WO2020259383A1 - 准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法 - Google Patents

准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法 Download PDF

Info

Publication number
WO2020259383A1
WO2020259383A1 PCT/CN2020/096768 CN2020096768W WO2020259383A1 WO 2020259383 A1 WO2020259383 A1 WO 2020259383A1 CN 2020096768 W CN2020096768 W CN 2020096768W WO 2020259383 A1 WO2020259383 A1 WO 2020259383A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
reflected light
component
light
Prior art date
Application number
PCT/CN2020/096768
Other languages
English (en)
French (fr)
Inventor
田雪雁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020259383A1 publication Critical patent/WO2020259383A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an excimer laser annealing device, a preparation method of a polysilicon film, a thin film transistor and a preparation method thereof.
  • the production methods of polysilicon films mainly include: Excimer Laser Annealing (ELA), Solid Phase Crystallization (SPC), Metal Induced Crystallization (MIC), etc.
  • ELA Excimer Laser Annealing
  • SPC Solid Phase Crystallization
  • MIC Metal Induced Crystallization
  • LTPS TFT low temperature poly-silicon thin film transistor
  • an excimer laser annealing device including: a laser output module configured to emit a first laser beam; a pulse extension module including a first beam splitting component and a transmission component; wherein the first beam splitting component is configured In order to receive the first laser beam when moving to the optical path of the first laser beam, the received first laser beam is divided into a first reflected light and a first emergent light, the first reflected light
  • the laser energy accounts for 20% to 40% of the laser energy of the first laser beam; the first outgoing light is directly emitted, the first reflected light is directed to the transmission component, and will be transmitted through the The first reflected light after the component is transmitted is emitted; the transmission component is configured to receive the first reflected light, and cause the first reflected light to be transmitted to the first splitter after being transmitted in the transmission component part.
  • the pulse extension module further includes a second beam splitting component and a driving component;
  • the second beam splitting component is configured to receive the first laser beam when moving to the optical path of the first laser beam , Dividing the received first laser beam into second outgoing light and second reflected light, the laser energy of the second reflected light accounts for 40% to 60% of the laser energy of the first laser beam;
  • the second emitted light is directly emitted, the second reflected light is emitted to the transmission component, and the second reflected light transmitted by the transmission component is emitted;
  • the transmission component is also configured to receive The second reflected light, and the second reflected light is transmitted in the transmission assembly and then directed toward the second spectroscopic part;
  • the driving part and the first spectroscopic part and the second spectroscopic part Are connected to each other and configured to drive the first beam splitting part and the second beam splitting part to move;
  • the excimer laser annealing device further includes a controller, and the controller is connected with the driving part; the The controller is configured to control the driving
  • the light splitting coefficient of the first light splitting component is 30%, and the light splitting coefficient of the second light splitting component is 50%.
  • the laser output module includes a laser configured to emit the first laser beam.
  • the laser output module includes a laser and a dimming component; the laser is configured to emit a second laser beam; the dimming component is arranged between the laser and the pulse extension module and is located The optical path of the second laser beam; the dimming component is configured to receive the second laser beam, adjust the laser energy of the second laser beam to obtain the first laser beam, and emit the The first laser beam; the laser energy of the first laser beam is less than the laser energy of the second laser beam.
  • the laser is an excimer laser.
  • the transmission assembly includes a first reflecting part, a second reflecting part, a third reflecting part, and a fourth reflecting part; the first reflecting part and the third reflecting part are arranged on the first reflecting part.
  • One side of the optical path of the laser beam, the second reflecting part and the fourth reflecting part are arranged on the other side of the optical path of the first laser beam, and the first reflecting part and the fourth reflecting part Are arranged in a direction perpendicular to the optical path of the first laser beam, and the second reflective member and the third reflective member are arranged in a direction perpendicular to the optical path of the first laser beam.
  • the first spectroscopic component is located on the optical path of the first laser beam; the first reflective component is configured to receive the first reflected light and direct the first reflected light to all The second reflective member; the second reflective member is configured to direct the first reflected light reflected by the first reflective member toward the third reflective member; the third reflective member is configured to pass through the The first reflected light reflected by the second reflective member is directed toward the fourth reflective member; the fourth reflective member is configured to direct the first reflected light reflected by the third reflective member toward the The first beam splitting component; or, the second beam splitting component is located on the optical path of the first laser beam; the first reflective component is configured to receive the second reflected light and emit the second reflected light toward the second Reflective part; the second reflective part is configured to direct the second reflected light reflected by the first reflective part toward the third reflective part; the third reflective part is configured to pass through the second The second reflected light reflected by the reflective member is directed toward the fourth reflective member; the fourth reflective member is configured to direct the second reflected light reflected by the third
  • the first beam splitter includes a first bracket and a first beam splitter fixed in the first bracket
  • the second beam splitter includes a second bracket and is fixed in the second bracket
  • the drive component includes a motor, the motor is connected to the first bracket and the second bracket respectively.
  • a method for preparing a polysilicon thin film which includes: forming an amorphous silicon thin film on a substrate and heating the amorphous silicon thin film; using the above-mentioned excimer laser annealing device to treat the amorphous silicon thin film.
  • the crystalline silicon film is subjected to laser annealing treatment to form a polycrystalline silicon film.
  • using the excimer laser annealing device to perform laser annealing treatment on the amorphous silicon thin film to form a polysilicon thin film includes: controlling the first spectroscopic component and the second beam splitter in the excimer laser annealing device One of the two splitting components moves to the optical path of the first laser beam emitted by the laser output module, and controls the other of the first splitting component and the second splitting component to move to a position deviating from the laser output module. The position of the optical path of the first laser beam; laser annealing is performed on the amorphous silicon film to form the polysilicon film.
  • performing laser annealing treatment on the amorphous silicon thin film includes: controlling the scanning frequency of laser pulses output by the laser in the excimer laser annealing device to be 300 Hz to 600 Hz, and performing laser annealing treatment on the amorphous silicon film.
  • the film is subjected to laser annealing treatment; and/or, the overlap rate of the laser pulses output by the laser is controlled to be 92% to 98%, and the amorphous silicon film is subjected to laser annealing treatment; and/or, the output of the laser is controlled
  • the scanning rate of the laser pulse is 4-16 mm/s, and the amorphous silicon film is laser-annealed; and/or, the laser energy density of the laser pulse output by the laser is controlled to be 300-500 mJ/cm 2 , And performing laser annealing treatment on the amorphous silicon thin film.
  • the temperature for heating the amorphous silicon film is 400° C. to 500° C., and the heating time is 0.5 to 3 hours.
  • forming an amorphous silicon film on a substrate includes: forming the amorphous silicon film on a substrate on which a buffer layer is formed.
  • a method for manufacturing a thin film transistor including: forming a gate, a gate insulating layer, an active pattern, a source and a drain on a substrate; wherein, forming the active pattern includes: using the above-mentioned polysilicon film
  • the preparation method forms a polysilicon film; and performs patterning processing on the polysilicon film to obtain the active pattern.
  • a thin film transistor is provided, which is manufactured by the above-mentioned method for manufacturing a thin film transistor.
  • FIG. 1 is a schematic structural diagram of an excimer laser annealing device provided by some embodiments of the disclosure
  • FIG. 2 is a schematic structural diagram of another excimer laser annealing device provided by some embodiments of the disclosure.
  • FIG. 3 is a schematic structural diagram of yet another excimer laser annealing device provided by some embodiments of the present disclosure.
  • 4A is a diagram of a laser pulse waveform provided by some embodiments of the present disclosure.
  • 4B is another laser pulse waveform diagram provided by some embodiments of the present disclosure.
  • 4C is a topography diagram of a polysilicon provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of yet another excimer laser annealing device provided by some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of yet another excimer laser annealing device provided by some embodiments of the disclosure.
  • Fig. 7A is another laser pulse waveform diagram provided by some embodiments of the present disclosure.
  • Fig. 7B is another laser pulse waveform diagram provided by some embodiments of the present disclosure.
  • FIG. 7C is a topography diagram of another polysilicon provided by some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of the connection relationship between a pulse extension module and a controller provided by some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a pulse extension module provided by some embodiments of the disclosure.
  • FIG. 10 is a schematic structural diagram of another pulse extension module provided by some embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram of yet another pulse extension module provided by some embodiments of the present disclosure.
  • FIG. 12A is a schematic diagram of a working state of a pulse extension module provided by some embodiments of the present disclosure.
  • FIG. 12B is a schematic diagram of the working state of another pulse extension module provided by some embodiments of the present disclosure.
  • FIG. 13 is a flowchart of a method for preparing a polysilicon film according to some embodiments of the disclosure.
  • FIG. 14 is a flowchart of another method for preparing a polysilicon film according to some embodiments of the disclosure.
  • FIG. 15 is a schematic diagram of a preparation process of a polysilicon film provided by some embodiments of the present disclosure.
  • FIG. 16 is a schematic diagram of a manufacturing process of a TFT provided by some embodiments of the disclosure.
  • Some embodiments of the present disclosure provide an excimer laser annealing device, as shown in FIG. 1, including a laser output module 1, a pulse extension module 2, an optical module 4 and a process chamber 5.
  • the laser output module 1 is used to emit the first laser beam.
  • the pulse extension module 2 is used to extend the pulse time of the laser beam it emits.
  • the optical module 4 is used to adjust the laser beam output from the pulse extension module 2 so that the laser beam irradiated on the sample to be annealed in the process chamber 5 meets the laser annealing conditions of the sample to be annealed.
  • the optical module 4 includes a first sub-optical module 401, a second sub-optical module 402 and a third sub-optical module 403.
  • the laser beam output from the pulse extension module 2 sequentially passes through the first sub-optical module 401, the second sub-optical module 402, and the third sub-optical module 403, so that the laser beam changes from a spot with uneven energy distribution to a linear laser with uniform energy distribution bundle.
  • the linear laser beam is incident on the process chamber 5 to anneal the sample to be annealed.
  • the pulse extension module 2 includes a first light splitting component 22 and a transmission component 27.
  • the first beam splitter 22 is used to receive the first laser beam when moving to the optical path of the first laser beam, and divide the received first laser beam into the first outgoing light 221 and the first reflected light 222.
  • the first reflected light The laser energy of 222 accounts for 20%-40% of the laser energy of the first laser beam received by the first spectroscopic component 22, such as 20%, 30% or 40%; the first outgoing light 221 is directly emitted and the first reflected
  • the light 222 is directed to the transmission component 27, and the first reflected light 222 transmitted by the transmission component 27 is emitted.
  • the first beam splitter 22 is a beam splitter.
  • the transmission component 27 is used to receive the first reflected light 222 and cause the first reflected light 222 to be transmitted to the first light splitting component 22 after being transmitted in the transmission component 27.
  • the first laser beam is divided into the first outgoing light 221 and the first reflected light 222 by the first beam splitting part 22, the first outgoing light 221 is directly emitted, and the first reflected light 222 is directed to the transmission component 27, and then passes through the transmission component. After the transmission of 27, it exits through the first light splitting component 22.
