WO2020258419A1 - 一种温度检测装置、方法及显示系统 - Google Patents

一种温度检测装置、方法及显示系统 Download PDF

Info

Publication number
WO2020258419A1
WO2020258419A1 PCT/CN2019/096794 CN2019096794W WO2020258419A1 WO 2020258419 A1 WO2020258419 A1 WO 2020258419A1 CN 2019096794 W CN2019096794 W CN 2019096794W WO 2020258419 A1 WO2020258419 A1 WO 2020258419A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
clock
sensitive
sampling
module
Prior art date
Application number
PCT/CN2019/096794
Other languages
English (en)
French (fr)
Inventor
刘炳麟
张皓东
Original Assignee
上海视涯信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海视涯信息科技有限公司 filed Critical 上海视涯信息科技有限公司
Publication of WO2020258419A1 publication Critical patent/WO2020258419A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Definitions

  • the embodiment of the present invention relates to the technical field of temperature detection, in particular to a temperature detection device and a display system.
  • the display system includes a display device and a temperature detection device, the temperature detection device is used to detect the current temperature, and the display device is used to display an image.
  • the gray-scale voltage required for the display device to produce the same brightness under different temperature conditions is different. Therefore, it is necessary to change the voltage curve of the gray-scale voltage according to the current temperature, so that the display device can also be able to produce the same brightness under different temperature conditions. Produce the same brightness.
  • a clock is usually used to detect temperature.
  • a sampling clock that does not change with temperature and a temperature-sensitive clock that changes with temperature are required, and then a temperature-sensitive signal is generated according to the temperature-sensitive clock.
  • the temperature-sensitive signal carries current temperature information.
  • the rising or falling edge of the sampling clock triggers the sampling of the temperature-sensitive signal to obtain the current temperature.
  • the phenomenon of sampling to the rising or falling edge of the temperature-sensitive signal may occur.
  • the sampled may be high or low. , Resulting in sampling errors.
  • the invention provides a temperature detection device, a method and a display system to prevent a sampling module from sampling the edge of a temperature-sensitive signal, thereby avoiding sampling errors.
  • an embodiment of the present invention provides a temperature detection device, including: a temperature-sensitive clock circuit, a temperature-sensitive signal generation module, a sampling clock generation module, and a sampling module;
  • the output terminal of the temperature-sensitive clock circuit is respectively connected to the input terminal of the temperature-sensitive signal generation module and the input terminal of the sampling clock generation module; the temperature-sensitive clock circuit sends the temperature-sensitive clock that changes with the current temperature to the temperature-sensitive signal generation module and Sampling clock generation module;
  • the temperature-sensitive signal generation module is used to generate a temperature-sensitive signal according to the temperature-sensitive clock, where the edge of the temperature-sensitive signal occurs on the first edge of the temperature-sensitive clock;
  • the sampling clock module is used to generate a sampling clock according to the temperature-sensitive clock, where the edge of the sampling clock occurs on the second edge of the temperature-sensitive clock;
  • the output terminal of the temperature-sensitive signal generation module is connected to the sampled signal input terminal of the sampling module, and the output terminal of the sampling clock generation module is connected to the sampling clock input terminal of the sampling module; the edge of the sampling clock triggers the sampling module to sample the temperature-sensitive signal, The sampling module gets the temperature sampling value.
  • the temperature-sensitive signal generating module includes a frequency dividing unit
  • the output terminal of the temperature-sensitive clock circuit is connected with the input terminal of the frequency dividing unit;
  • the frequency dividing unit is used to generate N temperature-sensitive signals according to the temperature-sensitive clock, and the N temperature-sensitive signals are divided by 2 1 -2 N of the temperature-sensitive clock, where N is a positive integer.
  • the frequency dividing unit includes N two frequency dividing circuits connected in series, the input end of the first two frequency dividing circuit is connected to the output end of the temperature sensitive clock circuit, and the output end of each two frequency dividing circuit outputs a temperature sensitive signal.
  • the divide-by-two circuit includes a NOT gate and a D flip-flop
  • the input terminal of the NOT gate is the input terminal of the divide-by-two circuit
  • the output terminal of the NOT gate is connected to the clock terminal of the D flip-flop
  • the data input terminal of the D flip-flop is connected to the second state output terminal of the D flip-flop
  • the D flip-flop The first state output terminal is the output terminal of the divide-by-2 circuit.
  • the sampling clock generation module includes an initial sampling clock generation unit and a sampling unit;
  • the output terminal of the initial sampling clock generating unit is connected with the first input terminal of the sampling unit, and the output terminal of the temperature-sensitive clock circuit is connected with the second input terminal of the sampling unit;
  • the initial sampling clock generating unit is used to generate the initial sampling clock
  • the edge of the temperature-sensitive clock triggers the sampling unit to sample the initial sampling clock to obtain the sampling clock.
  • the initial sampling clock generating unit includes a reference clock circuit and a counter
  • the output terminal of the reference clock circuit is connected with the input terminal of the counter, and the output terminal of the counter is the output terminal of the initial sampling clock generating unit.
  • the sampling module includes an edge D flip-flop.
  • it further includes a temperature change detection module, which is connected to the sampling module;
  • the temperature change detection module is used to receive M temperature sampling values sent by the sampling module. When it is judged that the type of M temperature sampling values is less than or equal to 2, it is determined that no temperature change has occurred; when it is judged that the type of M temperature sampling values is greater than 2, Determine the temperature change, and determine the temperature sampling value with the most occurrences as the current temperature;
  • M is a positive integer greater than or equal to 3.
  • an embodiment of the present invention also provides a temperature detection method, including:
  • the temperature-sensitive clock circuit generates a temperature-sensitive clock that changes with the current temperature
  • the temperature-sensitive signal generating module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates a temperature-sensitive signal according to the temperature-sensitive clock, wherein the edge of the temperature-sensitive signal occurs on the first edge of the temperature-sensitive clock;
  • the sampling clock generation module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates a sampling clock according to the temperature-sensitive clock, wherein the edge of the sampling clock occurs on the second edge of the temperature-sensitive clock;
  • the sampling module receives the temperature-sensitive signal sent by the temperature-sensitive signal generation module, and at the same time receives the sampling clock sent by the sampling clock generation module, and samples the temperature-sensitive signal when the edge of the sampling clock arrives to obtain the temperature sampling value.
  • the temperature-sensitive signal generating module includes a frequency dividing unit
  • the temperature-sensitive signal generation module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates the temperature-sensitive signal according to the temperature-sensitive clock, including:
  • the frequency dividing unit receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit
  • the frequency dividing unit performs frequency division processing on the temperature-sensitive clock to obtain a 2 1 -2 N frequency-divided frequency of the temperature-sensitive clock, where N is a positive integer.
  • the sampling clock generation module includes an initial sampling clock generation unit and a sampling unit;
  • the sampling clock generation module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates the sampling clock according to the temperature-sensitive clock, including:
  • the initial sampling clock of the initial sampling clock generating unit
  • the sampling unit receives the initial sampling clock sent by the initial sampling clock generating unit, and at the same time receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and samples the initial sampling clock when the edge of the temperature-sensitive clock arrives to obtain the sampling clock.
  • the temperature detection device further includes a temperature change detection module
  • the temperature detection method further includes: the temperature change detection module receives M temperature sampling values sent by the sampling module;
  • M is a positive integer greater than or equal to 3.
  • an embodiment of the present invention also provides a display system, including the temperature detection device described in any one of the embodiments of the present invention.
  • the edge of the temperature-sensitive signal generated by the temperature-sensitive signal generation module occurs on the first edge of the temperature-sensitive clock
  • the sampling clock edge generated by the sampling clock module occurs on the second edge of the temperature-sensitive clock That is, the edge of the temperature-sensitive signal does not overlap with the edge of the sampling clock, so that when the sampling module is triggered to sample the temperature-sensitive signal on the edge of the sampling clock, the edge of the temperature-sensitive signal will not be sampled, and the existing technical solutions are prone to appear
  • the problem of sampling error can prevent the sampling module from sampling the edge of the temperature-sensitive signal, thereby avoiding the effect of sampling error.
  • FIG. 1 is a schematic structural diagram of a temperature detection device provided by the prior art
