 102 includes an amplifier optical circuit 111 and an optical amplifier control circuit 112 that receives detection results from optical detectors at a plurality of signal optical waveguide points of the amplifier optical circuit 111 and adjusts the output of the excitation light source. Further, monitoring is performed with a duplexer 113a that demultiplexes the monitoring control channel light that transfers monitoring control information at a wavelength different from that of the main signal channel light and outputs it to the fiber to the monitoring control circuit 103. It includes a duplexer 113b that combines the control channel light and the main signal channel light and outputs them from the optical relay device.
  • the optical amplifier control circuit 112 includes a drive circuit of an excitation light source (980 nm band multimode semiconductor laser) that generates excitation light to the double-clad 7-core EDF. Further, it receives the detection information (current or voltage) from the optical power monitor (photodetector) in the amplifier optical circuit 111, transmits it to the monitoring control circuit 124, and sends a control signal such as an excitation light source drive value from the monitoring control circuit. Receive and control the amplifier optical circuit 111.
  • an excitation light source 980 nm band multimode semiconductor laser
  • all three ports are 7-core fibers.
  • the duplexer 113a on the input side of the amplifier optical circuit 111 demultiplexes the monitoring control channel light to the monitoring control circuit 103 side for each core.
  • the combiner / demultiplexer 113b on the output side of the amplifier optical circuit 111 combines the monitoring control channel light for each core with the main signal channel amplified by the amplifier optical circuit 111.
  • FIG. 6 shows the configuration of the monitoring control circuit used in the optical relay device of the second embodiment.
  • the duplexer 113a on the input side of the amplifier optical circuit 111 demultiplexes the monitoring control channel light from one core of the multi-core fiber and transmits it to the receiving unit 121 of the monitoring control circuit 103 via the single core fiber.
  • the transmitter 122 transfers one monitoring control channel light to one core of the multi-core fiber with the main signal channel light amplified by the amplifier optical circuit 111. Combine waves.
  • the monitoring control channel light for each different core is collectively processed by one monitoring control circuit, as compared with the case where the conventional monitoring control circuit is used for the number of fibers,
  • the size of the optical relay device can be reduced by 60%, and the power consumption can be reduced by 65%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

光中継装置のサイズおよび消費電力を低減する。光中継装置は、増幅器モジュールと監視制御回路とを備える。光増幅器モジュールは、異なるコアを伝播する信号光を、それぞれ増幅する複数の増幅コアを有する増幅器光回路と、増幅器光回路の複数の信号光導波点における光検出器からの検出結果を受け取り、励起光源への制御信号を発生する光増幅器制御回路とを含む。監視制御回路は、監視制御チャネル光を受信する受信部と、監視制御チャネル光を送信する送信部と、受信部から受信する監視制御情報が自装置宛であるか他装置宛であるかを判別する情報判別部と、受信部と情報判別部を介して他装置からの監視制御情報を受信し、送信部と情報判別部を介して自装置の監視制御情報を他装置へ送信する監視制御部とを含む。監視制御回路は、異なるコアごとの監視制御チャネル光を一括して処理する。

