WO2020261492A1 - 温度推定装置、温度推定方法 - Google Patents

温度推定装置、温度推定方法 Download PDF

Info

Publication number
WO2020261492A1
WO2020261492A1 PCT/JP2019/025621 JP2019025621W WO2020261492A1 WO 2020261492 A1 WO2020261492 A1 WO 2020261492A1 JP 2019025621 W JP2019025621 W JP 2019025621W WO 2020261492 A1 WO2020261492 A1 WO 2020261492A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
estimation
temperature estimation
point
moving average
Prior art date
Application number
PCT/JP2019/025621
Other languages
English (en)
French (fr)
Inventor
則和 万木
智久 布施
恵一 向
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2021528789A priority Critical patent/JP7177975B2/ja
Priority to PCT/JP2019/025621 priority patent/WO2020261492A1/ja
Publication of WO2020261492A1 publication Critical patent/WO2020261492A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/10Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of time, e.g. reacting only to a quick change of temperature

Definitions

  • the present invention relates to a temperature estimation device and a temperature estimation method for estimating the temperature of an estimation point from the temperature of a measurement point.
  • Patent Documents 1 and 2 disclose a temperature estimation method.
  • Patent Document 1 discloses a method of estimating the temperature inside a material by using a Legendre polynomial.
  • Patent Document 2 discloses a method of estimating the temperature of an estimation target based on a heat transfer model between a temperature measurement point and an estimation target.
  • an object of the present invention is to provide a temperature estimation method having high accuracy and a small amount of calculation.
  • (Structure 1) Equipped with a temperature estimation unit that calculates the temperature of the estimation point from the temperature of the measurement point
  • the temperature estimation unit is based on the difference between the first formula based on the moving average of the temperature of the measuring point and the moving average of the temperature of the measuring point calculated this time and the moving average of the temperature of the measuring point calculated last time.
  • a temperature estimation device characterized in that the temperature of the estimated point is calculated based on a temperature estimation model in which the second mathematical formula is combined.
  • the temperature estimation unit includes a temperature estimation step of calculating the temperature of the estimation point from the temperature of the measurement point.
  • the temperature estimation unit is based on the difference between the first formula based on the moving average of the temperature of the measuring point and the moving average of the temperature of the measuring point calculated this time and the moving average of the temperature of the measuring point calculated last time.
  • a temperature estimation method characterized in that the temperature of the estimated point is calculated based on a temperature estimation model in which the formula of 2 is combined.
  • the temperature estimation device of the present invention it is possible to provide a highly accurate temperature estimation method with a small amount of calculation.
  • FIG. 1 is a schematic configuration diagram showing a portion of a temperature controller according to an embodiment of the present invention according to the present invention.
  • the temperature estimation device 100 is a device that outputs an estimated temperature of a temperature estimation target based on an input from a temperature measurement sensor (not shown), and includes a temperature estimation unit 110 in which a temperature estimation model described later is stored.
  • the temperature estimation device 100 and the temperature estimation unit 110 are composed of a microcomputer. Therefore, it can be incorporated into various devices.
  • a temperature estimation model generated by a combination of a first mathematical formula (hereinafter referred to as mathematical formula A) and a second mathematical formula (hereinafter referred to as mathematical formula B) in consideration of higher-order delay and wasted time in heat conduction is used. Use to estimate the temperature of the estimation target.
  • N is a parameter for calculating the moving average
  • n is a sample number.
  • the calculation result Ta n of formula A is a modified moving average of the input values T n.
  • is a proportional coefficient.
  • the calculation results Tb n is Ta n and Ta n-1 of the difference is a modified moving average of the input values T n and the input value.
  • the temperature estimation model in the present embodiment starts with the above formula A and is composed of a combination of formula A and formula B.
  • formula A1-B2 For example, starting with the smallest unit of combination of formulas (A1-B2), formula (A1-A2-B3-A4), formula (A1-B2-A3-A4-A5), formula (A1-B2-A3-A4-A4- A5-B6-A7-A8- A9-A10) include, the calculation result of the combination last equation and the temperature estimated value Te 'n by temperature estimation model.
  • the numbers after A and B indicate the number of stages (order) of the combination of mathematical formulas in the estimation model, and the temperature estimation accuracy and the calculation amount allowed by the external PC or other device that performs the model generation process. Therefore, the upper limit of the number of stages shall be set in advance. In the present embodiment, the upper limit of the total number of stages of the mathematical formula of the temperature estimation model is 6.
  • Example of temperature estimation model derivation method 2 upper stage shows the data used in deriving the temperature estimation model in the present embodiment, actually measured actual temperature value Te n in the temperature measurements Ts n and temperature estimate point obtained is there.
  • the range of sample n is 0 to 30.
  • the parameter ⁇ is changed in the range of 0 to 500 for each combination of all mathematical expressions up to the number of stages 6. while changing further the n in the range of 0 500, and a combination of formulas least square error of the estimated temperature Te 'n by the actual temperature value Te n and the temperature estimation model estimates point is reduced, the parameter ⁇ and at that time Search for N.