  • Figure 2 is a timing diagram of a temperature-sensitive signal and a sampling clock provided in the prior art
  • FIG. 3 is a timing diagram of another temperature-sensitive signal and sampling clock provided by the prior art
  • FIG. 4 is a schematic structural diagram of a temperature detection device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another temperature detection device provided by an embodiment of the present invention.
  • Figure 6 is a timing diagram of a temperature-sensitive signal and a sampling clock provided by an embodiment of the present invention.
  • FIG. 7 is a circuit element diagram of a frequency dividing unit provided by an embodiment of the present invention.
  • FIG. 8 is a timing diagram of input and output signals of the frequency dividing unit shown in FIG. 7;
  • FIG. 9 is a timing diagram of another temperature-sensitive signal and sampling clock provided by an embodiment of the present invention.
  • Fig. 10 is a flowchart of a temperature detection method provided by an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a temperature detection device provided in the prior art.
  • the temperature detection device includes: a temperature-sensitive clock circuit 1', a first counter unit 2', a reference clock circuit 3', a second counter unit 4', and a sampling unit 5'.
  • the temperature-sensitive clock circuit 1' is connected to the first counter unit 2', and the temperature-sensitive clock circuit 1'outputs the generated temperature-sensitive clock TCO0' that changes with the current temperature to the first counter unit 2', and the first counter unit 2'outputs
  • TCO1'-TCO7' are divided by 2 1 -2 7 of the temperature-sensitive clock respectively.
  • the reference clock circuit 3' is connected to the second counter unit 4', and the reference clock circuit 3'outputs the generated reference clock to the second counter unit 4'to obtain the sampling clock REF-COUNTER'.
  • the first counter unit 2'and the second counter unit 4' are both connected to the sampler 5', and the rising edge of the sampling clock REF-COUNTER' triggers the sampler 5'to sample TCO0'-TCO7'.
  • FIG. 2 is a timing diagram of a temperature-sensitive signal and a sampling clock provided in the prior art.
  • Fig. 3 is a timing diagram of another temperature-sensitive signal and sampling clock provided by the prior art. Referring to FIG. 2, the rising edge of the sampling clock REF-COUNTER' triggers the sampler 5'to sample TCO0'-TCO7', and the temperature sampling value obtained by sampling is 00001100, which is the correct sampling result.
  • the rising edge of the sampling clock REF-COUNTER' triggers the sampler 5'to sample TCO0'-TCO7', because the edge of TCO0'-TCO2' coincides with the rising edge of the sampling clock REF-COUNTER', therefore, For TCO0'-TCO2', the sampled may be high level or low level. At this time, the sampled temperature value may be wrong. It should be noted that those skilled in the art can obtain the timing diagram of TCO5'-TCO7' without any doubt based on the timing diagram of TCO0'. Therefore, for the convenience of drawing, TCO5'-TCO7 is not shown in FIG. 2 and FIG. 3. 'The timing diagram.
  • an embodiment of the present invention provides a temperature detection device.
  • 4 is a schematic structural diagram of a temperature detection device provided by an embodiment of the present invention.
  • the temperature detection device includes: a temperature-sensitive clock circuit 1, a temperature-sensitive signal generation module 2, a sampling clock generation module 3, and a sampling module 4 ,
  • the output terminal of the temperature-sensitive clock circuit 1 is respectively connected to the input terminal of the temperature-sensitive signal generating module 2 and the input terminal of the sampling clock generating module 3, and the output terminal of the temperature-sensitive signal generating module 2 is connected to the input terminal of the sampled signal of the sampling module 4 Connected, the output terminal of the sampling clock generating module 3 is connected to the sampling clock input terminal of the sampling module 4.
  • the temperature-sensitive clock circuit 1 is used to generate a temperature-sensitive clock that changes with the current temperature, and send the temperature-sensitive clock to the temperature-sensitive signal generation module 2 and the sampling clock generation module 3.
  • the temperature-sensitive signal generating module 2 is used to generate a temperature-sensitive signal according to a temperature-sensitive clock, and the temperature-sensitive signal carries current temperature information.
  • the sampling clock module 3 is used to generate a sampling clock according to the temperature-sensitive clock. The edge of the sampling clock triggers the sampling module 4 to sample the temperature-sensitive signal, and the sampling module 4 obtains the temperature sampling value.
  • the edge of the temperature-sensitive signal occurs on the first edge of the temperature-sensitive clock
  • the edge of the sampling clock occurs on the second edge of the temperature-sensitive clock
  • the edges of the temperature-sensitive signal include rising edges and falling edges
  • the edges of the sampling clock include rising edges and falling edges.
  • the first edge of the temperature-sensitive clock can be set as the rising edge and the second edge of the temperature-sensitive clock is the falling edge, or the first edge of the temperature-sensitive clock can be the falling edge and the second edge of the temperature-sensitive clock is the rising edge.
  • the rising edge of the sampling clock may trigger the sampling module 4 to sample the temperature-sensitive signal, or the falling edge of the sampling clock may trigger the sampling module to sample the temperature-sensitive signal.
  • the working process of the temperature detection device shown in FIG. 4 is as follows: the temperature-sensitive clock circuit 1 generates a temperature-sensitive clock that changes with the current temperature.
  • the temperature-sensitive signal generating module 2 receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit 1, and generates a temperature-sensitive signal according to the temperature-sensitive clock. The edge of the temperature-sensitive signal occurs on the falling edge of the temperature-sensitive clock.
  • the sampling clock generating module 3 receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit 1, and generates a sampling clock according to the temperature-sensitive clock. The edge of the sampling clock occurs on the rising edge of the temperature-sensitive clock.
  • the sampling module 4 receives the temperature-sensitive signal sent by the temperature-sensitive signal generating module 2 and at the same time the sampling clock sent by the sampling clock generating module 3, and samples the temperature-sensitive signal when the rising edge of the sampling clock arrives to obtain the temperature sampling value.
  • the edge of the temperature-sensitive signal generated by the temperature-sensitive signal generation module occurs on the first edge of the temperature-sensitive clock
  • the sampling clock edge generated by the sampling clock module occurs on the second edge of the temperature-sensitive clock That is, the edge of the temperature-sensitive signal does not overlap with the edge of the sampling clock, so that when the edge of the sampling clock triggers the sampling module to sample the temperature-sensitive signal, the edge of the temperature-sensitive signal will not be sampled.
  • the problem of sampling error can prevent the sampling module from sampling the edge of the temperature-sensitive signal, thereby avoiding sampling errors.
  • Fig. 5 is a schematic structural diagram of another temperature detection device provided by an embodiment of the present invention. The parts that are the same as the temperature sampling device shown in FIG. 4 will not be repeated here.
  • the temperature-sensitive signal generation module includes a frequency dividing unit 21, the output terminal of the temperature-sensitive clock circuit 1 is connected to the input terminal of the frequency dividing unit 21, and the output terminal of the frequency dividing unit 21 is connected to the standby unit of the sampling module 4. Sampling signal input terminal connection.
  • the sampling clock generating module 3 includes an initial sampling clock generating unit 31 and a sampling unit 32.
  • the output terminal of the initial sampling clock generating unit 31 is connected to the first input terminal of the sampling unit 32, and the output terminal of the temperature-sensitive clock circuit 1 is connected to The second input terminal of the sampling unit 32 is connected, and the output terminal of the sampling unit 32 is connected with the sampling clock input terminal of the sampling module 4.
  • the frequency dividing unit 21 is used to generate N temperature-sensitive signals according to the temperature-sensitive clock, and the N temperature-sensitive signals are divided by 2 1 -2 N of the temperature-sensitive clock, where N is a positive integer. It is understandable that since the N temperature-sensitive signals are divided by 2 1 -2 N of the temperature-sensitive clock respectively, the edge of each temperature-sensitive signal must occur on the rising or falling edge of the temperature-sensitive clock.
  • the frequency dividing unit 21 may include N frequency dividing circuits, which are two frequency dividing circuits, four frequency dividing circuits, eight frequency dividing circuits... and 2 N frequency dividing circuits.
  • the frequency dividing unit 21 may also include N frequency dividing circuits in series. The divide-by-two circuit.
  • the specific value of N is related to the temperature detection range and detection accuracy. Exemplarily, assuming that the temperature range to be detected is -40°C to 120°C, and the detection accuracy is 1°C, that is, every 1°C corresponds to a temperature code, the number of temperature codes required is 160, so 2 N >160, select N as 8. Therefore, the detection range and detection accuracy of temperature detection can be improved by increasing the number of temperature-sensitive signals generated by the frequency dividing unit 21, that is, the number of temperature sampling values.
  • the initial sampling clock generating unit 31 is used to generate the initial sampling clock, and the edge of the temperature-sensitive clock triggers the sampling unit 32 to sample the initial sampling clock to obtain the sampling clock.
