WO2020255994A1 - 金属成形体表面の粗面化方法とそれを使用したシール方法 - Google Patents

金属成形体表面の粗面化方法とそれを使用したシール方法 Download PDF

Info

Publication number
WO2020255994A1
WO2020255994A1 PCT/JP2020/023697 JP2020023697W WO2020255994A1 WO 2020255994 A1 WO2020255994 A1 WO 2020255994A1 JP 2020023697 W JP2020023697 W JP 2020023697W WO 2020255994 A1 WO2020255994 A1 WO 2020255994A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
metal molded
joint surface
roughening
metal
Prior art date
Application number
PCT/JP2020/023697
Other languages
English (en)
French (fr)
Inventor
雅彦 板倉
清水 潔
孝之 宇野
法寿 和田
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to JP2021526825A priority Critical patent/JPWO2020255994A1/ja
Publication of WO2020255994A1 publication Critical patent/WO2020255994A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles

Definitions

  • the present invention relates to a method for roughening the surface of a metal molded body and a sealing method using this method.
  • Japanese Unexamined Patent Publication No. 2018-94777 describes an invention using continuous wave laser light under specific irradiation conditions as a method of joining a resin molded body to a metal molded body having an opening to seal the opening. ..
  • a continuous wave laser is used to continuously apply laser light to the surface of the metal molded body at an irradiation rate of 2000 mm / sec or more.
  • An invention is described in which the surface of the metal molded body is roughened by irradiation and then bonded to the resin molded body to produce a composite molded body.
  • the present invention is directed to providing a method for roughening the surface of a metal molded body in some examples thereof. Further, in some other examples, the present invention is directed to provide a sealing method for sealing an opening of a metal molded body with high sealing property by joining a metal molded body and a resin molded body.
  • the present invention is a method of roughening the surface of a metal molded article.
  • the surface of the metal molded body is roughened by irradiating the surface of the metal molded body with a laser beam at an energy density of 1 MW / cm 2 or more and an irradiation speed of 2000 mm / sec or more by using a continuous wave laser.
  • the step of irradiating the laser beam to roughen the surface makes the laser beam linear so that a plurality of straight lines, curves, or linear grooves of a combination of straight lines and curves are formed on the surface of the metal molded body.
  • the interval (pitch interval) (P) between adjacent lines is 0.12 mm or more, and the ratio (P / S) of the pitch interval (P) ( ⁇ m) to the spot diameter (S) ( ⁇ m) of the laser beam is 4.
  • the present invention is a method of roughening the surface of a metal molded article. It has a step of roughening the surface of the metal molded body by irradiating the surface of the metal molded body with a laser beam at an energy density of 1 MW / cm 2 or more and an irradiation speed of 2000 mm / sec or more by using a continuous wave laser.
  • the step of irradiating the laser beam to roughen the surface makes the laser beam linear so that a plurality of straight lines, curves, or linear grooves of a combination of straight lines and curves are formed on the surface of the metal molded body.
  • the interval (pitch interval) (P) between adjacent lines is 0.12 mm or more, and the ratio (P / S) of the pitch interval (P) ( ⁇ m) to the spot diameter (S) ( ⁇ m) of the laser beam is 5.
  • a method for roughening the surface of a metal molded body which is ⁇ 12.5.
  • the present invention provides a sealing method using any of the above methods for roughening the surface of a metal molded body.
  • the sealing method may be, for example, a sealing method in which the resin molded body is joined to the metal molded body to seal all or part of the opening of the metal molded body, and the metal molded body is connected to the opening to be sealed. It may have in the internal space.
  • the joint surface of the metal molded product with the resin molded product is roughened using any of the above-mentioned roughening methods, and a plurality of straight lines, curves, or lines of a combination of straight lines and curves are formed on the joint surface.
  • a groove may be formed.
  • these plurality of linear grooves are formed so as to cross a path from the internal space of the metal molded body to the external space of the metal molded body, for example, the shortest path from the internal space to the external space of the metal molded body along the joint surface. It may be formed.
  • An unroughened joint surface may be left at least in a part between the plurality of linear grooves. The part including the joint surface of the roughened metal molded body is arranged in the mold, and the resin molded body formed by injection molding or compression molding of the resin seals all or a part of the opening. You can.
  • a joint surface having excellent sealing properties with a resin molded body can be obtained.
  • high sealing performance can be obtained by, for example, sealing the opening of the metal molded body having an internal space with the resin molded body.
  • high sealing properties can be obtained when sealing between two metal molded bodies with a resin molded body.
  • FIG. 1 (a) is a plan view of an embodiment of an exemplary linear groove formed in the exemplary method for roughening the surface of a metal molded body of the present invention
  • FIG. 1 (b) is a plan view of FIG. 1 (a).
  • FIG. 1 (c) is a plan view of an exemplary linear groove embodiment different from FIGS. 1 (a) and 1 (b).
  • FIG. 2A is a plan view of an embodiment of an exemplary linear groove formed in an exemplary method for roughening the surface of a metal molded body different from FIG. 1, and FIG. 2B is a diagram. 2 (a) is a plan view of an embodiment of an exemplary linear groove different from (a).
  • 3 (a) and 3 (b) are explanatory views of another exemplary embodiment of the laser irradiation method for carrying out the embodiment of FIG.
  • FIG. 4A is a perspective view of an exemplary embodiment of a metal molded body to which the exemplary sealing method of the present invention is applied
  • FIG. 4B is a plan view from one end side of FIG. 4A.
  • FIG. 5 (a) is a plan view showing an exemplary embodiment of a method of irradiating the metal molded body of FIG. 4 with a laser beam to roughen the surface
  • FIG. 5 (b) shows.
  • FIG. 5 (c) shows a laser beam irradiation method different from FIGS. 5 (a) and 5 (b).
  • the plan view which shows an exemplary embodiment.
  • FIG. 6 is an exemplary axial partial cross-sectional view after irradiating the surface of the exemplary metal molded body of FIG. 4 with laser light in the embodiment shown in FIG. 5 (a).
  • FIG. 7 is an exemplary axial partial cross-sectional view showing a state in which the opening is sealed with the resin molded body after the metal molded body is roughened as in the embodiment of FIG.
  • FIG. 8 is an exemplary axial partial cross-sectional view showing a comparative embodiment corresponding to the embodiment of FIG.
  • FIG. 9 is an exemplary axial partial cross-sectional view showing a comparative embodiment in which an opening of a metal molded body corresponding to the embodiment of FIG. 7 is sealed with a resin molded body.
  • FIG. 10 (a) is a perspective view of an exemplary metal molded product to which the exemplary sealing method of the present invention is applied, and FIG. 10 (b) shows an opening of the metal molded product of FIG. 10 (a) made of a resin molded product. An exemplary perspective view showing a sealed state.
  • 11 (a) to 11 (d) are cross-sectional views for explaining another embodiment of the exemplary sealing method of the present invention.
  • FIG. 12 (a) is a sectional view in the length direction showing a state in which the exemplary sealing method of the present invention is applied to two pipes
  • FIG. 12 (b) is a partially enlarged sectional view of FIG. 12 (a).
  • FIG. 13 is an exemplary explanatory view of a method for testing the sealability of the composite molded products obtained in Example 1 and Comparative Examples 1 to 4.
  • FIG. 14 is an SEM photograph of the surface showing the roughened state in Example 1.
  • FIG. 15 is an SEM photograph of the surface showing the roughened state in Comparative Example 1.
  • FIG. 16 is an SEM photograph of the surface showing the roughened state in Comparative Example 2.
  • FIG. 17 is an SEM photograph of the surface showing the roughened state in Comparative Example 3.
  • FIG. 18 is an SEM photograph of the surface showing the roughened state in Comparative Example 4.
  • FIG. 19 is an SEM photograph of the surface showing the roughened state in Example 2.
  • FIG. 20 is an SEM photograph of the surface showing the roughened state in Comparative Example 5.
  • FIG. 21 is an SEM photograph of the surface showing the roughened state in Example 3.
  • FIG. 22 is an SEM photograph of the surface showing the roughened state in Comparative Example 6.
  • the metal of the metal molded product used in the roughening method of the present invention is not particularly limited, and can be appropriately selected from known metals depending on the intended use. For example, iron, various stainless steels, aluminum, zinc, titanium, copper, brass, chrome plated steel, magnesium and alloys containing them, tungsten carbide, chromium carbide and other cermets are selected. In some exemplary forms, the roughening method of the present invention can also be applied to these metals subjected to surface treatments such as alumite treatment and plating treatment.
  • (I) A method of continuously irradiating a joint surface of a metal molded body to be roughened with a laser beam so as to form a straight line, a curved line, or a linear groove including a combination of the straight line and the curved line (I).
  • First laser light irradiation method) and (II) Irradiation of laser light when irradiating the surface of a metal molded body to be roughened with laser light so as to form a straight line, a curved line, or a linear groove including a combination of the straight line and the curved line.
  • Any laser irradiation method can be used, which is a method of irradiating so that the portions and the non-irradiated portions are alternately generated (second laser irradiation method).
  • a first laser irradiation method for continuously irradiating a joint surface of a metal molded body surface to be roughened with continuous wave laser light at a predetermined energy density and irradiation rate is known, for example, Japanese Patent No. 5774246. It is described in Japanese Patent No. 5701414, Japanese Patent No. 5860190, Japanese Patent No. 5890054, Japanese Patent No. 5959689, Japanese Patent Application Laid-Open No. 2016-43413, Japanese Patent Application Laid-Open No. 2016-36884, and Japanese Patent Application Laid-Open No. 2016-44337. It can be carried out in the same manner as the continuous irradiation method of laser light.
  • the energy density can be 1 MW / cm 2 or higher.
  • the energy density at the time of laser light irradiation is obtained from the laser light output (W) and the laser light (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ).
  • Energy at the time of laser light irradiation. density in one preferred embodiment is 2 ⁇ 1000MW / cm 2, in another preferred embodiment is 10 ⁇ 800MW / cm 2, that in yet another preferred embodiment is 10 ⁇ 700MW / cm 2 it can.
  • the laser light irradiation rate is 2000 mm / sec or higher, in another preferred embodiment 2,000 to 20,000 mm / sec, and in yet another preferred embodiment 2,000 to 18 , 000 mm / sec, and in yet another preferred embodiment, it can be 3,000 to 15,000 mm / sec.
  • the output of the laser light can be 4 to 4000 W, in another preferred embodiment 50 to 2500 W, and in yet another preferred embodiment 150 to 2000 W. If the irradiation conditions of other laser beams are the same, the larger the output, the deeper the hole (groove) depth, and the smaller the output, the shallower the hole (groove) depth.
  • the wavelength is 500-11,000 nm.
  • the spot diameter (S) can be 5-80 ⁇ m.
  • the irradiation direction of the laser light for example, a method of irradiating in one direction, a method of irradiating from both directions, or an irradiation method combining these can be used.
  • the defocus distance is ⁇ 5 to +5 mm, in another preferred embodiment it is -1 to + 1 mm, and in yet another preferred embodiment it is ⁇ 0.5 to +0.1 mm.
  • the defocusing distance may be laser irradiation with a constant set value, or laser irradiation may be performed while changing the defocusing distance. For example, at the time of laser irradiation, the defocusing distance may be reduced, or may be periodically increased or decreased. When the defocus distance is- (minus), the hole depth becomes deeper.
  • the number of repetitions (the total number of laser beam irradiations to form one hole or groove) is adjusted according to the groove depth, but in one preferred embodiment it is 1 to 30 times. In another preferred embodiment, it can be 5 to 20 times. Under the same laser irradiation conditions, the groove depth becomes deeper as the number of repetitions increases, and the groove depth becomes shallower as the number of repetitions decreases.
  • the linear groove formed by the above laser irradiation conditions and including a straight line, a curved line, or a combination of a straight line and a curved line is, for example, a form containing only a straight linear groove, a form containing only a curved linear groove, and a straight line and a curved line. It may be a form including a combination of linear grooves of. For example, the embodiment shown in FIGS. 1 (a) to 1 (c) can be used.
  • linear grooves 1 to 4 formed at intervals are shown, and the intervals of the linear grooves 1 to 4 (pitch interval P1) are equal intervals.
  • the interval from the widthwise intermediate position of the linear groove 1 to the widthwise intermediate position of the linear groove 2 is the pitch interval P1.
  • the surfaces 1a, 2a, and 3a of the metal molded body that have not been roughened remain between the linear grooves 1 to 4.
  • the pitch spacing P1 is 0.12 mm or greater, and the ratio (P / S) of the pitch spacing (P) to the spot diameter (S) is 4 to 12.5 in one preferred embodiment.
  • Another preferred embodiment may be 4-12, a more preferred embodiment may be 4-10, and a more preferred embodiment may be 5-10.
  • the pitch interval and the spot diameter are set values (theoretical values) in the laser oscillator.
  • the pitch interval is the same as the set value and the actual value (measured value after laser irradiation), but the spot diameter (groove width) is the theoretical value and the actual value due to factors such as deformation due to heat during laser irradiation. It also includes cases where the values do not match.
  • linear grooves 11 to 14 formed at intervals are shown, and the pitch intervals P11 and P12 are different (P11 ⁇ P12).
  • the interval from the widthwise intermediate position of the linear groove 11 to the widthwise intermediate position of the linear groove 12 is the pitch interval P11
  • the linear groove 12 is linear from the widthwise intermediate position.
  • the interval from the widthwise intermediate position of the groove 13 to the widthwise intermediate position is the pitch interval P12
  • the interval from the widthwise intermediate position of the linear groove 13 to the widthwise intermediate position of the linear groove 14 is also the pitch interval P12.
  • the surfaces 11a, 12a, and 13a of the metal molded body that have not been roughened remain between the linear grooves 11 to 14.
  • the pitch intervals P11 and P12 are 0.12 mm or more, and the ratio (P / S) of the pitch interval (P) to the spot diameter (S) is 4 to 12.5 in one preferred embodiment. It can be 4-12 in another preferred embodiment, 4-10 in a more preferred embodiment, and 5-10 in a more preferred embodiment.
  • the pitch spacing may be a group in which the pitch spacing is the same and a group in which the pitch spacing is different, which may be alternately formed, or may be randomly formed.
  • a total of six linear grooves 21 to 26 are formed, but the linear grooves 21 and 22 and the linear grooves 24 and 25 are all in close proximity to each other with laser light. Is irradiated, so that the two linear grooves are formed into one linear groove.
  • the interval from the widthwise intermediate position of the linear grooves 21 and 22 to the widthwise intermediate position of the linear groove 23 is the pitch interval P21, and the linear groove 23
  • the interval from the width direction intermediate position of the linear grooves 24 and 25 to the width direction intermediate position is the pitch interval P21, and from the width direction intermediate position of the linear grooves 24 and 25 which are one.
  • the pitch interval P21 is up to the intermediate position in the width direction of the linear groove 26.
  • the P21s have the same spacing, but may include different pitch spacings as in the embodiment shown in FIG. 1 (b). The same can be considered when two or more linear grooves form one linear groove.
  • the surface is not roughened between the linear grooves 21 and 22 and the linear groove 23, between the linear grooves 23 and the linear grooves 24 and 25, and between the linear grooves 24 and 25 and the linear groove 26.
  • the surfaces 22a, 23a, and 25a of the metal molded body remain.
  • the pitch spacing P21 is 0.12 mm or greater, and the ratio (P / S) of the pitch spacing (P) to the spot diameter (S) is 4 to 12.5 in one preferred embodiment.
  • Another preferred embodiment may be 4-12, a more preferred embodiment may be 4-10, and a more preferred embodiment may be 5-10.
  • the pitch interval P may be a group in which the pitch interval P is the same and a group in which the pitch interval P is different are alternately formed, or may be randomly formed.
  • the pitch interval is 0.12 mm or more and the P / S is within the above range
  • adjacent linear grooves laser light irradiation marks
  • the number of repetitions can be increased, and a portion where linear grooves are not intentionally formed can be secured. Therefore, it was applied as a sealing method in which the opening of the metal molded body is covered with the resin molded body. In this case, the effect of preventing gas leakage is enhanced, especially in a high-pressure atmosphere.
  • ⁇ Second laser light irradiation method> When irradiating the joint surface of the surface of the metal molded body to be roughened with continuous wave laser light at a predetermined energy density and irradiation rate, the laser light is irradiated so that the irradiated portion and the non-irradiated portion are alternately generated.
  • the second laser irradiation method is known, and for example, the method described in JP-A-2018-144104 can be used.
  • the second laser light irradiation method can have the same irradiation conditions as the first laser light irradiation method, except that the laser light irradiated portion and the non-irradiated portion are alternately generated. That is, each condition and interrelationship such as laser light output, irradiation speed, energy density, number of repetitions, wavelength, spot diameter, defocusing distance, etc. shall be selected and implemented in the same manner as in the case of the first laser light irradiation method. Can be done.
