WO2020253799A1 - 单线制冰机组件 - Google Patents

单线制冰机组件 Download PDF

Info

Publication number
WO2020253799A1
WO2020253799A1 PCT/CN2020/096921 CN2020096921W WO2020253799A1 WO 2020253799 A1 WO2020253799 A1 WO 2020253799A1 CN 2020096921 W CN2020096921 W CN 2020096921W WO 2020253799 A1 WO2020253799 A1 WO 2020253799A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold part
mold
ice maker
cavity
electric ice
Prior art date
Application number
PCT/CN2020/096921
Other languages
English (en)
French (fr)
Inventor
阿尔登 荣格布伦特
泰勒 布朗贾斯汀
Original Assignee
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP20827544.6A priority Critical patent/EP3988873A4/en
Priority to CN202080039108.5A priority patent/CN113874667B/zh
Priority to AU2020296792A priority patent/AU2020296792B2/en
Publication of WO2020253799A1 publication Critical patent/WO2020253799A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/14Apparatus for shaping or finishing ice pieces, e.g. ice presses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/06Multiple ice moulds or trays therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/02Geometry problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/40Refrigerating devices characterised by electrical wiring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent

Definitions

  • the present invention relates to an appliance for shaping ice, and particularly relates to an electric ice maker for shaping ice into a predetermined shape.
  • ice In domestic and commercial applications, ice is usually formed as a solid block, such as a crescent block or a generally rectangular block.
  • the shape of this block is usually determined by the container that holds the water during the freezing process.
  • an ice maker can receive liquid water, and this liquid water can be frozen in the ice maker to form small ice cubes.
  • certain ice making machines include freezing molds that define multiple cavities. Multiple cavities can be filled with liquid water, and this liquid water can be frozen in the multiple cavities to form small solid ice cubes.
  • Typical solid cubes or blocks can be relatively small in order to accommodate a large number of uses, such as temporary refrigeration and rapid cooling of liquids in a wide range of sizes.
  • ice cubes or blocks can be useful in a variety of situations, in some specific situations, it may be desirable for the ice to form a different or unique shape. As an example, it has been found that relatively large ice cubes or pucks (eg, larger than two inches in diameter) will melt more slowly than typical ice sizes/shapes. In certain wines or cocktails, it may be particularly desirable for the ice to melt slowly. Moreover, such squares or spheres can provide users with a unique or high-end impression.
  • a typical ice maker uses the heat capacity of a metal mold to supply the required heat. Therefore, continuous melting of multiple pieces of ice may require the user to place the passive ice maker under hot water between the ice cubes, or wait until the mold is heated.
  • some ice makers use electric heaters to heat the ice molds, but this ice maker uses two power cords (one power cord for one of the two mold halves), which results in the need for multiple Troublesome electrical outlets.
  • the power cord to the upper half is particularly troublesome, and the power cord that supplies power to the lower half can be routed through the base to limit inconvenience.
  • an electric ice maker defines an axial direction.
  • the electric ice maker includes a mold body including a first mold part and a second mold part, the first mold part and the second mold part being movable relative to each other in an axial direction and defining a mold cavity.
  • the heated guide rail extends axially from the first mold part toward the second mold part, and a sleeve is defined in the second mold part for receiving the heated guide rail and placing the second mold part in thermal communication with the heated guide rail.
  • an electric ice maker defines an axial direction, and includes a first mold part and a second mold part movable relative to the first mold part along the axial direction.
  • the resistance heating rod extends from the first mold part toward the second mold part along the axial direction, and the sleeve is defined in the second mold part for receiving the resistance heating rod and placing the second mold part in thermal communication with the resistance heating rod, And the power cord is electrically connected to the resistance heating rod through the first mold part.
  • an electric ice maker that defines an axial direction.
  • the electric ice maker includes a first mold part and a second mold part movable relative to the first mold part in an axial direction.
  • the heat pipe extends from the first mold part toward the second mold part in the axial direction, and a sleeve is defined in the second mold part for receiving the heat pipe and placing the second mold part in thermal communication with the heat pipe.
  • the base heater is installed in the first mold part, and the power cord is electrically coupled to the base heater through the first mold part.
  • FIG. 1 provides a perspective view of an ice maker according to an exemplary embodiment of the present disclosure.
  • Figure 2 provides a front view of the exemplary ice maker of Figure 1.
  • Fig. 3 provides a front view of the exemplary ice maker of Fig. 1, wherein the ice maker is provided with an initial ice blank in a receiving position.
  • Figure 4 provides a front view of the exemplary ice maker of Figure 1, wherein the ice maker is provided with shaped ice cubes in the receiving position.
  • FIG. 5 provides a front cross-sectional view of an ice maker according to an exemplary embodiment of the present disclosure.
  • Figure 6 provides a side cross-sectional view of the exemplary ice maker of Figure 5.
  • FIG. 7 provides a schematic cross-sectional view of an ice maker according to an exemplary embodiment of the present disclosure.
  • first,” “second,” and “third” can be used interchangeably to distinguish one component from another, and these terms are not intended to indicate the position or importance of each component .
  • the term “or” is generally intended to be inclusive (ie, “A or B” is intended to mean “A or B or both”).
  • approximate terms such as “approximately”, “approximately” or “approximately” mean within a ten percent error margin.
  • FIGS. 1 to 7 provide views of an ice maker 100 according to an exemplary embodiment of the present disclosure.
  • the ice maker 100 can be used to reshape or transform a relatively large initial ice cube 102 (for example, the original unshaped whole or single ice, see FIG. 3) into a relatively small shaped ice cube 104 having a predetermined shape.
  • FIG. 1 provides a perspective view of the ice maker 100.
  • Figure 2 provides a front view of ice maker 100 in a closed or modeling position.
  • Figures 3 and 4 provide front views of ice maker 100 in an open or receiving position.
  • FIG. 5 provides a front cross-sectional view of the ice maker 100.
  • FIG. 6 provides a side cross-sectional view of the ice maker 100.
  • FIG. 7 provides a schematic diagram of an ice maker 100 according to another exemplary embodiment.
  • the ice maker 100 includes a mold body 106 defining an axial direction A.
  • the radial direction R may be defined as outward from the axial direction A (for example, perpendicular to the axial direction A).
  • the circumferential direction C may be defined as surrounding the axial direction A (for example, perpendicular to the axial direction A in a plane defined by the radial direction R).
  • a mold cavity 108 is formed in the mold body 106.
  • the shaped ice cube 104 is shaped and its contour is determined.
  • the mold cavity 108 is defined by two independent mold parts 110,120.
  • the first mold part 110 and the second mold part 120 may selectively cooperate with each other, and together define a mold cavity 108.
  • Each mold part 110, 120 generally includes outer side walls 112, 122 and inner cavity walls 114, 124.
  • the outer side walls 112, 122 of the respective mold parts 110, 120 are arranged toward the outside (for example, in the radial direction R).
  • the outer side walls 112, 122 may extend substantially around the axial direction A (for example, along the circumferential direction C).
  • the outer side walls 112, 122 may extend from the upper part of the corresponding mold part 110, 120 to the lower part of the mold part 110, 120. Therefore, regardless of whether the ice maker 100 is in the receiving position or in the modeling position, the user can observe and touch the outer side walls 112, 122 of the respective assembled mold parts 110, 120.
  • each inner cavity wall 114, 124 may be formed around the axial direction A and extend radially outward from the axial direction A, and the inner cavity wall 114 of the first mold part 110 may be substantially upward toward the bottom of the second mold part 120 (for example, , Relative to the axial direction A).
  • the inner cavity wall 124 of the second mold part 120 may generally face downward toward the upper portion of the first mold part 110 (for example, with respect to the axial direction A).
  • the inner cavity walls 114, 124 define at least a portion of the mold cavity 108.
  • the inner cavity wall 114 of the first mold portion 110 may form the first cavity portion 116 (eg, along the inner cavity wall 114).
  • the inner cavity wall 124 of the second mold portion 120 may define the second cavity portion 126 (eg, along the corresponding inner cavity wall 124 of the second mold portion 120 and above the first cavity portion 116).
  • each inner cavity wall 114, 124 may be generally open to the outside when the ice maker 100 is in the receiving position, and closed when the ice maker 100 is in the sculpting position or otherwise restrict user viewing and access.
  • the first mating surface 118 may be defined on the top end of the first mold part 110, and the second mating surface 128 may be defined on the bottom end of the second mold part 120 (for example, so that the second mating surface faces the first A mating surface 118 generally faces downward).
  • the mating surfaces 118, 128 generally engage the corresponding outer side walls 112, 122 and the inner cavity walls 114, 124.
  • the mating surfaces 118 and 128 may extend along the radial direction R between the outer side walls 112 and 122 and the inner cavity walls 114 and 124.
  • first mating surface 118 of the first mold part 110 may extend in the radial direction R from the periphery or outer radial limit of the inner cavity wall 114 to the corresponding outer side wall 112.
  • the second mating surface 128 of the second mold part 120 may extend in the radial direction R from the periphery or outer radial limit of the inner cavity wall 124 to the corresponding outer side wall 122.
  • the mating surfaces 118, 128 may be formed together as complementary surfaces to contact each other (e.g., in a modeling position).
  • the mating surfaces 118, 128 are substantially defined at the midpoint or equator of the mold body 106 along the axial direction A, for example, such that two hemispheres (ie, half molds or mold parts 110) are defined. , 120).
  • two hemispheres ie, half molds or mold parts 110
  • the shape, position and relative size of the mold parts 110 and 120 may be changed simultaneously within the protection scope of the present invention.
  • the mold body 106 may be formed of any suitable material.