  • the edges of the temperature-sensitive clock include rising edges and falling edges. When the rising edge of the temperature-sensitive clock triggers the sampling unit 32 to sample the initial sampling clock, the edge of the obtained sampling clock must occur on the rising edge of the temperature-sensitive clock; When the falling edge of the clock triggers the sampling unit 32 to sample the initial sampling clock, the edge of the obtained sampling clock must occur on the falling edge of the temperature-sensitive clock.
  • the working principle of the temperature detection device shown in FIG. 5 is as follows: when the edge of the temperature-sensitive signal generated by the frequency dividing unit 21 occurs on the rising edge of the temperature-sensitive clock, the falling edge of the temperature-sensitive clock can be set to trigger the sampling unit 32
  • the initial sampling clock is sampled so that the edge of the sampling clock that is obtained occurs on the falling edge of the temperature-sensitive clock; when the edge of the temperature-sensitive signal generated by the frequency dividing unit 21 occurs on the falling edge of the temperature-sensitive clock, the temperature-sensitive clock can be set
  • the rising edge of the clock triggers the sampling unit 32 to sample the initial sampling clock, so that the edge of the obtained sampling clock occurs on the rising edge of the temperature-sensitive clock.
  • the edge of the temperature-sensitive signal and the edge of the sampling clock must occur on different edges of the temperature-sensitive clock, so that when the temperature-sensitive signal is sampled by the sampling clock, the edge of the temperature-sensitive signal must not be sampled.
  • FIG. 6 is a timing diagram of a temperature-sensitive signal and a sampling clock provided by an embodiment of the present invention.
  • the sampling unit 32 samples the initial sampling clock REF' to obtain the sampling clock REF, and the edge of the sampling clock REF occurs on the rising edge of the temperature-sensitive clock TCO0.
  • the temperature-sensitive signal includes TCO1-TCO8, TCO1 is the two-frequency division of the temperature-sensitive clock TCO0, TCO2 is the four-frequency division of the temperature-sensitive clock TCO0, TCO3 is the eighth frequency of the temperature-sensitive clock TCO0, and TCO4 is the sixteenth of the temperature-sensitive clock TCO0 Frequency division, TCO5 is the thirty-two frequency division of the temperature-sensitive clock TCO0, TCO6 is the sixty-four frequency division of the temperature-sensitive clock TCO0, TCO7 is the 128 frequency division of the temperature-sensitive clock TCO0, and TCO8 is the temperature-sensitive clock TCO0 Divide by 256, the edges of TCO1-TCO8 all occur on the falling edge of the temperature-sensitive clock TCO0.
  • FIG. 7 is a circuit element diagram of a frequency dividing unit provided by an embodiment of the present invention.
  • the frequency dividing unit includes N two frequency dividing circuits 211 connected in series.
  • the input terminal of the first two frequency dividing circuit is connected to the output terminal of the temperature-sensitive clock circuit.
  • the output terminal outputs a temperature-sensitive signal.
  • the divide-by-two circuit 211 includes a NOT gate and a D flip-flop; the input end of the NOT gate is the input end of the divide-by-two circuit, and the output end of the NOT gate is connected to the clock terminal CLK of the D flip-flop , The data input terminal D of the D flip-flop and the second state of the D flip-flop The output terminal is connected, and the first state output terminal Q of the D flip-flop is the output terminal of the frequency divider circuit.
  • Fig. 8 is a timing diagram of input and output signals of the frequency dividing unit shown in Fig. 7.
  • the working principle of the frequency dividing unit shown in Fig. 7 is as follows: TCO0 is used as the primary frequency input to the divide-by-two circuit 211 in the first place, and the divide-by-two circuit 211 in the first place outputs TCO1, and the rising and falling edges of TCO1 occur on the falling of TCO0.
  • TCO1 input is located in the second position (from the series relationship) of the divide-by-two circuit 211, positioned in the second position of the divide-by-two circuit 211 output TCO2, the rising and falling edges of TCO2 occur on the falling edge of TCO1 (also The falling edge of TCO0), and so on, the rising and falling edges of TCO3-TCO8 also occur on the falling edge of TCO0. Therefore, each edge of TCO1-TCO8 will occur on the falling edge of TCO0, as shown in Figure 8. .
  • the initial sampling clock generating unit includes a reference clock circuit and a counter; the output terminal of the reference clock circuit is connected to the input terminal of the counter, and the output terminal of the counter is the output terminal of the initial sampling clock generating unit.
  • the reference clock circuit there are many specific implementations of the reference clock circuit, which can be set by those skilled in the art according to actual conditions.
  • the frequency of the initial sampling clock obtained by the reference clock circuit and the counter can also be set by those skilled in the art according to actual conditions.
  • the sampling module includes an edge D flip-flop.
  • the sampling unit 32 includes an edge D flip-flop.
  • Fig. 9 is a timing diagram of another temperature-sensitive signal and sampling clock provided by an embodiment of the present invention.
  • the initial sampling clock REF' is directly used to sample the temperature-sensitive signal, and the result is 00000110; the sampling clock REF is used to sample the temperature-sensitive signal, and the result is also 00000110.
  • the temperature detection device further includes a temperature change detection module, and the temperature change detection module is connected to the sampling module.
  • the temperature change detection module is used to receive M temperature sampling values sent by the sampling module.
  • M temperature sampling values sent by the sampling module.
  • M temperature sampling value with the most occurrences is determined as the current temperature; M is a positive integer greater than or equal to 3.
  • the components of the temperature detection device in this embodiment and the temperature detection device in the background art have the same name Parts and signals with the same name use different reference signs.
  • Fig. 10 is a flowchart of a temperature detection method provided by an embodiment of the present invention. Referring to Figure 10, the method specifically includes:
  • the temperature-sensitive clock circuit generates a temperature-sensitive clock that changes with the current temperature.
  • the temperature-sensitive signal generating module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates a temperature-sensitive signal according to the temperature-sensitive clock.
  • the edge of the temperature-sensitive signal occurs on the first edge of the temperature-sensitive clock.
  • the sampling clock generation module receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and generates a sampling clock according to the temperature-sensitive clock.
  • the edge of the sampling clock occurs on the second edge of the temperature-sensitive clock.
  • the sampling module receives the temperature-sensitive signal sent by the temperature-sensitive signal generation module, and at the same time receives the sampling clock sent by the sampling clock generation module, and samples the temperature-sensitive signal when the edge of the sampling clock arrives to obtain a temperature sampling value.
  • the temperature-sensitive signal generation module includes a frequency dividing unit, and S120 specifically includes:
  • the frequency dividing unit receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit.
  • the frequency dividing unit performs frequency division processing on the temperature-sensitive clock to obtain a 2 1 -2 N frequency-divided frequency of the temperature-sensitive clock, where N is a positive integer.
  • sampling clock generation module includes an initial sampling clock generation unit and a sampling unit
  • S130 includes:
  • the sampling unit receives the initial sampling clock sent by the initial sampling clock generating unit, and at the same time receives the temperature-sensitive clock sent by the temperature-sensitive clock circuit, and samples the initial sampling clock when the edge of the temperature-sensitive clock arrives to obtain the sampling clock.
  • the temperature detection device further includes a temperature change detection module
  • the temperature detection method further includes: the temperature change detection module receives M temperature sampling values sent by the sampling module;
  • M is a positive integer greater than or equal to 3.
  • the frequency dividing unit includes N two frequency dividing circuits connected in series, and the input end of the first two frequency dividing circuit is connected to the output end of the temperature-sensitive clock circuit.
  • the output terminal of the circuit outputs a temperature-sensitive signal.
  • the divide-by-two circuit includes a NOT gate and a D flip-flop
  • the input of the NOT gate is the input of the divide-by-two circuit
  • the output of the NOT gate is connected to the clock terminal of the D flip-flop
  • the data input of the D flip-flop The terminal is connected to the second state output terminal of the D flip-flop
  • the first state output terminal of the D flip-flop is the output terminal of the frequency divider circuit.
  • the initial sampling clock generating unit includes a reference clock circuit and a counter; the output terminal of the reference clock circuit is connected to the input terminal of the counter, and the output terminal of the counter is the output terminal of the initial sampling clock generating unit.
  • the sampling module includes an edge D flip-flop.
  • the sampling unit includes an edge D flip-flop.
  • the temperature detection method proposed in the embodiment of the present invention and the temperature detection device proposed in the above embodiment belong to the same inventive concept.
  • this embodiment has the same temperature detection device Beneficial effect.
  • an embodiment of the present invention also provides a display system, which includes the temperature detection device according to any embodiment of the present invention.
  • the display system provided by the embodiment of the present invention has the corresponding beneficial effects of the temperature detection device provided by the embodiment of the present invention, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