  • irradiating the laser beam so that the irradiated portion and the non-irradiated portion are alternately generated means, for example, a dotted linear groove as shown in FIGS. 2A and 2B. Includes embodiments that form.
  • the dotted line groove 31 of FIGS. 2 (a) and 2 (b) is a laser located between the laser light irradiation portion 31a, the laser light irradiation portion 31a, and the laser light irradiation portion 31a adjacent in the length direction. It shows a state in which non-irradiated portions 31b of light are alternately generated so that a dotted linear groove 31 is formed as a whole. The same applies to the other dotted line grooves 32 to 35.
  • the irradiated portion of the laser light and the non-irradiated portion of the laser light are irradiated so as to be at the same position. Therefore, when the directions orthogonal to the length direction of the dotted grooves 31 to 35 are arranged as rows, the row consisting of only the laser beam irradiated portion and the row consisting of only the laser light non-irradiated portion alternate in the length direction. It is in the form of being lined up in.
  • the irradiated portion of the laser beam and the non-irradiated portion of the laser beam of the adjacent dotted grooves 31 to 35 are alternately irradiated so as to be at different positions. For this reason, when the directions orthogonal to the length direction of the dotted grooves 31 to 35 are arranged in a row, the irradiated portion of the laser beam and the non-irradiated portion of the laser beam are alternately present in one row direction. There is.
  • the laser beam can be repeatedly irradiated a plurality of times, and the number of repetitions can be, for example, 1 to 30 times, and in another example, 5 to 20 times.
  • the laser beam irradiation portion 31a may be the same, or the laser beam irradiation portion may be shifted so that the laser beam irradiation portion 31a is different.
  • the linear groove containing a straight line, a curved line, or a combination of a straight line and a curved line formed by the second laser irradiation method can be a dotted linear groove or a solid linear groove.
  • the second laser light irradiation method is used for a sealing method in which a resin molded body is bonded to all or a part of a portion including an opening of a metal molded body to seal the metal molded body, the above is made from the viewpoint of improving the sealing property.
  • a method of irradiating a laser beam so as to form a solid linear groove is preferable.
  • the temperature of the irradiated surface rises, which may cause deformation such as warping in the molded body with a small thickness, so measures such as cooling are required. May become.
  • the laser light is irradiated so as to form the dotted line grooves 31 to 35 as shown in FIG. 2, the laser light irradiated portion 31a and the laser light non-irradiated portion 31b are alternately generated, and the laser light is not irradiated. Since the portion 31b is cooled, when the irradiation of the laser beam is continued, deformation such as warpage is less likely to occur even in a molded body having a small thickness. At this time, even when the laser beam irradiation portion is different (the laser light irradiation portion is shifted) as described above, the same effect can be obtained because the laser beam irradiation is performed in a dotted line.
  • the laser beam is the same as in FIGS. 1 (a) to 1 (c).
  • the pitch intervals of the adjacent dotted line grooves 31 to 35 can be made equal or different. In FIG. 2, the pitch interval P31 ⁇ pitch interval P32.
  • the distance between the dotted groove 33 and the dotted groove 34 (distance between the respective intermediate positions in the width direction) P32, and the distance between the dotted groove 33 and the dotted groove 34 (distance between the respective intermediate positions in the width direction) P32. Is the same.
  • the surfaces 36 and 37 of the metal molded body that have not been roughened remain between the linear grooves 31 to 35.
  • the pitch intervals P31 and P32 between adjacent dotted grooves shown in FIG. 2 (a) are 0.12 mm or more, and the pitch interval (P).
  • To the spot diameter (S) (P / S) is 4 to 12.5, may be 4 to 12 in one preferred example, 4 to 10 in another preferred example, and more preferred embodiments. Then it can be 5-10.
  • the length (L1) of the laser beam irradiation portion 31a can be 0.05 mm or more in one embodiment and 0.1 to 0.1 in another embodiment from the viewpoint of roughening the surface into a complicated porous structure. It can be 10 mm, and in yet another embodiment it can be 0.3-7 mm.
  • the second laser light irradiation method uses a fiber laser device in which a direct modulation type modulator that directly converts the driving current of the laser is connected to a laser power source, and a duty ratio (duty cycle) is used. ) Can be adjusted to irradiate the laser.
  • a pulse wave laser by pulse excitation is generally called a normal pulse.
  • a pulse wave laser by pulse excitation
  • Q switch pulse oscillation method external modulation method that generates a pulse wave laser by cutting out light in time with an AOM or LN light intensity modulator, direct modulation that directly modulates the drive current of the laser to generate a pulse wave laser.
  • a pulse wave laser can be produced by a method or the like.
  • a pulse wave laser is produced by continuously exciting the laser by using a fiber laser device in which a direct modulation type modulator that directly converts the driving current of the laser is connected to a laser power source. It is produced and is different from the continuous wave laser used in the first laser light irradiation method.
  • the energy density, the irradiation speed of the laser light, the output of the laser light, the wavelength, the spot diameter, and the defocusing distance can be implemented in the same manner as in the first laser light irradiation method.
  • the duty ratio is a ratio obtained by the following equation from the ON time and OFF time of the laser light output.
  • Duty ratio (%) ON time / (ON time + OFF time) x 100
  • the duty ratio corresponds to the above L1 / (L1 + L2), it can be selected from the range of, for example, 10 to 90%.
  • the duty ratio By adjusting the duty ratio and irradiating the laser beam, it is possible to irradiate in a dotted line as shown in FIG.
  • the duty ratio is large, the efficiency of the roughening process is improved, but the cooling effect is low, and when the duty ratio is small, the cooling effect is good, but the roughening efficiency is poor.
  • the duty ratio can be adjusted according to the purpose.
  • the laser in the second laser light irradiation step, is placed on the surface of the metal molded body to be roughened with a masking material that does not allow the laser light to pass through at intervals.
  • a method of continuous irradiation can be applied.
  • the masking material may or may not be in direct contact with the metal molded body.
  • the entire metal molded body can be roughened by changing the position of the masking material.
  • the laser is continuously irradiated with a plurality of masking materials 111 arranged at intervals on the metal molded body 110 as shown in FIG. 3A.
  • the masking material a metal having a low thermal conductivity or the like can be used.
  • FIG. 3B a dotted line groove is formed in which the irradiated portion 101 and the non-irradiated portion 102 of the laser beam are alternately generated in the length direction as in FIG. There is.
  • the masking material 111 is cooled, so that when the laser beam irradiation is continued, the molded product has a small thickness. However, deformation such as warping is less likely to occur.
  • the pitch interval is 0.12 mm or more and the P / S is within the above range, interference between adjacent linear grooves (laser light irradiation marks) is reduced, so that the process is repeated.
  • known lasers can be used, for example, YVO4 laser, fiber laser (single mode fiber laser, multimode fiber laser), excima. Lasers, carbon dioxide gas lasers, ultraviolet lasers, YAG lasers, semiconductor lasers, glass lasers, ruby lasers, He-Ne lasers, nitrogen lasers, chelate lasers, and dye lasers can be used.
  • the metal molded body is subjected to laser light so as to satisfy the above-mentioned energy density and irradiation speed.
  • the metal molded body is irradiated with, a part of the surface of the metal molded body is evaporated while being melted, so that it is considered that a groove having a porous structure having a complicated structure is formed.
  • the present invention is not bound by such an action.
  • the porous structure formed at this time is, for example, a complicated porous structure similar to or similar to that shown in FIG. 7 or 8 of Japanese Patent No. 5774246 and FIG. 7 or 8 of Japanese Patent No. 5701414. It is possible. On the other hand, if the above energy density or irradiation rate is not satisfied, the surface of the metal molded body is sublimated to form holes (holes formed by ordinary pulsed laser irradiation) or melted (laser welding). Therefore, it is considered that a groove having a complicated structure is not formed.
  • the sealing method of the present invention can be a sealing method in which a resin molded body is joined and sealed to all or part of a portion including an opening of the metal molded body.
  • the sealing method of the present invention combines a metal molded body (first metal molded body) with another metal molded body (second metal molded body) into a resin. It can be a sealing method in which molded bodies are joined and sealed.
  • the metal molded body may have an interior space and an opening connected to the interior space.
  • the shape, thickness, structure and size of the metal molded body are not particularly limited as long as the opening can be closed by the resin molded body formed by injection molding or compression molding of the resin.
  • the metal of the metal molded body the same metal as the metal used in the above-mentioned method for roughening the surface of the metal molded body can be used.
  • a continuous wave laser is used on the joint surface of the surface of the metal molded body with the resin molded body to emit laser light at an energy density of 1 MW / cm 2 or more and an irradiation speed of 2000 mm / sec or more. It has a step of roughening the surface by irradiating.
  • the roughening method includes the same first laser light irradiation method or second laser as described in connection with the above-mentioned method for roughening the surface of a metal molded body. Any of the light irradiation methods can be used.
  • the pitch interval P is 0.12 mm or more, and the ratio (P / S) of the pitch interval (P) ( ⁇ m) to the spot diameter (S) ( ⁇ m) of the laser beam is 4 to. Even if one or both of the requirements of 12.5 are not satisfied, the other conditions are the same as those of the first laser light irradiation method or the second laser light irradiation method, and the known continuous wave laser is used. It may be a method of irradiating light.
  • FIGS. 4 to 7 An exemplary embodiment of the sealing method of the present invention will be described with reference to FIGS. 4 to 7.
  • 4 (a) and 4 (b) show one form of a metal molded article that can be used in the present invention.
  • the tubular metal molded body 40 has a first end surface 41, a second end surface 42 on the opposite side, an outer peripheral surface 43a, and an inner peripheral surface 43b, and further has a through hole 44 serving as an internal space.
  • the through hole 44 has a first opening 44a on the first end surface 41 side and a second opening 44b on the second end surface 42 side.
  • a plurality of straight lines, curves, or straight lines and curves are formed on the annular joint surface 45 of the metal molded body 40 with the resin molded body 60 (see, for example, FIG. 7).
  • a path for example, typically
  • a plurality of linear grooves are formed so as to cross the shortest path), and an unroughened annular joint surface 45 is left at least a part between the plurality of linear grooves. Examples of such laser light irradiation modes include, but are not limited to, the embodiments shown in FIGS. 5 (a) to 5 (c).
  • the shaped grooves 50 to 52 are formed.
  • the concentric linear grooves 50 to 52 are the paths (for example, the shortest paths) from the internal space (through hole) 44 of the metal molded body 40 to the external space of the metal molded body 40 (for example, the joint in FIG. 5A). It is formed so as to cross (represented by two arrows along the surface 45).
  • a spiral linear groove 53 is formed on the annular joint surface 45 of the first end surface 41 of the metal molded body 40.
  • the cross-sectional view of the embodiment of FIG. 5B in the length direction is the same as that of FIG.
  • the spiral groove 53 is a path (for example, the shortest path) from the internal space (through hole) 44 of the metal molded body 40 to the external space of the metal molded body 40 (for example, FIG. 5 (. b) It is formed so as to cross (represented by two arrows along the joint surface 45 in).
  • FIG. 5C a plurality of concentric circles having different diameters with respect to the annular joint surface 45 of the first end surface 41 of the metal molded body 40 and having different diameters with respect to the center of the through hole 44 in the circumferential direction.
  • Linear grooves 54 to 56 are formed.
  • the second laser light irradiation method is applied, and the dotted line groove (concentric linear groove discontinuous in the circumferential direction) having the form shown in FIG. 2 (b) is applied. 54 to 56) are formed.
  • the concentric linear grooves 54 to 56 discontinuous in the circumferential direction are paths (for example, the shortest path) from the internal space (through hole) 44 of the metal molded body 40 to the external space of the metal molded body 40 (for example, FIG. 5). It is formed so that any of the concentric linear grooves 54 to 56 crosses (two arrows along the joint surface 45) in (c). That is, for example, when looking at the two arrows in FIG. 5C, the line of the discontinuous concentric linear groove 55 is in the portion of the discontinuous concentric linear groove 54 where there is no linear groove. In the portion where the concentric groove exists and the discontinuous concentric linear groove 55 does not have the linear groove, the linear grooves 54 and 56 of the discontinuous concentric linear groove are present. ing.
  • a portion of the annular joint surface 45 that has not been roughened remains between the concentric linear grooves 54 to 56 formed on the annular joint surface 45 in the circumferential direction, and the annular joint surface 45 These portions are continuously formed as a wall between the concentric linear grooves 50 to 52.
  • FIGS. 5 (a) and 5 (b) may be used in one example.
  • the length of the portion not irradiated with the laser beam (the portion corresponding to the non-irradiated portion 102 in FIG. 3B) can be shortened (for example, irradiation).
  • the length of the portion corresponding to the portion 101 is 7 to 9:
  • the length of the portion corresponding to the non-irradiated portion 102 is 3-1).
  • triple discontinuous concentric linear grooves 54 to 56 are formed, but from the viewpoint of improving the sealing property, for example, they can be formed in four or five layers or more.
  • a concentric linear groove similar to that in FIG. 5A can be finally formed.
  • the thermal effect on the metal molded body 40 can be mitigated as compared with the case where the groove as shown in FIG. 5A is formed by continuously irradiating the continuous wave laser beam from the beginning.
  • FIG. 8 is a cross-sectional view showing a comparative form corresponding to FIGS. 5 (a) to 5 (c).
  • a plurality of concentric linear grooves are formed at narrow intervals (pitch intervals) with respect to the annular joint surface 45 of the first end surface 41 of the metal molded body 40, so that they are adjacent to each other.
  • the concentric linear grooves are integrated with each other, and the entire surface of the annular joint surface 45 is roughened. Therefore, in the embodiment shown in FIG. 8, the unroughened annular joint surface 45 does not remain between the linear grooves as shown in FIGS. 5A to 5C.
  • the joint surface including the opening of the metal molded body roughened in the previous step is arranged in the mold, and the resin to be the resin molded body is injection molded or compression molded.
  • the opening can be sealed.
  • the annular joint surface 45 surrounding the first opening 44a of the first end surface 41 of the metal molded body 40 of FIG. 4A is irradiated with laser light.
  • the resin is injection-molded or compression-molded so as to have the same shape and size as the circle including the annular joint surface 45.
  • the resin molded body 60 is formed and the first opening 44a is sealed to obtain a composite molded body.
  • the resin melted by injection molding or compression molding enters the concentric linear grooves 50 to 52, and the concentric linear grooves
  • the first opening is formed by being in close contact with the non-roughened surface (the portion of the annular joint surface 45) between 50 and 52 and solidifying while covering the internal space, that is, the first opening 44a of the through hole 44.
  • the portion 44a is closed.
  • the first sealing action by integrating the annular joint surface 45 of the first end surface 41 of the metal molded body 40 and the resin molded body 60 with a strong bonding force, and the metal High sealing performance can be obtained by the second sealing action due to the contact between the non-roughened annular joint surface 45 of the molded body 40 and the resin molded body 60.
  • the roughened portion 57 of the comparative form shown in FIGS. 8 and 9 has a very complicated hole structure, the molten resin cannot enter all of the hole structure, and the side surface of the hole cannot be inserted. Although it does not affect the first sealing action, it is conceivable that a slight gap that is not in contact with the resin remains on the bottom surface. When such a small gap remains and a high-pressure gas is present in the internal space (through hole 44) of the metal molded body 40, a very small amount of gas is present in the small gap. There is a risk of leaking to the outside of the metal molded body 40 through the metal molded body 40.
  • the resin used for the resin molded body includes thermoplastic resin, thermosetting resin, thermoplastic elastomer, and rubber (including crosslinkable elastomer and not thermoplastic elastomer).
  • the thermoplastic resin can be appropriately selected from known thermoplastic resins according to the application.
  • polyamide resins aliphatic polyamides such as PA6 and PA66, aromatic polyamides
  • copolymers containing styrene units such as polystyrene, ABS resin and AS resin
  • copolymers containing polyethylene and ethylene units polypropylene and propylene.
  • examples thereof include copolymers containing units, other polyolefins, polyvinyl chloride, polyvinylidene chloride, polycarbonate resins, acrylic resins, methacrylic resins, polyester resins, polyacetal resins, and polyphenylene sulfide resins.