  • the first outgoing light 221 that is emitted first and the first reflected light 222 that is emitted later are combined into the same optical path, so that the pulse time of the laser beam emitted from the pulse extension module 2 is extended from the time when the first outgoing light 221 is emitted to the first The time for a reflected light 222 to emit, thereby extending the laser pulse time emitted from the pulse extension module 2.
  • the pulse time of the first laser beam emitted from the laser output module 1 is 20-30 ns, and the second energy peak in the laser pulse waveform is lower than the first energy peak.
  • the pulse time of the laser beam emitted from the pulse extension module 2 is 60-90 ns, and the second energy peak in the laser pulse waveform is lower than the first energy peak.
  • the energy distribution in the laser pulse waveform can be approximately understood as the distribution of laser pulse energy within the pulse time.
  • the first emitted light 221 corresponds to the first energy peak
  • the first reflected light 222 corresponds to the second energy peak. That is, when the first emitted light 221 and the first reflected light 222 are emitted, the laser pulse There is a peak in energy.
  • the first beam splitter 22 in the pulse extension module 2 divides the received first laser beam into a first emitted light 221 and a first reflected light 222, and The laser energy of the first reflected light 222 accounts for 20%-40% of the laser energy of the first laser beam received by the first spectroscopic component 22, the first outgoing light 221 is directly emitted, and the first reflected light 222 is transmitted through the transmission component 27 Then it exits through the first light splitting component 22.
  • the second energy peak value in the waveform of the laser pulse transmitted from the pulse extension module 2 to the surface of the sample to be annealed in the process chamber 5 is lower than the first energy peak value.
  • the tetragonal polycrystalline silicon shown in FIG. 4C can be obtained.
  • the average size of the tetragonal polycrystalline silicon is 328 nm, and the 3 times the standard deviation is 147 nm, which improves the polycrystalline silicon.
  • the uniformity of the product thereby improving the product yield.
  • the process window of the excimer laser annealing process is 445 mJ/cm 2 to 455 mJ/cm 2 , so the available range of process parameters is wide, and the influence of the fluctuation of process parameters on polysilicon is relatively stable.
  • SRU Short Range Uniformity
  • TFT Thin Film Transistor
  • the tetragonal polysilicon is suitable for any LTPS (Low Temperature Poly-silicon)-AMOLED (Active-matrix organic light-emitting diode) display device, for example, the resolution is greater than 400PPI (Pixels Per Inch, pixel density) LTPS-AMOLED display device.
  • LTPS Low Temperature Poly-silicon
  • AMOLED Active-matrix organic light-emitting diode
  • the pulse extension module 2 further includes a second light splitting component 23.
  • the second beam splitter 23 is used to receive the first laser beam when moving to the optical path of the first laser beam, and divide the received first laser beam into the second outgoing light 231 and the first laser beam.
  • the second reflected light 232, the laser energy of the second reflected light 232 accounts for 40%-60% of the laser energy of the first laser beam received by the second beam splitter 23, such as 40%, 50%, or 60%; 231 emits, emits the second reflected light 232 toward the transmission component 27, and emits the second reflected light 232 transmitted by the transmission component 27.
  • the second beam splitter 23 is a beam splitter.
  • the transmission component 27 is also used to receive the second reflected light 232 and cause the second reflected light 232 to be transmitted to the second light splitting component 23 after being transmitted in the transmission component 27.
  • the first laser beam is divided into the second emitted light 231 and the second reflected light 232 by the second beam splitting component 23.
  • the second emitted light 231 is directly emitted, and the second reflected light 232 is emitted to the transmission component 27, and then passes through the transmission component. After the transmission of 27, it exits through the second light splitting component 23.
  • the second emitted light 231 emitted first and the second reflected light 232 emitted later are combined into the same optical path, so that the pulse time of the laser beam emitted from the pulse extension module 2 is extended from the time when the second emitted light 231 is emitted to the first
  • the emission time of the second reflected light 232 thereby prolongs the laser pulse time emitted from the pulse extension module 2.
  • the pulse time of the first laser beam emitted from the laser output module 1 is about 24 ns, and the second energy peak in the laser pulse waveform is lower than the first energy peak, as shown in FIG. 7B
  • the pulse time of the laser beam emitted from the pulse extension module 2 is about 84 ns, and the second energy peak in the laser pulse waveform is higher than the first energy peak.
  • the second beam splitter 23 in the pulse extension module 2 divides the received first laser beam into a second exit light 231 and a second reflected light 232, and The laser energy of the second reflected light 232 accounts for 40% to 60% of the laser energy of the first laser beam received by the second beam splitter 23.
  • the second outgoing light 231 is directly emitted, and the second reflected light 232 is transmitted through the transmission assembly 27 Then it exits through the second light splitting component 23.
  • the second energy peak value in the waveform of the laser pulse transmitted from the pulse extension module 2 to the surface of the sample to be annealed in the process chamber 5 is higher than the first energy peak value.
  • the original tetragonal crystal system can be changed to obtain the hexagonal polycrystalline silicon or polygonal polycrystalline silicon shown in FIG. 7C.
  • the average of the hexagonal polycrystalline silicon or polygonal polycrystalline silicon The size is 376nm and the 3 times standard deviation is 376nm.
  • the process window of the excimer laser annealing process is 440 mJ/cm 2 to 445 mJ/cm 2 .
  • the polygonal polysilicon or hexagonal polysilicon is suitable for LTPS-LCD (Liquid Crystal Display, liquid crystal display) or LTPS-AMOLED display devices with a resolution of less than 200 PPI.
  • LTPS-LCD Liquid Crystal Display, liquid crystal display
  • LTPS-AMOLED display devices with a resolution of less than 200 PPI.
  • the first spectroscopic component 22 can be moved to the optical path AA' of the first laser beam to obtain tetragonal polycrystalline silicon according to production needs, or the second spectroscopic component 23 can be moved to the first The laser beam is on the optical path AA' to obtain hexagonal polysilicon or polygonal polysilicon.
  • the pulse extension module 2 further includes a driving part 24, which is connected to the first light splitting part 22 and the second light splitting part 23 and is configured to drive the first light splitting part 22 And the movement of the second spectroscopic component 23.
  • the driving part 24 includes a motor connected to both the first light splitting part 22 and the second light splitting part 23 for driving the first light splitting part 22 and the second light splitting part 23 to move.
  • the driving part 24 includes two motors, the two motors are respectively connected to the first splitting part 22 and the second splitting part 23, one motor is used to drive the first splitting part 22 to move, the other motor is used To drive the second beam splitter 23 to move.
  • the first beam splitting component 22 includes a first bracket 223 and a first beam splitter 224 fixed in the first bracket 223, and the second beam splitting component 23 includes a second bracket 233 and fixed on the second bracket. 233 within the second beam splitter 234.
  • the driving part 24 includes a motor which is connected to the first bracket 223 and the second bracket 233, respectively, so as to drive the movement of the first beam splitter 224 and the second beam splitter 234.
  • the positions of the first spectroscopic component 22 and the second spectroscopic component 23 are not limited.
  • the first beam splitting member 22 and the second beam splitting member 23 are both located at positions deviated from the optical path AA' of the first laser beam.
  • the first beam splitting member 22 is located on the optical path AA' of the first laser beam
  • the second beam splitting member 23 is located at a position deviated from the optical path AA' of the first laser beam.
  • the second beam splitting member 23 is located on the optical path AA' of the first laser beam
  • the first beam splitting member 22 is located at a position deviated from the optical path AA' of the first laser beam.
  • the first laser beam emitted by the laser output module 1 reaches the first beam splitter 22 or the second beam splitter 23 in the pulse extension module 2.
  • the optical path AA' of the first laser beam is the optical path of the laser beam emitted by the laser 11.
  • the position deviated from the optical path AA' of the first laser beam may be any side deviated from the optical path AA' of the first laser beam.
  • the first beam splitting component 22 and the second beam splitting component 23 can arrange at appropriate positions in the pulse extension module 2 deviating from the optical path AA' of the first laser beam according to actual conditions.
  • the first beam splitting part 22 and the second beam splitting part 23 may be arranged at Deviating from the same side of the optical path AA' of the first laser beam
  • the first beam splitting part 22 and the second beam splitting part 23 can also be arranged on opposite sides of the optical path AA' of the first laser beam, and placed in the excimer laser annealing device
  • one of the first beam splitter 22 and the second beam splitter 23 is moved to the optical path AA′ of the first laser beam, and the other remains at the original position.
  • the position of the first beam splitting component 22 should also be based on the fact that when the second beam splitting component 23 is located on the optical path AA' of the first laser beam, the light transmission between the second beam splitting component 23 and the transmission assembly 27 will not be affected.
  • the position of the second light splitting component 23 should be based on the fact that when the first light splitting component 22 is located on the optical path AA' of the first laser beam, the light transmission between the first light splitting component 22 and the transmission assembly 27 will not be affected.
  • the driving part 24 can move the first beam splitting part 22 to the optical path AA' of the first laser beam, and move the second beam splitting part 23 Move to a position deviated from the optical path AA' of the first laser beam, so that the first laser beam passes through the first beam splitter 22 to be divided into the first outgoing light 221 and the first reflected light 222, the first outgoing light 221 is directly emitted, and the first reflected light
  • the light 222 is emitted after being transmitted in the transmission component 27.
  • the driving part 24 can move the second beam splitting part 23 to the optical path AA' of the first laser beam, and move the first beam splitting part 22 Move to a position deviated from the optical path AA' of the first laser beam, so that the first laser beam passes through the second beam splitter 23 to be divided into the second outgoing light 231 and the second reflected light 232, the second outgoing light 231 is directly emitted, and the second reflected light
  • the light 232 exits after being transmitted in the transmission assembly 27.
  • the excimer laser annealing device further includes a controller 3 connected to the driving part 24, and the controller 3 is used to control the driving part 24 to drive the first spectroscopic part
  • One of the 22 and the second beam splitter 23 moves to the optical path AA′ of the first laser beam, and the other moves to a position deviated from the optical path AA′ of the first laser beam.
  • the controller 3 controls the driving part 24 to drive the first beam splitting part 22 to move to the optical path AA' of the first laser beam, so that the first beam splitting part 22 receives the first laser beam and drives the second laser beam.
  • the spectroscopic member 23 moves to a position deviated from the optical path AA′ of the first laser beam.
  • the controller 3 controls the driving part 24 to drive the second beam splitting part 23 to move to the optical path AA' of the first laser beam in response to the second control signal, so that the second beam splitting part 23 receives the first laser beam and drives the first laser beam.
  • a beam splitter 22 moves to a position deviated from the optical path AA′ of the first laser beam.
  • the excimer laser annealing device further includes a touch screen and a processor, and both the touch screen and the controller 3 are connected to the processor.
  • the operator can input a control instruction on the interface of the touch screen, and the processor generates a first control signal or a second control signal according to the control instruction and sends it to the controller 3 so that the controller 3 responds to the first control signal
  • a control signal or a second control signal controls the driving part 24 to drive the movement of the first light splitting part 22 and the second light splitting part 23.
  • the excimer laser annealing device further includes a touch screen, and the controller 3 is connected to the touch screen, and the controller 3 also has a processing function.
  • the operator can input a control instruction on the touch screen interface, and the controller 3 converts the control instruction into a first control signal or a second control signal, and responds to the first control signal or the second control signal
  • the control driving part 24 drives the movement of the first spectroscopic part 22 and the second spectroscopic part 23.
