WO2020253793A1 - 阵列基板及其制造方法、显示装置 - Google Patents

阵列基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020253793A1
WO2020253793A1 PCT/CN2020/096876 CN2020096876W WO2020253793A1 WO 2020253793 A1 WO2020253793 A1 WO 2020253793A1 CN 2020096876 W CN2020096876 W CN 2020096876W WO 2020253793 A1 WO2020253793 A1 WO 2020253793A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
base substrate
layer
pixel defining
defining layer
Prior art date
Application number
PCT/CN2020/096876
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/272,290 priority Critical patent/US11588130B2/en
Publication of WO2020253793A1 publication Critical patent/WO2020253793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present disclosure relates to the field of optoelectronic technology, in particular to an array substrate, a manufacturing method thereof, and a display device.
  • OLED displays have the characteristics of self-luminescence, fast response, wide viewing angle, high brightness, bright colors, and thinness. OLED display technology is considered to be the next-generation display technology.
  • the present disclosure provides an array substrate, a manufacturing method thereof, and a display device.
  • an array substrate including: a base substrate, and a first electrode, a pixel defining layer, a light-emitting layer, and a second electrode sequentially arranged on the base substrate, and the pixel defining layer has a plurality of An opening, the opening has two opposing surfaces, the two opposing surfaces include a first surface close to the base substrate and a second surface away from the base substrate, the second surface and the pixel bounding The side of the layer away from the base substrate is coplanar, and the orthographic projection of the second surface on the base substrate is located inside the orthographic projection of the first surface on the base substrate;
  • the pixel defining layer includes a stacked pixel defining body and an electrode repairing material layer, the electrode repairing material layer is located on a side of the pixel defining body away from the base substrate, and the electrode repairing material layer is used for The second electrode is repaired, and one of the first electrode and the second electrode is a cathode, and the other electrode is an anode.
  • the electrode repair material layer includes microcapsules, the cavity of the microcapsule is filled with electrode material, and a part of the capsule shell of the microcapsule exposes the pixel defining layer away from the base substrate one side.
  • the electrode material is nano silver.
  • the material of the capsule shell is an organic polymer doped with titanium dioxide.
  • the density of the organic polymer is less than the density of the material that the pixel defines the body.
  • the organic polymer includes at least one of polyamine, polyamide, polyimide, phenol resin, polyurethane, polyolefin, and polysilane.
  • the material for preparing the pixel defining body includes at least one of fluorinated polymethyl methacrylate and fluorinated polyimide.
  • the height of the pixel defining layer ranges from 0.5 ⁇ m to 3 ⁇ m.
  • the longitudinal section of the pixel defining layer includes a plurality of inverted isosceles trapezoids, and the longitudinal section is perpendicular to the base substrate.
  • the second electrode is in contact with the electrode material in the electrode repair material layer.
  • the first electrode is an anode and the second electrode is a cathode.
  • the second electrode has a whole-layer structure.
  • the material of the capsule shell is an organic polymer doped with titanium dioxide
  • the density of the organic polymer is less than the density of the material for the pixel defining the body
  • the organic polymer includes at least one of polyamine, polyamide, polyimide, phenolic resin, polyurethane, polyolefin and polysilane;
  • the material for preparing the pixel defining body includes at least one of fluorinated polymethyl methacrylate and fluorinated polyimide;
  • the longitudinal section of the pixel defining layer includes a plurality of inverted isosceles trapezoids, and the longitudinal section is perpendicular to the base substrate;
  • the second electrode is in contact with the electrode material in the electrode repair material layer
  • the first electrode is an anode
  • the second electrode is a cathode
  • the second electrode has a whole layer structure.
  • a display device including: the array substrate according to any one of the aspects.
  • the display device is an organic light emitting diode OLED display device.
  • a method for manufacturing an array substrate includes:
  • a pixel defining layer is formed on a base substrate on which the first electrode is formed, the pixel defining layer has a plurality of openings, the openings have two opposite faces, and the two opposite faces include those close to the base substrate.