  • thermosetting resin can be appropriately selected from known thermosetting resins according to the application.
  • urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, vinyl urethane can be mentioned.
  • thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers according to the application.
  • styrene-based elastomers vinyl chloride-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, nitrile-based elastomers, and polyamide-based elastomers can be mentioned.
  • Examples of rubber include ethylene-propylene copolymer (EPM), ethylene-propylene-dienter polymer (EPDM), ethylene-octene copolymer (EOM), ethylene-butene copolymer (EBM), ethylene-octenter polymer (EODM), and ethylene-.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-dienter polymer
  • EOM ethylene-octene copolymer
  • EBM ethylene-butene copolymer
  • EODM ethylene-octenter polymer
  • Ethylene- ⁇ -olefin rubber such as butter polymer (EBDM); ethylene / acrylic acid rubber (EAM), polychloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), styrene-butadiene rubber (SBR), alkylated chlorosulfonated polyethylene (ACSM), epichlorohydrin (ECO), polybutadiene rubber (BR), natural rubber (including synthetic polyisoprene) (NR), chlorinated polyethylene (CPE), brominated polymethylstyrene.
  • EBDM butter polymer
  • EAM ethylene / acrylic acid rubber
  • CR polychloroprene rubber
  • NBR acrylonitrile-butadiene rubber
  • HNBR hydrogenated NBR
  • SBR styrene-butadiene rubber
  • ACM alkylated chlorosulfonated polyethylene
  • ECO epichlorohydrin
  • BR
  • SBS styrene-butadiene-styrene
  • SEBS styrene-ethylene-butadiene-styrene
  • ACM acrylic rubber
  • EVM ethylene-vinyl acetate elastomer
  • silicone rubber and the like.
  • Crosslinkable elastomers include crosslinkable fluoroelastomers, combinations of crosslinkable fluoroelastomers with other crosslinkable elastomers (including crosslinkable silicone elastomers), crosslinkable silicone elastomers, crosslinkable silicone elastomers and others. Combinations of crosslinkable elastomers (including crosslinkable fluoroelastomers) can be used.
  • the crosslinkable fluoroelastomer may be a known one, and examples thereof include a fluororubber, a thermoplastic fluororubber, and a rubber composition containing the rubber described in JP2013-14640. Of these, fluororubber is preferable. Further, the fluoroelastomer as a raw material can also be used as a composition containing, for example, a cross-linking agent, a cross-linking accelerator, and a filler described in Japanese Patent Application Laid-Open No. 2013-14640.
  • the crosslinkable silicone elastomer may be known, and is described in, for example, JP-A-2004-27228, JP-A-2007-302893, JP-A-2016-505647, JP-A-2014-500888 and the like. You can list what you are doing.
  • the Mooney viscosity (ML1 + 10,121 ° C.) of the elastomer containing the crosslinkable elastomer or the composition containing them may be 10 to 200 in one preferred example and 10 to 100 in another preferred example.
  • a known fibrous filler can be blended in these thermoplastic resins, thermocurable resins, thermoplastic elastomers, and rubbers (including crosslinkable elastomers and not thermoplastic elastomers).
  • thermoplastic resins thermocurable resins
  • thermoplastic elastomers thermoplastic elastomers
  • rubbers including crosslinkable elastomers and not thermoplastic elastomers.
  • known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers.
  • the carbon fiber may be a well-known one, and PAN-based, pitch-based, rayon-based, lignin-based, and the like can be used.
  • the inorganic fiber include glass fiber, genbuiwa fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and the like.
  • the metal fiber include fibers made of stainless steel, aluminum, copper and the like.
  • the organic fiber include polyamide fiber (total aromatic polyamide fiber, semi-aromatic polyamide fiber in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fiber), polyvinyl alcohol fiber, acrylic fiber, and polyolefin fiber.
  • Synthetic fibers such as polyoxymethylene fiber, polytetrafluoroethylene fiber, polyester fiber (including all aromatic polyester fiber), polyphenylene sulfide fiber, polyimide fiber, liquid crystal polyester fiber, natural fiber (cellulose fiber, etc.) and regenerated cellulose (cellulosic fiber, etc.) Rayon) Fiber or the like can be used.
  • these fibrous fillers for example, those having a fiber diameter in the range of 3 to 60 ⁇ m can be used, and among these, for example, holes formed by roughening the joint surface of the metal molded body and the like. It is preferable to use a fiber having a fiber diameter smaller than the opening diameter of the groove.
  • the fiber diameter may be 5 to 30 ⁇ m in one preferred example and 7 to 20 ⁇ m in another preferred example.
  • FIG. 10 (a) shows an example of another embodiment of the sealing method of the present invention.
  • the metal molded body 70 has a top surface 71, a bottom surface 72 on the opposite side, and four side surfaces 73 to 76, and further has an internal space 77 inside.
  • the top surface 71 can have an opening 78 connected to the internal space 77.
  • any of the embodiments of FIGS. 5 (a) to 5 (c) is made with respect to the annular joint surface 79 surrounding the opening 78 of the top surface 71. Irradiate with laser light to roughen the surface. The roughened state at this time is as shown in FIG.
  • the top surface 71 side is arranged in the mold, and the resin is injection-molded or compression-molded so as to have the same shape and size as the circle including the annular joint surface 79 to form the resin molded body 60.
  • the opening 38 can be sealed to obtain a composite molded product.
  • the cross-sectional structure at this time is as shown in FIG. Since the sealed composite molded product of FIG. 10B can exert the first sealing action and the second sealing action, high sealing property can be obtained.
  • FIG. 11A shows an example of still another embodiment of the sealing method of the present invention, which is 2 of the first metal molded body 80 and the second metal molded body 90.
  • the first metal molded body 80 includes an outer annular wall portion 81, an inner annular wall portion 82 extended in the same direction as the outer annular wall portion 81, and an annular surface portion connecting between the outer annular wall portion 81 and the inner annular wall portion 82.
  • the outer annular wall portion 81 and the inner annular wall portion 82 have a relationship of the length of the outer annular wall portion 81> the length of the inner annular wall portion 82.
  • the portion of the outer annular wall portion 81 facing the annular surface portion 83 has a large opening 84, and the portion of the inner annular wall portion 82 facing the large opening 84 has a small opening 85.
  • the second metal molded body 90 has a tubular shape, and has a first end surface 91, a second end surface 92 on the opposite side, a peripheral surface 93, a through hole 94, a first opening 94a on the first end surface 91 side, and a second end surface. It has a second opening 94b on the 92 side.
  • the first joint surface of the first metal molded body and the second joint surface of the second metal molded body are subjected to.
  • a plurality of linear grooves are formed so as to form a linear groove including a plurality of straight lines, curves, or a combination of straight lines and curves, and at least a part between the plurality of linear grooves. It may include a step of leaving an unroughened joint surface.
  • Each of the peripheral surfaces 93 (outer peripheral surface 93a) (length L11) on the side from the first end surface 91 to the second end surface 92 of the molded body 90 is irradiated with laser light in an annular direction in the circumferential direction, and the respective annular surfaces are irradiated.
  • a method of irradiating the laser beam so that the irradiated portions are formed at intervals in the length direction see FIG. 11B
  • a method of irradiating the laser beam in a spiral shape, and the like can be used.
  • the annular groove 86 is formed so as to cross a path (for example, the shortest path) from the internal space to the external space of the first metal molded body 80 along the inner surface 82a which is the first joint surface.
  • the portion of the inner side surface 82a of the inner annular wall portion 82 that has not been roughened remains between the formed annular grooves 86.
  • the outer peripheral surface 93a which is the second joint surface of the second metal molded body 90, is also formed along the joint surface from the first end surface 91 to the first.
  • An annular groove 96 is formed so as to cross the path leading to the two end faces 92, and a portion of the outer peripheral surface 93a of the second metal molded body 90 that has not been roughened remains between the adjacent annular grooves 96. doing.
  • the second joint surface may be intended to be arranged to face the first joint surface.
  • a portion of the first metal molded body 80 including the first joint surface 82a and a portion of the second metal molded body 90 including the second joint surface 93a are arranged in the mold, and the resin is injection molded.
  • a resin molded body can be joined between the first metal molded body 80 and the second metal molded body 90 to perform sealing.
  • the central axis of the inner annular wall portion 82 of the first metal molded body 80 and the central axis of the second metal molded body 90 coincide with each other, and A gap is provided between the first metal molded body 80 and the second metal molded body 90 so that the small opening 85 of the first metal molded body 82 and the first end surface 91 of the second metal molded body 90 coincide with each other. Place in the mold.
  • the annular groove 86 and the annular groove 96 are formed along the first joint surface and the second joint surface. It crosses the path from the internal space to the external space of the first metal molded body.
  • the resin is injection-molded or compression-molded to form a resin molded body 99, and the gap between the small opening 85 and the second metal molded body 90 is sealed to obtain the composite molded body shown in FIG. 11 (d). Since the composite molded product of FIG. 11D can exert the first sealing action and the second sealing action, high sealing property can be obtained.
  • FIG. 12 shows an example of still another embodiment of the sealing method of the present invention, and the first metal molded body and the second metal molded body include the first metal tube 160.
  • Two metal tubes of the second metal tube 170 are used.
  • the outer surface of the first end portion 161 of the first metal tube 160 and the outer surface of the first end portion 171 of the second metal tube 170 are irradiated with laser light to roughen the surface, and later.
  • a joint surface that is integrated with the resin can be formed.
  • the outer surface of the first end portion 161 of the first metal tube 160 is irradiated in an annular shape in the circumferential direction, and the annular irradiation portions are spaced apart from each other in the length direction.
  • a method of irradiating so as to be formed see FIG. 12B
  • a method of irradiating in a spiral shape, or the like can be used.
  • the laser light irradiation method the above-mentioned first laser light irradiation method or second laser light irradiation method can be applied.
  • a plurality of linear grooves (annular grooves) 162 on the first metal tube 160 side and a plurality of linear grooves (annular groove) 162 on the second metal tube 170 side are formed in the roughened portion to be the joint surface.
  • a groove (annular groove) 172 is formed.
  • the plurality of linear grooves 162 and 172 pass through the abutting end faces of the first metal tube 160 and the second metal tube 170, and cross a path (for example, the shortest path) from the internal space to the external space of these tubes.
  • the portions 164 and 174 that have not been roughened remain between the plurality of adjacent linear grooves 162 and the plurality of adjacent linear grooves 172, respectively.
  • the first end surface 161 of the first metal tube 160 and the first end surface 171 of the second metal tube 170 are placed in contact with each other in the mold, and the resin is injection-molded or compression-molded into a tubular shape.
  • the resin molded body 175 of the above can be formed to connect the first metal tube 160 and the second metal tube 170, and the connecting portion can be sealed from the outside. Since the composite molded product of FIG. 12A can exert the first sealing action and the second sealing action, high sealing property can be obtained.
  • Example 1 and Comparative Examples 1 to 4 Annular metal forming body shown in FIG. 13 (a) to show the shape and dimensions (in mm) with respect to the annular joining surface 201 of the (aluminum A5052) 200 (wide range of 392.5mm 2), the conditions shown in Table 1
  • the annular joint surface 201 was roughened by irradiating with a laser beam (first laser beam irradiation method).
  • SEM photographs showing the state of the annular joint surface 201 after roughening are shown in FIGS. 14 (Example 1), FIG. 15 (Comparative Example 1), FIG. 16 (Comparative Example 2), FIG. 17 (Comparative Example 3), and FIG. (Comparative example 4) is shown.
  • GF35% reinforced PPS resin (DURAFIDE 1135MF1: Polyplastics Co., Ltd.), GF (glass fiber) Resin temperature: 320 ° C Mold temperature: 150 ° C Injection molding machine: FANUC ROBOSHOT S2000i100B)
  • the maximum groove depth (Rz) was measured by measuring the surface (a range of 392.5 mm 2 ) after laser irradiation with a one-shot 3D shape measuring instrument VR-3200 (manufactured by KEYENCE CORPORATION).
  • Detection method Atmospheric pressure method Detection range: Lower limit 5.00 x 10-7 Pa ⁇ m 3 / s Set pressure: 500 kPa
  • Example 1 since the pitch of the linear grooves formed by the laser irradiation was wide, as is clear from FIG. 14, a portion that was not roughened remained between the linear grooves. Therefore, the sealing property after the heat cycle was also excellent.
  • the laser was irradiated not in a spiral shape but in a plurality of concentric circles at predetermined pitch intervals.
  • the laser irradiation method was not one-way, but alternating (bidirectional). Specifically, after irradiating the laser in a circular shape from the start point to the end point, a distance laser of one pitch is shifted from the end point in a direction perpendicular to the laser irradiation direction, and the laser is irradiated in the opposite direction to the previous one. By performing this operation multiple times, the entire annular joint surface was treated. The operation of irradiating the entire surface in this way was repeated once.
  • Comparative Example 1 since the pitch of the laser beam is narrow, as is clear from FIG. 15, a large number of linear grooves are integrated and the entire surface is roughened, and the portion is not roughened. Did not remain. Therefore, the sealing property after the heat cycle was inferior. In Comparative Example 1, the number of repetitions was smaller than that in Example 1, and the maximum depth was also smaller. However, since the pitch interval was narrow, almost the entire surface was roughened by this small number of times. .. Continuing the roughening treatment beyond that is stopped because the convex portion once formed is crushed again by the laser beam and becomes flat.
  • Comparative Examples 2 to 4 although the pitch interval is wide, the spot diameter (groove width) is large, and the P / S is out of the range of the present invention. Therefore, it is considered that the sealing property after the heat cycle is inferior. Be done. Although the number of repetitions of Comparative Example 2 having the largest number of repetitions among Comparative Examples 2 to 4 was smaller than that of Example 1, the spot diameter (groove width) was large and the maximum depth was also large, so that the test was conducted. With the annular metal molded body (thickness 1 mm) used in, it was difficult to repeat any further.
  • the annular joint surface 201 was roughened by irradiating the laser beam under the conditions shown in (1) (first laser beam irradiation method). SEM photographs of the roughened surface of each example are shown in FIG. 19 (Example 2), FIG. 20 (Comparative Example 5), FIG. 21 (Example 3), and FIG. 22 (Comparative Example 6).
  • “Bidirectional” in Comparative Examples 5 and 6 refers to an irradiation pattern similar to that in Comparative Example 1.
  • Oscillator IPG-Yb fiber; YLR-300-AC, fb diameter: 13 ⁇ m, 1070 nm
  • GF35% reinforced PPS resin (DURAFIDE 1135MF1: Polyplastics Co., Ltd.), GF (glass fiber) Resin temperature: 320 ° C Mold temperature: 150 ° C Injection molding machine: FANUC ROBOSHOT S2000i100B)
  • the maximum groove depth (Rz) was measured in the same manner as in Example 1, and the sealing property was tested as follows. (Sealability test) Testing machine: Cosmo Instrument Co., Ltd. Helium leak tester G-FINE Detection method: Atmospheric pressure method Detection range: Lower limit 5.00 ⁇ 10-7 Pa ⁇ m 3 / s Set pressure: 500 kPa
  • Example 2 In Example 2 (FIG. 19) and Example 3 (FIG. 21), the non-roughened portion between the grooves becomes a continuous wall to block the gas leak path (FIG. 19). (Second sealing action), it is probable that the structure was such that the gas did not easily leak through the groove.
  • Comparative Example 5 In Comparative Example 5 (FIG. 20) and Comparative Example 6 (FIG. 22), since the wall between the grooves is discontinuous, the second sealing action is not sufficiently exerted, and the gas It is probable that the structure was such that it was easy to leak.
  • the roughened state that can be confirmed from such a drawing was that the grooves of Comparative Examples 5 and 6 had a larger maximum depth than the grooves of Examples 2 and 3, but Comparative Examples 5 and 6 had a larger maximum depth. Since the P / S was not satisfied, it was also consistent with the fact that the roughened state of Comparative Examples 5 and 6 was considered to be insufficient to exhibit the sealing property (second sealing action). From such a difference in the roughened state, it is considered that the sealing properties of Examples 2 and 3 were high and the sealing properties of Comparative Examples 5 and 6 were low, as can be confirmed from the sealing property test.
  • the method for roughening the surface of a metal molded body according to the example of the present invention can be used, for example, in a method for producing a fine particle carrier described in Japanese Patent No. 6489766, an abrasive material described in Japanese Patent No. 6422701, and the like. , It can be used in the same manner as the known method of continuously irradiating a continuous wave laser beam.
  • the sealing method according to the example of the present invention has excellent sealing properties at the connecting portion between the metal molded body and the resin molded body, it is necessary to seal a part of an opening such as a normal pipe or a three-pronged pipe and prevent moisture absorption. It can be used for sealing the opening of a container (such as a housing containing a plurality of parts), connecting and sealing metal pipes, and the like.