  • the first beam splitting component 22 and the second beam splitting component 23 are both beam splitters, the beam splitting coefficient of the first beam splitting component 22 is 30%, and the beam splitting coefficient of the second beam splitting component 23 is 50%. That is, the first spectroscopic member 22 is a spectroscope with a spectral coefficient of 30%, and the second spectroscopic member 23 is a spectroscope with a spectral coefficient of 50%.
  • the spectroscopic coefficient of the first spectroscopic component 22 is 30%, that is, among the first emitted light 221 and the first reflected light 222 split by the first spectroscopic component 22, the laser energy of the first emitted light 221 accounts for the amount of laser energy received by the first spectroscopic component 22
  • the laser energy of the first laser beam received is 70%
  • the laser energy of the first reflected light 222 accounts for 30% of the laser energy of the first laser beam received by the first spectroscopic component 22. Therefore, as shown in FIG. 12A, the first outgoing light 221 that accounts for 70% of the laser energy in the first laser beam received by the first beam splitting part 22 is directly emitted, and the first laser beam received by the first beam splitting part 22 accounts for another part.
  • the first reflected light 222 of 30% laser energy is transmitted by the transmission component 27 and then emitted through the first light splitting component 22, and the first reflected light 222 and the first emitted light 221 are combined into the same optical path.
  • the spectroscopic coefficient of the second spectroscopic component 23 is 50%, that is, of the second emitted light 231 and the second reflected light 232 split by the second spectroscopic component 23, the laser energy of the second emitted light 231 accounts for the amount of laser energy received by the second spectroscopic component 23.
  • the laser energy of the first laser beam received is 50%
  • the laser energy of the second reflected light 232 accounts for 50% of the laser energy of the first laser beam received by the second beam splitter 23. Therefore, as shown in FIG. 12B, the second outgoing light 231 that accounts for 50% of the laser energy in the first laser beam received by the second beam splitting part 23 is directly emitted, and the first laser beam received by the second beam splitting part 23 accounts for another part.
  • the second reflected light 232 of 50% laser energy is transmitted by the transmission component 27 and then emitted through the second beam splitting component 23, and the second reflected light 232 and the second emitted light 231 are combined into the same optical path.
  • the laser output module 1 includes a laser 11.
  • the laser 11 is used to emit a first laser beam.
  • the laser 11 is an excimer laser, such as a xenon chloride (XeCl) excimer laser, and the wavelength of the first laser beam emitted by it is 308 nm.
  • XeCl xenon chloride
  • the laser output module 1 includes a laser 11 and a dimming component 12.
  • the laser 11 is used to emit a second laser beam.
  • the laser 11 is an excimer laser, such as a xenon chloride (XeCl) excimer laser.
  • the dimming component 12 is arranged between the laser 11 and the pulse extension module 2 and is located on the optical path of the second laser beam. The dimming component 12 is used to receive the second laser beam, adjust the laser energy of the second laser beam to obtain the first laser beam, and emit the first laser beam.
  • the laser energy of the first laser beam is less than the laser energy of the second laser beam, that is, the dimming component 12 is used to weaken the laser energy of the laser beam.
  • the dimming component 12 is a beam splitter with a 2% splitting coefficient, so the laser energy of the first laser beam emitted from the dimming component 12 accounts for 98% of the laser energy of the second laser beam emitted by the laser 11.
  • the first laser beam received by the first beam splitting component 22 can be a laser beam directly emitted from the laser 11, or a laser beam emitted by the laser 11 after being adjusted by the dimming component 12.
  • the laser beam depends on the actual structure of the laser output module 1.
  • the transmission assembly 27 includes a first reflective part 271, a second reflective part 272, a third reflective part 273, and a fourth reflective part 274; the first reflective part 271 and the second reflective part
  • the three reflective parts 273 are located on one side of the optical path AA' of the first laser beam
  • the second reflective part 272 and the fourth reflective part 274 are located on the other side of the optical path AA' of the first laser beam
  • the four reflecting parts 274 are arranged in a direction perpendicular to the optical path AA′ of the first laser beam
  • the second reflecting part 272 and the third reflecting part 273 are arranged in a direction perpendicular to the optical path AA′ of the first laser beam.
  • the first reflecting component 271 is used to receive the first reflected light 222 split from the first beam splitting component 22, and The first reflected light 222 is directed to the second reflective member 272; the second reflective member 272 is used to direct the first reflected light 222 reflected by the first reflective member 271 to the third reflective member 273; the third reflective member 273 is used to The first reflected light 222 reflected by the second reflective member 272 is directed toward the fourth reflective member 274; the fourth reflective member 274 is used to direct the first reflected light 222 reflected by the third reflective member 273 toward the first spectroscopic member 22 .
  • the first reflected light 222 separated from the first spectroscopic component 22 is reflected by the first reflecting component 271, the second reflecting component 272, the third reflecting component 273, and the fourth reflecting component 274 in this order, it is directed to the first spectroscopic component 22 , And exit along the exit direction of the first exit light 221, which automatically superimposes and merges with the first exit light 221 into the same optical path, thus prolonging the pulse time of the laser beam exiting from the pulse extension module 2.
  • the first reflecting part 271 is used to receive the second reflected light 232 split from the second beam splitting part 23, and The second reflected light 232 is directed to the second reflective member 272; the second reflective member 272 is used to direct the second reflected light 232 reflected by the first reflective member 271 to the third reflective member 273; the third reflective member 273 is used to The second reflected light 232 reflected by the second reflective member 272 is directed to the fourth reflective member 274; the fourth reflective member 274 is used to direct the second reflected light 232 reflected by the third reflective member 273 to the second spectroscopic member 23 .
  • the second reflected light 232 split from the second spectroscopic component 23 is reflected by the first reflecting component 271, the second reflecting component 272, the third reflecting component 273, and the fourth reflecting component 274 in turn, it is directed toward the second spectroscopic component 23. , And exit along the exit direction of the second exit light 231, which automatically superimposes and merges with the second exit light 231 into the same optical path, thus prolonging the pulse time of the laser beam exiting the pulse extension module 2.
  • the distance of the first reflected light 222 or the second reflected light 232 along the optical path of the transmission component 27 is 9-11 m.
  • Some embodiments of the present disclosure also provide a method for preparing a polysilicon film, as shown in FIG. 13, including S1 to S2.
  • An amorphous silicon film 32 is formed on the substrate 30, and the amorphous silicon film 32 is heated.
  • the preparation method includes S10 to S60.
  • the substrate 30 is pre-cleaned.
  • the substrate 30 may be a glass substrate or a flexible substrate, such as a PI (Polyimide) substrate.
  • PI Polyimide
  • an inorganic material is deposited on the substrate 30 to form a buffer layer 31.
  • the buffer layer 31 may have a double-layer structure or a single-layer structure.
  • the material of the buffer layer 31 may be an inorganic material including silicon nitride (SiN X ) and silicon dioxide (SiO 2 ).
  • silicon nitride with a thickness of, for example, 50 to 150 nm may be deposited on the substrate 30 first, and after the silicon nitride layer is obtained, the silicon nitride layer may be deposited, for example, with a thickness of 100 nm. ⁇ 350nm silicon dioxide to obtain a silicon dioxide layer.
  • an amorphous silicon material is deposited on the side of the buffer layer 31 away from the substrate 30 to form an amorphous silicon film 32, and the amorphous silicon film 32 is heated.
  • a PECVD (Plasma Enhanced Chemical Vapor Deposition) method is used to form the amorphous silicon film 32, and the thickness of the amorphous silicon film 32 is 30-60 nm.
  • the temperature at which the amorphous silicon film 32 is heated is 400°C to 500°C, such as 400°C, 450°C, or 500°C, and the time is 0.5 to 3 hours, such as 0.5 hour, 1 hour, 2 hours, or 3 hours. hour.
  • the substrate 30 on which the amorphous silicon film 32 is formed is placed in the process chamber 5 of the excimer laser annealing device.
  • the substrate 30 on which the amorphous silicon film 32 is formed is placed in the process chamber 5, and its position is such that the laser light incident on the process chamber 5 irradiates the surface of the amorphous silicon film 32.
  • one of the first beam splitter 22 and the second beam splitter 23 is controlled to be placed on the optical path AA' of the first laser beam, and the other moves to Deviate from the position of the optical path AA' of the first laser beam.
  • the first beam splitter 22 can be controlled to move to the optical path AA' of the first laser beam.
  • the second beam splitter 23 can be controlled to move to the optical path AA' of the first laser beam.
  • the scanning frequency of the laser pulse output by the laser 11 is 300 Hz to 600 Hz, for example, 300 Hz, 400 Hz, 500 Hz, or 600 Hz.
  • the overlap rate of the laser pulses output by the laser 11 is 92%-98%, for example, 92%, 95%, or 98%.
  • the scan rate of the laser pulse output by the laser 11 is 4-16 mm/s, for example, 4 mm/s, 10 mm/s or 16 mm/s.
  • the laser energy density of the laser pulse output by the laser 11 is 300-500 mJ/cm 2 , for example, 300 mJ/cm 2 , 400 mJ/cm 2 or 500 mJ/cm 2 .
  • the first beam splitting component 22 When the first beam splitting component 22 is placed on the optical path AA' of the first laser beam, the first beam splitting component 22 divides the received first laser beam into the first outgoing light 221 and the first reflected light 222, and the An outgoing light 221 is directly emitted, the first reflected light 222 is directed to the transmission component 27, and the first reflected light 222 transmitted by the transmission component 27 is emitted. Since the laser energy of the first reflected light 222 accounts for 20%-40% of the laser energy of the first laser beam received by the first beam splitter 22, as shown in FIG.
  • the laser beam irradiating the surface of the amorphous silicon film 32
  • the first energy peak of is greater than the second energy peak, so the amorphous silicon film 32 can form a tetragonal polycrystalline silicon film 33 as shown in FIG. 4C after annealing.
  • the second beam splitter 23 When the second beam splitter 23 is placed on the optical path AA' of the first laser beam, the second beam splitter 23 divides the received first laser beam into second outgoing light 231 and second reflected light 232, The second outgoing light 231 is directly emitted, the second reflected light 232 is directed to the transmission assembly 27, and the second reflected light 232 transmitted by the transmission assembly 27 is emitted. Since the laser energy of the second reflected light 232 accounts for 40% to 60% of the laser energy of the first laser beam received by the second beam splitter 23, as shown in FIG.
  • the laser beam irradiated to the surface of the amorphous silicon film 32 The first energy peak of is smaller than the second energy peak, so the amorphous silicon film 32 can form a hexagonal or polygonal polysilicon film 33 after annealing as shown in FIG. 7C.
  • Some embodiments of the present disclosure also provide a thin film transistor (Thin Film Transistor, TFT) manufacturing method, including: forming a gate 36, a gate insulating layer 35, an active pattern 34, a source 38, and a drain on the substrate 30. ⁇ 39.
  • the formation process of the active pattern 34 includes: forming the polysilicon film 33 by the above-mentioned preparation method of the polysilicon film, and performing a patterning process on the polysilicon film 33 to obtain the desired active pattern 34.
  • the patterning process may include processes such as exposure, development, and etching.
  • the formation process is as follows: based on the formation of the polysilicon film 33, the polysilicon film 33 is patterned to form the semiconductor pattern 34 of the TFT; A gate insulating layer 35, a gate 36 and an interlayer insulating layer 37 are sequentially formed on the 34.
  • the orthographic projection of the gate 36 on the substrate 30 is within the range of the orthographic projection of the semiconductor pattern 34 on the substrate 30, and the gate 36
  • the area is smaller than the area of the semiconductor pattern 34, the gate insulating layer 35 and the interlayer insulating layer 37 are formed with a first via hole and a second via hole; the source electrode 38 and the drain electrode 39 are simultaneously formed on the interlayer insulating layer 37, the source The electrode 38 and the drain electrode 39 contact the semiconductor pattern 34 through the first via hole and the second via hole penetrating the interlayer insulating layer 37 and the gate insulating layer 35, respectively, thereby forming a TFT.
  • Some embodiments of the present disclosure also provide a thin film transistor, and the TFT is manufactured by the above-mentioned manufacturing method.
  • the TFT is suitable for, for example, any LTPS-AMOLED.
  • the TFT is suitable for, for example, LTPS-LCD and LTPS-AMOLED with a resolution of less than 200 PPI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及其制备方法。准分子激光退火装置包括:激光输出模块,被配置为出射第一激光束;脉冲延长模块,包括第一分光部件和传输组件;第一分光部件被配置为在移动至第一激光束的光路上时接收所述第一激光束,将接收到的第一激光束分为第一反射光和第一出射光,第一反射光的激光能量占第一激光束的激光能量的20%~40%;将第一出射光直接出射,将第一反射光射向传输组件,并将经传输组件传输后的第一反射光出射;传输组件被配置为接收第一反射光,并使第一反射光在传输组件中传输后射向第一分光部件。