  • one or more portions may be formed of conductive metal, such as aluminum, stainless steel, steel, or copper (including alloys thereof).
  • one or more portions of the mold body 106 may be integrally formed (e.g., as a single unitary member).
  • the inner cavity wall 114 of the first mold part 110 may be integrally formed in one or both of the first mating surface 118 and the outer side wall 112.
  • the inner cavity wall 124 of the second mold part 120 may be integrally formed with one or both of the mating surface 128 and the outer side wall 122.
  • the shaped ice cube 104 will be shaped and conformed to the cavity 108 along the inner cavity walls 114, 124. Therefore, the resulting shaped ice cube 104 is a solid single ice cube shaped according to the shape or contour of the inner cavity walls 114 and 124 (for example, at the shaping position). Therefore, the adjacent inner cavity walls 114, 124 (ie, in the modeling position) and the cavity portions 116, 126 can define the final shape or contour of the modeling ice cube 104.
  • one or both of the cavity portions 116, 126 are hemispherical voids.
  • the first cavity portion 116 may be a lower hemispherical void
  • the second cavity portion 126 may be an upper hemispherical portion.
  • the cavity portions 116, 126 together can define the mold cavity 108, thereby defining the shaped ice cube 104 as a sphere.
  • each hemispherical void may have a diameter greater than two inches.
  • the mold cavity 108 may be a sphere having a diameter of about 3 inches or more.
  • any other suitable shape e.g., geometric cube, polyhedron, etc.
  • contour can be provided.
  • additional or alternative embodiments may provide predetermined embossing or carvings along one or more of the inner cavity walls 114 and 124 to guide the shape or contour of the ice cube 104.
  • the mold parts 110, 120 can be selectively separated from each other or moved relative to each other (for example, according to user desires).
  • the second mold part 120 may be movably disposed above the first mold part 110 along the axial direction A.
  • the second mold part 120 can move up and down along the axial direction A (for example, slide or pivot).
  • the second mold part 120 may move and alternate between a modeling position (for example, FIGS. 1 to 2) and a receiving position (for example, FIGS. 3 to 7).
  • the mold cavity 108 is generally closed so that access to the mold cavity 108 is restricted.
  • the second mold part 120 may be supported or rested on the first mold part 110.
  • the lower portion of the second mold portion 120 contacts (e.g., directly or indirectly contacts) the upper portion of the first mold portion 110.
  • the first mating surface 118 may directly contact the second mating surface 128, for example, so that the mating surfaces 118 and 128 are placed against each other.
  • the two cavity portions 116, 126 may be aligned in fluid communication with each other (e.g., in the axial direction A and the radial direction R).
  • the unified mold cavity 108 may be enclosed by cavity portions 116, 126 (e.g., at the inner cavity walls 114, 124 defining the first cavity portion 116 and the second cavity portion 126, respectively).
  • the mold cavity 108 is generally open in the receiving position.
  • the discrete portions 116, 126 of the mold cavity 108 may be separated from each other such that a void or gap is defined between the first mold portion 110 and the second mold portion 120 (e.g., in the axial direction A).
  • access to the mold cavity 108 can be allowed.
  • the initial ice blank 102 (with a volume greater than the volume of the closed mold cavity 108) may be placed on the mold body 106.
  • the initial ice blank 102 may be placed on the upper portion of the first mold part 110 or in a gap or gap defined between the first mold part 110 and the second mold part 120. If the reshaping operation has been performed (for example, the initial ice cube 102 has been reshaped into the shaped ice cube 104), the shaped ice cube 104 can be approached at the receiving position, as illustrated in FIG. 4.
  • one or more sleeve pairs 130 of complementary structure guide rails may be defined between the first mold portion 110 and the second mold portion 120 on the mold body 106.
  • the sleeve pairs 130 of this structural rail each include a matched structural rail 132 and a structural sleeve 134, and the structural rail 132 can slide in the structural sleeve.
  • the sleeve pairs 130 of each structural guide rail may extend parallel to the axial direction A to guide or promote the sliding of the second mold part 120 relative to the first mold part 110 along the axial direction A.
  • the sleeve pair 130 of the structural guide rail can align the mold parts 110, 120 (for example, as the second mold part 120 moves to the modeling position).
  • the sleeve pair 130 of the structural rail can be freely separated (for example, upward along the axial direction A), thereby allowing the second mold part 120 to be completely removed from the first mold part 110. It is worth noting that a wider range of ice cubes 102 of various sizes can be accommodated between the mold parts 110 and 120.
  • the handle 136 may be fixed to the second mold part 120 (for example, at the top thereof) so that the user can easily grasp or lift the second mold part 120.
  • the lifting force necessary to move the second mold portion 120 upward may be selectively provided at least in part by the user.
  • the closing force necessary to move the second mold part 120 downward may be provided at least in part by gravity.
  • any other suitable alternative arrangements can be provided for connecting and guiding the movement between the first mold part 110 and the second mold part 120 .
  • three or more sleeve pairs 130 of sliding structure rails may be provided.
  • one or more motors e.g., linear actuators
  • a multi-axis pivot assembly eg, having at least two parallel rotation axes
  • the ice maker 100 may include a pair of sleeves 130 of structural rails, which are used to facilitate opening and closing of the mold body 106, while maintaining proper alignment of the first mold part 110 and the second mold part 120. Aligned.
  • aspects of the present invention are generally devoted to features or elements that can be used in addition to the sleeve pair 130 of the structural rail or can completely replace the sleeve pair of the structural rail, while also transferring thermal energy to the second mold Part 120.
  • the ice maker 100 may be provided with a single power cord 140 electrically connected to the single power source 142 for heating the mold body 106 during the formation or sculpting of the ice cube 104.
  • the ice maker 100 includes one or more electric heating elements or electric heaters 144, which are arranged in the mold body 106 to generate during use (for example, a reshaping operation) Heat.
  • the electric heater 144 is arranged in the mold body 106 and is thermally bonded to the mold cavity 108.
  • the heat generated at the electric heater 144 can be conducted through the mold body 106 and reach the mold cavity 108 (eg, through the inner cavity walls 114, 124).
  • 5 and 6 respectively provide front and side cross-sectional views of an exemplary embodiment, including a configuration of the electric heater 144.
  • Figure 7 provides a front cross-sectional view of another exemplary embodiment including the use of a heating rod. Note that although these exemplary embodiments are explicitly illustrated, those of ordinary skill in the art will understand that additional or alternative embodiments or configurations may be provided to include one or more features of these examples (for example, including One or more additional heaters or configurations to the features shown in Figure 7).
  • the electric heater 144 is provided as any suitable electrically driven heat generator.
  • the electric heater 144 may include one or more resistive heating elements.
  • the positive thermal coefficient of a resistance heater whose resistance increases when heating such as a metal, ceramic, or polymer PTC element (for example, such as a resistance heating rod or Calrod heater) can be used.
  • a resistance heater whose resistance increases when heating
  • a metal, ceramic, or polymer PTC element for example, such as a resistance heating rod or Calrod heater
  • other suitable heating elements such as thermoelectric heating elements
  • electric heater 144 combinations are also included.
  • the electric heater 144 is exemplified as the base heater 146 provided in the heater cavity 148 in the first mold part 110.
  • the base heater 146 may be any suitable heating element, such as a resistive heating element.
  • the base heater 146 is electrically coupled with the power source 142 through the power cord 140.
  • heat is generated to raise the temperature of the first mold part 110.
  • heating only the first mold portion 110 may cause an imbalance or gradient of temperature across the mold body 106.
  • the present invention is devoted to a device that transfers heat energy from the first mold part 110 to the second mold part 120 without requiring a dedicated heater in the second mold part 120.
  • the ice maker 100 in addition to the sleeve pair 130 of the structural guide rail, also includes one or more heat pipes 150, which are used to transfer heat energy from the first mold part 110 to the second mold part. 120, so that the mold body 106 maintains a substantially constant temperature.
  • the heat pipe 150 is parallel to the structural rail 132 and extends along the axial direction A.
  • the heat pipe 150 may extend along the axial direction A from the first mold part 110 through the complementary sleeve 134 formed in the second mold part 120.
  • the pair of sleeves 130 of the structural rail can be removed together, and the heat pipe 150 can be used to perform the same structural support/sliding function.
  • the heat pipe 150 may be used to align and allow axial movement of the second mold part 120 relative to the first mold part 110.
  • the term "heat pipe” or the like is intended to refer to any suitable device or heat exchanger for transferring thermal energy through the evaporation and condensation of the working fluid in the cavity.
  • the heat pipe 150 may provide thermal communication between the first mold part 110 and the second mold part 120, for example, to allow heat energy to flow from the first mold part 110 to the second mold part 120 so that they remain substantially the same
  • the temperature of the initial ice blank 102 can be easily melted or shaped.
  • each heat pipe 150 includes a sealed casing 152, and the casing 152 contains a working fluid 154.
  • the housing 152 is preferably composed of a material having high thermal conductivity, such as metal, such as copper or aluminum.
  • the working fluid 154 may be water.
  • suitable working fluids for the heat pipe 150 include acetone, methanol, ethanol, or toluene. Any suitable fluid may be used for the working fluid 154, for example, any fluid compatible with the material of the housing 152 and suitable for the desired operating temperature range.
  • the heat pipe 150 generally extends between the condenser section 156 at one end of the heat pipe 150 and the evaporator section 158 at the opposite end of the heat pipe 150.
  • the working fluid 154 contained in the housing 152 of the heat pipe 150 absorbs thermal energy at the evaporator section 158, and then the working fluid 154 travels from the evaporator section 158 to the condenser section 156 in a gaseous state.