Abstract

金属成形体表面の粗面化方法の提供。金属成形体表面の粗面化方法であって、金属成形体表面に対して、連続波レーザーを使用してエネルギー密度1MW/cm以上、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有しており、前記粗面化する工程が、金属成形体表面に対して複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝が形成されるようにレーザー光を照射する工程であり、前記隣接する線状溝同士の幅方向中間位置のピッチ間隔(P)が0.12mm以上で、等間隔または異なる間隔からなる部分を含んでいるものであり、ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が4~12.5である、金属成形体表面の粗面化方法。

Description

金属成形体表面の粗面化方法とそれを使用したシール方法
 本発明は、金属成形体表面の粗面化方法と、この方法を使用したシール方法に関する。
背景技術
 特開2018-94777号公報には、開口部を有する金属成形体に樹脂成形体を接合させて開口部をシールする方法として、特定照射条件の連続波レーザー光を使用する発明が記載されている。
 また特許第5701414号公報には、金属成形体と樹脂成形体を接合させる方法として、金属成形体の表面に対して、連続波レーザーを使用して2000mm/sec以上の照射速度でレーザー光を連続照射することで前記金属成形体の表面を粗面化した後、樹脂成形体と接合して複合成形体を製造する発明が記載されている。
発明の概要
 本発明は、その幾つかの例において、金属成形体表面の粗面化方法を提供することに向けられている。また本発明は別の幾つかの例において、金属成形体と樹脂成形体を接合することで、高いシール性で金属成形体の開口部をシールするシール方法を提供することに向けられている。
 幾つかの例示的な形態において、本発明は、金属成形体表面の粗面化方法であって、
 前記金属成形体表面に対して、連続波レーザーを使用して、エネルギー密度1MW/cm以上、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有しており、
 前記レーザー光を照射して粗面化する工程が、金属成形体表面に対して複数本の直線、曲線、または直線と曲線の組み合わせの線状溝が形成されるようにレーザー光を線状に連続照射する工程であり、
 隣接する線同士の間隔(ピッチ間隔)(P)が0.12mm以上であり、前記ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が4~12.5である、金属成形体表面の粗面化方法を提供する。
 また別の幾つかの例示的な形態において、本発明は、金属成形体表面の粗面化方法であって、
 前記金属成形体表面に対して、連続波レーザーを使用して、エネルギー密度1MW/cm以上、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有しており、
 前記レーザー光を照射して粗面化する工程が、金属成形体表面に対して複数本の直線、曲線、または直線と曲線の組み合わせの線状溝が形成されるようにレーザー光を線状に照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程であり、
 隣接する線同士の間隔(ピッチ間隔)(P)が0.12mm以上であり、前記ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が5~12.5である、金属成形体表面の粗面化方法を提供する。
 別の幾つかの例示的な形態において、本発明は、上記したいずれかの金属成形体表面の粗面化方法を使用したシール方法を提供する。シール方法は、例えば、金属成形体に樹脂成形体を接合させて金属成形体の開口部の全部または一部シールするシール方法であってよく、金属成形体は、シールされる開口部と接続された内部空間に有するものであってよい。金属成形体の樹脂成形体との接合面は、上記したいずれかの粗面化方法を使用して粗面化されて、接合面に複数本の直線、曲線、または直線と曲線の組み合わせの線状溝が形成されてよい。またこれら複数本の線状溝は、金属成形体の内部空間から金属成形体の外部空間に至る経路、例えば接合面に沿って内部空間から金属成形体の外部空間に至る最短経路を横切るように形成されてよい。複数の線状溝同士の間の少なくとも一部には、粗面化されていない接合面が残されていてよい。粗面化された金属成形体の接合面を含む部分は金型内に配置され、樹脂を射出成形または圧縮成形して形成した樹脂成形体により、開口部の全部または一部のシールが行われてよい。
 本発明の例による金属成形体表面の粗面化方法によれば、例えば樹脂成形体とのシール性に優れた接合面を得ることができる。または本発明の例によるシール方法によれば、例えば内部空間を有する金属成形体の開口部を樹脂成形体で塞いでシールすることにより高いシール性が得られる。別の例では、2つの金属成形体の間を樹脂成形体でシールするときに、高いシール性を得ることができる。
図1(a)は本発明の例示的な金属成形体表面の粗面化方法において形成した例示的な線状溝の一実施形態の平面図、図1(b)は図1(a)とは異なる例示的な線状溝の実施形態の平面図、図1(c)は図1(a)、図1(b)とは異なる例示的な線状溝の実施形態の平面図。
図2(a)は図1とは異なる本発明の例示的な金属成形体表面の粗面化方法において形成した例示的な線状溝の一実施形態の平面図、図2(b)は図2(a)とは異なる例示的な線状溝の実施形態の平面図。
図3(a)、図3(b)は、図2の実施形態を実施するためのレーザー照射方法の例示的な別実施形態の説明図。
図4(a)は本発明の例示的なシール方法を適用する金属成形体の例示的な一実施形態の斜視図、図4(b)は図4(a)の一端側からの平面図。
図5(a)は図4の金属成形体に対してレーザー光を照射して粗面化するときのレーザー光の照射方法の例示的な一実施形態を示す平面図、図5(b)は図5(a)とは異なるレーザー光の照射方法の例示的な実施形態を示す平面図、図5(c)は図5(a)、図5(b)とは異なるレーザー光の照射方法の例示的な実施形態を示す平面図。
図6は図4の例示的な金属成形体の表面に図5(a)に示す実施形態でレーザー光を照射した後の例示的な軸方向の部分断面図。
図7は図6の実施形態のように金属成形体を粗面化した後、開口部を樹脂成形体でシールした状態を示す例示的な軸方向の部分断面図。
図8は図6の実施形態に対応する比較形態を示す例示的な軸方向の部分断面図。
図9は図7の実施形態に対応する金属成形体の開口部を樹脂成形体でシールした比較形態を示す例示的な軸方向の部分断面図。
図10(a)は本発明の例示的なシール方法を適用する例示的な金属成形体の斜視図、図10(b)は図10(a)の金属成形体の開口部を樹脂成形体でシールした状態を示す例示的な斜視図。
図11(a)~図11(d)は、本発明の例示的なシール方法の別実施形態を説明するための断面図。
図12(a)は、2本のパイプに対して本発明の例示的なシール方法を適用した状態を示す長さ方向の断面図、図12(b)は図12(a)の部分拡大断面図。
図13は実施例1と比較例1~4で得られた複合成形体のシール性の試験方法の例示的な説明図。
図14は実施例1における粗面化状態を示す表面のSEM写真。
図15は比較例1における粗面化状態を示す表面のSEM写真。
図16は比較例2における粗面化状態を示す表面のSEM写真。
図17は比較例3における粗面化状態を示す表面のSEM写真。
図18は比較例4における粗面化状態を示す表面のSEM写真。
図19は実施例2における粗面化状態を示す表面のSEM写真。
図20は比較例5における粗面化状態を示す表面のSEM写真。
図21は実施例3における粗面化状態を示す表面のSEM写真。
図22は比較例6における粗面化状態を示す表面のSEM写真。
<金属成形体表面の粗面化方法>
 本発明の粗面化方法で使用する金属成形体の金属は特に制限されるものではなく、用途に応じて公知の金属から適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウム、亜鉛、チタン、銅、黄銅、クロムめっき鋼、マグネシウムおよびそれらを含む合金、タングステンカーバイド、クロミウムカーバイドなどのサーメットから選ばれるものを挙げることができる。幾つかの例示的な形態では、本発明の粗面化方法は、これらの金属に対して、アルマイト処理、めっき処理などの表面処理を施したものにも適用できる。
 幾つかの例によれば、レーザー光照射して粗面化する工程におけるレーザー光の照射方法としては、
(I)粗面化対象となる金属成形体の接合面に対して、直線、曲線、または直線と曲線の組み合わせを含む線状溝が形成されるようにレーザー光を連続的に照射する方法(第1のレーザー光照射方法)と、
(II)粗面化対象となる金属成形体の表面に対して、直線、曲線、または直線と曲線の組み合わせを含む線状溝が形成されるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する方法(第2のレーザー照射方法)のいずれかのレーザー照射方法を使用することができる。
<第1のレーザー照射方法>
 粗面化対象となる金属成形体表面の接合面に対して所定のエネルギー密度と照射速度で連続波レーザー光を連続照射する第1のレーザー照射方法は公知であり、例えば特許第5774246号公報、特許第5701414号公報、特許第5860190号公報、特許第5890054号公報、特許第5959689号、特開2016-43413号公報、特開2016-36884号公報、特開2016-44337号公報に記載されたレーザー光の連続照射方法と同様にして実施することができる。
 1つの好ましい実施形態では、エネルギー密度は1MW/cm以上にすることができる。レーザー光の照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm)(π×〔スポット径/2〕)から求められる。レーザー光の照射時のエネルギー密度は、1つの好ましい実施形態では2~1000MW/cmであり、別の好ましい実施形態では10~800MW/cmであり、さらに別の好ましい実施形態では10~700MW/cmであることができる。
 1つの好ましい実施形態では、レーザー光の照射速度は2000mm/sec以上であり、別の好ましい実施形態では2,000~20,000mm/secであり、さらに別の好ましい実施形態では2,000~18、000mm/secであり、さらに別の好ましい実施形態では3,000~15、000mm/secであることができる。
 1つの好ましい実施形態では、レーザー光の出力は4~4000Wであり、別の好ましい実施形態では50~2500Wであり、さらに別の好ましい実施形態では150~2000Wであることができる。他のレーザー光の照射条件が同一であれば、出力が大きいほど孔(溝)深さは深くなり、出力が小さいほど孔(溝)深さは浅くなる。
 1つの好ましい実施形態では、波長は500~11,000nmである。1つの好ましい実施形態では、スポット径(S)は5~80μmであることができる。
 レーザー光の照射方向は、例えば一方向に照射する方法、双方向から照射する方法、またはこれらを組み合わせた照射方法を使用することができる。
 1つの好ましい実施形態では、焦点はずし距離は、-5~+5mmであり、別の好ましい実施形態では-1~+1mmであり、さらに別の好ましい実施形態では-0.5~+0.1mmであることができる。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を小さくしていくようにしたり、周期的に大きくしたり小さくしたりしても良い。焦点はずし距離が-(マイナス)であると、孔深さは深くなる。
 繰り返し回数(一つの孔または溝を形成するための合計のレーザー光の照射回数)は、溝深さに応じて調整されるものであるが、1つの好ましい実施形態では1~30回であり、別の好ましい実施形態では5~20回であることができる。同一のレーザー照射条件であれば、繰り返し回数が多いほど溝深さが深くなり、繰り返し回数が少ないほど溝深さが浅くなる。
 上記したレーザー照射条件により形成される直線、曲線、または直線と曲線の組み合わせを含む線状溝は、例えば直線の線状溝のみを含む形態、曲線の線状溝のみを含む形態、直線と曲線の線状溝の組み合わせを含む形態などであってよい。例えば、図1(a)~図1(c)に示す実施形態にすることができる。
 図1(a)に示す例では、それぞれが間隔をおいて形成された線状溝1~4が示されており、線状溝1~4の間隔(ピッチ間隔P1)は等間隔である。図1(a)では、線状溝1の幅方向中間位置から線状溝2の幅方向中間位置までの間隔がピッチ間隔P1となる。線状溝1~4の間には、粗面化されていない金属成形体の表面1a、2a、3aが残っている。
 1つの実施形態では、ピッチ間隔P1は0.12mm以上であり、ピッチ間隔(P)とスポット径(S)の比(P/S)は、1つの好ましい実施形態では4~12.5であり、別の好ましい実施形態では4~12であり、より好ましい実施形態では4~10、より好ましい実施形態では5~10であることができる。
 本発明における例によれば、ピッチ間隔とスポット径は、レーザー発振器における設定値(理論値)である。ピッチ間隔は、設定値と実際値(レーザー照射後の測定値)が一致するものであるが、スポット径(溝幅)はレーザー照射時の熱による変形などの要因もあって、理論値と実際値が一致しない場合も含まれる。
 図1(b)に示す例では、それぞれが間隔をおいて形成された線状溝11~14が示されており、ピッチ間隔P11とP12は異なっている(P11<P12)。図1(b)に示す例では、線状溝11の幅方向中間位置から線状溝12の幅方向中間位置までの間隔がピッチ間隔P11となり、線状溝12の幅方向中間位置から線状溝13の幅方向中間位置までの間隔がピッチ間隔P12となり、線状溝13の幅方向中間位置から線状溝14の幅方向中間位置までの間隔もピッチ間隔P12となる。線状溝11~14の間には、粗面化されていない金属成形体の表面11a、12a、13aが残っている。
 1つの実施形態では、ピッチ間隔P11、P12は0.12mm以上であり、ピッチ間隔(P)とスポット径(S)の比(P/S)は、1つの好ましい実施形態では4~12.5であり、別の好ましい実施形態では4~12であり、より好ましい実施形態では4~10、より好ましい実施形態では5~10であることができる。