温度检测装置包括:温敏时钟电路(1)、温敏信号产生模块(2)、采样时钟产生模块(3)以及采样模块(4);温敏时钟电路(1)将产生的随当前温度变化的温敏时钟发送至温敏信号产生模块(2)和采样时钟产生模块(3);温敏信号产生模块(2)用于根据温敏时钟产生温敏信号,温敏信号的边沿发生在温敏时钟的第一边沿;采样时钟产生模块(3)用于根据温敏时钟产生采样时钟,采样时钟的边沿发生在温敏时钟的第二边沿;采样时钟的边沿触发采样模块(4)对温敏信号进行采样,采样模块(4)得到温度采样值。可以防止采样模块(4)采样到温敏信号的边沿,从而避免采样错误。

Description

一种温度检测装置、方法及显示系统 技术领域
本发明实施例涉及温度检测技术领域,尤其涉及一种温度检测装置及显示系统。
背景技术
显示系统包括显示装置和温度检测装置,温度检测装置用于检测当前温度,显示装置用于显示图像。其中,显示装置在不同的温度条件下产生相同的亮度所需要的灰阶电压是不同的,因此需要根据当前温度来改变灰阶电压的电压曲线,以使显示装置在不同的温度条件下也能够产生相同的亮度。
现有技术中,通常是采用时钟检测温度,一般需要一个不随温度变化的采样时钟和一个随温度变化的温敏时钟,然后根据温敏时钟产生温敏信号,温敏信号携带当前温度信息,在采样时钟的上升沿或下降沿触发对温敏信号的采样,以获得当前温度。但是,可能会出现采样到温敏信号的上升沿或下降沿处的现象,当采样到温敏信号的上升沿或下降沿处时,采样到的可能是高电平,也有可能是低电平,导致采样错误。
发明内容
本发明提供一种温度检测装置、方法及显示系统,以实现防止采样模块采样到温敏信号的边沿,从而避免采样错误。
第一方面,本发明实施例提供了一种温度检测装置,包括:温敏时钟电路、 温敏信号产生模块、采样时钟产生模块以及采样模块;
温敏时钟电路的输出端分别与温敏信号产生模块的输入端以及采样时钟产生模块的输入端连接;温敏时钟电路将产生的随当前温度变化的温敏时钟发送至温敏信号产生模块和采样时钟产生模块;
温敏信号产生模块用于根据温敏时钟产生温敏信号,其中,温敏信号的边沿发生在温敏时钟的第一边沿;
采样时钟模块用于根据温敏时钟产生采样时钟,其中,采样时钟的边沿发生在温敏时钟的第二边沿;
温敏信号产生模块的输出端与采样模块的待采样信号输入端连接,采样时钟产生模块的输出端与采样模块的采样时钟输入端连接;采样时钟的边沿触发采样模块对温敏信号进行采样,采样模块得到温度采样值。
可选的,温敏信号产生模块包括分频单元;
温敏时钟电路的输出端与分频单元的输入端连接;
分频单元用于根据温敏时钟产生N个温敏信号,N个温敏信号分别为温敏时钟的2 1-2 N分频,其中,N为正整数。
可选的,分频单元包括N个串联的二分频电路,位于首位的二分频电路的输入端与温敏时钟电路的输出端连接,每个二分频电路的输出端输出一个温敏信号。
可选的,二分频电路包括非门和D触发器;
非门的输入端为二分频电路的输入端,非门的输出端与D触发器的时钟端连接,D触发器的数据输入端与D触发器的第二状态输出端连接,D触发器的第一状态输出端为二分频电路的输出端。
可选的,采样时钟产生模块包括初始采样时钟产生单元和采样单元;
初始采样时钟产生单元的输出端与采样单元的第一输入端连接,温敏时钟电路的输出端与采样单元的第二输入端连接;
初始采样时钟产生单元用于产生初始采样时钟;
温敏时钟的边沿触发采样单元对初始采样时钟进行采样,获得采样时钟。
可选的,初始采样时钟产生单元包括参考时钟电路和计数器;
参考时钟电路的输出端与计数器的输入端连接,计数器的输出端为初始采样时钟产生单元的输出端。
可选的,采样模块包括边沿D触发器。
可选的,还包括温度变化检测模块,温度变化检测模块与采样模块连接;
温度变化检测模块用于接收采样模块发送的M个温度采样值,在判断M个温度采样值的种类小于等于2时,确定未发生温度变化;在判断M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多的温度采样值确定为当前温度;
其中,M为大于等于3的正整数。
第二方面,本发明实施例还提供了一种温度检测方法,包括:
温敏时钟电路产生随当前温度变化的温敏时钟;
温敏信号产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生温敏信号,其中,温敏信号的边沿发生在温敏时钟的第一边沿;
采样时钟产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生采样时钟,其中,采样时钟的边沿发生在温敏时钟的第二边沿;
采样模块接收温敏信号产生模块发送的温敏信号,同时接收采样时钟产生 模块发送的采样时钟,并在采样时钟的边沿到来时对温敏信号进行采样,获得温度采样值。
可选的,温敏信号产生模块包括分频单元;
温敏信号产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生温敏信号具体包括:
分频单元接收温敏时钟电路发送的温敏时钟;
分频单元对温敏时钟进行分频处理,获得温敏时钟的2 1-2 N分频,其中,N为正整数。
可选的,采样时钟产生模块包括初始采样时钟产生单元和采样单元;
采样时钟产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生采样时钟具体包括:
初始采样时钟产生单元初始采样时钟;
采样单元接收初始采样时钟产生单元发送的初始采样时钟,同时接收温敏时钟电路发送的温敏时钟,并在温敏时钟的边沿到来时对初始采样时钟进行采样,获得采样时钟。
可选的,温度检测装置还包括温度变化检测模块;
温度检测方法还包括:温度变化检测模块接收采样模块发送的M个温度采样值;
在M个温度采样值的种类小于等于2时,确定未发生温度变化;在M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多的温度采样值对应的温度值确定为当前温度;
其中,M为大于等于3的正整数。
第三方面,本发明实施例还提供了一种显示系统,包括本发明实施例任一实施例所述的温度检测装置。
本发明实施例提供的温度检测装置,通过温敏信号产生模块产生的温敏信号的边沿发生在温敏时钟的第一边沿,采样时钟模块产生的采样时钟边沿发生在温敏时钟的第二边沿,即,温敏信号的边沿与采样时钟的边沿不交叠,使得在采样时钟的边沿触发采样模块对温敏信号采样时,不会采样到温敏信号的边沿,解决现有技术方案容易出现采样错误的问题,实现防止采样模块采样到温敏信号的边沿,进而避免采样错误的效果。
附图说明
图1是现有技术提供的一种温度检测装置的结构示意图;
图2是现有技术提供的一种温敏信号和采样时钟的时序图;
图3是现有技术提供的另一种温敏信号和采样时钟的时序图;
图4是本发明实施例提供的一种温度检测装置的结构示意图;
图5是本发明实施例提供的另一种温度检测装置的结构示意图;
图6是本发明实施例提供的一种温敏信号和采样时钟的时序图;
图7是本发明实施例提供的一种分频单元的电路元件图;
图8是图7所示的分频单元输入以及输出的信号时序图;
图9是本发明实施例提供的另一种温敏信号和采样时钟的时序图;