Description

准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法
本申请要求于2019年6月25日提交的、申请号为201910556540.0的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种准分子激光退火装置、多晶硅薄膜的制备方法、以及薄膜晶体管及其制备方法。
背景技术
目前,多晶硅薄膜的制作方法主要包括:准分子激光退火(Excimer Laser Annealing,简称ELA)、固相晶化(Solid Phase Crystallization,简称SPC)、金属诱导晶化(Metal Induced Crystallization,简称MIC)等。其中,采用准分子激光退火工艺来制备低温多晶硅薄膜晶体管(Low Temperature Poly-silicon Thin Film Transistor,LTPS TFT),是目前唯一已经实现量产的方法。
公开内容
一方面,提供一种准分子激光退火装置,包括:激光输出模块,被配置为出射第一激光束;脉冲延长模块,包括第一分光部件和传输组件;其中,所述第一分光部件被配置为在移动至所述第一激光束的光路上时接收所述第一激光束,将接收到的所述第一激光束分为第一反射光和第一出射光,所述第一反射光的激光能量占所述第一激光束的激光能量的20%~40%;将所述第一出射光直接出射,将所述第一反射光射向所述传输组件,并将经所述传输组件传输后的所述第一反射光出射;所述传输组件被配置为接收所述第一反射光,并使所述第一反射光在所述传输组件中传输后射向所述第一分光部件。
在一些实施例中,所述脉冲延长模块还包括第二分光部件和驱动部件;所述第二分光部件被配置为在移动至所述第一激光束的光路上时接收所述第一激光束,将接收到的所述第一激光束分为第二出射光和第二反射光,所述第二反射光的激光能量占所述第一激光束的激光能量的40%~60%;将所述第二出射光直接出射,将所述第二反射光射向所述传输组件,并将经所述传输组件传输后的所述第二反射光出射;所述传输组件还被配置为接收所述第二反射光,并使所述第二反射光在所述传输组件中传输后射向所述第二分光部件;所述驱动部件与所述第一分光部件和所述第二分光部件相连接,被配置为驱动所述第一分光部件和所述 第二分光部件移动;其中,所述准分子激光退火装置还包括控制器,所述控制器与所述驱动部件相连接;所述控制器被配置为响应于第一控制信号控制所述驱动部件驱动所述第一分光部件移动至所述第一激光束的光路上,以使所述第一分光部件接收所述第一激光束,并驱动所述第二分光部件移动至偏离所述第一激光束的光路的位置;以及响应于第二控制信号控制所述驱动部件驱动所述第二分光部件移动至所述第一激光束的光路上,以使所述第二分光部件接收所述第一激光束,并驱动所述第一分光部件移动至偏离所述第一激光束的光路的位置。
在一些实施例中,所述第一分光部件的分光系数为30%,所述第二分光部件的分光系数为50%。
在一些实施例中,所述激光输出模块包括激光器,所述激光器被配置为发射所述第一激光束。
在一些实施例中,所述激光输出模块包括激光器和调光部件;所述激光器被配置为发射第二激光束;所述调光部件设置于所述激光器与所述脉冲延长模块之间且位于所述第二激光束的光路上;所述调光部件被配置为接收所述第二激光束,对所述第二激光束的激光能量进行调节以得到所述第一激光束,并出射所述第一激光束;所述第一激光束的激光能量小于所述第二激光束的激光能量。
在一些实施例中,所述激光器为准分子激光器。
在一些实施例中,所述传输组件包括第一反射部件、第二反射部件、第三反射部件、第四反射部件;所述第一反射部件和所述第三反射部件设置在所述第一激光束的光路的一侧,所述第二反射部件和所述第四反射部件设置在所述第一激光束的光路的另一侧,且所述第一反射部件和所述第四反射部件沿垂直所述第一激光束的光路的方向排布,所述第二反射部件和所述第三反射部件沿垂直所述第一激光束的光路的方向排布。
在一些实施例中,所述第一分光部件位于所述第一激光束的光路上;所述第一反射部件配置为接收所述第一反射光,并将所述第一反射光射向所述第二反射部件;所述第二反射部件配置为将经过所述第一反射部件反射的所述第一反射光射向所述第三反射部件;所述第三反射部件配置为将经过所述第二反射部件反射的所述第一反射光射向所述第四反射部件;所述第四反射部件配置为将经过所述第三反射部件反射的所述第一反射光射向所述第一分光部件;或者,第二分光部件位于所述第一激 光束的光路上;所述第一反射部件配置为接收第二反射光,并将所述第二反射光射向所述第二反射部件;所述第二反射部件配置为将经过所述第一反射部件反射的所述第二反射光射向所述第三反射部件;所述第三反射部件配置为将经过所述第二反射部件反射的所述第二反射光射向所述第四反射部件;所述第四反射部件配置为将经过所述第三反射部件反射的所述第二反射光射向所述第二分光部件。
在一些实施例中,所述第一分光部件包括第一支架以及固定在所述第一支架内的第一分光镜,所述第二分光部件包括第二支架以及固定在所述第二支架内的第二分光镜;所述驱动部件包括一个电机,所述电机分别与所述第一支架和所述第二支架连接。
另一方面,提供一种多晶硅薄膜的制备方法,包括:在衬底上形成非晶硅薄膜,并对所述非晶硅薄膜进行加热处理;采用上述的准分子激光退火装置,对所述非晶硅薄膜进行激光退火处理,以形成多晶硅薄膜。
在一些实施例中,采用所述准分子激光退火装置,对所述非晶硅薄膜进行激光退火处理,以形成多晶硅薄膜,包括:控制所述准分子激光退火装置中的第一分光部件和第二分光部件中的一个移动至激光输出模块出射的第一激光束的光路上,并控制所述第一分光部件和所述第二分光部件中的另一个移动至偏离所述激光输出模块出射的所述第一激光束的光路的位置;对所述非晶硅薄膜进行激光退火处理,以形成所述多晶硅薄膜。
在一些实施例中,对所述非晶硅薄膜进行激光退火处理,包括:控制所述准分子激光退火装置中的激光器输出的激光脉冲的扫描频率为300Hz~600Hz,并对所述非晶硅薄膜进行激光退火处理;和/或,控制所述激光器输出的激光脉冲的重叠率为92%~98%,并对所述非晶硅薄膜进行激光退火处理;和/或,控制所述激光器输出的激光脉冲的扫描速率为4~16mm/s,并对所述非晶硅薄膜进行激光退火处理;和/或,控制所述激光器输出的激光脉冲的激光能量密度为300~500mJ/cm 2,并对所述非晶硅薄膜进行激光退火处理。
在一些实施例中,对所述非晶硅薄膜进行加热处理的温度为400℃~500℃,加热时间为0.5~3小时。
在一些实施例中,在衬底上形成非晶硅薄膜,包括:在形成有缓冲层的衬底上形成所述非晶硅薄膜。
再一方面,提供一种薄膜晶体管的制备方法,包括:在衬底上形成 栅极、栅绝缘层、有源图案、源极和漏极;其中,形成有源图案包括:采用上述多晶硅薄膜的制备方法形成多晶硅薄膜;对所述多晶硅薄膜进行图案化处理,以得到所述有源图案。
又一方面,提供一种薄膜晶体管,采用上述的薄膜晶体管的制备方法制得。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开的一些实施例提供的一种准分子激光退火装置的结构示意图;
图2为本公开的一些实施例提供的另一种准分子激光退火装置的结构示意图;
图3为本公开的一些实施例提供的又一种准分子激光退火装置的结构示意图;
图4A为本公开的一些实施例提供的一种激光脉冲波形图;
图4B为本公开的一些实施例提供的另一种激光脉冲波形图;
图4C为本公开的一些实施例提供的一种多晶硅的形貌图;
图5为本公开的一些实施例提供的又一种准分子激光退火装置的结构示意图;
图6为本公开的一些实施例提供的又一种准分子激光退火装置的结构示意图;
图7A为本公开的一些实施例提供的又一种激光脉冲波形图;
图7B为本公开的一些实施例提供的又一种激光脉冲波形图;
图7C为本公开的一些实施例提供的另一种多晶硅的形貌图;
图8为本公开的一些实施例提供的一种脉冲延长模块与控制器的连接关系示意图;
图9为本公开的一些实施例提供的一种脉冲延长模块的结构示意图;
图10为本公开的一些实施例提供的另一种脉冲延长模块的结构示意图;
图11为本公开的一些实施例提供的又一种脉冲延长模块的结构示意图;
图12A为本公开的一些实施例提供的一种脉冲延长模块的工作状态示意图;
图12B为本公开的一些实施例提供的另一种脉冲延长模块的工作状态示意图;
图13为本公开的一些实施例提供的一种多晶硅薄膜的制备方法的流程图;
图14为本公开的一些实施例提供的另一种多晶硅薄膜的制备方法的流程图;
图15为本公开的一些实施例提供的一种多晶硅薄膜的制备过程示意图;
图16为本公开的一些实施例提供的一种TFT的制备过程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的一些实施例提供一种准分子激光退火装置,如图1所示,包括激光输出模块1、脉冲延长模块2、光学模块4和工艺腔室5。激光输出模块1用于出射第一激光束。脉冲延长模块2用于延长其出射的激光束的脉冲时间。光学模块4用于调整从脉冲延长模块2输出的激光束,以使照射在工艺腔室5中待退火样品上的激光束符合该待退火样品的激光退火条件。
如图1所示,光学模块4包括第一子光学模块401、第二子光学模块402和第三子光学模块403。从脉冲延长模块2输出的激光束依次经过第一子光学模块401、第二子光学模块402和第三子光学模块403,使得激光束从能量分布不均匀的光斑变成能量分布均匀的线性激光束。该线性激光束入射至工艺腔室5,从而对待退火样品进行退火。
如图2和图3所示,脉冲延长模块2包括第一分光部件22和传输组件27。第一分光部件22用于在移动至第一激光束的光路上时接收第一激光束,将接收到的第一激光束分为第一出射光221和第一反射光222, 第一反射光222的激光能量占第一分光部件22接收到的第一激光束的激光能量的20%~40%,例如20%、30%或40%;将第一出射光221直接出射,将第一反射光222射向传输组件27,并将经传输组件27传输后的第一反射光222出射。示例的,第一分光部件22为分光镜。传输组件27用于接收第一反射光222,并使第一反射光222在传输组件27中传输后射向第一分光部件22。