 幾つかの例では、ピッチ間隔は、ピッチ間隔が同じである群とピッチ間隔が異なる群が交互に形成されているものでもよいし、ランダムに形成されているものでもよい。
 図1(c)に示す例では、合計で6本の線状溝21~26が形成されているが、線状溝21、22と線状溝24、25は、いずれも近接してレーザー光が照射されたため、2本の線状溝が1本の線状溝になっている形態である。
 図1(c)に示す例では、1本になっている線状溝21、22の幅方向中間位置から線状溝23の幅方向中間位置までの間隔がピッチ間隔P21となり、線状溝23の幅方向中間位置から1本になっている線状溝24、25の幅方向中間位置までの間隔がピッチ間隔P21となり、1本になっている線状溝24、25の幅方向中間位置から線状溝26の幅方向中間位置までがピッチ間隔P21となる。P21は、いずれも同じ間隔であるが、図1(b)に示す実施形態と同様に異なるピッチ間隔を含むこともできる。2本以上の線状溝が1本の線状溝になっている場合も同様に考えることができる。
 線状溝21、22と線状溝23の間、線状溝23と線状溝24、25の間、線状溝24、25と線状溝26の間には、粗面化されていない金属成形体の表面22a、23a、25aが残っている。
 1つの実施形態では、ピッチ間隔P21は0.12mm以上であり、ピッチ間隔(P)とスポット径(S)の比(P/S)は、1つの好ましい実施形態では4~12.5であり、別の好ましい実施形態で4~12であり、より好ましい実施形態では4~10、より好ましい実施形態では5~10であることができる。
 幾つかの例では、ピッチ間隔Pは、ピッチ間隔Pが同じである群とピッチ間隔Pが異なる群が交互に形成されているものでもよいし、ランダムに形成されているものでもよい。
 本発明の例によれば、第1のレーザー光照射方法において、ピッチ間隔が0.12mm以上で、P/Sが上記範囲内であると、隣接する線状溝同士(レーザー光の照射痕同士)の干渉が少なくなるので繰り返し回数を増加できるほか、意図的に線状溝が形成されない部分を確保することができるため、金属成形体の開口部を樹脂成形体により被覆するシール方法として適用した場合には、特に高圧雰囲気中における気体のリーク防止効果が高められる。
<第2のレーザー光照射方法>
 粗面化対象となる金属成形体表面の接合面に対して所定のエネルギー密度と照射速度で連続波レーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する第2のレーザー照射方法は公知であり、例えば特開2018-144104号公報に記載の方法を使用することができる。
 第2のレーザー光照射方法は、レーザー光の照射部分と非照射部分が交互に生じるように照射することを除いて、第1のレーザー光照射方法と同じ照射条件であることができる。すなわちレーザー光の出力、照射速度、エネルギー密度、繰り返し回数、波長、スポット径、焦点はずし距離などのそれぞれの条件および相互関係を、第1のレーザー光照射方法の場合と同様に選択し実施することができる。
 第2のレーザー光照射方法において、レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、例えば図2(a)および図2(b)に示すように点線状の線状溝を形成する実施形態を含んでいる。
 図2(a)および図2(b)の点線状溝31は、レーザー光の照射部分31aと、レーザー光の照射部分31aと長さ方向に隣接するレーザー光の照射部分31aの間にあるレーザー光の非照射部分31bとが交互に生じて、全体として点線状の線状溝31が形成されるように照射した状態を示している。他の点線状溝32~35も同様である。
 図2(a)では、隣接する点線状溝31~35において、レーザー光の照射部分とレーザー光の非照射部分が同じ位置になるように照射されている。このため、点線状溝31~35の長さ方向に直交する方向を列としたとき、レーザー光の照射部分のみからなる列と、レーザー光の非照射部分のみからなる列が長さ方向に交互に並んだ形態になっている。
 図2(b)では、隣接する点線状溝31~35のレーザー光の照射部分とレーザー光の非照射部分が交互に異なる位置になるように照射されている。このため、点線状溝31~35の長さ方向に直交する方向を列としたとき、レーザー光の照射部分とレーザー光の非照射部分が、一つの列方向に交互に存在する形態になっている。
 第1のレーザー照射方法について記載したように、レーザー光は、繰り返して複数回照射することができ、繰り返し回数は、例えば1~30回、別の例では5~20回にすることができる。繰り返して複数回照射するときは、レーザー光の照射部分31aを同じにしてもよいし、レーザー光の照射部分をずらして、レーザー光の照射部分31aを異ならせてもよい。
 レーザー光の照射部分31aを同じにして複数回照射したときは点線状の溝が形成されるが、レーザー光の照射部分31aをずらして、即ち、最初はレーザー光の非照射部分31bであった部分にレーザー光の照射部分31aが重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状の溝が形成されることになる。かくして第2のレーザー照射方法によって形成される、直線、曲線、または直線と曲線の組み合わせを含む線状溝は、点線状の線状溝または実線状の線状溝であることができる。
 第2のレーザー光照射方法を、金属成形体の開口部を含む部分の全部または一部に樹脂成形体を接合させてシールするシール方法に使用する場合には、シール性を高める観点から、上記のように実線状の溝を形成するようにレーザー光を照射する方法が好ましい場合がある。
 金属成形体に対して連続的にレーザー光を照射すると、照射面の温度が上昇することから、厚さの小さい成形体ではそりなどの変形が生じるおそれもあるため、冷却するなどの対策が必要になる場合がある。しかし、図2に示すように点線状の溝31~35を形成するようにレーザー光を照射すると、レーザー光の照射部分31aとレーザー光の非照射部分31bが交互に生じ、レーザー光の非照射部分31bでは冷却されていることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でもそりなどの変形が生じ難くなる。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらした)場合でも、レーザー光の照射時には点線状に照射されているため、同様の効果が得られる。
 図2(a)および図2(b)に示すように複数の点線状溝が形成されるようにレーザー光を照射したときでも、図1(a)~図1(c)と同様にレーザー光を照射して、隣接する点線状溝31~35のピッチ間隔を等間隔または異なる間隔にすることができる。図2では、ピッチ間隔P31<ピッチ間隔P32である。
 点線状溝31と点線状溝32の間隔(それぞれの幅方向中間位置の間の距離)P31と、点線状溝32と点線状溝33の間隔(それぞれの幅方向中間位置の間の距離)P31は同じである。点線状溝33と点線状溝34の間隔(それぞれの幅方向中間位置の間の距離)P32と、点線状溝33と点線状溝34の間隔(それぞれの幅方向中間位置の間の距離)P32は同じである。線状溝31~35の間には、粗面化されていない金属成形体の表面36、37が残っている。
 図1(a)~(c)と同様に、1つの実施形態では、図2(a)に示す隣接する点線状溝同士のピッチ間隔P31、P32は0.12mm以上であり、ピッチ間隔(P)とスポット径(S)の比(P/S)は4~12.5であり、1つの好ましい例では4~12であってよくり、別の好ましい例では4~10、より好ましい実施形態では5~10であることができる。
 1つの実施形態では、図2に示すレーザー光の照射部分31aの長さ(L1)とレーザー光の非照射部分31bの長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分31aの長さ(L1)は、複雑な多孔構造に粗面化する観点から、1つの実施形態では0.05mm以上であることができ、別の実施形態では0.1~10mmであることができ、さらに別の実施形態では0.3~7mmであることができる。
 1つの例示的な実施形態では、第2のレーザー光照射方法では、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、デューティ比(duty ratio)を調整してレーザー照射することができる。
 レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。しかし連続励起であってもパルス波レーザーを作り出すことが可能である。例えばQスイッチパルス発振方法、AOMやLN光強度変調機により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式などにより、パルス波レーザーを作り出すことができる。
 上記した1つの例示的な実施形態は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用することで、レーザーを連続励起させてパルス波レーザーを作り出すものであり、第1のレーザー光照射方法で使用した連続波レーザーとは別のものである。但し、エネルギー密度、レーザー光の照射速度、レーザー光の出力、波長、スポット径、焦点はずし距離は、第1のレーザー光照射方法と同様に実施することができる。
 デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
 デューティ比(%)=ON時間/(ON時間+OFF時間)×100
 デューティ比は、上記のL1/(L1+L2)に対応するものであるから、例えば10~90%の範囲から選択することができる。デューティ比を調整してレーザー光を照射することで、図2に示すような点線状に照射することができる。デューティ比が大きいと粗面化工程の効率は良くなるが、冷却効果は低くなり、デューティ比が小さいと冷却効果は良くなるが、粗面化効率は悪くなる。目的に応じて、デューティ比を調整することができる。
 1つの例示的な実施形態では、第2のレーザー光照射工程では、粗面化対象となる金属成形体の表面上に、間隔をおいてレーザー光を通過させないマスキング材を配置した状態でレーザーを連続照射する方法を適用できる。マスキング材は、金属成形体に直接接触しても接触していなくとも良い。複数回照射するときは、マスキング材の位置を変化させることで、金属成形体全体を粗面化させることができる。
 この実施形態の1つの例では、図3(a)のように金属成形体110の上に間隔をおいて複数枚のマスキング材111を配置した状態で、レーザーを連続照射する。マスキング材としては、熱伝導率の小さい金属などを使用することができる。その後、マスキング材111を取り去ると、図3(b)に示すとおり、図2と同様にレーザー光の照射部分101と非照射部分102が長さ方向に交互に生じた点線状溝が形成されている。
 図3(a)、図3(b)に示す実施形態の場合にも、マスキング材111の部分では冷却されていることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でもそりなどの変形が生じ難くなる。
 第2のレーザー光照射方法において、ピッチ間隔が0.12mm以上で、P/Sが上記範囲内であると、隣接する線状溝同士(レーザー光の照射痕同士)の干渉が少なくなるので繰り返し回数を増加できるほか、意図的に線状溝が形成されない部分を確保することができるため、金属成形体の開口部を樹脂成形体で被覆するシール方法として適用した場合には、特に高圧雰囲気中における気体のリーク防止効果が高められる。
 第1のレーザー光照射方法と第2のレーザー光照射方法で使用するレーザーは公知のものを使用することができ、例えば、YVO4レーザー、ファイバーレーザー(シングルモードファイバーレーザー、マルチモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。
 レーザー光照射して粗面化する工程において、第1のレーザー光照射方法または第2のレーザー光照射方法を実施したときは、上記したエネルギー密度と照射速度を満たすように金属成形体にレーザー光を照射すると、金属成形体の表面は溶融しながら一部が蒸発されることから、複雑な構造の多孔構造を有する溝が形成されると考えられる。しかしながら本発明は、このような作用に何ら拘束されるものではない。
 このときに形成される多孔構造は、例えば特許第5774246号公報の図7または図8、特許第5701414号公報の図7または図8に示されるものと同じか、または類似する複雑な多孔構造でありうる。一方、上記したエネルギー密度または照射速度を満たさない場合には、金属成形体の表面は昇華して孔が形成されるか(通常のパルスレーザー照射により形成される孔)、または溶融(レーザー溶接)してしまい、複雑な構造を有する溝は形成されないと考えられる。
<シール方法>
 本発明のシール方法は、幾つかの例示的な実施形態において、金属成形体の開口部を含む部分の全部または一部に樹脂成形体を接合させてシールするシール方法であることができる。また別の幾つかの例示的な実施形態において、本発明のシール方法は、金属成形体(第1の金属成形体)と、別の金属成形体(第2の金属成形体)とを、樹脂成形体を接合させてシールするシール方法であることができる。
 1つの例示的な実施形態では、金属成形体は、内部空間を有し、前記内部空間と接続された開口部を有していてよい。樹脂の射出成形または圧縮成形によって形成される樹脂成形体により前記開口部が閉塞できるものであれば、金属成形体の形状、厚さ、構造および大きさは特に制限されるものではない。金属成形体の金属としては、上記した金属成形体表面の粗面化方法に用いられる金属と同じ金属を使用することができる。
 本発明のシール方法は、金属成形体表面の樹脂成形体との接合面に対して、連続波レーザーを使用して、エネルギー密度1MW/cm以上で、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有している。
 1つの例示的な実施形態では、前記粗面化する方法としては、上記した金属成形体表面の粗面化方法に関連して説明したのと同じ第1のレーザー光照射方法または第2のレーザー光照射方法のいずれかを使用することができる。別の例示的な実施形態では、ピッチ間隔Pが0.12mm以上であること、ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が4~12.5であることという要件の一方または両方を満たさない場合であっても、他の条件を第1のレーザー光照射方法または第2のレーザー光照射方法と同様にして、公知の連続波レーザー光を照射する方法であってもよい。