  • the first surface and the second surface away from the base substrate, the second surface is coplanar with the side of the pixel defining layer away from the base substrate, and the second surface is on the front of the base substrate.
  • the projection is located inside the orthographic projection of the first surface on the base substrate, the pixel defining layer includes a stacked pixel defining body and an electrode repair material layer, and the electrode repair material layer is located in the pixel defining body The side away from the base substrate;
  • one of the first electrode and the second electrode is a cathode, and the other electrode is an anode.
  • forming a pixel defining layer on the base substrate on which the first electrode is formed includes:
  • a layer of liquefied material is formed on the base substrate on which the first electrode is formed, the cavity of the microcapsule is filled with electrode material, and the density of the capsule shell of the microcapsule Less than the density of the liquefied material;
  • the solidified material layer is patterned through a patterning process to obtain the pixel defining layer.
  • the material of the capsule shell is an organic polymer doped with titanium dioxide
  • the use of the electrode repair material layer to repair the second electrode includes:
  • the side of the pixel defining layer away from the base substrate is irradiated with ultraviolet light to rupture the capsule shell of the microcapsule, so that the electrode material in the microcapsule flows out and contacts the second electrode.
  • the forming a second electrode on the base substrate on which the light-emitting layer is formed includes:
  • the second electrode is formed on the entire surface of the pixel defining layer away from the base substrate by evaporation.
  • the first electrode is an anode and the second electrode is a cathode
  • the forming a light-emitting layer on a base substrate on which the pixel defining layer is formed includes:
  • An electron transport layer and an electron injection layer are sequentially formed on the side of the organic light-emitting material layer away from the base substrate by evaporation.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic top view of a pixel defining layer provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a microcapsule provided by an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a manufacturing method of an array substrate provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a process flow for forming a pixel defining layer according to an embodiment of the present disclosure.
  • the preparation methods of organic material film layers in OLED displays mainly include vacuum evaporation and solution process.
  • Vacuum evaporation is suitable for small organic molecules. Its characteristics are that the film does not require solvents and the film thickness is uniform, but the equipment investment is large, the material utilization rate is low, and it is not suitable for the production of large-size products.
  • Solution manufacturing processes include spin coating, inkjet printing, nozzle coating, and screen printing. They are suitable for polymer materials and soluble small molecules. They are characterized by low equipment costs and outstanding advantages in large-scale and large-scale production.
  • inkjet printing technology can precisely inkjet the solution to the pixel area. Since inkjet printing technology has a high material utilization rate and can achieve large-scale production, it is used as an important way to achieve mass production of large-scale OLED displays.
  • the inkjet printing technology when used to prepare the organic material film layer in the OLED display, the ink will climb on the pixel defining layer, which affects the uniformity of ink film formation in the pixel area, thereby affecting the display effect of the OLED display.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by an embodiment of the present disclosure.
  • the array substrate includes: a base substrate 00, and a first electrode 20, a pixel defining layer 10, a light emitting layer 30, and a second electrode 40 that are sequentially arranged on the base substrate 00.
  • One of the first electrode 20 and the second electrode 40 is a cathode, and the other electrode is an anode.
  • the pixel defining layer 10 has a plurality of openings M.
  • the opening M has two opposite faces.
  • the two opposite faces include a first face A close to the base substrate 00 and a second face B far from the base substrate 00.
  • the second face B is coplanar with the side of the pixel defining layer 10 away from the base substrate 00.
  • Two faces B are open faces (faces on the non-solid structure).
  • the opening M may be a through hole, and the first surface A of the opening M is coplanar with the side of the pixel defining layer 10 close to the base substrate 00.
  • the orthographic projection of the second face B on the base substrate 00 is located inside the orthographic projection of the first face A on the base substrate 00.
  • the angle ⁇ between the side surface C of the opening M and the first surface A is an acute angle.