Description

光中継装置
 本発明は、光通信システムで使用される光中継装置に関する。
 大容量の光伝送システムでは、1本のファイバに複数の相異なる波長の信号光を多重して伝送する波長分割多重(WDM)伝送方式を採用している。長距離のWDM伝送装置では、エルビウム添加ファイバ増幅器(EDFA)を用いた光中継装置により、減衰した信号光を光増幅しつつ必要な距離を伝送する。
 図1に、従来の光中継装置の構成を示す。光中継装置901は、光増幅器モジュール902と監視制御回路903とから構成されている。光中継装置901が接続される光伝送システムの伝送ファイバと同種のファイバ904a,904bを入出力とする。
 光増幅器モジュール902は、増幅器光回路911と、増幅器光回路911の複数の信号光導波点における光検出器からの検出結果を受け取り、励起光源の出力を調整する光増幅器制御回路912とを含む。ここで、光伝送システムが送信端と受信端で伝達すべき情報を伝搬させる信号光を、主信号チャネル光という。光増幅器モジュール902は、主信号チャネル光とは異なる波長で監視制御情報を転送する監視制御チャネル光を、主信号チャネル光から分波して監視制御回路903へのファイバへ出力する合分波器913aと、監視制御チャネル光と主信号チャネル光とを合波して光中継装置から出力する合分波器913bとをさらに含む。
 図2に、従来の光中継装置に使用される監視制御回路の構成を示す。監視制御回路903は、監視制御チャネル光を受信する監視制御チャネル受信部921と、監視制御チャネル光を送信する監視制御チャネル送信部922と、監視制御チャネル光が転送する監視制御情報が自装置宛であるか他装置宛であるかを判別する情報判別部923と、監視制御部924とから構成されている(例えば、特許文献1参照)。
 監視制御部924は、自装置の監視項目の情報を光増幅器モジュール902から受信し、制御情報を光増幅器モジュール902へ送信する。また、監視制御部924は、受信部921を介して他装置からの監視制御情報を受信し、送信部922を介して自装置の監視制御情報を他装置へ送信する。自装置の監視項目の例としては、各モニタ点の光パワー、増幅用ファイバ温度、励起LD出力・駆動電流・温度などがある。また、他装置から受信し、他装置へ送信する情報の例としては、主信号チャネル光数(波長数)などがある。
 このような光中継装置は、光伝送装置を構成する一装置であり、光中継ラインカードとよばれることもある。
 近年、光伝送システムの伝送容量を飛躍的に増大するために、1本の光ファイバに複数コアを有するマルチコアファイバを伝送路に用いたマルチコア光伝送システムの開発が進められている。マルチコアファイバの各コアに、それぞれ異なる情報を伝送する波長分割多重(WDM)信号を伝搬させることにより、従来の1本に1コアを有する光ファイバを伝送路とする場合と比較して、飛躍的に伝送容量を増大させることができる。長距離のマルチコア光伝送システムでは、単一コアファイバを伝送路とする光伝送システムと同様に伝送中に強度が小さくなった信号光を増幅するための光中継装置が必要となる。
 マルチコア光伝送システムに適用する光中継装置に使われるEDFAとしては、以下のような種類がある。 
  1)マルチコア・エルビウム添加ファイバを用いたマルチコアEDFA(MC-EDFA)であって、コア毎に励起光源を備えるコア励起MC-EDFA(例えば、非特許文献1参照) 
  2)MC-EDFAにおいて、マルチコア・エルビウム添加ファイバ(MC-EDF)をダブルクラッド構造とし、クラッド励起により複数または全てのコアを1つまたはコア数より小さい数量の励起光源を備えるクラッド励起MC-EDFA(例えば、非特許文献2参照) 
  3)複数のエルビウム添加ファイバ(EDF)をバンドル化したバンドルタイプEDFA(例えば、非特許文献3参照)
  4)複数のEDFAを並列利用
ここで、マルチコアファイバの異なるコアを伝播する信号光を、それぞれ増幅する媒体は、1)および2)では異なるコア、3)では異なるファイバ、4)では異なるEDFAである。これらを「増幅導波体」と総称することにする。
 マルチコア光伝送システム用の光中継装置は、このようなEDFAを用いた光増幅器モジュールと監視制御回路から構成されている。このとき、監視制御回路を従来と同様に設計すると、異なる増幅導波体ごとに監視制御回路が必要となり、光中継装置のサイズ、消費電力が大きくなるという課題を生じる。
特開平8-237196号公報
Y. Tsuchida et al., "Simultaneous 7-core pumped amplification in multicore EDF through fibre based fan-in/out," in Proc. of ECOC2012, paper Tu.4.F.2. K. S. Abedin et al., "Cladding-pumped erbium-doped multicore fiber amplifier," Opt. Express, vol. 20, no. 18. pp. 20191--20200, 2012. M. Yamada et al., "Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers," IEEE Photon. Technol. Lett., vol. 24, no. 21, pp. 1910--1913, 2012.