(1)図4~図7に示す実施形態
 図4~図7により本発明のシール方法の例示的な一実施形態を説明する。図4(a)、図4(b)は、本発明で使用することのできる金属成形体の1つの形態を示すものである。
 示されているように、筒状の金属成形体40は、第1端面41、反対側の第2端面42、外周面43a、内周面43bを有し、さらに内部空間となる貫通孔44を有している。貫通孔44は、第1端面41側に第1開口部44a、第2端面42側に第2開口部44bを有している。
 図4(a)に示す筒状の金属成形体40を使用して、第1開口部44aを閉塞しようとするとき、第1端面41の第1開口部44aを包囲する環状接合面45(図4(b))に対してレーザー光を照射して、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成させて粗面化することができる。
 レーザー光を照射して粗面化する工程においては、金属成形体40の樹脂成形体60(例えば図7参照)との環状接合面45に対して、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成するように連続波レーザー光を照射するとき、金属成形体40の内部空間(貫通孔)44から金属成形体40の外部空間に至る経路(例えば典型的には最短経路)を横切るようにして複数の線状溝を形成し、かつ複数の線状溝同士の間の少なくとも一部に粗面化されていない環状接合面45が残されるようにする。このようなレーザー光の照射形態としては、例えば図5(a)~図5(c)に示す実施形態があるが、これらに限定されるものではない。
 図5(a)、図6に示す実施形態では、金属成形体40の第1端面41の環状接合面45に対して、貫通孔44の中心を基準とする直径の異なる複数の同心円状の線状溝50~52が形成されている。同心円状の線状溝50~52は、金属成形体40の内部空間(貫通孔)44から金属成形体40の外部空間に至る経路(例えば最短経路)(例えば、図5(a)中の接合面45に沿った2本の矢印で表される)を横切るようにして形成されている。
 環状接合面45に形成されている同心円状の線状溝50~52の間には、粗面化されていない環状接合面45の部分が残っており、環状接合面45のこれらの部分は同心円状の線状溝50~52の間に連続的に壁となって存在している。
 図5(b)に示す実施形態では、金属成形体40の第1端面41の環状接合面45に対して、渦巻き状の線状溝53が形成されている。図5(b)の実施形態の長さ方向の断面図は、図6と同様の断面図になる。示されているように、渦巻き状の線状溝53は、金属成形体40の内部空間(貫通孔)44から金属成形体40の外部空間に至る経路(例えば最短経路)(例えば、図5(b)中の接合面45に沿った2本の矢印で表される)を横切るようにして形成されている。
 環状接合面45に形成されている渦巻き状の線状溝53の各巻きの間には、粗面化されていない環状接合面45の部分が残っており、環状接合面45のこれらの部分は渦巻き状の線状溝53の各巻きの間に連続的に壁となって存在している。
 図5(c)に示す実施形態では、金属成形体40の第1端面41の環状接合面45に対して、貫通孔44の中心を基準とする直径の異なる複数の周方向に不連続な同心円状の線状溝54~56が形成されている。図5(c)に示す実施形態では、第2のレーザー光照射方法を適用して、図2(b)に示すような形態の点線状溝(周方向に不連続な同心円状の線状溝54~56)が形成されるようにする。
 周方向に不連続な同心円状の線状溝54~56は、金属成形体40の内部空間(貫通孔)44から金属成形体40の外部空間に至る経路(例えば最短経路)(例えば、図5(c)中の接合面45に沿った2本の矢印)をいずれかの同心円状の線状溝54~56が横切るようにして形成されている。即ち、例えば図5(c)中の2本の矢印を見たとき、不連続な同心円状の線状溝54の線状溝がない部分には不連続な同心円状の線状溝55の線状溝が存在しており、不連続な同心円状の線状溝55の線状溝がない部分には、不連続な同心円状の線状溝の線状溝54、56が存在するようになっている。
 環状接合面45に形成されている周方向に不連続な同心円状の線状溝54~56の間には、粗面化されていない環状接合面45の部分が残っており、環状接合面45のこれらの部分は同心円状の線状溝50~52の間に連続的に壁となって存在している。
 なお、シール性を高める観点から、1つの例では図5(a)、図5(b)の実施形態を使用してよい。図5(c)の実施形態にするときは、レーザー光を照射していない部分(図3(b)の非照射部分102に相当する部分)の長さを短くすることができる(例えば、照射部分101に相当する部分の長さが7~9:非照射部分102に相当する部分の長さが3~1)。さらに図5(c)では三重に不連続な同心円状の線状溝54~56が形成されているが、シール性を高める観点から、例えば4重、5重以上に形成することができる。
 また照射部分に相当する部分101と非照射部分に相当する部分102をずらしながら連続波レーザー光を照射することで最終的に図5(a)と類似した同心円状の線状溝にすることもできるが、最初から連続波レーザー光を連続照射して図5(a)のような溝を形成した場合と比べて、金属成形体40に対する熱的影響を緩和できる。
 図8は、図5(a)~図5(c)に対応する比較形態を示す断面図である。図8に示す比較形態では、例えば、金属成形体40の第1端面41の環状接合面45に対して、複数の同心円状の線状溝が狭い間隔(ピッチ間隔)で形成されたため、隣接する同心円状の線状溝同士が一体となり、環状接合面45の全面が粗面化された形態を示している。このため、図8に示す実施形態では、図5(a)~(c)のように線状溝と線状溝の間に粗面化されていない環状接合面45は残っていない。
 シール方法の次の工程においては、例えば前工程において粗面化された金属成形体の開口部を含む接合面を金型内に配置して、樹脂成形体となる樹脂を射出成形または圧縮成形して前記開口部をシールすることができる。1つの具体的な例によれば、前工程において、図4(a)の金属成形体40の第1端面41の第1開口部44aを包囲する環状接合面45に対してレーザー光を照射して粗面化したときは、第1端面41側を金型内に配置して、環状接合面45を含む円と同じ形状および同じ大きさの円になるように樹脂を射出成形または圧縮成形して樹脂成形体60を形成させ、第1開口部44aをシールして複合成形体を得ることができる。
 図5(a)、図6に示す実施形態では、図7に例示するとおり、射出成形または圧縮成形により溶融した樹脂が同心円状の線状溝50~52内に入り込み、同心円状の線状溝50~52の間の粗面化されてない面(環状接合面45の部分)と密着され、内部空間、すなわち貫通孔44の第1開口部44aを覆った状態で固まることで、第1開口部44aが閉塞されている。本発明のシール方法を適用すれば、金属成形体40の第1端面41の環状接合面45と樹脂成形体60の間が強い接合力で一体化されることによる第1のシール作用と、金属成形体40の粗面化されてない環状接合面45と樹脂成形体60が密着していることによる第2のシール作用によって、高いシール性を得ることができる。
 特に貫通孔44内に高圧気体が封入されているような場合には、第1の作用と第2の作用により高いシール性を発揮できる。図5(b)、図5(c)に示す実施形態においても、図5(a)に示す実施形態と同様に2つのシール作用によって高いシール性を発揮できる。
 これに対して図8、図9に示す比較形態では、射出成形または圧縮成形により溶融した状態が粗面化部分57内に入り込んだ後で固まることで、金属成形体40の第1端面41の環状接合面45と樹脂成形体60の間が強い接合力で一体化されることにより第1のシール作用が発揮されることは同じである。しかし図8、図9に示す比較形態では、粗面化されてない環状接合面45の部分が存在していないことから第2のシール作用が発揮されず、シール性は本発明の実施形態と比べると劣る。
 また図8、図9に示す比較形態の粗面化部分57には、非常に複雑な孔構造が形成されているため、孔構造の全てに溶融した樹脂が入り込むことはできず、孔の側面や底面には、第1のシール作用には影響しないが、樹脂と接触していない僅かな隙間が残存している場合が考えられる。そのような僅かな隙間が残存している場合で、かつ金属成形体40の内部空間(貫通孔44)に高圧の気体が存在しているような場合には、ごく少量の気体が僅かな隙間を通って金属成形体40の外部に漏れ出るおそれがある。
 一方、図5~図7に示す本発明の例による実施形態では、線状溝部分(粗面化部分)に僅かな隙間が残存した場合でも、粗面化されてない環状接合面45と樹脂成形体60の密着性が高く、隙間も存在していないため、金属成形体40の内部空間(貫通孔)44の気体や液体が金属成形体40の外部空間まで漏れ出ることを阻止するような作用(第2のシール作用)が発揮されることになり、優れたシール作用が発揮される。なお、粗面化部分がない場合は、第1のシール作用が発揮されないため金属成形体と樹脂成形体が接合できず、第2のシール作用の有無自体を問題にするまでもない。
 樹脂成形体に使用する樹脂には、熱可塑性樹脂、熱硬化性樹脂のほか、熱可塑性エラストマー、ゴム(架橋可能なエラストマーを含み、熱可塑性エラストマーを含まない)も含まれる。
 熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から適宜選択することができる。例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂等のスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができる。
 熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から適宜選択することができる。例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、ビニルウレタンを挙げることができる。
 熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから適宜選択することができる。例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ポリアミド系エラストマーを挙げることができる。
 ゴムとしては、エチレン‐プロピレンコポリマー(EPM)、エチレン‐プロピレン‐ジエンターポリマー(EPDM)、エチレン‐オクテンコポリマー(EOM)、エチレン‐ブテンコポリマー(EBM)、エチレン‐オクテンターポリマー(EODM)、エチレン‐ブテンターポリマー(EBDM)などのエチレン‐α‐オレフィンゴム;エチレン/アクリル酸ゴム(EAM)、ポリクロロプレンゴム(CR)、アクリロニトリル‐ブタジエンゴム(NBR)、水添NBR (HNBR)、スチレン‐ブタジエンゴム(SBR)、アルキル化クロロスルホン化ポリエチレン(ACSM)、エピクロルヒドリン(ECO)、ポリブタジエンゴム(BR)、天然ゴム(合成ポリイソプレンを含む) (NR)、塩素化ポリエチレン(CPE)、ブロム化ポリメチルスチレン‐ブテンコポリマー、スチレン‐ブタジエン‐スチレン(S‐B‐S)およびスチレン‐エチレン‐ブタジエン‐スチレン(S‐E‐B‐S)ブロックコポリマー、アクリルゴム(ACM)、エチレン‐酢酸ビニルエラストマー(EVM)、およびシリコーンゴムなどを挙げることができる。
 架橋可能なエラストマーとしては、架橋可能なフッ素エラストマー、架橋可能なフッ素エラストマーと他の架橋可能なエラストマー(架橋可能なシリコーンエラストマーを含む)の組み合わせ、架橋可能なシリコーンエラストマー、架橋可能なシリコーンエラストマーと他の架橋可能なエラストマー(架橋可能なフッ素エラストマーを含む)の組み合わせなどを使用することができる。
 架橋可能なフッ素エラストマーは公知のものであってよく、例えば特開2013-14640号公報に記載されているフッ素ゴム、熱可塑性フッ素ゴムおよび前記ゴムを含むゴム組成物を挙げることができ、これらの中でもフッ素ゴムが好ましい。また原料となるフッ素エラストマーは、例えば特開2013-14640号公報に記載されている架橋剤、架橋促進剤、充填剤を含有する組成物として使用することもできる。
 架橋可能なシリコーンエラストマーは公知のものであってよく、例えば特開2004-27228号公報、特開2007-302893号公報、特表2016-505647号公報、特表2014-500888号公報などに記載されているものを挙げることができる。架橋可能なエラストマーを含むエラストマーまたはそれらを含む組成物のムーニー粘度(ML1+10,121℃)は、1つの好ましい例では10~200であってよく、別の好ましい例では10~100であってよい。
 これらの熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、ゴム(架橋可能なエラストマーを含み、熱可塑性エラストマーを含まない)には、公知の繊維状充填材を配合することができる。公知の繊維状充填材としては、炭素繊維、無機繊維、金属繊維、有機繊維等を挙げることができる。
 炭素繊維は周知のものであってよく、PAN系、ピッチ系、レーヨン系、リグニン系等のものを用いることができる。無機繊維としては、ガラス繊維、玄武岩繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維等を挙げることができる。金属繊維としては、ステンレス、アルミニウム、銅等からなる繊維を挙げることができる。有機繊維としては、ポリアミド繊維(全芳香族ポリアミド繊維、ジアミンとジカルボン酸のいずれか一方が芳香族化合物である半芳香族ポリアミド繊維、脂肪族ポリアミド繊維)、ポリビニルアルコール繊維、アクリル繊維、ポリオレフィン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリエステル繊維(全芳香族ポリエステル繊維を含む)、ポリフェニレンスルフィド繊維、ポリイミド繊維、液晶ポリエステル繊維などの合成繊維や天然繊維(セルロース系繊維など)や再生セルロース(レーヨン)繊維などを用いることができる。
 これらの繊維状充填材としては、例えば繊維径が3~60μmの範囲のものを使用することができるが、これらの中でも、例えば金属成形体の接合面が粗面化されて形成される孔や溝の開口径より小さな繊維径のものを使用することが好ましい。繊維径は、1つの好ましい例ではは5~30μmであってよく、別の好ましい例では7~20μmであってよい。