也就是说,第一激光束被第一分光部件22分为第一出射光221和第一反射光222,第一出射光221直接出射,第一反射光222射向传输组件27,经传输组件27的传输后,再经第一分光部件22出射。基于此,先出射的第一出射光221和后出射的第一反射光222合并为同一光路,使得从脉冲延长模块2出射的激光束的脉冲时间自第一出射光221出射的时间延长到第一反射光222出射的时间,从而延长了从脉冲延长模块2出射的激光脉冲时间。
示例的,如图4A所示,从激光输出模块1出射的第一激光束的脉冲时间为20~30ns,其激光脉冲波形中的第二个能量峰值低于第一个能量峰值。如图4B所示,从脉冲延长模块2出射的激光束的脉冲时间为60~90ns,其激光脉冲波形中的第二个能量峰值低于第一个能量峰值。
需要说明的是:在激光脉冲波形中的能量分布,可近似理解为激光脉冲能量在脉冲时间内的分布。例如,如图4B所示,第一出射光221对应第一个能量峰值,第一反射光222对应第二个能量峰值,即在第一出射光221和第一反射光222出射时,激光脉冲能量出现了峰值。
在本公开的一些实施例提供的准分子激光退火装置中,脉冲延长模块2中的第一分光部件22将接收到的第一激光束分为第一出射光221和第一反射光222,且第一反射光222的激光能量占第一分光部件22接收到的第一激光束的激光能量的20%~40%,第一出射光221直接出射,第一反射光222经过传输组件27的传输后再经第一分光部件22出射。由于第一反射光222与第一出射光221在从脉冲延长模块2出射时合并为同一光路,且第一反射光222和第一出射光221的出射时间存在一定的延迟,因此,如图4B所示,从脉冲延长模块2传输至工艺腔室5中待退火样品表面的激光脉冲的波形中的第二个能量峰值低于第一个能量峰值。在采用该准分子激光退火装置对非晶硅样品退火的过程中,可以得到图4C所示的四方晶多晶硅,该四方晶多晶硅的平均尺寸为328nm,3倍标准差值为147nm,提高了多晶硅的均匀性,从而提高了产品良率。 此外,准分子激光退火工艺的工艺窗口量为445mJ/cm 2~455mJ/cm 2,因此工艺参数可用范围大,且工艺参数的波动对于多晶硅的影响比较稳定。SRU(Short Range Uniformity,短程均匀性)TFT(Thin Film Transistor,薄膜晶体管)输出电流的均匀性较好。
在实际应用中,该四方晶多晶硅适用于任何LTPS(低温多晶硅,Low Temperature Poly-silicon)-AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极管)显示装置,例如分辨率大于400PPI(Pixels Per Inch,像素密度)的LTPS-AMOLED显示装置。
在一些实施例中,如图5和图6所示,脉冲延长模块2还包括第二分光部件23。
如图5和图6所示,第二分光部件23用于在移动至第一激光束的光路上时接收第一激光束,将接收到的第一激光束分为第二出射光231和第二反射光232,第二反射光232的激光能量占第二分光部件23接收的第一激光束的激光能量的40%~60%,例如40%、50%或60%;将第二出射光231出射,将第二反射光232射向传输组件27,并将经传输组件27传输后的第二反射光232出射。示例的,第二分光部件23为分光镜。传输组件27还用于接收第二反射光232,并使第二反射光232在传输组件27中传输后射向第二分光部件23。
也就是说,第一激光束被第二分光部件23分为第二出射光231和第二反射光232,第二出射光231直接出射,第二反射光232射向传输组件27,经传输组件27的传输后,再经第二分光部件23出射。基于此,先出射的第二出射光231和后出射的第二反射光232合并为同一光路,使得从脉冲延长模块2出射的激光束的脉冲时间自第二出射光231出射的时间延长到第二反射光232出射的时间,从而延长了从脉冲延长模块2出射的激光脉冲时间。
示例的,如图7A所示,从激光输出模块1出射的第一激光束的脉冲时间约为24ns,其激光脉冲波形中的第二个能量峰值低于第一个能量峰值,如图7B所示,从脉冲延长模块2出射的激光束的脉冲时间约为84ns,其激光脉冲波形中的第二个能量峰值高于第一个能量峰值。
在本公开的一些实施例提供的准分子激光退火装置中,脉冲延长模块2中的第二分光部件23将接收到的第一激光束分为第二出射光231和第二反射光232,且第二反射光232的激光能量占第二分光部件23接收到的第一激光束的激光能量的40%~60%,第二出射光231直接出射,第 二反射光232经过传输组件27的传输后再经第二分光部件23出射。由于第二反射光232与第二出射光231在从脉冲延长模块2出射时合并为同一光路,且第二反射光232和第二出射光231的出射时间存在一定的延迟,因此,如图7B所示,从脉冲延长模块2传输至工艺腔室5中待退火样品表面的激光脉冲的波形中的第二个能量峰值高于第一个能量峰值。在采用准分子激光退火装置对非晶硅样品退火的过程中,可使原本的四方晶体系发生变化,从而得到图7C所示的六方晶多晶硅或者多边形多晶硅,该六方晶多晶硅或者多边形多晶硅的平均尺寸为376nm,3倍标准差值为376nm。此外,准分子激光退火工艺的工艺窗口量为440mJ/cm 2~445mJ/cm 2
在实际应用中,该多边形多晶硅或六方晶多晶硅适用于LTPS-LCD(Liquid Crystal Display,液晶显示器)或者分辨率小于200PPI的LTPS-AMOLED显示装置。
在对非晶硅样品进行退火时,可以根据生产需要,将第一分光部件22移动到第一激光束的光路AA’上以得到四方晶多晶硅,或者,将第二分光部件23移动到第一激光束的光路AA’上以得到六方晶多晶硅或者多边形多晶硅。
基于此,如图5和图6所示,脉冲延长模块2还包括驱动部件24,该驱动部件24与第一分光部件22和第二分光部件23相连接,被配置为驱动第一分光部件22和第二分光部件23的移动。
在一些示例中,驱动部件24包括一个电机,该一个电机与第一分光部件22和第二分光部件23均连接,用于驱动第一分光部件22和第二分光部件23移动。
在另一些示例中,驱动部件24包括两个电机,该两个电机分别与第一分光部件22和第二分光部件23相连接,一个电机用于驱动第一分光部件22移动,另一个电机用于驱动第二分光部件23移动。
需要说明的是,本领域技术人员可以根据实际需要对驱动部件24在脉冲延长模块2中的位置进行设定,只要不影响激光束的传输即可,本公开在此不做限定。
示例的,如图8所示,第一分光部件22包括第一支架223以及固定在第一支架223内的第一分光镜224,第二分光部件23包括第二支架233以及固定在第二支架233内的第二分光镜234。驱动部件24包括一电机,该电机分别与第一支架223和第二支架233相连接,以便驱动第一分光 镜224和第二分光镜234的移动。
在准分子激光退火装置未工作的情况下,对第一分光部件22和第二分光部件23的位置不做限定。例如,如图9所示,第一分光部件22和第二分光部件23均位于偏离第一激光束的光路AA’的位置。或者,如图10所示,第一分光部件22位于第一激光束的光路AA’上,第二分光部件23位于偏离第一激光束的光路AA’的位置。或者,如图11所示,第二分光部件23位于第一激光束的光路AA’上,第一分光部件22位于偏离第一激光束的光路AA’的位置。
应当理解,参考图1、图2、图3、图5和图6所示,激光输出模块1出射的第一激光束在到达脉冲延长模块2中的第一分光部件22或第二分光部件23之前,会一直沿着激光器11发射的激光束的传输方向传输。因此,第一激光束的光路AA’即为激光器11发射的激光束的光路。而偏离第一激光束的光路AA’的位置可以为偏离第一激光束的光路AA’的任一侧。
本领域技术人员可以根据实际情况,将第一分光部件22和第二分光部件23设置在脉冲延长模块2中偏离第一激光束的光路AA’的适当位置处。示例的,在第一分光部件22和第二分光部件23的初始位置均为偏离第一激光束的光路AA’的位置的情况下,可以将第一分光部件22和第二分光部件23设置在偏离第一激光束的光路AA’的同一侧,也可以将第一分光部件22和第二分光部件23分别设置在第一激光束的光路AA’的相对两侧,并在准分子激光退火装置开始工作时,将第一分光部件22和第二分光部件23中的一个移动至第一激光束的光路AA’上,另一个保留在原来的位置。
当然,第一分光部件22的位置还应以第二分光部件23位于第一激光束的光路AA’上时,不会影响第二分光部件23与传输组件27之间的光线传输为准。同理,第二分光部件23的位置还应以第一分光部件22位于第一激光束的光路AA’上时,不会影响第一分光部件22与传输组件27之间的光线传输为准。
在准分子激光退火装置工作的情况下,可选的,如图10所示,驱动部件24可以将第一分光部件22移动至第一激光束的光路AA’上,并将第二分光部件23移动至偏离第一激光束的光路AA’的位置,使得第一激光束经过第一分光部件22分为第一出射光221和第一反射光222,第一出射光221直接出射,第一反射光222经过在传输组件27中的传输后再 出射。
在准分子激光退火装置工作的情况下,可选的,如图11所示,驱动部件24可以将第二分光部件23移动至第一激光束的光路AA’上,并将第一分光部件22移动至偏离第一激光束的光路AA’的位置,使得第一激光束经过第二分光部件23分为第二出射光231和第二反射光232,第二出射光231直接出射,第二反射光232经过在传输组件27中的传输后再出射。