 本発明の目的は、光中継装置のサイズおよび消費電力を低減することにある。
 本発明の一実施態様である光中継装置は、増幅器モジュールと監視制御回路とを備える。光増幅器モジュールは、異なるコアを伝播する信号光を、それぞれ増幅する複数の増幅コアを有する増幅器光回路と、増幅器光回路の複数の信号光導波点における光検出器からの検出結果を受け取り、励起光源への制御信号を発生する光増幅器制御回路とを含む。監視制御回路は、監視制御チャネル光を受信する受信部と、監視制御チャネル光を送信する送信部と、受信部から受信する監視制御情報が自装置宛であるか他装置宛であるかを判別する情報判別部と、受信部と情報判別部を介して他装置からの監視制御情報を受信し、送信部と情報判別部を介して自装置の監視制御情報を他装置へ送信する監視制御部とを含む。監視制御回路は、異なるコアごとの監視制御チャネル光を一括して処理する。
 この構成によれば、光中継装置のサイズおよび消費電力を低減し、その結果としてマルチコアファイバ伝送システムに適用する光伝送装置のサイズおよび消費電力を低減することができる。
図1は、従来の光中継装置の構成を示す図、 図2は、従来の光中継装置に使用される監視制御回路の構成を示す図、 図3は、本発明の第1の実施形態にかかる光中継装置の構成を示す図、 図4は、第1の実施形態の光中継装置に使用される監視制御回路の構成を示す図、 図5は、本発明の第2の実施形態にかかる光中継装置の構成を示す図、 図6は、第2の実施形態の光中継装置に使用される監視制御回路の構成を示す図、 図7は、本発明の第3の実施形態にかかる光中継装置の構成を示す図、 図8は、第3の実施形態の光中継装置に使用される監視制御回路の構成を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
 (第1の実施形態)
 図3に、本発明の第1の実施形態にかかる光中継装置の構成を示す。第1の実施形態の光中継装置は、マルチコアファイバを伝送ファイバとして使用する光伝送システムに用いられる光中継装置である。光中継装置101は、光増幅器モジュール102と監視制御回路103とを含む。光中継装置101が接続される光伝送システムの伝送ファイバと同種のファイバ104a,104bを入出力とする。
 光増幅器モジュール102は、増幅器光回路111と、増幅器光回路111の複数の信号光導波点における光検出器からの検出結果を受け取り、励起光源の出力を調整する光増幅器制御回路112とを含み、さらに、主信号チャネル光とは異なる波長で監視制御情報を転送する監視制御チャネル光を、主信号チャネル光から分波して監視制御回路103へのファイバへ出力する合分波器113aと、監視制御チャネル光と主信号チャネル光とを合波して光中継装置から出力する合分波器113bと含む。
 増幅器光回路111は、マルチコア・エルビウム添加ファイバ(MC-EDF)を用いたマルチコア・エルビウム添加ファイバ増幅器(MC-EDFA)であり、本実施形態では7コアEDFを用いた7コアEDFAである。図3において、増幅器光回路111は、増幅器111-1~111-7により、7つのコアをそれぞれ伝搬する信号光を、互いに独立に増幅することを模式的に示している。7コアEDFは、ダブルクラッドタイプのファイバであり、内側クラッド内に7つのコアが配置された構造である。内側クラッドを励起光が伝搬し、全てのコアに添加されたエルビウムイオンを同時に励起する。
 光増幅器制御回路112は、ダブルクラッド7コアEDFへの励起光を発生する励起光源(980nm帯マルチモード半導体レーザ)の駆動回路を含む。また、増幅器光回路111内の光パワーモニタ(光検出器)からの検出情報(電流または電圧)を受け取り、監視制御回路124へ送信し、監視制御回路からの励起光源駆動値などの制御信号を受け取り、増幅器光回路111を制御する。
 増幅器光回路111としては、シングルクラッドの7コアEDFまたは7本のシングルコアEDFを束ねたバンドルEDFを用いて、コア毎に励起光源(980nm帯シングルモード半導体レーザ)を備えた7コアEDFAを使用することができる。また、光中継装置のサイズを低減する効果は縮小するが、従来のEDFAを7台並列に用いることもできる。バンドルEDFを用いる場合、従来のEDFAを用いる場合は、増幅器光回路の入力端に、マルチコアファイバからシングルコアファイバへの変換デバイスであるファンアウトと、増幅器光回路の出力端にシングルコアファイバからマルチコアファイバへの変換デバイスであるファンインとを備える。
 合分波器113a,113bは、3つのポートの全てが7コアファイバである。増幅器光回路111の入力側の合分波器113aは、コア毎に監視制御チャネル光を監視制御回路103側へ分波する。増幅器光回路111の出力側の合分波器113bは、コア毎に監視制御チャネル光を増幅器光回路111で増幅された主信号チャネルと合波する。
 図4に、第1の実施形態の光中継装置に使用される監視制御回路の構成を示す。監視制御回路103は、監視制御チャネル光を受信する監視制御チャネル受信部121と、監視制御チャネル光を送信する監視制御チャネル送信部122と、監視制御光チャネルが転送する監視制御情報が自装置宛であるか他装置宛であるかを判別する情報判別部123と、監視制御部124とから構成されている。