  • Equation 3 shows an example of the temperature estimation model obtained in this embodiment.
  • the only input values of the temperature estimation model is a temperature measured value Ts n
  • calculation result of the temperature estimation model is a temperature estimated value Te 'n.
  • the lower graph of Figure 2 the actual temperature value Te n in operation results Te 'n and temperature estimation point by the temperature estimation model, sample n is a graph superimposed in the range of 0 to 30, good agreement You can see that.
  • Figure 3 is the estimation model of the present embodiment is a graph obtained by superimposing the actual temperature value Te n in the calculated operation result Te 'n and temperature estimation point by which receives the temperature Ts n measuring points. It can be seen that the temperature at the estimation point is estimated accurately even outside the data range for calculating the temperature estimation model (sample n is 0 to 30).
  • the formulas A and B of the temperature estimation model can be modified as follows in consideration of the sampling period of the sensor input. With this modification, the same values can be used for the parameters N and ⁇ even when the sampling period for temperature measurement at the measurement point is changed.
  • S is the sampling period [seconds].
  • the temperature estimation method of the present embodiment needs to be switched to another temperature estimation model or recreated when the type of heat source, the material of the sensor, or other materials constituting the control system change.
  • a model generation step is performed in S400 as a preliminary preparation for temperature estimation.
  • the calculation is performed by an external device (not shown) such as a PC.
  • the upper limit of the number of equations used in the model in an external device is inputted, further, the actual temperature value Te n in actual measured temperature measurements Ts n and temperature estimate point obtained is input.
  • the temperature estimation calculation is performed for all the combinations of mathematical expressions and the range of parameters, and the combinations and parameters that give the best estimation results are calculated.
  • the calculated estimation model is stored in the temperature estimation unit 110. This makes it possible to estimate the temperature at the estimation point. Further, when it is desired to estimate the temperature of the estimated point at another position, the operation of S400 is performed for each estimated point.
  • step S410 when the estimation process is started and the input temperature data is input to the temperature estimation unit 110 by the user by an input device (not shown) or the like in step S410, the calculation by the predetermined temperature estimation model is performed in step S420.
  • the temperature of the estimated point is calculated and output to a display unit (not shown). After that, it is possible to estimate the temperature of the estimation point at an arbitrary timing until the estimation process is completed.
  • the temperature of the estimated point can be estimated by the model described only by the simple four arithmetic operations, so that the estimated point can be estimated with a small amount of calculation.
  • the temperature can be estimated. Further, by setting the mathematical formula AB of the temperature estimation model as in the above equation 4, the temperature can be estimated without changing the parameters of the temperature estimation model even when the sampling period is changed.
  • the number of estimation points is one, but the temperatures of a plurality of estimation points may be configured to be able to be estimated.
  • the temperature estimation device 100 may be configured to include a plurality of estimation models for each estimation point.
  • the number of stages of the estimation model in the temperature estimation unit 110 in the present embodiment is configured to be input in advance in an external device or the like, but the number of stages is set based on the desired accuracy of temperature estimation. It may be configured. Further, when the temperature estimation unit 110 estimates the temperature, the amount of calculation changes according to the number of stages of the estimation model. Therefore, the number of stages may be set according to the computing power of the temperature estimation unit 110.
  • the temperature of an arbitrary point (within a range that can be modeled by the mathematical formula AB of the present embodiment due to the positional relationship with the sensor or the like) is estimated.
  • the temperature estimation unit 110 is configured to estimate the temperature of the wiring connection portion inside the temperature sensor in advance, it can monitor disconnection of the wiring welded portion or melting of the cable coating due to heat conduction from the sensor tip. Can also be applied.
  • the formula A used in the temperature estimation unit 110 is configured to use the modified moving average as described above, but the present invention is not limited to this, and if it is a moving average, it is a simple moving average. , Weighted moving average, exponential moving average, triangular moving average, sinusoidal moving average, cumulative moving average and the like may be used.
  • each configuration in each of the above-described embodiments may be configured in hardware by a dedicated circuit or the like, or is realized by software in a general-purpose circuit such as a microcomputer or a PC. You may.
  • the range in which the parameters ⁇ and N of the above equations A and B are changed also changes depending on the installation environment and material of the sensor, the range is not limited to 0 to 500 as in the present embodiment. Therefore, after roughening the resolution and obtaining an approximate value, a solution may be obtained with a finer resolution.
  • the Ts n and Te n instead of the actual temperature data, it may be used a value determined by thermal analysis simulation.
  • the estimation model is generated by an external device such as a PC, but when the processing capacity of the temperature estimation device 100 can be sufficiently secured, the temperature estimation device 100 generates the estimation model. It may be configured to carry out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