  • the longitudinal section of the pixel defining layer 10 includes a plurality of inverted isosceles trapezoids, and the longitudinal section is perpendicular to the base substrate 00.
  • the longitudinal section of the pixel defining layer 10 may also include an inverted trapezoid of other shapes, for example, the length of one waist of the inverted trapezoid is greater than the length of the other waist, which is not limited in the embodiment of the present disclosure.
  • Each opening M of the pixel defining layer 10 corresponds to a pixel area, that is, each opening is formed with a sub-pixel.
  • the sub-pixel may be a red sub-pixel, a green sub-pixel or a blue sub-pixel. Because the angle between the side surface of the opening of the pixel defining layer and the first surface is an acute angle, on the one hand, the side surface and the first electrode located in the opening form a capillary structure. In the subsequent inkjet printing process, the effect of the solution on the capillary structure It can spread more evenly under pressure.
  • the ink when inkjet printing is performed in the opening, the ink is not easy to climb on the side of the pixel defining layer away from the base substrate, which can effectively inhibit the ink from climbing, thereby reducing the coffee ring effect of the film.
  • the probability of increasing the uniformity of ink film formation in the pixel area when inkjet printing is performed in the opening, the ink is not easy to climb on the side of the pixel defining layer away from the base substrate, which can effectively inhibit the ink from climbing, thereby reducing the coffee ring effect of the film.
  • the pixel defining layer 10 includes a pixel defining body 101 and an electrode repair material layer 102 that are stacked.
  • the electrode repair material layer 102 is located on the side of the pixel defining body 101 away from the base substrate 00.
  • the electrode repair material layer 102 is used to repair the second electrode 40.
  • the second electrode 40 is in contact with the electrode material in the electrode repair material layer 102.
  • the second electrode 40 has an entire layer structure.
  • an electrode repair material layer is formed on the side of the pixel defining body away from the base substrate. The electrode repair material layer can repair the fracture position of the second electrode, thereby improving the yield and reliability of the subsequently prepared array substrate .
  • the first electrode is used as the anode and the second electrode is the cathode as an example for description.
  • the light-emitting layer 30 includes a hole injection layer (HIL), a hole transport layer (HTL), an organic light-emitting material layer, and an electron transport layer (HIL), a hole injection layer (HIL), an organic light emitting material layer, and an electron transport layer (Electron Transport Layer (ETL) and Electron Injection Layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • HIL hole injection layer
  • HIL hole injection layer
  • ETL Electron Injection Layer
  • EIL Electron Injection Layer
  • the array substrate provided by the embodiments of the present disclosure has an acute angle between the side surface of the opening of the pixel defining layer and the first surface.
  • the side surface and the first electrode located in the opening form a capillary structure.
  • the solution can be spread more evenly under the force of the capillary structure.
  • the inkjet printing is performed in the opening, the ink is not easy to climb on the side of the pixel defining layer away from the base substrate, which can effectively inhibit the ink from climbing, thereby reducing the coffee ring effect of the film. The probability of increasing the uniformity of ink film formation in the pixel area.
  • an electrode repair material layer is formed on the side of the pixel defining body away from the base substrate, and the electrode repair material layer can repair the fractured position of the second electrode, thereby improving the yield and yield of the subsequently prepared array substrate. reliability.
  • FIG. 2 is a schematic top view of a pixel defining layer provided by an embodiment of the present disclosure.
  • the pixel defining layer 10 shown in FIG. 1 is a cross-sectional view of the pixel defining layer 10 in FIG. 2 at the position AA'.
  • the pixel defining layer 10 has a plurality of openings M arranged in an array.
  • the plurality of openings M are arranged at equal intervals in the row direction, and are arranged at equal intervals in the column direction, that is, the plurality of openings M are arranged in a matrix, thereby achieving uniform distribution of pixels.
  • the electrode repair material layer 102 includes a plurality of microcapsules 1021.