  • the gaseous working fluid 154 condenses into a liquid state, thereby releasing thermal energy.
  • the heat pipe 150 may include a plurality of surface deformations, protrusions or fins (not shown) in order to increase the heat transfer rate.
  • such fins may be provided on the outer surface of the housing 152 at either or both of the condenser section 156 and the evaporator section 158. These fins can increase the contact area between the heat pipe 150 and the mold body 106.
  • no fins are used, and the housing 152 is only a smooth heat exchange tube.
  • the evaporator section 158 may be physically connected to the first mold portion 110, may be disposed adjacent to the first mold portion 110, or may be in thermal communication with the first mold portion 110 in other ways.
  • thermal energy from the first mold portion 110 can be transferred to the working fluid 154 that evaporates and travels through the heat pipe 150 toward the condenser section 156.
  • the thermal energy from the evaporated working fluid 154 is then transferred to the second mold part 120 through the housing 152.
  • the working fluid 154 cools, it will condense and flow back to the evaporator section 158 in liquid form, for example by gravity and/or capillary flow.
  • the heat pipe 150 may further include an internal wick structure 160 that transports the liquid working fluid 154 from the condenser section 156 to the evaporator section 158 through capillary flow.
  • the heat pipe 150 may be constructed and arranged so that the liquid working fluid 154 is returned to the evaporator section 158 by gravity flow (including only by gravity flow).
  • the heat pipe 150 may be arranged such that the condenser section 156 is vertically disposed above the evaporator section 158 so that the condensed working fluid 154 in a liquid state can flow from the condenser section 156 to the evaporator section 158 by gravity.
  • the core structure 160 can be omitted, whereby the liquid working fluid 154 can return to the evaporator section 158 only by gravity flow.
  • the electric heater 144 is specifically a resistance heating rod 170.
  • the electric heater 144 (such as the resistance heating rod 170) may be a positive temperature coefficient resistance heater (PTCR) or any other suitable heating element, so that the resistance of this electric heater increases as its temperature rises. . It is worth noting that in this way, even if the second mold part 120 is removed from the ice maker, the temperature of the resistance heating rod 170 will not exceed the predetermined threshold. It should be understood that, in other alternative embodiments, the resistance heating rod 170 may be any other suitable type, style, or configuration of heating elements.
  • the resistance heating rod 170 replaces the sleeve pair 130 of the structural rail.
  • the resistance heating rod 170 extends along the axial direction A from the first mold part 110 through the complementary sleeve 134 formed in the second mold part 120.
  • the resistance heating rod 170 facilitates the sliding and alignment of the second mold part 120 relative to the first mold part 110.
  • the resistance heating rod 170 may be used in combination with the sleeve pair 130 or the heat pipe 150 of the structural rail. Because the resistance heating rod 170 and the heat pipe 150 can replace the structural guide rail 132 of various embodiments of the present invention, they are collectively referred to as the heated guide rail 172 herein. Electric heaters and other structured guide rails are also feasible and are within the scope of protection of the present invention.
  • the resistance heating rod 170 may be electrically coupled to the power source 142 through the power cord 140. In this way, a single power cord may be coupled to the first mold part 110 at the bottom of the ice maker 100. In addition, when the resistance heating rod 170 is used, the base heater 146 may not be needed at all. Therefore, the ice maker 100 may have a simpler configuration, lower cost parts, and improved operability and heating. It should be understood that according to alternative embodiments, the second mold part 120 may include any suitable number of structural sleeves 134 for receiving any suitable combination of the structural guide 132, the heat pipe 150 and/or the resistance heating rod 170 .
  • one or more portions of the mold body 106 are tapered (eg, radially inward). This tapering may extend generally inwardly toward the mold cavity 108.
  • the outer side wall 112 of the first mold part 110 may taper from the lower part of the first mold part 110 to the upper part of the first mold part 110 (for example, from the receiving tray 180 to the first mating surface 118 along the axial direction A). ).
  • At least a portion of the outer side wall 112 is formed at the lower part (for example, at the distal end of the mold cavity 108) with a larger diameter and at the upper part (for example, at the proximal end of the mold cavity 108) A frusto-conical member with a smaller diameter.
  • the outer side wall 122 of the second mold part 120 may taper from the upper part of the second mold part 120 to the lower part of the second mold part 120 (for example, from the handle 136 to the Two mating surfaces 128).
  • at least a portion of the outer side wall 122 is formed at the upper portion (e.g., at the distal end of the mold cavity 108) with a larger diameter and at the lower portion (e.g., at the proximal end of the mold cavity 108) A frusto-conical member with a smaller diameter.
  • the two outer side walls 112, 122 are formed as, for example, mirror-image tapered bodies converging radially outward from the mold body 106. It is worth noting that the excess part of the initial ice blank 102 (FIG. 3) that is not needed for the modeling ice cube 104 (FIG. 4) can be easily separated from the blank 102 (for example, as a scraped ice cube) and guided out of the mold cavity 108. Moreover, the tapered form can advantageously concentrate heat directed toward the ice cube 102 (eg, radially outward from the cavity portions 116, 126).
  • the receiving tray 180 is disposed on the first mold part 110 (eg, below the mold cavity 108).
  • the receiving tray 180 may be attached to or integrally formed with the first mold part 110 at a lower portion thereof.
  • the receiving tray 180 extends radially outward from, for example, the outer side wall 112.
  • the receiving tray 180 may form a circumferential channel 182 around the mold body 106.
  • excess part of the initial ice cube 102 (FIG. 3) can accumulate in the circumferential channel 182 of the receiving tray 180 (for example, as water or separated ice cubes) instead of supporting the ice maker thereon 100 countertops or surfaces.
  • one or more water channels 184, 186 are defined through the mold body 106.
  • Such water channels 184, 186 may be in fluid communication with the mold cavity 108 and generally allow molten water to flow therefrom (e.g., from the outer sidewalls 112, 122 to the surrounding environment, and then to the receiving tray 180).
  • the diameter of the water passages 184, 186 through which the water passes may be relatively small (for example, about 1/16 inch) compared to the diameter of the mold body 106.
  • the first mold portion 110 defines a drain channel 184 extending in fluid communication between the inner cavity wall 114 and the outer side wall 112.
  • the drain channel 184 may extend from the first cavity portion 116 (eg, at the lowermost portion in the axial direction) and extend to the outer side wall 112.
  • the melted water can be easily drained from below the mold cavity 108, which allows contact between the cavity wall 114 and the ice to be maintained as the ice above the cavity wall 114 melts.
  • the second mold portion 120 defines an upper water passage 186 extending in fluid communication between the inner cavity wall 124 and the outer side wall 122.
  • the upper water passage 186 may extend from the second cavity portion 126 (for example, at the uppermost portion in the axial direction) and extend to the outer side wall 122.
  • the melted water can be easily drained from above the mold cavity 108, which allows contact between the cavity wall 114 and the ice to be maintained as the ice below the cavity wall 124 melts.
  • the operation of the electric heater 144 may be directed by the controller 190 in operational communication (eg, wireless or electric communication) therewith.
  • the controller 190 may include a memory (for example, a non-transmissible medium) and a microprocessor, such as a general-purpose or special-purpose microprocessor, which may operate to execute programming instructions or programming instructions associated with a selected heating level, operation, or cooling cycle. Micro control code.
  • the memory may mean random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included in the processor onboard.
  • the controller 190 may be constructed without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) To perform control functions instead of relying on software.
  • a microprocessor for example, using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • one or more temperature sensors 192, 194 are provided on or in the mold body 106 (e.g., in thermal communication with the mold cavity 108). Moreover, such temperature sensors 192, 194 may be in operative communication with the controller 190 (e.g., wired electrical communication).
  • the base temperature sensor 192 is installed in the first mold part 110. In an additional or alternative embodiment, the top temperature sensor 194 is installed in the second mold section 120.
  • the controller 190 is used to activate, deactivate, or adjust the electric heater 144 based on the temperature detected at the sensors 192, 194.
  • a predetermined temperature threshold or range may be provided (e.g., at the controller 190) to prevent overheating of the electric heater 144. If it is determined that the detected temperature at the sensor 192 or 194 exceeds a threshold or range, the electric heater 144 may be deactivated or otherwise limited the heat output. If it is determined that the subsequently detected temperature at the sensor 192 or 194 has fallen below or within the threshold value, the electric heater 144 may be restarted or otherwise increased in heat output.
  • the deactivation-restart may be repeated continuously (for example, as a closed feedback loop). It is worth noting that excessively high temperatures at the mold body 106 can be prevented (for example, when the mold body 106 is not in contact with ice or when the reshaping operation of the ice cube 104 is completed). Moreover, although one example of heat control and adjustment using a threshold or range is explicitly described, it is noted that any suitable configuration may also be provided (for example, within the controller 190).
  • the described embodiment of the ice maker 100 can quickly and uniformly heat the ice blank 102 from the opposite axial end (FIG. 3). Moreover, the ice maker 100 can be advantageously reused multiple times without any interruption of use (for example, except for removing the shaped ice 104 from the first cavity portion 116 and placing a new ice cube 102 between the mold portions 110, 120). Outside). In addition, for such rapid and repetitive ice formation, relatively little material may be required. In addition, the entire mold body 106 can be heated by a single power cord.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