 監視制御部124は、自装置の監視項目の情報を光増幅器モジュール102から受信し、制御情報を光増幅器モジュール102へ送信する。また、監視制御部124は、受信部121および情報判別部123を介して他装置からの監視制御情報を受信し、送信部122および情報判別部123を介して自装置の監視制御情報を他装置へ送信する。自装置の監視項目の例としては、各モニタ点の光パワー、増幅用ファイバ温度、励起LD出力・駆動電流・温度などがある。また、波長情報を他装置から受信したり、他装置へ送信したりする。
 受信部121は、7コアファイバの各コアから監視制御チャネル光を受信し、監視制御信号を時間多重して情報判別部123へ送信する。一方、送信部122は、情報判別部123から送られてくる時間多重化された各コアへの監視制御信号を、時間分割して各コアへ監視制御チャネル光として送信する。例えば、各コアの155Mbps監視制御信号であれば、受信部121は受信した155.52Mbpsの信号を1088.64Mbpsへ多重化して情報判別部へ送る。送信部122は、1088.64Mbpsに多重化された監視制御信号を、コア毎に155.52Mbpsへ分割し各コアへ送信する。
 情報判別部123は、受信部121から受信する監視制御情報が自装置宛であるか他装置宛であるかを判別する。自装置宛の監視指示を検出すると、監視制御部124により光中継装置内情報を収集し、その装置内情報を示す監視制御信号を送信部122へ送信する。
 監視制御部124は、前述の自装置の情報を収集するが、増幅器光回路111内の各コアに関する情報を時間的に順番に収集して、監視制御信号を送信部122へ送信する。
 第1の実施形態によれば、光中継装置は、監視制御回路の機能を各コアで共用することにより、異なるコアごとの監視制御チャネル光を一括して処理する。そのため、従来の監視制御回路をコア数分用いた場合と比較して、光中継装置のサイズを65%低減でき、また、消費電力も70%低減することができる。
 (第2の実施形態)
 図5に、本発明の第2の実施形態にかかる光中継装置の構成を示す。第2の実施形態の光中継装置は、マルチコアファイバの1つのコアの監視制御チャネル光が、全てのコアの監視制御信号を転送する光伝送システムに適用される。光中継装置101は、光増幅器モジュール102と監視制御回路103とを含み、それぞれの構成要素は、第1の実施形態の光中継装置と同じである。第1の実施形態との相違点は、監視制御回路103と合分波器113a,113bとを接続するファイバがシングルコアファイバとなる。
 図6に、第2の実施形態の光中継装置に使用される監視制御回路の構成を示す。増幅器光回路111の入力側の合分波器113aは、マルチコアファイバの1つのコアから監視制御チャネル光を分波し、シングルコアファイバを介して、監視制御回路103の受信部121に送信する。増幅器光回路111の出力側の合分波器113bは、送信部122が1つの監視制御チャネル光を、マルチコアファイバの1つのコアに対して、増幅器光回路111で増幅された主信号チャネル光と合波する。
 その結果、第2の実施形態の光中継装置は、監視制御回路の機能を各コアで共用することになる。そのため、従来の監視制御回路をコア数分用いた場合と比較して、光中継装置のサイズを75%低減でき、また、消費電力も75%低減することができる。
 (第3の実施形態)
 図7に、本発明の第3の実施形態にかかる光中継装置の構成を示す。第3の実施形態の光中継装置は、複数(7本)のシングルコアファイバを伝送ファイバとして使用する。光中継装置101は、光増幅器モジュール102と監視制御回路103とを含む。光中継装置101が接続される光伝送システムの伝送ファイバは、7本のシングルコアファイバを束ねたファイバ304a,304bを入出力とする。
 増幅器光回路111は、7本のシングルコアEDFを束ねたバンドルEDFを用いる。コア毎に接続された励起光源(980nm帯シングルモード半導体レーザ)と、入力端のファンアウトと、出力端のファンインとを備えた増幅器光回路である。なお、従来のEDFAを7台並列に使用することもできる。MC-EDFAを使用することもできるが、その場合は、入力端にファンインと、出力端にファンアウトとを備える。
 光増幅器モジュール102の合分波器313a,313bは、シングルコアの合分波器313a-1~313a-7,313b-1~313b-7を、それぞれ7台含む。合分波器313a,313bは、3つのポートの全てが7本のシングルコアファイバとなる。
 図8に、第3の実施形態の光中継装置に使用される監視制御回路の構成を示す。増幅器光回路111の入力側の合分波器313aは、7本のシングルコアファイバごとに監視制御チャネル光を分波し、7本のシングルコアファイバを介して、監視制御回路103の受信部121に送信する。増幅器光回路111の出力側の合分波器313bは、送信部122から7本のシングルコアファイバを介して送られた監視制御チャネル光を、7本のシングルコアファイバごとに、増幅器光回路111で増幅された主信号チャネル光と合波する。
 第3の実施形態によれば、1台の監視制御回路により、異なるコアごとの監視制御チャネル光を一括して処理するので、従来の監視制御回路をファイバ数分用いた場合と比較して、光中継装置のサイズを60%低減でき、また、消費電力も65%低減することができる。