(2)図10に示す実施形態
 図10(a)は、本発明のシール方法の別の実施形態の例を示すものである。金属成形体70は、天面71、反対側の底面72、4つの側面73~76を有し、さらに内部には内部空間77を有している。天面71は内部空間77と接続された開口部78を有していることができる。1つの具体的な例によれば、粗面化工程では、天面71の開口部78を包囲する環状接合面79に対して図5(a)~図5(c)のいずれかの実施形態でレーザー光を照射して粗面化する。このときの粗面化状態は、図6に示すようになる。
 その後、天面71側を金型内に配置して、環状接合面79を含む円と同じ形状および同じ大きさの円になるように樹脂を射出成形または圧縮成形して樹脂成形体60を形成させて開口部38をシールして複合成形体を得ることができる。1つの具体的な例によれば、このときの断面構造は図7に示すようになる。図10(b)のシールされた複合成形体は、第1のシール作用と第2のシール作用を発揮できることから、高いシール性が得られる。
(3)図11に示すシール方法
 図11(a)は、本発明のシール方法のさらに別の実施形態の例を示すものであり、第1金属成形体80と第2金属成形体90の2つの金属成形体を使用する。第1金属成形体80は、外側環状壁部81、外側環状壁部81と同一方向に伸ばされた内側環状壁部82、外側環状壁部81と内側環状壁部82の間を接続する環状面部83を有している。外側環状壁部81と内側環状壁部82は、外側環状壁部81の長さ>内側環状壁部82の長さの関係を有している。外側環状壁部81の環状面部83に対向する部分は大開口部84を有しており、内側環状壁部82の大開口部84に対向する部分は小開口部85を有している。
 第2金属成形体90は筒状のものであり、第1端面91、反対側の第2端面92、周面93、貫通孔94、第1端面91側の第1開口部94a、第2端面92側の第2開口部94bを有している。
 粗面化工程は、例えば前記した第1のレーザー光照射方法または第2のレーザー光照射方法により、第1金属成形体の第1の接合面および第2金属成形体の第2の接合面のそれぞれに、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成するように複数の線状溝を形成し、かつ前記複数の線状溝同士の間の少なくとも一部に粗面化されていない接合面が残されるようにする工程を含んでいてよい。
 1つの具体的な例によれば、粗面化工程では、第1金属成形体80の小開口部85の内側環状壁部82の内側面82a(長さL11)と、筒状の第2金属成形体90の第1端面91から第2端面92側の周面93(外側周面93a)(長さL11)のそれぞれに対して、周方向に環状にレーザー光を照射し、かつそれぞれの環状照射部同士が長さ方向に間隔をおいて形成されるようにレーザー光を照射する方法(図11(b)参照)、螺旋状にレーザー光を照射する方法などを使用することができる。
 図11(b)の例では、第1の接合面である内側面82aに沿って第1金属成形体80の内部空間から外部空間に至る経路(例えば最短経路)を横切るように環状溝86が形成されており、隣接する環状溝86の間には、粗面化されていない内側環状壁部82の内側面82aの部分が残存している。
 またやはり図11(b)に例示的に示されているように、第2金属成形体90の第2の接合面である外側周面93aにも、接合面に沿って第1端面91から第2端面92に至る経路を横切るように環状溝96が形成されており、隣接する環状溝96の間には、粗面化されていない第2金属成形体90の外側周面93aの部分が残存している。第2の接合面は、第1の接合面と対向して配置されることが意図されていてよい。
 次の工程では、第1金属成形体80の第1の接合面82aを含む部分と第2金属成形体90の第2の接合面93aを含む部分を金型内に配置し、樹脂を射出成形または圧縮成形することにより、第1の金属成形体80と第2の金属成形体90の間に樹脂成形体を接合させてシールを行うことができる。
 1つの具体的な例によれば、図11(c)に示すように、第1金属成形体80の内側環状壁部82の中心軸と第2金属成形体90の中心軸が一致し、かつ第1金属成形体82の小開口部85と第2金属成形体90の第1端面91が一致するようにして、第1金属成形体80と第2金属成形体90の間に隙間を置いて金型内に配置する。このように第1の金属成形体と前記第2の金属成形体とが組み合わせられたときに、環状溝86と環状溝96は、前記第1の接合面および前記第2の接合面に沿って第1金属成形体の内部空間から外部空間に至る経路を横切る。その後、樹脂を射出成形または圧縮成形して樹脂成形体99を形成させて小開口部85と第2金属成形体90の隙間をシールして、図11(d)に示す複合成形体を得る。図11(d)の複合成形体は、第1のシール作用と第2のシール作用を発揮できることから、高いシール性が得られる。
(4)図12に示すシール方法
 図12は、本発明のシール方法のさらに別実施形態の例を示すものであり、第1金属成形体および第2金属成形体として、第1金属管160と第2金属管170の2つの金属管を使用する。レーザー照射工程では、第1金属管160の第1端部161の外表面と第2金属管170の第1端部171の外表面に対してレーザー光を照射して、粗面化し、後で樹脂と一体化される接合面を形成することができる。
 レーザー光を照射するときは、第1金属管160の第1端部161の外表面に対して、周方向に環状に照射し、かつそれぞれの環状照射部同士が長さ方向に間隔をおいて形成されるように照射する方法(図12(b)参照)、螺旋状に照射する方法などを使用することができる。レーザー光の照射方法は、上記した第1のレーザー光照射方法または第2のレーザー光照射方法を適用することができる。
 図12(b)に示すとおり、接合面となる粗面化部分には、第1金属管160側の複数の線状溝(環状溝)162と、第2金属管170側の複数の線状溝(環状溝)172が形成された状態になっている。複数の線状溝162、172は、第1金属管160と第2金属管170の突き合わせられた端面を通り、これらの管の内部空間から外部空間に至る経路(例えば最短経路)を横切るようにして形成されており、隣接する複数の線状溝162、および隣接する複数の線状溝172の間には、それぞれ、粗面化されていない部分164、174が残存している。
 シール工程では、第1金属管160の第1端面161と第2金属管170の第1端面171を当接させた状態で金型内に配置し、樹脂を射出成形または圧縮成形して筒状の樹脂成形体175を形成させて、第1金属管160と第2金属管170を接続する共に接続部分を外側からシールすることができる。図12(a)の複合成形体は、第1のシール作用と第2のシール作用を発揮できることから、高いシール性が得られる。
実施例1および比較例1~4
 図13(a)に示す形状および寸法(単位はミリ)の環状の金属成形体(アルミニウムA5052)200の環状接合面201(392.5mmの広さ範囲)に対して、表1に示す条件でレーザー光を照射して(第1のレーザー光照射方法)、環状接合面201を粗面化した。粗面化後の環状接合面201の状態を示すSEM写真を図14(実施例1)、図15(比較例1)、図16(比較例2)、図17(比較例3)、図18(比較例4)に示す。
 レーザー装置は次のものを使用した。
 発振器:IPG-Ybファイバー;YLR-300-AC
 集光系:fc=80mm/fθ=100mm
 焦点はずし距離:±0mm(一定)
 次に、粗面化処理後の金属成形体200を使用して、下記の方法で射出成形して、金属成形体200の開口202を樹脂成形体210で閉塞して環状の複合成形体を得た(図13(b))。
 <射出成形>
 GF35%強化PPS樹脂(DURAFIDE 1135MF1:ポリプラスチックス(株)製),GF(ガラス繊維)
 樹脂温度:320℃
 金型温度:150℃
 射出成形機:ファナック製ROBOSHOT S2000i100B)
 (最大溝深さ)
 最大溝深さ(Rz)は、レーザー光照射後の面(392.5mmの広さ範囲)をワンショット3D形状測定器VR-3200((株)キーエンス製)で測定した。
 (シール性試験)
  下記装置を使用して評価した。
 試験機:(株)コスモ計器製のヘリウムリークテスター G-FINE
 検出法:大気圧法
 検出範囲:下限5.00×10-7Pa・m/s
 設定圧力:500kPa
 (ヒートサイクル試験)
 上記シール性試験において、試験装置を-40℃、30分の雰囲気で維持した後、125℃、30分の雰囲気で維持することを1サイクルとして、合計で500サイクル繰り返した後のシール性を試験した。
Figure JPOXMLDOC01-appb-T000001
 実施例1は、レーザー光照射により形成された線状溝のピッチが広いため、図14からも明らかなとおり、線状溝の間に粗面化されていない部分が残存していた。このため、ヒートサイクル後のシール性も優れていた。
 比較例1は、レーザを渦巻き状ではなく、所定のピッチ間隔で複数の同心円状に照射した。レーザー照射の方法は、一方向ではなく、交互になるように照射した(双方向)。具体的には、レーザを開始点から終点に向け円状に照射した後は、その終点からレーザー照射方向と垂直な方向に1ピッチの距離レーザをずらし、さきほどと逆方向にレーザを照射する。この操作を複数回実施することで、環状接合面全体が処理されるようにした。このようにして全面照射する操作を繰返し数1回とした。
 比較例1はレーザー光のピッチが狭いため、図15からも明らかなとおり、多数の線状溝が一体になって全面が粗面化された状態になっており、粗面化されていない部分は残存していなかった。このため、ヒートサイクル後のシール性が劣っていた。なお、比較例1では実施例1に比べると繰り返し回数が少なく、最大深さも小さくなっているが、ピッチ間隔が狭いことから、この少ない回数で、ほぼ全面が粗面化された状態になった。それ以上粗面化処理を継続することは、一旦形成された凸部を再度レーザー光で潰して平坦化するような状態になることから中止したものである。
 なお、実施例1のSEM写真と比較例1のSEM写真から測定が容易な箇所を選択してP/Sを計測したところ、ピッチは設定値と実測値は同じであり、スポット径(溝幅)には誤差があったが、実施例1の実測値はP/S=4~12.5を満たしており、比較例1はP/S<4であった。
 比較例2~4は、ピッチ間隔は広いが、スポット径(溝幅)が大きいため、P/Sが本発明の範囲外となっていることから、ヒートサイクル後のシール性が劣っていたと考えられる。なお、比較例2~4のうち最も繰り返し回数の多い比較例2の繰り返し回数であっても実施例1と比べると少ないが、スポット径(溝幅)が大きく、最大深さも大きくなったため、試験に使用した環状の金属成形体(厚さ1mm)では、それ以上繰り返すことは難しかった。
実施例2、3および比較例5、6
 図13(a)に示す形状および寸法(単位はミリ)の環状の金属成形体(ステンレスSUS304または銅C2801)200の環状接合面201(392.5mmの広さ範囲)に対して、表2に示す条件でレーザー光を照射して(第1のレーザー光照射方法)、環状接合面201を粗面化した。それぞれの例の粗面化後の表面のSEM写真を図19(実施例2)、図20(比較例5)、図21(実施例3)、図22(比較例6)に示す。比較例5および6における「双方向」は、比較例1の場合と同様の照射パターンを指している。
 レーザー装置は次のものを使用した。
 発振器:IPG-Ybファイバー;YLR-300-AC,fb径:13μm,1070nm
 集光系:OPTICEL D30L-CL+ARGES社のSQUIRREL16(fc=80mm/fθ=163mm)
 次に、粗面化処理後の金属成形体200を使用して、下記の方法で射出成形して、金属成形体200の開口202を樹脂成形体210で閉塞して環状の複合成形体を得た(図13(b))。
 <射出成形>
 GF35%強化PPS樹脂(DURAFIDE 1135MF1:ポリプラスチックス(株)製),GF(ガラス繊維)
 樹脂温度:320℃
 金型温度:150℃
 射出成形機:ファナック製ROBOSHOT S2000i100B)
 実施例1と同様にして最大溝深さ(Rz)を測定し、シール性は次のように試験した。
 (シール性試験)
 試験機:(株)コスモ計器 ヘリウムリークテスター G-FINE
 検出方法:大気圧法
 検出範囲:下限 5.00×10-7Pa・m/s
 設定圧力:500kPa
Figure JPOXMLDOC01-appb-T000002
 実施例2(図19)および実施例3(図21)では、溝と溝の間に粗面化されていない部分が連続的に壁となって気体がリークする経路が遮断されているため(第2のシール作用)、気体が溝を通ってリークし難い構造になっていたと考えられる。これに対して比較例5(図20)と比較例6(図22)では、溝と溝の間の壁が不連続となっているため、第2のシール作用が十分に発揮されず、気体がリークし易い構造になっていたと考えられる。
 このような図面(SEM写真)から確認できる粗面化状態は、実施例2、3の溝よりも比較例5、6の溝の方が最大深さは大きかったが、比較例5、6はP/Sを満たしていないことから、比較例5、6の粗面化状態がシール性(第2のシール作用)を発揮するには十分ではないと考えられることとも合致していた。このような粗面化状態の違いから、シール性の試験から確認できるとおり、実施例2、3のシール性が高く、比較例5、6のシール性が低くなったものと考えられる。
 本発明の例による金属成形体表面の粗面化方法は、例えば、特許第6489766号に記載された微粒子の担体、特許第6422701号に記載された研磨材などの製造方法に用いることができるほか、公知の連続波レーザー光を連続照射する方法と同様にして利用することができる。
 本発明の例によるシール方法は、金属成形体と樹脂成形体の接続部分のシール性が優れているため、通常の管、三つ叉管などの一部開口部のシール、吸湿防止のための容器(複数の部品が収容されたハウジングなど)開口部のシール、金属管同士の接続およびシールなどに利用することができる。
 1~4 線状溝
 1a~3a 線状溝が形成されていない部分(粗面化されていない部分)
 11~14 線状溝
 11a~13a 線状溝が形成されていない部分(粗面化されていない部分)
 21~26 線状溝
 22a、23a、25a 線状溝が形成されていない部分(粗面化されていない部分)
 31~35 点線状溝
 31a レーザー光照射部分
 31b レーザー光非照射部分
 36、37 点線状溝が形成されていない部分(粗面化されていない部分)