  • Fig. 3 is a schematic structural diagram of a microcapsule provided by an embodiment of the present disclosure.
  • the microcapsule 1021 includes a capsule shell 1021A, the capsule shell 1021A is provided with a capsule cavity, and the electrode material 1021B is filled in the capsule cavity 1021A.
  • a part of the capsule 1021A exposes the side of the pixel defining layer 10 away from the base substrate 00.
  • the electrode repair material layer includes a plurality of microcapsules
  • the capsule shell is broken to make the electrode in the capsule cavity
  • the material flows out to the side of the pixel defining layer away from the base substrate, and repairs the second electrode at the intersection of the side surface of the opening and the second surface, ensuring the conductivity of the second electrode, thereby improving the array substrate prepared subsequently Good product rate and reliability.
  • the electrode material in the capsule cavity can smoothly flow to the side of the pixel defining layer away from the base substrate.
  • the electrode material is nano silver.
  • Nano silver has the characteristics of size effect and high surface energy, fine particles, good flexibility, friction resistance, good chemical stability, can reduce the gap between the second electrodes, and increase the second on the pixel defining layer
  • the interface between the electrode and the second electrode located on the light-emitting layer is in contact, reducing the contact resistance between the two and improving the overall conductivity of the second electrode.
  • the preparation material of the capsule shell is an organic polymer doped with titanium dioxide.
  • the organic polymer includes at least one of polyamine, polyamide, polyimide, phenol resin, polyurethane, polyolefin, and polysilane. That is, the preparation materials of the capsule shell are polyamine added with titanium dioxide, polyamide added with titanium dioxide, polyimide added with titanium dioxide, phenolic resin added with titanium dioxide, polyurethane added with titanium dioxide, polyolefin added with titanium dioxide, and titanium dioxide added. Any one or a combination of polysilanes. Since the capsule shell is doped with titanium dioxide, the capsule shell will be broken under the irradiation of ultraviolet light (Ultraviolet Rays, UV), so that the electrode material in the capsule shell can flow out, and the operation is simple.
  • UV ultraviolet light
  • the density of the organic polymer used to prepare the capsule shell of the microcapsule is less than the density of the material for preparing the pixel defining body in the pixel defining layer.
  • the pixel defining layer can be prepared by one patterning process, and the preparation process is simple.
  • the material for preparing the pixel defining body includes at least one of fluorinated polymethyl methacrylate and fluorinated polyimide.
  • the height of the pixel defining layer ranges from 0.5 ⁇ m to 3 ⁇ m.
  • the height of the pixel defining layer cannot be too high, otherwise it will affect the continuity of the vapor-deposited second electrode, and a thick second electrode must be vapor-deposited.
  • the height of the pixel defining layer should not be too low, otherwise the ink will easily cross the pixel defining layer during inkjet printing in the pixel area.
  • the height of the pixel defining layer refers to the distance from the side of the pixel defining layer close to the base substrate to the side far from the base substrate.
  • the array substrate provided by the embodiments of the present disclosure has an acute angle between the side surface of the opening of the pixel defining layer and the first surface.
  • the side surface and the first electrode located in the opening form a capillary structure.
  • the solution can be spread more evenly under the force of the capillary structure.
  • the inkjet printing is performed in the opening, the ink is not easy to climb on the side of the pixel defining layer away from the base substrate, which can effectively inhibit the ink from climbing, thereby reducing the coffee ring effect of the film. The probability of increasing the uniformity of ink film formation in the pixel area.
  • an electrode repair material layer is formed on the side of the pixel defining body away from the base substrate, and the electrode repair material layer can repair the fractured position of the second electrode, thereby improving the yield and yield of the subsequently prepared array substrate. reliability.
  • the embodiment of the present disclosure also provides a display device, including the array substrate provided by the embodiment of the present disclosure.
  • the display device may be an OLED display device.
  • the display device includes any product or component with a display function, such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame or navigator.
  • a display function such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame or navigator.