电动制冰机(100),用于将初始冰坯(102)再成形为造型冰块(104)。电动制冰机(100)可以包括模具体(106),模具体(106)具有可相对于彼此移动的第一模具部分(110)和第二模具部分(120)。受热导轨(172)在第一模具部分(110)与第二模具部分(120)之间延伸,以从第一模具部分(110)向第二模具部分(120)传递热量。受热导轨(172)可以是用于传递由第一模具部分(110)中的基部加热器(146)生成的热量的热管(150)或用于生成热量的电阻加热棒(170),热管(150)或电阻加热棒(170)二者之一仅需要单根电源线(142),单根电源线(142)仅电联接至第一模具部分(110)。

Description

单线制冰机组件 技术领域
本发明涉及用于使冰成形的器具,并且尤其涉及用于使冰成形为预定的形状的电动制冰机。
背景技术
在家庭和商业应用中,冰通常形成为固体方块,诸如月牙形方块或大体矩形块。这种方块的形状通常由在冻结过程期间盛水的容器来决定。例如,制冰机可以接收液态水,并且这种液态水可以在制冰机内冻结,以形成小方冰块。特别地,某些制冰机包括限定多个腔的冻结模具。多个腔可以填充有液态水,并且这种液态水可以在多个腔内冻结,以形成固体小方冰块。典型的固体方块或块可以相对较小,以便适应大量的用途,诸如在宽尺寸范围内的液体的临时冷藏和快速冷却。
虽然典型的固体方块或块可以在多种情况下有用,但是在一些特定情况下,可能期望冰形成不同或独特的形状。作为示例,已经发现,相对较大的小方冰块或冰球(例如,直径大于两英寸)将比典型的冰尺寸/形状融化得更慢。在某些酒或鸡尾酒中,可能特别期望冰缓慢融化。而且,这种方块或球体可以为用户提供独特或高档的印象。
在过去,期望较大或独特形状的冰块的用户被迫使用麻烦的技术和装置。作为示例,可能用手刮削或造型大冰坯。然而,用手造型冰可能极其困难、危险且耗时。近年来,被动制冰机已经进入市场。通常,这些被动制冰机包括大固体金属块,这些固体金属块限定了较大的冰坯可被再塑的轮廓。通常,被动制冰机依赖于制冰机的大质量来将较大的冰坯缓慢融化成期望的形状。这种系统降低了用手再成形冰时所需的一些危险和用户技能。然而,系统需要大量的固体金属,并且该过程仍然非常耗时。而且,典型的制冰机使用金属模具的热容量来供应所需的热量。因此,连续融化多块冰可能需要用户将被动制冰机放置在各个冰块之间的热水下,或者等待直到模具被加热为止。
另选地,某些制冰机使用电加热器来加热冰模具,但这种制冰机使用两根电源线(一根电源线用于两个半模中的一个),这导致需要多个插座的麻烦的电器。具体地,到上半部的电源线特别麻烦,而将电力供应到下半部的电源线可以穿过基部 布线,以限制不便。
因此,将期望对冰成形领域进行进一步的改进。特别地,可能期望提供一种用于使用单根电源线来快速且可靠地产生具有相对大的预定形状或轮廓的块冰的电器或组件。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本公开的一个示例性方面,一种电动制冰机限定轴向。电动制冰机包括模具体,该模具体包括第一模具部分和第二模具部分,第一模具部分和第二模具部分可沿着轴向相对于彼此移动并且限定模腔。受热的导轨沿着轴向从第一模具部分朝向第二模具部分延伸,并且套筒限定在第二模具部分内,用于收容受热导轨并将第二模具部分放置成与受热导轨热连通。
在本公开的另一个示例性方面,一种电动制冰机限定轴向,并且包括第一模具部分和可沿着轴向相对于第一模具部分移动的第二模具部分。电阻加热棒沿着轴向从第一模具部分朝向第二模具部分延伸,套筒限定在第二模具部分内,用于收容电阻加热棒并将第二模具部分放置成与电阻加热棒热连通,并且电源线通过第一模具部分电联接到电阻加热棒。
根据又一示例性实施方式,提供了一种限定轴向的电动制冰机。电动制冰机包括第一模具部分和可沿着轴向相对于第一模具部分移动的第二模具部分。热管沿着轴向从第一模具部分朝向第二模具部分延伸,并且套筒限定在第二模具部分内,用于收容热管并将第二模具部分放置成与热管热连通。基部加热器安装在第一模具部分内,并且电源线通过第一模具部分电联接到基部加热器。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更好理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳模式。
图1提供了根据本公开的示例性实施方式的制冰机的立体图。
图2提供了图1的示例性制冰机的前视图。
图3提供了图1的示例性制冰机的前视图,其中,制冰机在接收位置中设置有初始冰坯。
图4提供了图1的示例性制冰机的前视图,其中,制冰机在接收位置中设置有造型冰块。
图5提供了根据本公开的示例性实施方式的制冰机的前剖视图。
图6提供了图5的示例性制冰机的侧面剖视图。
图7提供了根据本公开的示例性实施方式的制冰机的示意剖视图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。另外,近似的用语,诸如“近似”、“大致”或“大约”是指在百分之十的误差裕度内。
请参照附图所示,图1至图7提供了根据本公开的示例性实施方式的制冰机100的视图。通常,制冰机100可用于将相对大的初始冰坯102(例如,原始未造型的整体或单块冰,参见图3)再成形或转变成具有预定形状且相对较小的造型冰块104(如图4所示)。图1提供了制冰机100的立体图。图2提供了处于闭合或造型位置的制冰机100的前视图。图3和图4提供了处于打开或接收位置的制冰机100的前视图。图5提供了制冰机100的前剖视图。图6提供了制冰机100的侧面剖视图。图7提供了根据另一个示例性实施方式的制冰机100的示意图。
如图所示,制冰机100包括限定轴向A的模具体106。径向R可被限定为从轴向A向外(例如,垂直于轴向A)。周向C可被限定为围绕轴向A(例如,在由径向R 限定的平面中垂直于轴向A)。
在模具体106内形成有模腔108。如将在下面描述的,在模腔108内,使造型冰块104成形并且确定其轮廓。在一些实施方式中,模腔108由两个独立的模具部分110、120限定而成。例如,第一模具部分110和第二模具部分120可以选择性地彼此配合,并且一起限定形成模腔108。
各个模具部分110、120通常包括外侧壁112、122和内腔壁114、124。特别地,各个模具部分110、120的外侧壁112、122朝向外侧设置(例如,在径向R上)。外侧壁112、122可大体围绕轴向A(例如,沿着周向C)延伸。而且,外侧壁112、122可从对应的模具部分110、120的上部延伸到模具部分110、120的下部。因此,不论制冰机100是处于接收位置还是处于造型位置,用户都能够观察并触摸各个组装的模具部分110、120的外侧壁112、122,而。
与外侧壁112、122相比,各个模具部分110、120的内腔壁114、124面向内侧(例如,在模具体106内)且朝向模腔108设置。例如,各个内腔壁114、124可以围绕轴向A形成并且从轴向A径向向外延伸,第一模具部分110的内腔壁114可以朝向第二模具部分120的底部大体上面向上(例如,相对于轴向A)。第二模具部分120的内腔壁124可朝向第一模具部分110的上部大体面向下(例如,相对于轴向A)。
在一些实施方式中,内腔壁114、124限定模腔108的至少一部分。例如,第一模具部分110的内腔壁114可以形成第一腔部分116(例如,沿着内腔壁114)。另外或另选地,第二模具部分120的内腔壁124可以限定第二腔部分126(例如,沿着第二模具部分120的对应内腔壁124且在第一腔部分116上方)。如图所示,各个内腔壁114、124在制冰机100处于接收位置时可大体向外开放,并且在制冰机100处于造型位置时封闭或以其他方式限制用户观察和接近。
第一配合面118可以限定在第一模具部分110的顶端上,并且第二配合面128可以限定在第二模具部分120的底端上(例如,使得第二配合面沿着轴向A朝向第一配合面118大体面向下)。配合面118、128通常接合对应的外侧壁112、122和内腔壁114、124。特别地,配合面118、128可以在外侧壁112、122与内腔壁114、124之间沿着径向R延伸。例如,第一模具部分110的第一配合面118可以沿径向R从内腔壁114的周边或外径向极限延伸到对应的外侧壁112。第二模具部分120的第二配合面128可以沿径向R从内腔壁124的周边或外径向极限延伸到对应的外侧壁122。
配合面118、128可以一起形成为互补表面以彼此接触(例如,在造型位置中)。另外,根据所例示的示例性实施方式,配表面118、128沿着轴向A大致限定在模具体106的中点或赤道处,例如,使得限定两个半球(即,半模或模具部分110、120)。然而,应当理解,模具部分110、120的形状、位置以及相对尺寸可以在本发明的保护范围内同时变化。
通常理解的是,模具体106可由任意合适的材料形成。例如,一个或多个部分(例如,内腔壁114、124)可以由传导金属形成,诸如铝、不锈钢、钢或铜(包括其合金)。可选地,模具体106的一个或多个部分可一体地形成(例如,作为单一的整体构件)。作为示例,第一模具部分110的内腔壁114可以一体地形成在第一配表面118和外侧壁112中的一个或两个内。作为另外或另选的示例,第二模具部分120的内腔壁124可以与配表面128和外侧壁122中的一个或两个一体地形成。
通常,造型冰块104将沿着内腔壁114、124在模腔108内成形并与其相符。因此,所得到的造型冰块104是根据内腔壁114、124的形状或轮廓(例如,在造型位置)成形的固体单一冰块。因此,邻接的内腔壁114、124(即,处于造型位置)和腔部分116、126可以限定造型冰块104的最终形状或轮廓。
在一些实施方式中,腔部分116、126中的一个或两个为半球形空隙。例如,第一腔部分116可以是下半球形空隙,并且第二腔部分126可以是上半球形部分。由此,腔部分116、126一起可以限定模腔108,从而将造型冰块104限定为球体。可选地,各个半球形空隙可以具有大于两英寸的直径。根据其它示例性实施方式,模腔108可以是直径为大约3英寸或更大的球体。然而,理解,可以提供任意其他合适的形状(例如,几何立方体、多面体等)或轮廓。而且,还理解,另外或另选的实施方式可以沿着内腔壁114、124中的一个或多个提供预定的压纹或雕饰,以引导造型冰块104的形状或轮廓。
如图例示,模具部分110、120可以选择性地彼此分离或相对于彼此移动(例如,根据用户期望)。例如,第二模具部分120可以沿着轴向A可移动地设置在第一模具部分110上方。由此,当组装时,第二模具部分120可以沿着轴向A上下移动(例如,滑动或枢转)。特别地,第二模具部分120可以在造型位置(例如,图1至图2)与接收位置(例如,图3至图7)之间移动并交替。
在造型位置中,模腔108通常是封闭的,使得限制到模腔108的接近。而且,第二模具部分120可以支撑或搁置在第一模具部分110上。在一些这种实施方式中,第二模具部分120的下部接触(例如,直接或间接接触)第一模具部分110的 上部。例如,第一配合面118可直接接触第二配合面128,例如,使得配合面118、128彼此抵靠地安置。在造型位置中,两个腔部分116、126可以相互流体连通地对齐(例如,在轴向A和径向R上)。此外,统一的模腔108可以由腔部分116、126封闭(例如,在分别限定第一腔部分116和第二腔部分126的内腔壁114、124处)。