温度推定装置100は、熱伝導をモデル化した第1の数式及び第2の数式の組み合わせを用いて、測定点のセンサ入力から推定点の温度を推定する温度推定部110を備える。平易な四則演算のみで推定点の温度を推定することが可能である。

Description

温度推定装置、温度推定方法
 この発明は、測定点の温度から推定点の温度を推定する温度推定装置、温度推定方法に関するものである。
 射出成形等における温度制御において、センサの温度(測定点)からセンサ内部や周辺箇所(推定点)の温度を推定したいという要望がある。温度推定の方法については、従来から熱伝導シミュレーションによる温度推定が行われている。しかし、シミュレーションの実施には時間・計算量ともにかかることが多く、簡易に計算が可能な方法が望まれていた。特許文献1及び2には温度推定手法が開示されている。
 特許文献1にはルジャンドル多項式を使用し、材料内部の温度を推定する手法が開示されている。特許文献2には温度測定点と推定対象との間の熱伝達モデルに基づき推定対象の温度を推定する手法が開示されている。
特開2009-69079号公報 特開2007-192661号公報
 しかし、開示されたいずれの手法も、コンピュータでの使用を想定した熱伝導シミュレーションのための手法である。そのため、温度を推定するために専用の構成が必要となるため、計算的、機器的コストに課題がある。高速に計算を行うことが可能なCPUや、専用の回路等の構成を温度制御装置に組み込むことはコストの面から難しい場合も多く、マイコン程度の処理能力にて実行可能な温度推定手法が望まれている。
 本発明は上記の点に鑑み、精度が高く、計算量が少ない温度推定手法を提供することを目的とする。
  (構成1)
 測定点の温度から、推定点の温度を算出する温度推定部を備え、
 前記温度推定部が、前記測定点の温度の移動平均に基づく第1の数式と、今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均との差分に基づく第2の数式と、を組合せた温度推定モデルに基づき前記推定点の温度を算出することを特徴とする温度推定装置。
  (構成2)
 前記第1の数式が前記測定点の温度の移動平均と、サンプリング周期と、に基づき、
 前記第2の数式が今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均と、前記サンプリング周期と、に基づくことを特徴とする構成1に記載の温度推定装置。
  (構成3)
 測定点の温度を測定する測定ステップと、
 温度推定部が、前記測定点の温度から推定点の温度を算出する温度推定ステップと、を備え、
 前記温度推定部が前記測定点の温度の移動平均に基づく第1の数式と、今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均との差分に基づく第2の数式と、を組合せた温度推定モデルに基づき前記推定点の温度を算出することを特徴とする温度推定方法。
 本発明の温度推定装置によれば、計算量が少なく、精度の高い温度推定手法を提供することが可能となる。
本発明に係る実施形態の温度推定装置を示す概略構成図である。 本発明に係る実施形態の温度推定モデル生成の一例を示す図である。 本発明に係る実施形態の温度推定結果を示す図である。 本発明に係る実施形態の動作を示す概略図である。
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。
<実施形態1>
 図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。
 温度推定装置100は、測温センサ(不図示)からの入力に基づき温度推定対象の推定温度を出力する装置であり、後述する温度推定モデルが格納された温度推定部110を備える。本実施形態においては温度推定装置100及び温度推定部110はマイコンにより構成されている。そのため、種々の機器に組み込むことが可能である。
 以下、本実施形態における温度推定モデルについて説明する。
 本実施形態においては、熱伝導における高次遅れと無駄時間を考慮した、第1の数式(以下数式Aとする)と第2の数式(以下数式B)との組み合わせにより生成した温度推定モデルを用いて推定対象の温度を推定する。
 本実施形態においては、数式Aに以下の式を用いる。
Figure JPOXMLDOC01-appb-M000001