在此基础上,如图5、图6和图8所示,准分子激光退火装置还包括与驱动部件24相连接的控制器3,该控制器3用于控制驱动部件24驱动第一分光部件22和第二分光部件23中的一个移动至第一激光束的光路AA’上,另一个移动至偏离第一激光束的光路AA’的位置。例如,控制器3响应于第一控制信号控制驱动部件24驱动第一分光部件22移动至第一激光束的光路AA’上,以使第一分光部件22接收第一激光束,并驱动第二分光部件23移动至偏离第一激光束的光路AA’的位置。又如,控制器3响应于第二控制信号控制驱动部件24驱动第二分光部件23移动至第一激光束的光路AA’上,以使第二分光部件23接收第一激光束,并驱动第一分光部件22移动至偏离第一激光束的光路AA’的位置。
需要说明的是,本领域技术人员可以根据实际需要对控制器3的位置进行设置,只要不影响激光束的传输即可,本公开在此不做限定。
在一些示例中,准分子激光退火装置还包括触控屏和处理器,触控屏和控制器3均与处理器相连接。在此情况下,操作人员可以在触控屏的界面输入控制指令,处理器则根据该控制指令生成第一控制信号或者第二控制信号并下发给控制器3,使得控制器3响应于第一控制信号或者第二控制信号控制驱动部件24驱动第一分光部件22和第二分光部件23的移动。
在另一些示例中,准分子激光退火装置还包括触控屏,控制器3与触控屏相连接,且控制器3兼具处理功能。在此情况下,操作人员可以在触控屏的界面输入控制指令,控制器3则将该控制指令转换为第一控制信号或者第二控制信号,并响应于第一控制信号或者第二控制信号控制驱动部件24驱动第一分光部件22和第二分光部件23的移动。
在一些实施例中,第一分光部件22和第二分光部件23均为分光镜,第一分光部件22的分光系数为30%,第二分光部件23的分光系数为50%。即,第一分光部件22为分光系数为30%的分光镜,第二分光部件 23为分光系数为50%的分光镜。
第一分光部件22的分光系数为30%,即,第一分光部件22分出的第一出射光221和第一反射光222中,第一出射光221的激光能量占第一分光部件22接收到的第一激光束的激光能量的70%,第一反射光222的激光能量占第一分光部件22接收到的第一激光束的激光能量的30%。因此,如图12A所示,第一分光部件22接收到的第一激光束中占70%激光能量的第一出射光221直接出射,第一分光部件22接收到的第一激光束中占另30%激光能量的第一反射光222经传输组件27的传输后再经第一分光部件22出射,且第一反射光222与第一出射光221合并为同一光路。
第二分光部件23的分光系数为50%,即,第二分光部件23分出的第二出射光231和第二反射光232中,第二出射光231的激光能量占第二分光部件23接收到的第一激光束的激光能量的50%,第二反射光232的激光能量占第二分光部件23接收到的第一激光束的激光能量的50%。因此,如图12B所示,第二分光部件23接收到的第一激光束中占50%激光能量的第二出射光231直接出射,第二分光部件23接收到的第一激光束中占另50%激光能量的第二反射光232经传输组件27的传输后再经第二分光部件23出射,且第二反射光232与第二出射光231合并为同一光路。
在一些实施例中,如图2和图5所示,激光输出模块1包括激光器11。激光器11用于发射第一激光束。示例的,激光器11为准分子激光器,例如氯化氙(XeCl)准分子激光器,其发射的第一激光束的波长为308nm。
在另一些实施例中,如图3和图6所示,激光输出模块1包括激光器11和调光部件12。激光器11用于发射第二激光束。示例的,激光器11为准分子激光器,例如氯化氙(XeCl)准分子激光器。调光部件12设置于激光器11与脉冲延长模块2之间且位于第二激光束的光路上。调光部件12用于接收第二激光束,对第二激光束的激光能量进行调节以得到第一激光束,并出射第一激光束。其中,第一激光束的激光能量小于第二激光束的激光能量,即,调光部件12用于削弱激光束的激光能量。示例的,调光部件12为分光系数为2%的分光镜,因此从调光部件12出射的第一激光束的激光能量占激光器11发射的第二激光束的激光能量的98%。
需要说明的是,第一分光部件22接收到的第一激光束,可以是直接从激光器11发射出来的激光束,也可以是激光器11发射的激光束经过了调光部件12的调节后出射的激光束,根据激光输出模块1的实际结构而定。
在一些实施例中,如图9-图11所示,传输组件27包括第一反射部件271、第二反射部件272、第三反射部件273、第四反射部件274;第一反射部件271和第三反射部件273位于第一激光束的光路AA’的一侧,第二反射部件272和第四反射部件274位于第一激光束的光路AA’的另一侧,且第一反射部件271和第四反射部件274沿垂直第一激光束的光路AA’的方向排布,第二反射部件272和第三反射部件273沿垂直第一激光束的光路AA’的方向排布。
如图10所示,在第一分光部件22位于第一激光束的光路AA’上的情况下,第一反射部件271用于接收从第一分光部件22分出的第一反射光222,并将第一反射光222射向第二反射部件272;第二反射部件272用于将经过第一反射部件271反射的第一反射光222射向第三反射部件273;第三反射部件273用于将经过第二反射部件272反射的第一反射光222射向第四反射部件274;第四反射部件274用于将经过第三反射部件273反射的第一反射光222射向第一分光部件22。
由于从第一分光部件22分出的第一反射光222依次经过第一反射部件271、第二反射部件272、第三反射部件273以及第四反射部件274的反射后射向第一分光部件22,并沿第一出射光221的出射方向出射,其与第一出射光221自动叠加合并为同一光路,因此延长了从脉冲延长模块2出射的激光束的脉冲时间。
如图11所示,在第二分光部件23位于第一激光束的光路AA’上的情况下,第一反射部件271用于接收从第二分光部件23分出的第二反射光232,并将第二反射光232射向第二反射部件272;第二反射部件272用于将经过第一反射部件271反射的第二反射光232射向第三反射部件273;第三反射部件273用于将经过第二反射部件272反射的第二反射光232射向第四反射部件274;第四反射部件274用于将经过第三反射部件273反射的第二反射光232射向第二分光部件23。
由于从第二分光部件23分出的第二反射光232依次经过第一反射部件271、第二反射部件272、第三反射部件273以及第四反射部件274的反射后射向第二分光部件23,并沿第二出射光231的出射方向出射,其 与第二出射光231自动叠加合并为同一光路,因此延长了脉冲延长模块2出射的激光束的脉冲时间。
示例的,第一反射光222或第二反射光232沿传输组件27中光路走向的行程为9~11m。
本公开的一些实施例还提供一种多晶硅薄膜的制备方法,如图13所示,包括S1至S2。
S1、在衬底30上形成非晶硅薄膜32,并对非晶硅薄膜32进行加热处理。
S2、采用上述的准分子激光退火装置,对非晶硅薄膜32进行激光退火处理,以形成多晶硅薄膜33。
下面提供一实施例对多晶硅薄膜的制备方法进行详细的介绍。如图14所示,该制备方法包括S10~S60。
S10、如图15所示,对衬底30进行预清洗。
示例的,衬底30可以为玻璃衬底或者柔性衬底,例如PI(聚酰亚胺,Polyimide)衬底。
S20、如图15所示,在衬底30上沉积无机材料,形成缓冲层31。
示例的,缓冲层31可以为双层结构,可以为单层结构。缓冲层31的材料可以为包括氮化硅(SiN X)、二氧化硅(SiO 2)的无机材料。
在缓冲层31为双层结构的情况下,可以在衬底30上先沉积例如厚度为50~150nm的氮化硅,得到氮化硅层后,再在氮化硅层上沉积例如厚度为100~350nm的二氧化硅,得到二氧化硅层。
S30、如图15所示,在缓冲层31远离衬底30的一侧沉积非晶硅材料,形成非晶硅薄膜32,并对非晶硅薄膜32进行加热处理。
示例的,采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积)方法形成非晶硅薄膜32,非晶硅薄膜32的厚度为30~60nm。
可选的,对非晶硅薄膜32进行加热处理的温度为400℃~500℃,例如400℃、450℃或500℃,时间为0.5~3小时,例如0.5小时、1小时、2小时或3小时。
S40、如图1所示,将形成有非晶硅薄膜32的衬底30放入准分子激光退火装置的工艺腔室5中。
示例的,将形成有非晶硅薄膜32的衬底30置于工艺腔室5中,其位置以能使入射至工艺腔室5的激光照射在非晶硅薄膜32的表面为准。
S50、如图10和图11所示,在准分子激光退火装置中,控制第一分光部件22和第二分光部件23中的一个置于第一激光束的光路AA’上,另一个移动至偏离第一激光束的光路AA’的位置。
在需要形成四方晶多晶硅的情况下,可以控制第一分光部件22移动至第一激光束的光路AA’上。
在需要形成六方晶多晶硅或者多边形多晶硅的情况下,可以控制第二分光部件23移动至第一激光束的光路AA’上。
S60、对非晶硅薄膜32进行激光退火处理,以形成多晶硅薄膜33。
在对非晶硅薄膜32进行激光退火的过程中,激光器11输出的激光脉冲的扫描频率为300Hz~600Hz,例如300Hz、400Hz、500Hz或600Hz。和/或,激光器11输出的激光脉冲的重叠率为92%~98%,例如92%、95%或98%。和/或,激光器11输出的激光脉冲的扫描速率为4~16mm/s,例如4mm/s、10mm/s或16mm/s。和/或,激光器11输出的激光脉冲的激光能量密度为300~500mJ/cm 2,例如300mJ/cm 2、400mJ/cm 2或500mJ/cm 2
在第一分光部件22置于第一激光束的光路AA’上的情况下,第一分光部件22将接收到的第一激光束分为第一出射光221和第一反射光222,将第一出射光221直接出射,将第一反射光222射向传输组件27,并将经传输组件27传输后的第一反射光222出射。由于第一反射光222的激光能量占第一分光部件22接收到的第一激光束的激光能量的20%~40%,如图4B所示,使得照射到非晶硅薄膜32表面的激光束的第一能量峰值大于第二能量峰值,因此非晶硅薄膜32在退火后可以形成图4C所示的晶型为四方晶的多晶硅薄膜33。