Claims (4)

  1.  異なるコアを伝播する信号光を、それぞれ増幅する複数の増幅コアを有する増幅器光回路、および該増幅器光回路の複数の信号光導波点における光検出器からの検出結果を受け取り、励起光源への制御信号を発生する光増幅器制御回路を含む光増幅器モジュールと、
     監視制御チャネル光を受信する受信部、監視制御チャネル光を送信する送信部、該受信部から受信する監視制御情報が自装置宛であるか他装置宛であるかを判別する情報判別部、および該受信部と該情報判別部を介して他装置からの監視制御情報を受信し、該送信部と該情報判別部を介して自装置の監視制御情報を他装置へ送信する監視制御部を含む監視制御回路とを備え、
     前記監視制御回路は、前記異なるコアごとの監視制御チャネル光を一括して処理することを特徴とする光中継装置。
  2.  複数のコアを有する伝送ファイバが接続され、前記コアごとに主信号チャネル光から監視制御チャネル光を分波し、前記監視制御チャネル光を複数のコアを有する伝送ファイバにより前記受信部に出力する第1の合分波器をさらに備えたことを特徴とする請求項1に記載の光中継装置。
  3.  複数のコアを有する伝送ファイバが接続され、前記複数のコアのうちの1つのコアの主信号チャネル光から監視制御チャネル光を分波し、前記監視制御チャネル光をシングルコアファイバにより前記受信部に出力する第2の合分波器をさらに備えたことを特徴とする請求項1に記載の光中継装置。
  4.  複数のシングルコアファイバを有する伝送ファイバが接続され、前記シングルコアファイバごとに主信号チャネル光から監視制御チャネル光を分波し、前記監視制御チャネル光を複数のシングルコアファイバにより前記受信部に出力する第3の合分波器をさらに備えたことを特徴とする請求項1に記載の光中継装置。
PCT/JP2019/025742 2019-06-27 2019-06-27 光中継装置 WO2020261520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021528813A JP7299528B2 (ja) 2019-06-27 2019-06-27 光中継装置
PCT/JP2019/025742 WO2020261520A1 (ja) 2019-06-27 2019-06-27 光中継装置
US17/618,827 US11881895B2 (en) 2019-06-27 2019-06-27 Optical transponder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025742 WO2020261520A1 (ja) 2019-06-27 2019-06-27 光中継装置

Publications (1)

Publication Number Publication Date
WO2020261520A1 true WO2020261520A1 (ja) 2020-12-30

Family

ID=74060093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025742 WO2020261520A1 (ja) 2019-06-27 2019-06-27 光中継装置

Country Status (3)