图10是本发明实施例提供的一种温度检测方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需 要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
图1是现有技术提供的一种温度检测装置的结构示意图。该温度检测装置包括:温敏时钟电路1’、第一计数器单元2’、参考时钟电路3’、第二计数器单元4’以及采样单元5’。温敏时钟电路1’和第一计数器单元2’连接,温敏时钟电路1’将产生的随当前温度变化的温敏时钟TCO0’输出至第一计数器单元2’,第一计数器单元2’输出包括温敏时钟TCO0’在内的八路温敏信号(即TCO0’-TCO7’),TCO1’-TCO7’分别为温敏时钟的2 1-2 7分频。参考时钟电路3’和第二计数器单元4’连接,参考时钟电路3’将产生的参考时钟输出至第二计数器单元4’,以获得采样时钟REF-COUNTER’。第一计数器单元2’和第二计数器单元4’均与采样器5’连接,采样时钟REF-COUNTER’的上升沿触发采样器5’对TCO0’-TCO7’进行采样。
图2是现有技术提供的一种温敏信号和采样时钟的时序图。图3是现有技术提供的另一种温敏信号和采样时钟的时序图。参见图2,采样时钟REF-COUNTER’的上升沿触发采样器5’对TCO0’-TCO7’进行采样,采样得到的温度采样值为00001100,其为正确的采样结果。参见图3,采样时钟REF-COUNTER’的上升沿触发采样器5’对TCO0’-TCO7’进行采样,由于TCO0’-TCO2’的边沿刚好和采样时钟REF-COUNTER’的上升沿同时,因此,对于TCO0’-TCO2’,采样到的可能是高电平,也有可能是低电平,此时采样到的温度采样值就很有可能是错误的。需要说明的是,本领域技术人员根据TCO0’的时序图可以毫无疑义地得到TCO5’-TCO7’的时序图,因此,为了作图方便,图2和图3中未示出TCO5’-TCO7’的时序图。
有鉴于此,本发明实施例提供了一种温度检测装置。图4是本发明实施例提供的一种温度检测装置的结构示意图,参见图4,该温度检测装置包括:温敏时钟电路1、温敏信号产生模块2、采样时钟产生模块3以及采样模块4,温敏时钟电路1的输出端分别与温敏信号产生模块2的输入端以及采样时钟产生模块3的输入端连接,温敏信号产生模块2的输出端与采样模块4的待采样信号输入端连接,采样时钟产生模块3的输出端与采样模块4的采样时钟输入端连接。
其中,温敏时钟电路1用于产生随当前温度变化的温敏时钟,并将温敏时钟发送至温敏信号产生模块2和采样时钟产生模块3。具体的,温敏时钟电路的具体实现方式有多种,本领域技术人员可根据实际情况设定。温敏信号产生模块2用于根据温敏时钟产生温敏信号,则温敏信号携带当前温度信息。采样时钟模块3用于根据温敏时钟产生采样时钟。采样时钟的边沿触发采样模块4对温敏信号进行采样,采样模块4得到温度采样值。
其中,温敏信号的边沿发生在温敏时钟的第一边沿,采样时钟的边沿发生在温敏时钟的第二边沿。
具体的,温敏信号的边沿包括上升沿和下降沿,采样时钟的边沿包括上升沿和下降沿。可以设置温敏时钟的第一边沿是上升沿,温敏时钟的第二边沿是下降沿,也可以设置温敏时钟的第一边沿是下降沿,温敏时钟的第二边沿是上升沿。可以是采样时钟的上升沿触发采样模块4对温敏信号进行采样,也可以是采样时钟的下降沿触发采样模块对温敏信号进行采样。
示例性的,图4所示的温度检测装置的工作过程如下:温敏时钟电路1产生随当前温度变化的温敏时钟。温敏信号产生模块2接收温敏时钟电路1发送 的温敏时钟,并根据温敏时钟产生温敏信号,温敏信号的边沿发生在温敏时钟的下降沿。采样时钟产生模块3接收温敏时钟电路1发送的温敏时钟,并根据温敏时钟产生采样时钟,采样时钟的边沿发生在温敏时钟的上升沿。采样模块4接收温敏信号产生模块2发送的温敏信号,同时接收采样时钟产生模块3发送的采样时钟,并在采样时钟的上升沿到来时对温敏信号进行采样,获得温度采样值。
本发明实施例提供的温度检测装置,通过温敏信号产生模块产生的温敏信号的边沿发生在温敏时钟的第一边沿,采样时钟模块产生的采样时钟边沿发生在温敏时钟的第二边沿,即,温敏信号的边沿与采样时钟的边沿不交叠,使得在采样时钟的边沿触发采样模块对温敏信号采样时,不会采样到温敏信号的边沿,解决现有技术中容易出现采样错误的问题,达到防止采样模块采样到温敏信号的边沿,进而避免采样错误的效果。
图5是本发明实施例提供的另一种温度检测装置的结构示意图。与图4所示的温度采样装置相同的部分,此处不再赘述。参见图5,可选的,温敏信号产生模块包括分频单元21,温敏时钟电路1的输出端与分频单元21的输入端连接,分频单元21的输出端与采样模块4的待采样信号输入端连接。可选的,采样时钟产生模块3包括初始采样时钟产生单元31和采样单元32,初始采样时钟产生单元31的输出端与采样单元32的第一输入端连接,温敏时钟电路1的输出端与采样单元32的第二输入端连接,采样单元32的输出端与采样模块4的采样时钟输入端连接。
其中,分频单元21用于根据温敏时钟产生N个温敏信号,N个温敏信号分别为温敏时钟的2 1-2 N分频,其中,N为正整数。可以理解的是,由于N个温 敏信号分别为温敏时钟的2 1-2 N分频,所以,每个温敏信号的边沿必然会发生在温敏时钟的上升沿或下降沿。
具体的,分频单元21可以包括N个分频电路,分别为二分频电路、四分频电路、八分频电路……以及2 N分频电路,分频单元21还可以包括N个串联的二分频电路。N的具体值与温度检测范围以及检测精度相关。示例性的,假设需要检测的温度范围为-40℃~120℃,检测精度为1℃,即每隔1℃对应一个温度编码,则需要的温度编码的个数为160个,因此需要2 N>160,选择N为8。因此可以通过增加分频单元21产生的温敏信号的个数,即温度采样值的位数来提高温度检测的检测范围和检测精度。
其中,初始采样时钟产生单元31用于产生初始采样时钟,温敏时钟的边沿触发采样单元32对初始采样时钟进行采样,获得采样时钟。温敏时钟的边沿包括上升沿和下降沿,当温敏时钟的上升沿触发采样单元32对初始采样时钟进行采样时,得到的采样时钟的边沿必然发生在温敏时钟的上升沿;当温敏时钟的下降沿触发采样单元32对初始采样时钟进行采样时,得到的采样时钟的边沿必然发生在温敏时钟的下降沿。
具体的,图5所示的温度检测装置的工作原理如下:当分频单元21产生的温敏信号的边沿发生在温敏时钟的上升沿时,可以设置温敏时钟的下降沿触发采样单元32对初始采样时钟进行采样,以使得到的采样时钟的边沿发生在温敏时钟的下降沿;当分频单元21产生的温敏信号的边沿发生在温敏时钟的下降沿时,可以设置温敏时钟的上升沿触发采样单元32对初始采样时钟进行采样,以使得到的采样时钟的边沿发生在温敏时钟的上升沿。这样可以使得,温敏信号的边沿与采样时钟的边沿必然发生在温敏时钟的不同边沿,从而使得通过采样 时钟对温敏信号进行采样时,一定不会采样到温敏信号的边沿。