 式中、Nは移動平均を算出するためのパラメータであり、nはサンプル番号である。また、数式Aの演算結果Taは、入力値Tの修正移動平均値である。
 本実施形態においては、数式Bに以下の式を用いる。
Figure JPOXMLDOC01-appb-M000002

 式中、αは比例係数である。また、演算結果Tbは、入力値T及び入力値の修正移動平均値であるTaとTan-1の差分である。
(数式の組み合わせの説明)
 本実施形態における温度推定モデルは、上記の数式Aで始まり、数式Aと数式Bの組み合わせで構成される。
 例えば、数式の組み合わせの最小単位(A1-B2)にはじまり、数式(A1-A2-B3-A4)、数式(A1-B2-A3-A4-A5)、数式(A1-B2-A3-A4-A5-B6-A7-A8-A9-A10)などがあり、組み合わせ最後の数式の演算結果を温度推定モデルによる温度推定値Te’とする。
 なお、AやBの後の数字は、推定モデル中の数式の組み合わせの段数(順番)を示しており、温度の推定精度とモデル生成工程を行う外部PC等の機器が許容する計算量などに応じて、段数の上限を事前に設定するものとする。
 本実施形態においては、温度推定モデルの数式の合計段数の上限を6としている。
(温度推定モデル導出方法の説明)
 図2上段は、本実施形態で温度推定モデルを導出する際に用いたデータを示しており、実際に測定して得られた温度測定値Ts及び温度推定点における実際の温度値Teである。また、サンプルnの範囲は0から30である。
 本実施形態においては、数式の組み合わせの最小単位(A1-B2)を発端に、段数6を上限とする全ての数式について、それぞれの組み合わせごとに、パラメータαを0から500の範囲で変化させ、更にNを0から500の範囲で変化させながら、推定点の実際の温度値Teと温度推定モデルによる温度推定値Te’の最小自乗誤差が小さくなる数式の組み合わせと、その時のパラメータα及びNを探索する。
(温度推定モデル導出結果)
 以下の数3に、本実施形態で求めた温度推定モデルの例を示す。数式の組み合わせは(A1-B2-A3-A4-A5-A6)、パラメータはα2=10.4、N1=18.0、N3=N4=N5=N6=2.6である。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

 この温度推定モデルの唯一の入力値は温度測定値Tsであり、温度推定モデルによる演算結果が温度推定値Te’である。
 図2の下段のグラフは、上記温度推定モデルによる演算結果Te’と温度推定点における実際の温度値Teを、サンプルnが0から30の範囲で重ね合わせたグラフであり、良く一致していることが分かる。
 なお、ここでは計算簡略化のためN3~N5についてはN3と同様の値を入力している。このように、温度推定モデルの後段のNの値については、他と同様の値を用いても良好な結果が得られることがあり、パラメータを簡略化することができる。
 図3は本実施形態における推定モデルに、測定点の温度Tsを入力したことにより算出した演算結果Te’と温度推定点における実際の温度値Teを重ね合わせたグラフである。温度推定モデル算出のためのデータ範囲(サンプルnが0から30)以外でも、精度良く推定点の温度が推定されていることがわかる。
 なお、温度推定モデルの数式A、Bについてはセンサ入力のサンプリング周期を考慮して以下のように変形することもできる。このように変形すると、測定点の温度計測のサンプリング周期を変更した場合でも、パラメータNとαについては同一の値を用いることができる。
Figure JPOXMLDOC01-appb-M000010