 

Claims (10)

  1.  金属成形体表面の粗面化方法であって、
     前記金属成形体表面に対して、連続波レーザーを使用してエネルギー密度1MW/cm以上で、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有しており、
     前記レーザー光を照射して粗面化する工程が、金属成形体表面に対して複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝が形成されるようにレーザー光を連続照射する工程であり、
     前記隣接する線状溝同士の幅方向中間位置の間隔(ピッチ間隔)(P)が0.12mm以上で、等間隔または異なる間隔からなる部分を含んでいるものであり、
     前記ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が4~12.5である、金属成形体表面の粗面化方法。
  2.  金属成形体表面の粗面化方法であって、
     前記金属成形体表面に対して、連続波レーザーを使用してエネルギー密度1MW/cm以上で、照射速度2000mm/sec以上でレーザー光を照射することで粗面化する工程を有しており、
     前記レーザー光を照射して粗面化する工程が、金属成形体表面に対して複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝が形成されるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程であり、
     前記隣接する線状溝同士の幅方向中間位置の間隔(ピッチ間隔)(P)が0.12mm以上で、等間隔または異なる間隔からなる部分を含んでいるものであり、
     前記ピッチ間隔(P)(μm)とレーザー光線のスポット径(S)(μm)の比(P/S)が4~12.5である、金属成形体表面の粗面化方法。
  3.  ピッチ間隔(P)が0.12mm以上、ピッチ間隔(P)とスポット径(S)の比(P/S)が4~12である、請求項1または2記載の金属成形体表面の粗面化方法。
  4.  ピッチ間隔(P)が0.12mm以上、ピッチ間隔(P)とスポット径(S)の比(P/S)が4~10である、請求項1または2記載の金属成形体表面の粗面化方法。
  5.  金属成形体の開口部の全部または一部に樹脂成形体を接合させてシールするシール方法であって、
     前記金属成形体が、内部空間を有し、前記内部空間と接続された開口部を有するものであり、
     前記金属成形体の樹脂成形体との接合面に対して、連続波レーザーを使用して、エネルギー密度1MW/cm以上で、照射速度2000mm/sec以上で連続波レーザー光を照射することで粗面化する工程を有しており、
     前記レーザー光を照射して粗面化する工程が、前記接合面に対して、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成するように連続波レーザー光を照射し、前記金属成形体の内部空間から前記金属成形体の外部空間に至る経路を横切るようにして複数の線状溝を形成し、かつ前記複数の線状溝同士の間の少なくとも一部に粗面化されていない接合面が残されるようにする工程であり、
     前工程において粗面化された金属成形体の接合面を含む部分を金型内に配置し、樹脂を射出成形または圧縮成形して形成した樹脂成形体により前記開口部をシールする工程を有している、シール方法。
  6.  金属成形体の開口部の全部または一部に樹脂成形体を接合させてシールするシール方法であって、
     前記金属成形体が、内部空間を有し、前記内部空間と接続された開口部を有するものであり、
     前記金属成形体の樹脂成形体との接合面に対して、請求項1~4のいずれか1項記載の金属成形体表面の粗面化方法を実施することで粗面化する工程を有しており、
     前記レーザー光を照射して粗面化する工程が、前記接合面に対して、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成するように連続波レーザー光を照射するとき、前記接合面に沿って、前記金属成形体の内部空間から前記金属成形体の外部空間に至る経路を横切るようにして複数の線状溝を形成し、かつ前記複数の線状溝同士の間の少なくとも一部に粗面化されていない接合面が残されるようにする工程であり、
     前工程において粗面化された金属成形体の接合面を含む部分を金型内に配置し、樹脂を射出成形または圧縮成形して形成した樹脂成形体により前記開口部をシールする工程を有している、シール方法。
  7.  樹脂成形体を用いて第1金属成形体と第2金属成形体とをシールするシール方法であって、
     前記第1金属成形体の第1の接合面および前記第2金属成形体の第2の接合面に対して、請求項1~4のいずれか1項記載の金属成形体表面の粗面化方法を実施することで粗面化する工程を有しており、
     前記工程が、前記第1の接合面および前記第2の接合面のそれぞれに、複数本の直線、曲線、または直線と曲線の組み合わせを含む線状溝を形成するように複数の線状溝を形成し、かつ前記複数の線状溝同士の間の少なくとも一部に粗面化されていない接合面が残されるようにする工程を含み、
     前記第1金属成形体の第1の接合面を含む部分と前記第2金属成形体の第2の接合面を含む部分を金型内に配置し、樹脂を射出成形または圧縮成形することにより、第1の金属成形体と第2の金属成形体の間に樹脂成形体を接合させてシールする工程を有している、シール方法。
  8.  前記粗面化する工程が、前記第1の金属成形体と前記第2の金属成形体とが組み合わせられたときに、前記第1の接合面および前記第2の接合面に沿って前記第1の金属成形体の内部空間から外部空間に至る経路を横切るようにして、前記第1の接合面および前記第2の接合面に複数の線状溝を形成する工程を含む、請求項7記載のシール方法。
  9.  前記第1の金属成形体の前記第1の接合面は環状の内側面であり、前記第2の金属成形体の前記第2の接合面は前記環状の内側面に対して隙間を置いて配置される筒状の外側周面であり、前記隙間に樹脂成形体が接合されてシールされる、請求項7または8記載のシール方法。
  10.  前記第1の金属成形体の前記第1の接合面は第1の管の一端部の外表面であり、前記第2の金属成形体の前記第2の接合面は第2の管の一端部の外表面であり、前記第1の管の一端部の端面と前記第2の管の一端部の端面が当接され、筒状の樹脂成形体が前記第1の接合面および前記第2の接合面を外側からシールする、請求項7または8記載のシール方法。

     
PCT/JP2020/023697 2019-06-17 2020-06-17 金属成形体表面の粗面化方法とそれを使用したシール方法 WO2020255994A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021526825A JPWO2020255994A1 (ja) 2019-06-17 2020-06-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111949 2019-06-17
JP2019-111949 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255994A1 true WO2020255994A1 (ja) 2020-12-24

Family

ID=74040816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023697 WO2020255994A1 (ja) 2019-06-17 2020-06-17 金属成形体表面の粗面化方法とそれを使用したシール方法

Country Status (2)

Country Link
JP (1) JPWO2020255994A1 (ja)
WO (1) WO2020255994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133259B1 (ja) * 2022-03-08 2022-09-08 株式会社ユーロックテクノパーツ 簡易識別用レーザ刻印

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240685A (ja) * 2010-05-21 2011-12-01 Aisin Chemical Co Ltd 金属複合接合体のシール構造及びその製造方法
JP2015142960A (ja) * 2013-03-26 2015-08-06 ダイセルポリマー株式会社 複合成形体の製造方法
JP2018094777A (ja) * 2016-12-12 2018-06-21 ダイセルポリマー株式会社 シール方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240685A (ja) * 2010-05-21 2011-12-01 Aisin Chemical Co Ltd 金属複合接合体のシール構造及びその製造方法
JP2015142960A (ja) * 2013-03-26 2015-08-06 ダイセルポリマー株式会社 複合成形体の製造方法
JP2018094777A (ja) * 2016-12-12 2018-06-21 ダイセルポリマー株式会社 シール方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133259B1 (ja) * 2022-03-08 2022-09-08 株式会社ユーロックテクノパーツ 簡易識別用レーザ刻印

Also Published As

Publication number Publication date
JPWO2020255994A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
TWI655049B (zh) 金屬成形體之粗面化方法
KR101311965B1 (ko) 수지와 금속을 접합하는 방법 및 장치
JP7161571B2 (ja) 複合成形体とその製造方法
TWI594880B (zh) Compound forming body
JP6472655B2 (ja) 管継ぎ手構造とその製造方法
WO2020255994A1 (ja) 金属成形体表面の粗面化方法とそれを使用したシール方法
US20190176268A1 (en) Method for roughening metal molded body surface
JP6489908B2 (ja) 複合成形体とその製造方法
WO2018043637A1 (ja) 金属成形体の粗面化方法
WO2022030015A1 (ja) 金属樹脂接合体及び金属樹脂接合体の製造方法
JP6510232B2 (ja) 複合成形体とその製造方法
JP6496536B2 (ja) 軸一体型歯車とその製造方法
US10393162B2 (en) Joint part and manufacturing method therefor
JP7451073B2 (ja) 複合成形体の製造方法
WO2018110505A1 (ja) 複合成形体の製造方法および複合成形体
JP4492784B2 (ja) レーザ溶着部材の製造方法
WO2023063272A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
WO2023063271A1 (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
JP2023059621A (ja) 金属部材の製造方法及び金属樹脂接合体の製造方法
JP2023059620A (ja) 金属部材及び金属樹脂接合体並びにそれらの製造方法
JP2021123037A (ja) 接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826442

Country of ref document: EP

Kind code of ref document: A1