与造型位置相比,模腔108在接收位置中通常是打开的。例如,模腔108的分立部分116、126可以彼此分离,使得在第一模具部分110与第二模具部分120之间限定空隙或间隙(例如,在轴向A上)。由此,可以允许接近模腔108。而且,如图3例示,初始冰坯102(体积大于封闭模腔108的体积)可放置在模具体106上。具体地,初始冰坯102可以放置在第一模具部分110的上部上或在第一模具部分110与第二模具部分120之间限定的空隙或间隙内。如果已经执行了再成形操作(例如,初始冰坯102已经再成形为造型冰块104),则可以在接收位置处接近造型冰块104,如图4例示。
在某些实施方式中,第二模具部分120相对于第一模具部分110的移动由一个或多个附接特征引导。例如,如图3至图5的示例性实施方式所示,可以在模具体106上的第一模具部分110与第二模具部分120之间限定一个或多个互补结构导轨的套筒对130。这种结构导轨的套筒对130各自包括配合的结构导轨132和结构性的套筒134,结构导轨132可以在结构性的套筒中滑动。各个结构导轨的套筒对130可平行于轴向A延伸,以引导或促进第二模具部分120相对于第一模具部分110沿着轴向A的滑动。而且,结构导轨的套筒对130可使模具部分110、120对齐(例如,随着第二模具部分120移动到造型位置)。可选地,结构导轨的套筒对130可以自由地分离(例如,沿着轴向A向上),从而允许从第一模具部分110完全移除第二模具部分120。值得注意的是,更大范围的各种尺寸的冰坯102可以容纳在模具部分110、120之间。
如图所示,把手136可以固定到第二模具部分120(例如,在其顶部),以使用户能够容易地抓住或提升第二模具部分120。在一些这种实施方式中,使第二模具部分120向上移动(例如,从造型位置到接收位置)必需的提升力可以至少部分地由用户选择性地提供。使第二模具部分120向下(例如,从接收位置到造型位置)移动必需的闭合力可至少部分地通过重力来提供。
虽然附图例示了两个手动滑动结构导轨的套筒对130,但理解,可以设置任意其它合适的另选布置,用于连接和引导第一模具部分110与第二模具部分120之间的移动。作为示例,可以设置三个或更多个滑动结构导轨的套筒对130。作为另外 或另选的示例,可以设置一个或多个马达(例如,线性致动器)来推动或辅助模具部分110、120的相对移动。作为又一个另外或另选的示例,多轴枢轴组件(例如,具有至少两个平行的旋转轴线)可以将第二模具部分120连接到第一模具部分110,并允许旋转以及轴向移动。
如上所述,制冰机100可以包括结构导轨的套筒对130,这些结构导轨的套筒对用于促进打开和闭合模具体106,同时维持第一模具部分110和第二模具部分120的适当对齐。然而,本发明的方面总体致力于特征或元件,这些特征或元件除了结构导轨的套筒对130之外还可以使用或者可以完全代替结构导轨的套筒对,同时还将热能传递到第二模具部分120中。这样,如本文将主要描述的,制冰机100可以设置有单根电源线140,该电源线与单个电源142电联接,用于在造型冰块104的形成或造型期间加热模具体106。
具体地,请参图5至图7所示,制冰机100包括一个或多个电加热元件或电加热器144,其布置在模具体106内以在使用(例如,再成形操作)期间生成热量。具体地,如图所示,电加热器144布置在模具体106内,与模腔108导热接合。由此,在电加热器144处生成的热量可以传导穿过模具体106并到达模腔108(例如,穿过内腔壁114、124)。图5和图6分别提供了一个示例性实施方式的前面和侧面剖视图,包括电加热器144的一种构造。图7提供了包括使用加热棒的另一示例性实施方式的前剖视图。注意,虽然明确地例示了这些示例性实施方式,但本领域普通技术人员将理解,可以提供另外或另选的实施方式或构造来包括这些示例的一个或多个特征(例如,包括来自图5至图7所示的特征的一个或多个另外的加热器或构造)。
通常,电加热器144被提供为任意合适的电驱动热生成器。例如,电加热器144可以包括一个或多个电阻加热元件。例如,可以使用在加热时电阻增加的电阻加热器的正热系数,诸如金属、陶瓷或聚合物PTC元件(例如,诸如电阻加热棒或Calrod加热器)。另外或另选地,可以理解的是,也包括其它合适的加热元件(诸如热电加热元件)与电加热器144的组合。
现在再次参照图5和图6,电加热器144被示例为设置在第一模具部分110内的加热器腔室148内的基部加热器146。如以上简要说明的,基部加热器146可以是任意合适的加热元件,诸如电阻加热元件。这样,基部加热器146通过电源线140与电源142电联接。随着通过基部加热器146供电,生成热量以使第一模具部分110升温。然而,值得注意的是,仅加热第一模具部分110可能导致穿过模具体106的 温度不平衡或梯度。具体地,如果第二模具部分120是凉的,则在形成造型冰块104时可能出现造型问题。因此,本发明致力于将热能从第一模具部分110传递至第二模具部分120而不需要第二模具部分120内的专用加热器的装置。
具体地,如图5例示,除了结构导轨的套筒对130之外,制冰机100还包括一个或多个热管150,这些热管用于将热能从第一模具部分110传递至第二模具部分120,使得模具体106维持大体恒定的温度。根据所例示的实施方式,热管150平行于结构导轨132且沿着轴向A延伸。由此,热管150可以沿着轴向A从第一模具部分110延伸穿过在第二模具部分120中形成的互补性的套筒134。然而,应当理解,根据另选实施方式,结构导轨的套筒对130可以一起移除,并且热管150可以用于执行相同的结构支承/滑动功能。在这点上,例如,热管150可以用于对齐并允许第二模具部分120相对于第一模具部分110的轴向移动。
如本文所用的,术语“热管”等旨在指用于通过腔内的工作流体的蒸发和冷凝来传递热能的任意合适的装置或热交换器。在这点上,热管150可以提供第一模具部分110与第二模具部分120之间的热连通,例如,以允许热能从第一模具部分110流到第二模具部分120,使得它们维持基本相同的温度,进而便于融化或造型初始冰坯102。
如图所示,各热管150均包括密封的外壳152,外壳152内包含工作流体154。外壳152优选地由具有高热导率的材料构成,诸如金属,诸如铜或铝。在一些实施方式中,工作流体154可以是水。在其它实施方式中,用于热管150的合适的工作流体包括丙酮、甲醇、乙醇或甲苯。任意合适的流体可以用于工作流体154,例如,与外壳152的材料相容且适于期望的操作温度范围的任意流体。
根据所例示的实施方式,热管150通常在处于热管150的一端处的冷凝器段156与处于热管150的相对端处的蒸发器段158之间延伸。包含在热管150的外壳152内的工作流体154在蒸发器段158处吸收热能,于是工作流体154以气态从蒸发器段158行进到冷凝器段156。在冷凝器段156处,气态工作流体154冷凝成液态,从而释放热能。
根据示例性实施方式,热管150可以包括多个表面变形、突起或翅片(未示出),以便提高热传递速率。在这点上,这种翅片可以在冷凝器段156和蒸发器段158中的任一个或两个处设置在外壳152的外表面上。这些翅片可以增加热管150与模具体106之间的接触面积。根据另选实施方式,不使用翅片,并且外壳152仅是平滑的热交换管。
通常,蒸发器段158可以物理地连接至第一模具部分110,可以设置成与第一模具部分110相邻,或者可以以其它方式与第一模具部分110热连通。由此,随着第一模具部分110在操作期间加热,来自第一模具部分110的热能可以传递至工作流体154,该工作流体蒸发并朝向冷凝器段156行进穿过热管150。来自蒸发的工作流体154的热能然后通过外壳152传递到第二模具部分120。随着工作流体154冷却,它将冷凝并且例如通过重力和/或毛细流动以液体形式流回到蒸发器段158。
根据示例性实施方式,热管150还可包括内部芯结构160,该内部芯结构通过毛细流动将液态工作流体154从冷凝器段156运输到蒸发器段158。在一些实施方式中,热管150可构造并布置成使得液态工作流体154通过重力流动(包括仅通过重力流动)返回到蒸发器段158。例如,热管150可布置成冷凝器段156沿竖向设置在蒸发器段158上方,使得处于液态的冷凝的工作流体154可通过重力从冷凝器段156流到蒸发器段158。在这种实施方式中,在液态工作流体154可以通过重力返回到蒸发器段158的情况下,可以省略芯结构160,借此,液态工作流体154可以仅通过重力流动返回到蒸发器段158。
值得注意的是,热管150的某些位置、方位以及构造可在模具体106内提供提高的热传递速率。在附图中例示并在本文中描述了一个示例性构造,以解释本发明的各个方面。然而,应当理解,该构造仅是示例性的,并且不旨在以任何方式限制本申请的主题。
现在参照图7,将描述根据本主题的示例性实施方式的制冰机100的另选构造。在该实施方式中,电加热器144具体为电阻加热棒170。如上所述,电加热器144(诸如电阻加热棒170)可以是正温度系数电阻加热器(PTCR)或任意其它合适的加热元件,使得这种电加热器的电阻随着其温度的升高而增加。值得注意的是,这样,即使从制冰机移除第二模具部分120,电阻加热棒170的温度也将不超过预定阈值。应当理解,在其他可选的实施方式中,电阻加热棒170可以是任意其它合适类型、样式或构造的加热元件。
根据所例示的实施方式,电阻加热棒170代替结构导轨的套筒对130。由此,电阻加热棒170沿着轴向A从第一模具部分110延伸穿过在第二模具部分120中形成的互补性的套筒134。这样,电阻加热棒170便于第二模具部分120相对于第一模具部分110的滑动和对齐。应当理解,根据另选实施方式,电阻加热棒170可与结构导轨的套筒对130或热管150结合使用。因为电阻加热棒170和热管150可替代本发明的各种实施方式的结构导轨132,所以在本文中均可统称为受热导轨172。电加 热器和其它构造的导轨也是可行的,并且在本发明保护的范围内。
仍然参照图7,电阻加热棒170可通过电源线140电联接到电源142。这样,单根电源线可以在制冰机100的底部处联接到第一模具部分110。另外,当使用电阻加热棒170时,可以根本不需要基部加热器146。因此,制冰机100可具有更简单的构造、更低成本的部件、以及改进的可操作性和加热。应当理解,根据另选实施方式,第二模具部分120可以包括任意合适数量的结构性的套筒134,这些套筒用于收容结构导轨132、热管150和/或电阻加热棒170的任意合适组合。
现在再次转到图6,在一些实施方式中,模具体106的一个或多个部分锥形化(例如,径向向内)。这种锥形化可大体朝向模腔108向内延伸。作为示例,第一模具部分110的外侧壁112可以从第一模具部分110的下部向第一模具部分110的上部锥形化(例如,沿着轴向A从接收托盘180向第一配合面118)。由此,在一些这种实施方式中,外侧壁112的至少一部分形成在下部处(例如,在模腔108远端)具有较大直径并且在上部处(例如,在模腔108的近端)具有较小直径的截头圆锥形构件。
作为另外或另选的示例,第二模具部分120的外侧壁122可以从第二模具部分120的上部向第二模具部分120的下部锥形化(例如,沿着轴向A从手柄136向第二配合面128)。由此,在一些这种实施方式中,外侧壁122的至少一部分形成在上部处(例如,在模腔108远端)具有较大直径并且在下部处(例如,在模腔108的近端)具有较小直径的截头圆锥形构件。
在一些实施方式中,两个外侧壁112、122形成为例如从模具体106径向向外会聚的镜像锥形化的主体。值得注意的是,对于造型冰块104(图4)不需要的初始冰坯102(图3)的多余部分可以容易地与坯料102分离(例如,作为刮削的冰块)并且被引导离开模腔108。而且,锥形化形式可以有利地集中朝向冰坯102引导的热量(例如,从腔部分116、126径向向外)。