在第二分光部件23置于第一激光束的光路AA’上的情况下,第二分光部件23将接收到的第一激光束分为第二出射光231和第二反射光232,将第二出射光231直接出射,将第二反射光232射向传输组件27,并将经传输组件27传输后的第二反射光232出射。由于第二反射光232的激光能量占第二分光部件23接收到的第一激光束的激光能量的40%~60%,如图7B所示,使得照射到非晶硅薄膜32表面的激光束的第一能量峰值小于第二能量峰值,因此非晶硅薄膜32在退火后可以形成图7C所示的晶型为六方晶或者多边形的多晶硅薄膜33。
本公开的一些实施例还提供一种薄膜晶体管(Thin Film Transistor,TFT)的制备方法,包括:在衬底30上形成栅极36、栅绝缘层35、有源图案34、源极38和漏极39。其中,有源图案34的形成过程包括:采 用上述的多晶硅薄膜的制备方法形成多晶硅薄膜33,并对多晶硅薄膜33进行构图工艺,以得到所需的有源图案34。这里,构图工艺可能包括曝光、显影和刻蚀等工艺。
以形成顶栅型TFT为例,如图16所示,其形成过程如下:在上述形成多晶硅薄膜33的基础上,对多晶硅薄膜33进行构图工艺,以形成TFT的半导体图案34;然后在半导体图案34上依次形成栅绝缘层35、栅极36和层间绝缘层37,栅极36在衬底30上的正投影位于半导体图案34在衬底30上的正投影的范围内,且栅极36的面积小于半导体图案34的面积,栅绝缘层35和层间绝缘层37中形成有第一过孔和第二过孔;在层间绝缘层37上同步形成源极38和漏极39,源极38和漏极39分别通过贯穿层间绝缘层37和栅绝缘层35的第一过孔和第二过孔与半导体图案34接触,从而形成TFT。
本公开的一些实施例还提供了一种薄膜晶体管,该TFT采用上述的制备方法制得。
在采用晶型为四方晶的多晶硅薄膜33形成TFT的半导体图案34的情况下,该TFT适用于例如任何LTPS-AMOLED。
在采用晶型为多边形或六方晶的多晶硅薄膜33形成TFT的半导体图案34的情况下,该TFT适用于例如LTPS-LCD、分辨率小于200PPI的LTPS-AMOLED。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种准分子激光退火装置,包括:
    激光输出模块,被配置为出射第一激光束;
    脉冲延长模块,包括第一分光部件和传输组件;其中,
    所述第一分光部件被配置为在移动至所述第一激光束的光路上时接收所述第一激光束,将接收到的所述第一激光束分为第一反射光和第一出射光,所述第一反射光的激光能量占所述第一激光束的激光能量的20%~40%;将所述第一出射光直接出射,将所述第一反射光射向所述传输组件,并将经所述传输组件传输后的所述第一反射光出射;
    所述传输组件被配置为接收所述第一反射光,并使所述第一反射光在所述传输组件中传输后射向所述第一分光部件。
  2. 根据权利要求1所述的准分子激光退火装置,其中,所述脉冲延长模块还包括第二分光部件和驱动部件;
    所述第二分光部件被配置为在移动至所述第一激光束的光路上时接收所述第一激光束,将接收到的所述第一激光束分为第二出射光和第二反射光,所述第二反射光的激光能量占所述第一激光束的激光能量的40%~60%;将所述第二出射光直接出射,将所述第二反射光射向所述传输组件,并将经所述传输组件传输后的所述第二反射光出射;
    所述传输组件还被配置为接收所述第二反射光,并使所述第二反射光在所述传输组件中传输后射向所述第二分光部件;
    所述驱动部件与所述第一分光部件和所述第二分光部件相连接,被配置为驱动所述第一分光部件和所述第二分光部件移动;其中,
    所述准分子激光退火装置还包括控制器,所述控制器与所述驱动部件相连接;所述控制器被配置为响应于第一控制信号控制所述驱动部件驱动所述第一分光部件移动至所述第一激光束的光路上,以使所述第一分光部件接收所述第一激光束,并驱动所述第二分光部件移动至偏离所述第一激光束的光路的位置;以及响应于第二控制信号控制所述驱动部件驱动所述第二分光部件移动至所述第一激光束的光路上,以使所述第二分光部件接收所述第一激光束,并驱动所述第一分光部件移动至偏离所述第一激光束的光路的位置。
  3. 根据权利要求2所述的准分子激光退火装置,其中,所述第一分光部件的分光系数为30%,所述第二分光部件的分光系数为50%。
  4. 根据权利要求2所述的准分子激光退火装置,其中,所述激光输 出模块包括激光器,所述激光器被配置为发射所述第一激光束。
  5. 根据权利要求2所述的准分子激光退火装置,其中,所述激光输出模块包括激光器和调光部件;
    所述激光器被配置为发射第二激光束;
    所述调光部件设置于所述激光器与所述脉冲延长模块之间且位于所述第二激光束的光路上;所述调光部件被配置为接收所述第二激光束,对所述第二激光束的激光能量进行调节以得到所述第一激光束,并出射所述第一激光束;所述第一激光束的激光能量小于所述第二激光束的激光能量。
  6. 根据权利要求4或5所述的准分子激光退火装置,其中,所述激光器为准分子激光器。
  7. 根据权利要求1~6任一项所述的准分子激光退火装置,其中,所述传输组件包括第一反射部件、第二反射部件、第三反射部件、第四反射部件;所述第一反射部件和所述第三反射部件设置在所述第一激光束的光路的一侧,所述第二反射部件和所述第四反射部件设置在所述第一激光束的光路的另一侧,且所述第一反射部件和所述第四反射部件沿垂直所述第一激光束的光路的方向排布,所述第二反射部件和所述第三反射部件沿垂直所述第一激光束的光路的方向排布。
  8. 根据权利要求7所述的准分子激光退火装置,其中,所述第一分光部件位于所述第一激光束的光路上;所述第一反射部件配置为接收所述第一反射光,并将所述第一反射光射向所述第二反射部件;所述第二反射部件配置为将经过所述第一反射部件反射的所述第一反射光射向所述第三反射部件;所述第三反射部件配置为将经过所述第二反射部件反射的所述第一反射光射向所述第四反射部件;所述第四反射部件配置为将经过所述第三反射部件反射的所述第一反射光射向所述第一分光部件;
    或者,第二分光部件位于所述第一激光束的光路上;所述第一反射部件配置为接收第二反射光,并将所述第二反射光射向所述第二反射部件;所述第二反射部件配置为将经过所述第一反射部件反射的所述第二反射光射向所述第三反射部件;所述第三反射部件配置为将经过所述第二反射部件反射的所述第二反射光射向所述第四反射部件;所述第四反射部件配置为将经过所述第三反射部件反射的所述第二反射光射向所述第二分光部件。
  9. 根据权利要求2所述的准分子激光退火装置,其中,所述第一分光部件包括第一支架以及固定在所述第一支架内的第一分光镜,所述第二分光部件包括第二支架以及固定在所述第二支架内的第二分光镜;
    所述驱动部件包括一个电机,所述电机分别与所述第一支架和所述第二支架连接。
  10. 一种多晶硅薄膜的制备方法,包括:
    在衬底上形成非晶硅薄膜,并对所述非晶硅薄膜进行加热处理;
    采用权利要求1~9任一项所述的准分子激光退火装置,对所述非晶硅薄膜进行激光退火处理,以形成多晶硅薄膜。
  11. 根据权利要求10所述的多晶硅薄膜的制备方法,其中,采用所述准分子激光退火装置,对所述非晶硅薄膜进行激光退火处理,以形成多晶硅薄膜,包括:
    控制所述准分子激光退火装置中的第一分光部件和第二分光部件中的一个移动至激光输出模块出射的第一激光束的光路上,并控制所述第一分光部件和所述第二分光部件中的另一个移动至偏离所述激光输出模块出射的所述第一激光束的光路的位置;
    对所述非晶硅薄膜进行激光退火处理,以形成所述多晶硅薄膜。
  12. 根据权利要求10所述的多晶硅薄膜的制备方法,其中,对所述非晶硅薄膜进行激光退火处理,包括:
    控制所述准分子激光退火装置中的激光器输出的激光脉冲的扫描频率为300Hz~600Hz,并对所述非晶硅薄膜进行激光退火处理;
    和/或,控制所述激光器输出的激光脉冲的重叠率为92%~98%,并对所述非晶硅薄膜进行激光退火处理;
    和/或,控制所述激光器输出的激光脉冲的扫描速率为4~16mm/s,并对所述非晶硅薄膜进行激光退火处理;
    和/或,控制所述激光器输出的激光脉冲的激光能量密度为300~500mJ/cm 2,并对所述非晶硅薄膜进行激光退火处理。
  13. 根据权利要求10所述的多晶硅薄膜的制备方法,其中,对所述非晶硅薄膜进行加热处理的温度为400℃~500℃,加热时间为0.5~3小时。
  14. 根据权利要求10~13任一项所述的多晶硅薄膜的制备方法,在衬底上形成非晶硅薄膜,包括:
    在形成有缓冲层的衬底上形成所述非晶硅薄膜。
  15. 一种薄膜晶体管的制备方法,包括:在衬底上形成栅极、栅绝缘层、有源图案、源极和漏极;
    其中,形成有源图案包括:
    采用权利要求10~14任一项所述的制备方法形成多晶硅薄膜;
    对所述多晶硅薄膜进行图案化处理,以得到所述有源图案。
  16. 一种薄膜晶体管,采用权利要求15所述的制备方法制得。
PCT/CN2020/096768 2019-06-25 2020-06-18 准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法 WO2020259383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910556540.0A CN110265289B (zh) 2019-06-25 2019-06-25 准分子激光退火装置、多晶硅薄膜的制备方法
CN201910556540.0 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020259383A1 true WO2020259383A1 (zh) 2020-12-30