Figure JPOXMLDOC01-appb-I000011

 式中Sは、サンプリング周期[秒]である。
 なお、本実施形態の温度推定手法は、熱源の種類や、センサの材質、その他制御系を構成する材質等が変化した場合は、別の温度推定モデルに切り替えるか、作成しなおす必要がある。
<動作>
 次に、図4を参照しつつ、本実施形態の温度推定装置100の本発明に関する処理動作について説明する。
 まず、S400にて温度推定のための事前準備としてモデル生成工程を行う。なお、S400についてはPC等の外部機器(不図示)にて計算を行う。
 外部機器においてモデルに使用する数式の段数の上限値が入力され、更に、実際に測定して得られた温度測定値Ts及び温度推定点における実際の温度値Teが入力される。そして上記の通り、全ての数式の組み合わせ及びパラメータの範囲について温度推定演算を実施し、最も推定結果がよくなる組み合わせ及びパラメータが算出される。そして、算出された推定モデルを温度推定部110に格納される。これにより推定点の温度が推定可能となる。さらに、別の位置にある推定点の温度を推定したいとなった場合は、S400の動作を推定点毎に行う。
 次に、推定処理を開始し、ステップS410において、ユーザにより入力装置(不図示)等により入力温度データが温度推定部110に入力されると、ステップS420おいて、所定の温度推定モデルによる演算が実施され推定点の温度が算出され表示部(不図示)等に出力される。以降、推定処理を終了するまで任意のタイミングにて推定点の温度を推定することが可能である。なお初回の演算、即ちn=0における各数式の演算結果は下記の通り、温度測定値Tsで初期化を行うこととする。
Figure JPOXMLDOC01-appb-M000012

Figure JPOXMLDOC01-appb-I000013
<効果>
 以上のように、本実施形態の温度推定装置100によれば、平易な四則演算のみで記述されたモデルによって推定点の温度を推定することが可能となるため、少ない計算量にて推定点の温度を推定することができる。
 また、温度推定モデルの数式ABを上記の数4のようにすることで、サンプリング周期を変更した場合にも温度推定モデルのパラメータを変更することなく温度推定が可能となる。
<その他の構成>
 本実施形態においては、推定点は1つであるものとして説明したが、複数の推定点の温度を推定可能に構成されていてもよい。その場合は、温度推定装置100は推定点毎に複数の推定モデルを備えるように構成されていてもよい。
 また、本実施形態における温度推定部110における推定モデルの段数については、外部機器等において事前に入力されるように構成されていたが、所望する温度推定の精度に基づき段数が設定されるように構成されていてもよい。また、温度推定部110における温度推定の際には、推定モデルの段数に応じて計算量が変化する。そのため、温度推定部110の有する演算能力に応じて段数が設定されるように構成されていてもよい。
 また、本実施形態においては、任意の点(センサとの位置関係等により、本実施形態の数式ABにてモデル化が可能な範囲において)の温度を推定するように構成されている。例えば、温度推定部110において、あらかじめ温度センサ内部の配線接続部の温度を推定できるように構成されていれば、センサ先端からの熱伝導による配線溶接部の断線やケーブル被覆の溶融等の監視にも適用できる。
 なお、本実施形態においては、温度推定部110において用いる数式Aについて上記の通り、修正移動平均を用いるように構成されているがこれに限られるものではなく、移動平均であれば、単純移動平均、加重移動平均、指数移動平均、三角移動平均、正弦移動平均、累積移動平均などを用いるように構成されていてもよい。
 なお、上記各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路やPC上でソフトウェア的に実現されるものであってもよい。
 また、上記数式A、Bのパラメータα及びNを変化させる範囲はセンサの設置環境や材質によっても変わるため、本実施形態のように0から500に限られるものではない。よって、分解能を荒くしておおよその値を求めた後に、さらに細かい分解能で解を求めても良い。
 また、Ts及びTeについては、実際の温度データの代わりに、熱解析シミュレーションなどにより求めた値を用いてもよい。
 また、TeとTe’の一致が確認できる方法であれば、最小自乗誤差を用いる方法でなくてもよい。
 また、本実施形態においてはPC等の外部機器にて推定モデルを生成するように構成されていたが、温度推定装置100の処理能力が十分確保できる場合は温度推定装置100において推定モデルの生成を実施するように構成されていてもよい。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。
100…温度推定装置
110…温度推定部

Claims (3)