在可选的实施方式中,接收托盘180设置在第一模具部分110上(例如,在模腔108下方)。例如,接收托盘180可以在其下部处附接到第一模具部分110或与其一体地形成。如图所示,接收托盘180从例如外侧壁112径向向外延伸。而且,接收托盘180可形成围绕模具体106的周向通道182。由此,在使用期间,初始冰坯102(图3)的多余部分可积聚在接收托盘180的周向通道182内(例如,作为水或分离的冰块),而不是其上支撑制冰机100的台面或表面。
仍然在图6处,在某些实施方式中,穿过模具体106限定一个或多个水通道 184、186。这种水通道184、186可与模腔108流体连通,并且通常允许融化的水从其流出(例如,从外侧壁112、122到周围环境,并且随后到接收托盘180)。而且,与模具体106的直径相比,水通过的水通道184、186的直径可相对较小(例如,约1/16英寸)。
在一些实施方式中,第一模具部分110限定了在内腔壁114与外侧壁112之间流体连通地延伸的下水通道184。例如,下水通道184可从第一腔部分116(例如,在其轴向最下部分处)延伸并且延伸至外侧壁112。由此,随着第一腔部分116内的冰融化成液态水,该水的至少一部分可从第一腔部分116穿过下水通道184并到达周围环境(例如,朝向接收托盘180)。值得注意的是,融化的水可以容易地从模腔108下方排出,这允许随着内腔壁114上方的冰融化而在内腔壁114与冰之间维持接触。
在另外或另选的实施方式中,第二模具部分120限定了在内腔壁124与外侧壁122之间流体连通地延伸的上水通道186。例如,上水通道186可从第二腔部分126(例如,在其轴向最上部分处)延伸并且延伸至外侧壁122。由此,随着第二腔部分126内的冰融化成液态水,该水的至少一部分可从第二腔部分126穿过上水通道186并到达周围环境(例如,朝向接收托盘180)。值得注意的是,融化的水可以容易地从模腔108上方排出,这允许随着内腔壁124下方的冰融化而在内腔壁114与冰之间维持接触。
通常,电加热器144的运行可由与其操作通信(例如,无线或电通信)的控制器190来指导。控制器190可以包括存储器(例如,非可递介质)和微处理器,诸如通用或专用微处理器,该微处理器可运行为执行与所选加热水平、运行或冷却循环关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以机载地包括在处理器内。另选地,控制器190可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
在某些实施方式中,一个或多个温度传感器192、194(例如,热敏电阻、热电偶、介电开关等)设置在模具体106上或内(例如,与模腔108热连通)。而且,这种温度传感器192、194可与控制器190操作地通信(例如,有线电通信)。在一些实施方式中,基部温度传感器192安装在第一模具部分110内。在另外或另选的 实施方式中,顶部温度传感器194安装在第二模具部分120内。
在某些实施方式中,控制器190用于基于在传感器192、194处检测到的温度来启动、停用或调节电加热器144。作为示例,可以提供预定温度阈值或范围(例如,在控制器190处),以防止电加热器144的过热。如果确定传感器192或194处的检测温度超过阈值或范围,则电加热器144可被停用或以其它方式限制热输出。如果确定传感器192或194处的随后检测到的温度降到阈值以下或范围之内,则电加热器144可被重新启动或以其它方式增加热输出。可选地,在制冰机100的运行期间,可以连续地重复停用-重新启动(例如,作为闭合反馈回路)。值得注意的是,可防止模具体106处的过高温度(例如,当模具体106不与冰接触时或当完成对造型冰块104的再成形操作时)。而且,虽然明确地描述了使用阈值或范围的热量控制和调节的一个示例,但是注意,还可以提供任意合适的配置(例如,在控制器190内)。
有利地,随着模具体106被引导至造型位置,制冰机100的所述实施方式可从相对的轴向端快速且均匀地加热冰坯102(图3)。而且,制冰机100可以有利地重复使用多次而不需要任何使用中断(例如,除了从第一腔部分116移除造型冰块104和将新的冰坯102放置在模具部分110、120之间之外)。此外,对于这种快速且重复的冰成形,可能需要相对少的材料。另外,整个模具体106的加热可以用单根电源线来实现。
本书面描述使用示例对本发明进行了公开(其中包括最佳模式),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种限定轴向的电动制冰机,其特征在于,所述电动制冰机包括:
    模具体,该模具体包括第一模具部分和第二模具部分,所述第一模具部分和所述第二模具部分可沿着所述轴向相对于彼此移动并且限定模腔;
    受热导轨,该受热导轨沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;以及
    套筒,该套筒限定在所述第二模具部分内,用于收容所述受热导轨并将所述第二模具部分放置成与所述受热导轨热连通。
  2. 根据权利要求1所述的电动制冰机,其特征在于,所述受热导轨包括电阻加热棒,所述电动制冰机还包括:
    电源线,该电源线通过所述第一模具部分电联接到所述电阻加热棒。
  3. 根据权利要求1所述的电动制冰机,其特征在于,所述受热导轨包括热管,该热管用于将热能从所述第一模具部分传递到所述第二模具部分中,所述电动制冰机还包括:
    基部加热器,该基部加热器安装在所述第一模具部分内;和
    电源线,该电源线通过所述第一模具部分电联接到所述基部加热器。
  4. 根据权利要求1所述的电动制冰机,其特征在于,所述电动制冰机包括多个受热导轨,这些受热导轨从所述第一模具部分延伸,以收容于设置在所述第二模具部分中的多个套筒中。
  5. 根据权利要求1所述的电动制冰机,其特征在于,还包括:
    结构导轨,该结构导轨与所述受热导轨平行地沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;和
    结构性的套筒,该结构性的套筒限定在所述第二模具部分内,用于收容所述受热导轨,以便对齐所述第一模具部分和所述第二模具部分。
  6. 根据权利要求1所述的电动制冰机,其特征在于,所述第一模具部分和所述第二模具部分可在用于接收初始冰坯的接收位置与用于将所述初始冰坯再成形为所述模腔内的造型冰块的造型位置之间移动。
  7. 根据权利要求1所述的电动制冰机,其特征在于,所述第一模具部分限定所述模腔的第一腔部分,并且所述第二模具部分限定所述模腔的第二腔部分,其中, 所述第一腔部分是上半球形空隙,并且其中,所述第二腔部分是下半球形空隙。
  8. 根据权利要求1所述的电动制冰机,其特征在于,所述第一模具部分是静止的,而所述第二模具部分设置在所述第一模具部分上方并可相对于所述第一模具部分移动。
  9. 根据权利要求1所述的电动制冰机,其特征在于,还包括:
    水通道,该水通道与所述模腔流体连通,用于从所述模腔排水。
  10. 一种限定轴向的电动制冰机,其特征在于,所述电动制冰机包括:
    第一模具部分;
    第二模具部分,该第二模具部分可沿着所述轴向相对于所述第一模具部分移动;
    电阻加热棒,该电阻加热棒沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;
    套筒,该套筒限定在所述第二模具部分内,用于收容所述电阻加热棒并将所述第二模具部分放置成与所述电阻加热棒热连通;以及
    电源线,该电源线通过所述第一模具部分电联接到所述电阻加热棒。
  11. 根据权利要求10所述的电动制冰机,其特征在于,所述电动制冰机包括多个电阻加热棒,这些电阻加热棒从所述第一模具部分延伸,用于收容在限定在所述第二模具部分中的多个套筒中。
  12. 根据权利要求10所述的电动制冰机,其特征在于,还包括:
    结构导轨,该结构导轨与所述电阻加热棒平行地沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;和
    结构性的套筒,该结构性的套筒限定在所述第二模具部分内,用于收容所述电阻加热棒,以便对齐所述第一模具部分和所述第二模具部分。
  13. 根据权利要求10所述的电动制冰机,其特征在于,所述第一模具部分和所述第二模具部分可在用于接收初始冰坯的接收位置与用于将所述初始冰坯再成形为所述模腔内的造型冰块的造型位置之间移动。
  14. 根据权利要求10所述的电动制冰机,其特征在于,所述第一模具部分限定形成第一腔部分,并且所述第二模具部分限定形成第二腔部分,其中,所述第一腔部分是上半球形空间,并且其中,所述第二腔部分是下半球形空间。
  15. 根据权利要求10所述的电动制冰机,其特征在于,所述第一模具部分是静止的,而所述第二模具部分设置在所述第一模具部分上方并可相对于所述第一模具 部分移动。
  16. 根据权利要求10所述的电动制冰机,其特征在于,还包括:
    模腔,该模腔由所述第一模具部分和所述第二模具部分限定;和
    水通道,该水通道与所述模腔流体连通,用于从所述模腔排水。
  17. 一种限定轴向的电动制冰机,其特征在于,所述电动制冰机包括:
    第一模具部分;
    第二模具部分,该第二模具部分可沿着所述轴向相对于所述第一模具部分移动;
    热管,该热管沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;
    套筒,该套筒限定在所述第二模具部分内,用于收容所述热管并将所述第二模具部分放置成与所述热管热连通;
    基部加热器,该基部加热器安装在所述第一模具部分内;以及
    电源线,该电源线通过所述第一模具部分电联接到所述基部加热器。
  18. 根据权利要求17所述的电动制冰机,其特征在于,所述电动制冰机包括多个热管,这些热管从所述第一模具部分延伸,用于收容在限定在所述第二模具部分中的多个套筒中。
  19. 根据权利要求17所述的电动制冰机,其特征在于,还包括:
    结构导轨,该结构导轨与所述热管平行地沿着所述轴向从所述第一模具部分朝向所述第二模具部分延伸;和
    结构性的套筒,该结构性的套筒限定在所述第二模具部分内,用于收容所述热管,以便对齐所述第一模具部分和所述第二模具部分。
  20. 根据权利要求17所述的电动制冰机,其特征在于,所述第一模具部分和所述第二模具部分可在用于接收初始冰坯的接收位置与用于将所述初始冰坯再成形为所述模腔内的造型冰块的造型位置之间移动。
PCT/CN2020/096921 2019-06-19 2020-06-19 单线制冰机组件 WO2020253799A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20827544.6A EP3988873A4 (en) 2019-06-19 2020-06-19 SINGLE LINE ICE MAKER ARRANGEMENT
CN202080039108.5A CN113874667B (zh) 2019-06-19 2020-06-19 单线制冰机组件
AU2020296792A AU2020296792B2 (en) 2019-06-19 2020-06-19 Single-line ice maker assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/445,512 2019-06-19
US16/445,512 US11408661B2 (en) 2019-06-19 2019-06-19 Single cord ice press assembly