示例性的,图6是本发明实施例提供的一种温敏信号和采样时钟的时序图。参见图6,采样单元32对初始采样时钟REF’进行采样后得到采样时钟REF,采样时钟REF的边沿发生在温敏时钟TCO0的上升沿。温敏信号包括TCO1-TCO8,TCO1为温敏时钟TCO0的二分频,TCO2为温敏时钟TCO0的四分频,TCO3为温敏时钟TCO0的八分频,TCO4为温敏时钟TCO0的十六分频,TCO5为温敏时钟TCO0的三十二分频,TCO6为温敏时钟TCO0的六十四分频,TCO7为温敏时钟TCO0的一百二十八分频,TCO8为温敏时钟TCO0的二百五十六分频,TCO1-TCO8的边沿均发生在温敏时钟TCO0的下降沿。可见,采样模块4对TCO1-TCO8进行采样时,一定不会采样到TCO1-TCO8的边沿。需要说明的是,为作图方便,并未示出TCO6-TCO8,并且,通过上述描述可知,采样模块4一定不会采样到TCO1-TCO8的边沿,因此,TCO1-TCO8的边沿虽然是在一段时间内完成的,但是图6并未示出边沿的变化过程。
图7是本发明实施例提供的一种分频单元的电路元件图。参见图7,可选的,分频单元包括N个串联的二分频电路211,位于首位的二分频电路的输入端与温敏时钟电路的输出端连接,每个二分频电路211的输出端输出一个温敏信号。
继续参见图7,可选的,二分频电路211包括非门和D触发器;非门的输入端为二分频电路的输入端,非门的输出端与D触发器的时钟端CLK连接,D触发器的数据输入端D与D触发器的第二状态
Figure PCTCN2019096794-appb-000001
输出端连接,D触发器的第一状态输出端Q为二分频电路的输出端。
图8是图7所示的分频单元输入以及输出的信号时序图。图7所示的分频 单元的工作原理如下:TCO0作为原频输入位于首位的二分频电路211,位于首位的二分频电路211输出TCO1,TCO1的上升沿和下降沿发生在TCO0的下降沿;TCO1输入位于第二位(从串联关系来看)的二分频电路211,位于第二位的二分频电路211输出TCO2,TCO2的上升沿和下降沿发生在TCO1的下降沿(也是TCO0的下降沿),依次类推,TCO3-TCO8的上升沿和下降沿发生也都发生在TCO0的下降沿,因此,TCO1-TCO8的每个边沿都会发生在TCO0的下降沿,如图8所示。
可选的,初始采样时钟产生单元包括参考时钟电路和计数器;参考时钟电路的输出端与计数器的输入端连接,计数器的输出端为初始采样时钟产生单元的输出端。
具体的,参考时钟电路的具体实现方式有多种,本领域技术人员可根据实际情况设定。此外,通过参考时钟电路和计数器获得的初始采样时钟的频率本领域技术人员也可根据实际情况设定。
可选的,采样模块包括边沿D触发器。可选的,采样单元32包括边沿D触发器。
图9是本发明实施例提供的另一种温敏信号和采样时钟的时序图。参见图6,直接使用初始采样时钟REF’对温敏信号来采样,得到的结果为00000110;使用采样时钟REF对温敏信号来采样,得到的结果也为00000110。然而,参见图9,直接使用初始采样时钟REF’对温敏信号来采样,得到的结果为00000110;使用采样时钟REF对温敏信号来采样,得到的结果为00000111,比真正的温度采样值大1,因此在一段时间内,温度检测装置获得的结果可能会在00000110和00000111之间跳变。
因此,在上述技术方案的基础上,可选的,温度检测装置还包括温度变化检测模块,温度变化检测模块与采样模块连接。
其中,温度变化检测模块用于接收采样模块发送的M个温度采样值,在判断M个温度采样值的种类小于等于2时,确定未发生温度变化;在判断M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多的温度采样值确定为当前温度;M为大于等于3的正整数。这样设置的好处在于,可以避免将温度采样值在相邻两个数值之间的来回跳变视为当前温度发生变化。M的具体值本领域技术人员可根据实际情况设定。
需要说明的是,为了清晰的展示本实施例中温度检测装置与背景技术中温度检测装置的各个组成部分的区别,本实施例中温度检测装置与背景技术中温度检测装置的同一名称的各个组成部分以及同一名称的信号使用不同的附图标记。
基于同上的发明构思,本发明实施例还提供了一种温度检测方法。图10是本发明实施例提供的一种温度检测方法的流程图。参见图10,该方法具体包括:
S110、温敏时钟电路产生随当前温度变化的温敏时钟。
S120、温敏信号产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生温敏信号。
其中,温敏信号的边沿发生在温敏时钟的第一边沿。
S130、采样时钟产生模块接收温敏时钟电路发送的温敏时钟,并根据温敏时钟产生采样时钟。
其中,采样时钟的边沿发生在温敏时钟的第二边沿。
S140、采样模块接收温敏信号产生模块发送的温敏信号,同时接收采样时 钟产生模块发送的采样时钟,并在采样时钟的边沿到来时对温敏信号进行采样,获得温度采样值。
在上述技术方案的基础上,可选的,温敏信号产生模块包括分频单元,S120具体包括:
S121、分频单元接收温敏时钟电路发送的温敏时钟。
S122、分频单元对温敏时钟进行分频处理,获得温敏时钟的2 1-2 N分频,其中,N为正整数。
可选的,采样时钟产生模块包括初始采样时钟产生单元和采样单元,S130包括:
S131、初始采样时钟产生单元初始采样时钟;
S132、采样单元接收初始采样时钟产生单元发送的初始采样时钟,同时接收温敏时钟电路发送的温敏时钟,并在温敏时钟的边沿到来时对初始采样时钟进行采样,获得采样时钟。
可选的,温度检测装置还包括温度变化检测模块,温度检测方法还包括:温度变化检测模块接收采样模块发送的M个温度采样值;
在M个温度采样值的种类小于等于2时,确定未发生温度变化;在M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多的温度采样值对应的温度值确定为当前温度;
其中,M为大于等于3的正整数。
在上述技术方案的基础上,可选的,分频单元包括N个串联的二分频电路,位于首位的二分频电路的输入端与温敏时钟电路的输出端连接,每个二分频电路的输出端输出一个温敏信号。
可选的,二分频电路包括非门和D触发器,非门的输入端为二分频电路的输入端,非门的输出端与D触发器的时钟端连接,D触发器的数据输入端与D触发器的第二状态输出端连接,D触发器的第一状态输出端为二分频电路的输出端。
可选的,初始采样时钟产生单元包括参考时钟电路和计数器;参考时钟电路的输出端与计数器的输入端连接,计数器的输出端为初始采样时钟产生单元的输出端。
可选的,采样模块包括边沿D触发器。
可选的,采样单元包括边沿D触发器。
本发明实施例提出的温度检测方法与上述实施例提出的温度检测装置属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述实施例,并且本实施例具备温度检测装置相同的有益效果。
基于相同的发明构思,本发明实施例还提供了一种显示系统,该显示系统包括本发明任一实施例所述的温度检测装置。本发明实施例提供的显示系统具备本发明实施例提供的温度检测装置相应的有益效果,这里不再赘述。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (13)