Family

ID=67921450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096768 WO2020259383A1 (zh) 2019-06-25 2020-06-18 准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法

Country Status (2)

Country Link
CN (1) CN110265289B (zh)
WO (1) WO2020259383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265289B (zh) * 2019-06-25 2022-03-08 京东方科技集团股份有限公司 准分子激光退火装置、多晶硅薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691275A (zh) * 2004-03-31 2005-11-02 株式会社液晶先端技术开发中心 结晶设备、结晶方法、器件、光学调制元件和显示装置
JP2006071855A (ja) * 2004-09-01 2006-03-16 Sumitomo Heavy Ind Ltd 光学装置
JP2007335654A (ja) * 2006-06-15 2007-12-27 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法
CN104766813A (zh) * 2015-03-31 2015-07-08 京东方科技集团股份有限公司 准分子激光退火装置
CN105511030A (zh) * 2016-01-15 2016-04-20 京东方科技集团股份有限公司 一种激光脉冲延时系统和激光退火系统
CN109676244A (zh) * 2017-10-17 2019-04-26 三星显示有限公司 激光晶化装置
CN110265289A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 准分子激光退火装置、多晶硅薄膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691275A (zh) * 2004-03-31 2005-11-02 株式会社液晶先端技术开发中心 结晶设备、结晶方法、器件、光学调制元件和显示装置
JP2006071855A (ja) * 2004-09-01 2006-03-16 Sumitomo Heavy Ind Ltd 光学装置
JP2007335654A (ja) * 2006-06-15 2007-12-27 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法
CN104766813A (zh) * 2015-03-31 2015-07-08 京东方科技集团股份有限公司 准分子激光退火装置
CN105511030A (zh) * 2016-01-15 2016-04-20 京东方科技集团股份有限公司 一种激光脉冲延时系统和激光退火系统
CN109676244A (zh) * 2017-10-17 2019-04-26 三星显示有限公司 激光晶化装置
CN110265289A (zh) * 2019-06-25 2019-09-20 京东方科技集团股份有限公司 准分子激光退火装置、多晶硅薄膜的制备方法

Also Published As

Publication number Publication date
CN110265289B (zh) 2022-03-08
CN110265289A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US10957541B2 (en) Short pulse fiber laser for LTPS crystallization
JP2000277450A (ja) レーザアニール装置及びこの装置を用いた薄膜トランジスタの製造方法
JP2003059858A (ja) レーザアニール装置及び薄膜トランジスタの製造方法
KR102302777B1 (ko) 레이저 결정화 장치
KR102288353B1 (ko) 레이저 광학계 및 이를 포함하는 레이저 어닐링 장치
US20050214986A1 (en) Laser irradiation apparatus and method for manufacturing semiconductor device using the laser irradiation apparatus
WO2015139498A1 (zh) 激光退火设备、多晶硅薄膜制作方法及由其制成的多晶硅薄膜
JPH11354463A (ja) レーザアニール装置及び多結晶半導体膜の製造方法
WO2020259383A1 (zh) 准分子激光退火装置、多晶硅薄膜的制备方法、薄膜晶体管及制备方法
JP2008085236A (ja) 2波長レーザアニール装置
JP5800292B2 (ja) レーザ処理装置
JP6706155B2 (ja) 多結晶半導体膜の製造方法、レーザアニール装置、薄膜トランジスタ、およびディスプレイ
US20030148566A1 (en) Production method for flat panel display
JP2006504262A (ja) 多結晶化方法、多結晶シリコン薄膜トランジスタの製造方法、及びそのためのレーザー照射装置
JP5904590B2 (ja) 結晶質半導体の製造方法および結晶質半導体の製造装置
US10049873B2 (en) Preparation methods of low temperature poly-silicon thin film and transistor and laser crystallization apparatus
JP2010034366A (ja) 半導体処理装置および半導体処理方法
JP2004006703A (ja) 半導体のアニールおよびドーピングのための処理方法ならびにその装置
CN107068552A (zh) 一种多晶硅薄膜的制作方法、薄膜晶体管和阵列基板
TWI574307B (zh) 利用順序橫向固化方法之結晶設備
WO2021049127A1 (ja) レーザ処理装置及びレーザ光モニタ方法
JP4032553B2 (ja) 半導体製造装置
KR20080077794A (ko) 실리콘 결정화 장비 및 그를 이용한 실리콘 결정화 방법
JP2022065294A (ja) レーザ照射装置、レーザ照射方法、及び半導体装置の製造方法
WO2019138674A1 (ja) レーザ照射装置、及び、レーザ照射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833632

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20833632

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20833632

Country of ref document: EP

Kind code of ref document: A1