Publications (1)

Publication Number Publication Date
WO2020253799A1 true WO2020253799A1 (zh) 2020-12-24

Family

ID=74036883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096921 WO2020253799A1 (zh) 2019-06-19 2020-06-19 单线制冰机组件

Country Status (5)

Country Link
US (1) US11408661B2 (zh)
EP (1) EP3988873A4 (zh)
CN (1) CN113874667B (zh)
AU (1) AU2020296792B2 (zh)
WO (1) WO2020253799A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200144915A (ko) * 2019-06-19 2020-12-30 엘지전자 주식회사 냉장고 및 그의 제어방법
US11408661B2 (en) * 2019-06-19 2022-08-09 Haier Us Appliance Solutions, Inc. Single cord ice press assembly
US11709008B2 (en) 2020-09-30 2023-07-25 Midea Group Co., Ltd. Refrigerator with multi-zone ice maker
WO2022109237A1 (en) * 2020-11-20 2022-05-27 Abstract Ice, Inc. Devices for shaping clear ice products and related methods
US11874051B2 (en) * 2021-02-15 2024-01-16 Courtright Engineering Company, Llc Ice ball press
US20230324097A1 (en) * 2022-04-11 2023-10-12 Midea Group Co., Ltd. Refrigerator with a thermally conductive component with heater for ice maker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206250A1 (en) * 2001-10-17 2004-10-21 Nobuaki Kondou Device and method for manufacturing molded ice block
CN204574657U (zh) * 2015-04-29 2015-08-19 周邦祥 自动模压冰模
TWM533191U (en) * 2016-07-14 2016-12-01 Dunching Co Ltd Ice shaping metal press
TWM552583U (zh) * 2017-08-15 2017-12-01 城市學校財團法人臺北城市科技大學 冰塊雕塑裝置
CN208751096U (zh) * 2018-09-04 2019-04-16 杨泽坤 水路回温式自动模压冰球器