  1. 一种温度检测装置,其特征在于,包括:温敏时钟电路、温敏信号产生模块、采样时钟产生模块以及采样模块;
    所述温敏时钟电路的输出端分别与所述温敏信号产生模块的输入端以及所述采样时钟产生模块的输入端连接;所述温敏时钟电路将产生的随当前温度变化的温敏时钟发送至所述温敏信号产生模块和所述采样时钟产生模块;
    所述温敏信号产生模块用于根据所述温敏时钟产生温敏信号,其中,所述温敏信号的边沿发生在所述温敏时钟的第一边沿;
    所述采样时钟模块用于根据所述温敏时钟产生采样时钟,其中,所述采样时钟的边沿发生在所述温敏时钟的第二边沿;
    所述温敏信号产生模块的输出端与所述采样模块的待采样信号输入端连接,所述采样时钟产生模块的输出端与所述采样模块的采样时钟输入端连接;所述采样时钟的边沿触发所述采样模块对所述温敏信号进行采样,所述采样模块得到温度采样值。
  2. 根据权利要求1所述的温度检测装置,其特征在于,所述温敏信号产生模块包括分频单元;
    所述温敏时钟电路的输出端与所述分频单元的输入端连接;
    所述分频单元用于根据所述温敏时钟产生N个温敏信号,所述N个温敏信号分别为所述温敏时钟的2 1-2 N分频,其中,N为正整数。
  3. 根据权利要求2所述的温度检测装置,其特征在于,所述分频单元包括N个串联的二分频电路,位于首位的所述二分频电路的输入端与所述温敏时钟电路的输出端连接,每个所述二分频电路的输出端输出一个温敏信号。
  4. 根据权利要求3所述的温度检测装置,其特征在于,所述二分频电路包 括非门和D触发器;
    所述非门的输入端为所述二分频电路的输入端,所述非门的输出端与所述D触发器的时钟端连接,所述D触发器的数据输入端与所述D触发器的第二状态输出端连接,所述D触发器的第一状态输出端为所述二分频电路的输出端。
  5. 根据权利要求1所述的温度检测装置,其特征在于,所述采样时钟产生模块包括初始采样时钟产生单元和采样单元;
    所述初始采样时钟产生单元的输出端与所述采样单元的第一输入端连接,所述温敏时钟电路的输出端与所述采样单元的第二输入端连接;
    所述初始采样时钟产生单元用于产生初始采样时钟;
    所述温敏时钟的边沿触发所述采样单元对所述初始采样时钟进行采样,获得采样时钟。
  6. 根据权利要求5所述的温度检测装置,其特征在于,所述初始采样时钟产生单元包括参考时钟电路和计数器;
    所述参考时钟电路的输出端与所述计数器的输入端连接,所述计数器的输出端为所述初始采样时钟产生单元的输出端。
  7. 根据权利要求1所述的温度检测装置,其特征在于,所述采样模块包括边沿D触发器。
  8. 根据权利要求1所述的温度检测装置,其特征在于,还包括温度变化检测模块,所述温度变化检测模块与所述采样模块连接;
    所述温度变化检测模块用于接收所述采样模块发送的M个温度采样值,在判断所述M个温度采样值的种类小于等于2时,确定未发生温度变化;在判断所述M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多 的温度采样值确定为当前温度;
    其中,M为大于等于3的正整数。
  9. 一种温度检测方法,适用于权利要求1-8任一所述的温度检测装置,其特征在于,包括:
    温敏时钟电路产生随当前温度变化的温敏时钟;
    温敏信号产生模块接收所述温敏时钟电路发送的所述温敏时钟,并根据所述温敏时钟产生温敏信号,其中,所述温敏信号的边沿发生在所述温敏时钟的第一边沿;
    采样时钟产生模块接收所述温敏时钟电路发送的所述温敏时钟,并根据所述温敏时钟产生采样时钟,其中,所述采样时钟的边沿发生在所述温敏时钟的第二边沿;
    采样模块接收所述温敏信号产生模块发送的温敏信号,同时接收所述采样时钟产生模块发送的采样时钟,并在所述采样时钟的边沿到来时对所述温敏信号进行采样,获得温度采样值。
  10. 根据权利要求9所述的温度检测方法,其特征在于,所述温敏信号产生模块包括分频单元;
    所述温敏信号产生模块接收所述温敏时钟电路发送的所述温敏时钟,并根据所述温敏时钟产生温敏信号具体包括:
    所述分频单元接收所述温敏时钟电路发送的所述温敏时钟;
    所述分频单元对所述温敏时钟进行分频处理,获得所述温敏时钟的2 1-2 N分频,其中,N为正整数。
  11. 根据权利要求9所述的温度检测方法,其特征在于,所述采样时钟产 生模块包括初始采样时钟产生单元和采样单元;
    所述采样时钟产生模块接收所述温敏时钟电路发送的所述温敏时钟,并根据所述温敏时钟产生采样时钟具体包括:
    所述初始采样时钟产生单元初始采样时钟;
    所述采样单元接收所述初始采样时钟产生单元发送的初始采样时钟,同时接收所述温敏时钟电路发送的温敏时钟,并在所述温敏时钟的边沿到来时对所述初始采样时钟进行采样,获得采样时钟。
  12. 根据权利要求9所述的温度检测方法,其特征在于,所述温度检测装置还包括温度变化检测模块;
    所述温度检测方法还包括:所述温度变化检测模块接收所述采样模块发送的M个温度采样值;
    在所述M个温度采样值的种类小于等于2时,确定未发生温度变化;在所述M个温度采样值的种类大于2时,确定发生温度变化,并将出现次数最多的温度采样值对应的温度值确定为所述当前温度;
    其中,M为大于等于3的正整数。
  13. 一种显示系统,其特征在于,包括权利要求1-8任一项所述的温度检测装置。
PCT/CN2019/096794 2019-06-28 2019-07-19 一种温度检测装置、方法及显示系统 WO2020258419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910576374.0 2019-06-28
CN201910576374.0A CN110260986B (zh) 2019-06-28 2019-06-28 一种温度检测装置、方法及显示系统