Country Link
US (1) US11881895B2 (ja)
JP (1) JP7299528B2 (ja)
WO (1) WO2020261520A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224298A1 (ja) * 2021-04-19 2022-10-27 日本電信電話株式会社 光アクセスシステム及び制御信号重畳方法
JP7453168B2 (ja) 2021-02-19 2024-03-19 Kddi株式会社 マルチコア光ファイバを使用する光通信システムの光パワー等化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237196A (ja) * 1995-02-22 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> 光中継器監視システム
JP2015522984A (ja) * 2012-05-16 2015-08-06 アルカテル−ルーセント 光データ伝送システム
JP2015204467A (ja) * 2014-04-10 2015-11-16 三菱電機株式会社 通信装置、光伝送システムおよび光伝送装置
JP2019057761A (ja) * 2017-09-19 2019-04-11 富士通株式会社 光伝送装置、光伝送システムおよび光伝送方法
JP2019513302A (ja) * 2016-04-21 2019-05-23 日本電気株式会社 光増幅器、光増幅器を含む光ネットワーク、及び光信号の増幅方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864605A (ja) 1981-10-14 1983-04-18 Matsushita Electric Ind Co Ltd 磁気記録再生装置
JPH07168146A (ja) 1993-04-07 1995-07-04 Nippon Telegr & Teleph Corp <Ntt> スポット変換光導波路
JPH08171020A (ja) 1994-12-19 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> 光結合デバイス
JP6339965B2 (ja) 2015-04-08 2018-06-06 日本電信電話株式会社 光導波路の作製方法
US20230412297A1 (en) * 2020-10-26 2023-12-21 Nec Corporation Optical amplifier, optical amplifier controlling method, and optical transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237196A (ja) * 1995-02-22 1996-09-13 Nippon Telegr & Teleph Corp <Ntt> 光中継器監視システム
JP2015522984A (ja) * 2012-05-16 2015-08-06 アルカテル−ルーセント 光データ伝送システム
JP2015204467A (ja) * 2014-04-10 2015-11-16 三菱電機株式会社 通信装置、光伝送システムおよび光伝送装置
JP2019513302A (ja) * 2016-04-21 2019-05-23 日本電気株式会社 光増幅器、光増幅器を含む光ネットワーク、及び光信号の増幅方法
JP2019057761A (ja) * 2017-09-19 2019-04-11 富士通株式会社 光伝送装置、光伝送システムおよび光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMADA, M. ET AL.: "Optical fiber amplifier employing a bundle of reduced cladding erbium- doped fibers", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 24, no. 21, November 2012 (2012-11-01), pages 1910 - 1913, XP011468279, DOI: 10.1109/LPT.2012.2218653 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453168B2 (ja) 2021-02-19 2024-03-19 Kddi株式会社 マルチコア光ファイバを使用する光通信システムの光パワー等化器
WO2022224298A1 (ja) * 2021-04-19 2022-10-27 日本電信電話株式会社 光アクセスシステム及び制御信号重畳方法

Also Published As

Publication number Publication date
US11881895B2 (en) 2024-01-23
JP7299528B2 (ja) 2023-06-28
JPWO2020261520A1 (ja) 2020-12-30
US20220368423A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US6941074B2 (en) Bidirectionally transmittable optical wavelength division multiplexed transmission system
JP2019513302A (ja) 光増幅器、光増幅器を含む光ネットワーク、及び光信号の増幅方法
JP6482126B2 (ja) 光増幅器
JP7299528B2 (ja) 光中継装置
JP7036199B2 (ja) 光増幅装置および光増幅方法
JP7188085B2 (ja) マルチコア光ファイバ増幅器およびマルチコア光ファイバ増幅媒体を用いた光増幅方法
JP7192849B2 (ja) 光ファイバ増幅器、光ファイバ増幅器の制御方法、及び伝送システム
JP7294519B2 (ja) モニタ装置、モニタ方法、及び光伝送システム
JP6992907B2 (ja) 光増幅装置および光増幅方法
US11888281B2 (en) Multimode optical amplifier
JP2006294819A (ja) 光増幅用部品、光増幅器及び光通信システム
US20220337025A1 (en) Optical amplifier
US10741992B2 (en) Extending system reach of unrepeated systems using cascaded amplifiers
JP3977363B2 (ja) ラマン増幅器及び光通信システム
JPH1174595A (ja) 光ファイバ増幅器
US20230163552A1 (en) Optical amplification device and optical amplification method
US12027813B2 (en) Optical amplifier and optical amplification method
EP4262109A1 (en) Optical communication link with remote optically pumped amplifier
JP7485195B2 (ja) 光増幅装置および光増幅方法
WO2023195155A1 (ja) 光ファイバ増幅器
US20220344888A1 (en) Amplification fiber and optical amplifier
JPH03129330A (ja) 光通信システム
JPH0936814A (ja) 光増幅器
JP2000101174A (ja) 光増幅器のアクティブ・ファイバをポンプするポンプ・デバイスおよび対応する光増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935398

Country of ref document: EP

Kind code of ref document: A1