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1888938A (en) * 1932-08-08 1932-11-22 Charles B Shellman Ice cutting machine
US2259066A (en) * 1938-06-16 1941-10-14 Gen Electric Refrigerating machine
US3365764A (en) * 1964-10-14 1968-01-30 Procter & Gamble Skirted die for rotary pin-die press
GB954820A (en) * 1962-04-10 1964-04-08 Dunlop Rubber Co Improvements in or relating to the manufacture of hollow plastic articles
US3287486A (en) * 1963-04-15 1966-11-22 Us Rubber Co Molding apparatus and method employing thermal expansion and contraction
US3721103A (en) * 1970-06-15 1973-03-20 Olin Corp Method for making hollow ice bodies
US4028042A (en) * 1973-08-14 1977-06-07 Dunlop Limited Moulding apparatus
US4244470A (en) * 1979-08-06 1981-01-13 Howard Johnson Company Individual ice cream dispensing receptacle
US4587810A (en) * 1984-07-26 1986-05-13 Clawson Machine Company, Inc. Thermoelectric ice maker with plastic bag mold
GB8511701D0 (en) * 1985-05-09 1985-06-19 Unilever Plc Preparing shaped ice confection product
US4971737A (en) * 1988-05-16 1990-11-20 Infanti Chair Manufacturing, Corp. Method for forming ice sculptures
JPH01310277A (ja) 1988-06-08 1989-12-14 Kensho Kawaguchi 押圧熱熔解により球形に成形した氷塊及びその製造方法
JP2540790B2 (ja) * 1992-10-26 1996-10-09 株式会社山之内製作所 氷成形装置
DE19548104A1 (de) * 1995-02-03 1996-08-08 Unilever Nv Verfahren und Vorrichtung zum Herstellen eines geformten Speiseeisprodukts
DK70896A (da) * 1996-06-28 1997-12-29 Tetra Laval Food Hoyer A S Fremgangsmåde og anlæg til fremstilling af spiseispinde
US6561787B2 (en) * 1999-09-29 2003-05-13 Kansas State University Research Foundation Apparatus for forming biodegradable and edible feed packaging materials
AU2001282606B2 (en) 2000-09-01 2004-10-21 Katsuzo Somura Method and apparatus for producing stereoscopic ice of transparent sphere or the like
EP1236577A1 (en) * 2001-02-23 2002-09-04 Océ-Technologies B.V. Method and mold for manufacturing pellets of hot-melt ink
US6935124B2 (en) 2002-05-30 2005-08-30 Matsushita Electric Industrial Co., Ltd. Clear ice making apparatus, clear ice making method and refrigerator
US6912868B2 (en) * 2002-11-19 2005-07-05 Hoshizaki Electric Co., Ltd. Auger type ice-making machine
US7085482B2 (en) * 2004-09-20 2006-08-01 Aquarium Pharmaceuticals, Inc. Aquarium water heater
US7185508B2 (en) * 2004-10-26 2007-03-06 Whirlpool Corporation Refrigerator with compact icemaker
JP2007278662A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 製氷皿
US20080072610A1 (en) * 2006-09-26 2008-03-27 General Electric Company Apparatus and method for controlling operation of an icemaker
NL1034074C2 (nl) * 2007-07-02 2009-01-05 Schoonen Beheer B V W Inrichting en werkwijze voor het vervaardigen van ijsklontjes.
US7900470B2 (en) * 2007-12-07 2011-03-08 General Electric Company Automatic icemaker
US7882706B2 (en) * 2008-04-10 2011-02-08 Kohler Co. Beverage cooling system
TWI551803B (zh) * 2010-06-15 2016-10-01 拜歐菲樂Ip有限責任公司 低溫熱力閥裝置、含有該低溫熱力閥裝置之系統及使用該低溫熱力閥裝置之方法
US8882489B1 (en) * 2010-07-09 2014-11-11 Coomer Properties, LLC Ice shaping device
KR101968563B1 (ko) * 2011-07-15 2019-08-20 엘지전자 주식회사 아이스 메이커
KR101890939B1 (ko) * 2011-07-15 2018-08-23 엘지전자 주식회사 아이스 메이커
KR101850918B1 (ko) * 2011-10-04 2018-05-30 엘지전자 주식회사 아이스 메이커 및 이를 이용한 얼음 제조 방법
US20140047859A1 (en) 2012-08-14 2014-02-20 Kyle E. E. Schwulst System For Forming Frozen Liquids
JP6076867B2 (ja) 2012-09-05 2017-02-08 株式会社モリタ製作所 医用x線画像処理システム、x線撮影装置及びx線検出器
US9310116B2 (en) * 2012-11-16 2016-04-12 Whirlpool Corporation Ice storage to hold ice and minimize melting of ice spheres
US9151527B2 (en) * 2012-12-13 2015-10-06 Whirlpool Corporation Molded clear ice spheres
US9074803B2 (en) * 2012-12-13 2015-07-07 Whirlpool Corporation Clear ice spheres
US9080800B2 (en) * 2012-12-13 2015-07-14 Whirlpool Corporation Molded clear ice spheres
US9200823B2 (en) * 2012-12-13 2015-12-01 Whirlpool Corporation Ice maker with thermoelectrically cooled mold for producing spherical clear ice
US9476629B2 (en) * 2012-12-13 2016-10-25 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9074802B2 (en) * 2012-12-13 2015-07-07 Whirlpool Corporation Clear ice hybrid mold
US9759472B2 (en) * 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9470448B2 (en) * 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9459034B2 (en) 2012-12-13 2016-10-04 Whirlpool Corporation Method of producing ice segments
US9518770B2 (en) * 2012-12-13 2016-12-13 Whirlpool Corporation Multi-sheet spherical ice making
US9574811B2 (en) 2013-10-18 2017-02-21 Rocco Papalia Transparent ice maker
US20150367536A1 (en) * 2014-06-22 2015-12-24 Clinton Marcus Compton Apparatus for forming ice shapes
US9915458B2 (en) * 2014-10-23 2018-03-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
CN205718125U (zh) 2016-03-14 2016-11-23 浙江金华威达日化包装实业有限公司 冰块造型机
US10260789B2 (en) * 2016-04-13 2019-04-16 Whirlpool Corporation Ice making assembly with twist ice tray and directional cooling
US10729154B2 (en) * 2017-04-11 2020-08-04 High Road Craft Ice Cream, Inc. Process for molding frozen confections with artisanal quality
EP3438575A1 (en) * 2017-07-31 2019-02-06 W. Schoonen Beheer B.V. Efficient clear ice cube production
CN207772244U (zh) * 2017-12-28 2018-08-28 晋江凯燕新材料科技有限公司 一种刹车片防漏料压制成型装置
US10746453B2 (en) * 2018-02-23 2020-08-18 Haier Us Appliance Solutions, Inc. Active ice press assembly
CN108800691A (zh) * 2018-06-13 2018-11-13 上海电机学院 一种新型耐用式冰模制冰机
CN108759215A (zh) * 2018-07-06 2018-11-06 无锡风电设计研究院有限公司 一种用于在基体上制备成型冰块的制冰装置
USD908147S1 (en) * 2019-03-11 2021-01-19 Steere Enterprises, Inc. Ice mold
USD920396S1 (en) * 2019-03-17 2021-05-25 Carmen Martocchio Ice press
US11408661B2 (en) * 2019-06-19 2022-08-09 Haier Us Appliance Solutions, Inc. Single cord ice press assembly
US20210080166A1 (en) * 2019-09-17 2021-03-18 Haier Us Appliance Solutions, Inc. Ice press assembly with guide rails and a resilient bumper
CN113237284B (zh) * 2021-05-28 2023-12-22 海信容声(广东)冰箱有限公司 一种冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206250A1 (en) * 2001-10-17 2004-10-21 Nobuaki Kondou Device and method for manufacturing molded ice block
CN204574657U (zh) * 2015-04-29 2015-08-19 周邦祥 自动模压冰模
TWM533191U (en) * 2016-07-14 2016-12-01 Dunching Co Ltd Ice shaping metal press
TWM552583U (zh) * 2017-08-15 2017-12-01 城市學校財團法人臺北城市科技大學 冰塊雕塑裝置
CN208751096U (zh) * 2018-09-04 2019-04-16 杨泽坤 水路回温式自动模压冰球器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988873A4 *

Also Published As

Publication number Publication date
AU2020296792A1 (en) 2021-12-16
US20200400359A1 (en) 2020-12-24
EP3988873A1 (en) 2022-04-27
CN113874667A (zh) 2021-12-31
CN113874667B (zh) 2022-12-16
EP3988873A4 (en) 2022-11-16
US11408661B2 (en) 2022-08-09
AU2020296792B2 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2020253799A1 (zh) 单线制冰机组件
US10746453B2 (en) Active ice press assembly
CN112524856B (zh) 具有导轨和弹性缓冲器的压冰组件
ES2239464T3 (es) Metodo y aparato de control de la temperatura.
JP2007501506A (ja) 家庭電気器具用液体加熱装置、前記装置を装着した家庭電気器具
CN103660256A (zh) 通过使与模具外表面接触的传热流体流通冷却模具的方法
CN108215128B (zh) 用于实施热模制方法和冷模制方法的模制装置
US20220349642A1 (en) Annular heating assembly for an ice press
TWI316460B (en) Cooking vessel grip and relative manufacturing method
CN115218606B (zh) 一种低温恒温装置及温度控制方法
KR100690672B1 (ko) 면상히터를 구비한 제빙기
KR101083388B1 (ko) 전기밥솥의 증기 응축 및 공급 장치
KR100870985B1 (ko) 히트파이프 및 이를 이용한 열교환 시스템
CN109084477A (zh) 相变热水器
CN204931459U (zh) 一种豆浆机杯体组件及豆浆机
CN106482325B (zh) 平直型热水供给装置
KR101094243B1 (ko) 전기밥솥의 증기 응축 장치
CZ213794A3 (en) Electric through-flow heater and process for producing thereof
EP3073876B1 (en) Themal block for heating liquids
KR200213712Y1 (ko) 축열식 전기보일러
KR102143891B1 (ko) 사출성형 제품의 변형방지용 지그
KR200412484Y1 (ko) 방열기용 자동에어핀
EP3312516B1 (en) Water heater
KR20210081733A (ko) 센서 보호관 및 이를 포함하는 제빙기, 냉장고 및 센서 고정방법
KR200366098Y1 (ko) 급탕용 히터장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020296792

Country of ref document: AU

Date of ref document: 20200619

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827544

Country of ref document: EP

Effective date: 20220119