Publications (1)

Publication Number Publication Date
WO2020258419A1 true WO2020258419A1 (zh) 2020-12-30

Family

ID=67922894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096794 WO2020258419A1 (zh) 2019-06-28 2019-07-19 一种温度检测装置、方法及显示系统

Country Status (2)

Country Link
CN (1) CN110260986B (zh)
WO (1) WO2020258419A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136453A1 (en) * 2006-12-06 2008-06-12 Via Technologies, Inc. Digital temperature detecting system and method
CN101210848A (zh) * 2006-12-30 2008-07-02 盛群半导体股份有限公司 自动检测温度的电路结构
CN101915625A (zh) * 2010-07-14 2010-12-15 北京北大众志微系统科技有限责任公司 温度传感器
CN102175337A (zh) * 2011-02-23 2011-09-07 深圳市星芯趋势科技有限责任公司 温度传感器
CN103837243A (zh) * 2014-03-27 2014-06-04 卓捷创芯科技(深圳)有限公司 时间域集成温度传感器
CN104596662A (zh) * 2014-12-08 2015-05-06 深圳市芯海科技有限公司 优化线性度的片上数字温度传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049051B1 (ja) * 1999-03-31 2000-06-05 新潟日本電気株式会社 中央処理装置の温度制御回路
KR20140094095A (ko) * 2013-01-21 2014-07-30 삼성전자주식회사 온도 제어 발진기 및 이를 포함하는 온도 센서

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136453A1 (en) * 2006-12-06 2008-06-12 Via Technologies, Inc. Digital temperature detecting system and method
CN101210848A (zh) * 2006-12-30 2008-07-02 盛群半导体股份有限公司 自动检测温度的电路结构
CN101915625A (zh) * 2010-07-14 2010-12-15 北京北大众志微系统科技有限责任公司 温度传感器
CN102175337A (zh) * 2011-02-23 2011-09-07 深圳市星芯趋势科技有限责任公司 温度传感器
CN103837243A (zh) * 2014-03-27 2014-06-04 卓捷创芯科技(深圳)有限公司 时间域集成温度传感器
CN104596662A (zh) * 2014-12-08 2015-05-06 深圳市芯海科技有限公司 优化线性度的片上数字温度传感器

Also Published As

Publication number Publication date
CN110260986B (zh) 2020-08-28
CN110260986A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US6295315B1 (en) Jitter measurement system and method
US7391240B2 (en) Clock anomaly detection circuit and clock anomaly detection method
US20200124709A1 (en) Circuit, method and related chip for time measurement, system, and device
US9337887B2 (en) Phase-alignment between clock signals
US4047007A (en) Clocked digital counting system
KR920002022B1 (ko) 계수형 계측기기의 계수오류 검출장치
WO2020258419A1 (zh) 一种温度检测装置、方法及显示系统
US5982712A (en) Method and apparatus for measuring time intervals between electrical signals
CN108418580B (zh) 一种通过频率计测量中央处理器内部锁相环稳定性的方法
CN116131821A (zh) 一种高精度延迟时钟校准电路及芯片
CN111711445B (zh) 标称频率误差的校正方法、装置以及电子设备
RU2210785C2 (ru) Цифровой частотомер
CN115356532A (zh) 微处理器多路测频系统及其测频方法
US10110371B2 (en) Phase difference estimation device and communication device having the phase difference estimation device
US20090128133A1 (en) Duty Cycle Measurement Method and Apparatus for Various Signals Throughout an Integrated Circuit Device
CN115603849B (zh) 多传感器触发控制方法、装置、设备及存储介质
JPH0658386B2 (ja) カウンタ装置
JPH1028110A (ja) 位相差測定回路
JP2000059206A (ja) パルス入力回路におけるパルスカウント方式
CN107317581B (zh) 具有高分辨率的时间数字转换器
JPS5824220Y2 (ja) グリツチ検出器
US20210041905A1 (en) Digital circuit to detect presence and quality of an external timing device
US20060097756A1 (en) Duty distortion detector
KR100393421B1 (ko) 동기식 에이에프 변환기의 카운터 시스템
CN116896358A (zh) 校准时钟信号的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935742

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19935742

Country of ref document: EP

Kind code of ref document: A1