  1.  測定点の温度から、推定点の温度を算出する温度推定部を備え、
     前記温度推定部が、前記測定点の温度の移動平均に基づく第1の数式と、今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均との差分に基づく第2の数式と、を組合せた温度推定モデルに基づき前記推定点の温度を算出することを特徴とする温度推定装置。
  2.  前記第1の数式が前記測定点の温度の移動平均と、サンプリング周期と、に基づき、
     前記第2の数式が今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均と、前記サンプリング周期と、に基づくことを特徴とする請求項1に記載の温度推定装置。
  3.  測定点の温度を測定する測定ステップと、
     温度推定部が前記測定点の温度から推定点の温度を算出する温度推定ステップと、を備え、
     前記温度推定部が、前記測定点の温度の移動平均に基づく第1の数式と、今回算出した前記測定点の温度の移動平均と前回算出した前記測定点の温度の移動平均との差分に基づく第2の数式と、を組合せた温度推定モデルに基づき前記推定点の温度を算出することを特徴とする温度推定方法。
PCT/JP2019/025621 2019-06-27 2019-06-27 温度推定装置、温度推定方法 WO2020261492A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021528789A JP7177975B2 (ja) 2019-06-27 2019-06-27 温度推定装置、温度推定方法
PCT/JP2019/025621 WO2020261492A1 (ja) 2019-06-27 2019-06-27 温度推定装置、温度推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025621 WO2020261492A1 (ja) 2019-06-27 2019-06-27 温度推定装置、温度推定方法

Publications (1)

Publication Number Publication Date
WO2020261492A1 true WO2020261492A1 (ja) 2020-12-30

Family

ID=74061568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025621 WO2020261492A1 (ja) 2019-06-27 2019-06-27 温度推定装置、温度推定方法

Country Status (2)

Country Link
JP (1) JP7177975B2 (ja)
WO (1) WO2020261492A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332905A (ja) * 2006-06-16 2007-12-27 Honda Motor Co Ltd 内燃機関の温度測定装置
JP2010146059A (ja) * 2008-12-16 2010-07-01 Yamatake Corp 推定用多項式生成装置、入力パラメータ極性通知装置、推定装置および方法
JP2013117416A (ja) * 2011-12-02 2013-06-13 Rkc Instrument Inc 温度測定装置、温度測定方法及び温度測定システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332905A (ja) * 2006-06-16 2007-12-27 Honda Motor Co Ltd 内燃機関の温度測定装置
JP2010146059A (ja) * 2008-12-16 2010-07-01 Yamatake Corp 推定用多項式生成装置、入力パラメータ極性通知装置、推定装置および方法
JP2013117416A (ja) * 2011-12-02 2013-06-13 Rkc Instrument Inc 温度測定装置、温度測定方法及び温度測定システム

Also Published As

Publication number Publication date
JP7177975B2 (ja) 2022-11-25
JPWO2020261492A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP4658818B2 (ja) 温度推定方法および装置
CN101115979B (zh) 电子体温计
JP2009505062A5 (ja)
JP2009229382A (ja) 制御機器および電力推定方法
JP4788627B2 (ja) エンジンベンチシステムのパラメータ推定装置
WO2017211071A1 (zh) 预测温度的方法及其装置
JP2005516222A (ja) バイアス不安定性を有する加速度計を訂正および較正する方法およびシステム
WO2020261492A1 (ja) 温度推定装置、温度推定方法
US20220260431A1 (en) Temperature Measurement Method and Program
JP2009254104A (ja) 受配電設備用導体監視装置
JP2008151739A (ja) 温度推定方法および装置
JP2005140693A (ja) 熱物性値同定方法及び同定装置
JPS5853295B2 (ja) 電子式体温計
JP4964720B2 (ja) 被測定物の将来温度推定方法、装置、及びコンピュータプログラム
CN114459615A (zh) 一种应用于红外热成像测温设备的补偿的方法及装置
JP4529964B2 (ja) シミュレーション装置、シミュレーション方法及びシミュレーションプログラム
JP4658531B2 (ja) 工作機械の熱変位推定方法
JP4699797B2 (ja) 測定方法および装置
JPH08132506A (ja) 射出成形用金型の熱伝達係数算出方法
JP2009069079A (ja) 材料内部の温度推定方法、熱流束の推定方法、装置、及びコンピュータプログラム
JP4353682B2 (ja) 流量計測方法及び装置
JP2013247023A (ja) 温度推定装置及び温度推定方法
JP2020201071A (ja) 温度予測方法、温度予測装置、及び温度予測用プログラム
JP5720548B2 (ja) 温度測定装置、温度測定方法及び温度測定システム
RU2409827C2 (ru) Устройство прогнозирования технического состояния систем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935588

Country of ref document: EP

Kind code of ref document: A1