  • FIG. 4 is a flowchart of a manufacturing method of an array substrate provided by an embodiment of the present disclosure. As shown in Figure 4, the method includes the following working processes:
  • step 401 a base substrate is provided.
  • the base substrate may be a transparent substrate, and specifically may be a substrate made of a non-metallic material with a certain hardness, such as glass, quartz, or transparent resin, which is used for light guide.
  • step 402 a first electrode is formed on the base substrate.
  • ITO indium tin oxide
  • the patterning process includes: photoresist coating, exposure, development, etching and photoresist stripping.
  • step 403 a pixel defining layer is formed on the base substrate on which the first electrode is formed.
  • the pixel defining layer has a plurality of openings.
  • the opening has two opposite surfaces, and the two opposite surfaces include a first surface close to the base substrate and a second surface away from the base substrate.
  • the second surface is coplanar with the side of the pixel defining layer away from the base substrate.
  • the orthographic projection of the second surface on the base substrate is located inside the orthographic projection of the first surface on the base substrate.
  • the pixel defining layer includes a stacked pixel defining body and an electrode repairing material layer, and the electrode repairing material layer is located on a side of the pixel defining body away from the base substrate.
  • step 403 includes the following steps 403A to 403C, and the process flow is shown in FIG. 5:
  • step 403A a liquefied material doped with microcapsules 1021 is used to form a liquefied material layer P on the base substrate 00 on which the first electrode 20 is formed.
  • the cavity of the microcapsule is filled with electrode material.
  • the density of the shell of the microcapsule is less than the density of the liquefied material.
  • the liquefied material layer can be formed on the side of the base substrate where the first electrode is formed by coating.
  • the thickness of the liquefied material layer ranges from 0.5 microns to 3 microns.
  • the thickness of the liquefied material layer refers to the distance from the side of the liquefied material layer away from the base substrate to the side of the liquefied material layer close to the base substrate.
  • the electrode material is nano silver.
  • the material of the capsule shell is organic polymer doped with titanium dioxide.
  • the organic polymer includes at least one of polyamine, polyamide, polyimide, phenol resin, polyurethane, polyolefin, and polysilane.
  • the liquefied material includes at least one of fluorinated polymethyl methacrylate and fluorinated polyimide.
  • step 403B after a part of the shell of the microcapsule 1021 exposes the side of the liquefied material layer P away from the base substrate 00, the liquefied material layer P is cured to obtain a cured material layer Q.
  • the microcapsule Since the density of the shell of the microcapsule is lower than the density of the liquefied material, after the formed liquefied material layer is allowed to stand for a period of time, the microcapsule will float to the surface of the liquefied material layer, so that the shell of the microcapsule exposes the surface of the liquefied material layer.
  • step 403C the cured material layer Q is patterned through a patterning process to obtain the pixel defining layer 10.
  • the area of the cured material layer that needs to be exposed is the opening area of the pixel defining layer (that is, the pixel area).
  • the cured material layer can be exposed from the side of the base substrate where the film layer is not formed. Since the photosensitive material can absorb a certain component of light, when a certain dose of light is used to expose the cured material layer from the side of the base substrate where the film layer is not formed, from the cured material layer close to the surface of the base substrate to the cured material layer The surface away from the base substrate, the exposure degree tends to gradually weaken.
  • the degree of reaction of the cured material layer with the developer in the direction from near to far away from the base substrate is correspondingly reduced, that is, the cured material layer is removed from the near to far direction from the base substrate.
  • the part is gradually reduced, so that the longitudinal section of the pixel defining layer obtained after development includes a plurality of inverted trapezoids as shown in FIG. 1.
  • step 404 a light-emitting layer is formed on the base substrate on which the pixel defining layer is formed.
  • the first electrode is an anode and the second electrode is a cathode.
  • the implementation process of step 404 includes the following steps 404A to 404B:
  • step 404A a hole injection layer, a hole transport layer, and an organic light-emitting material layer are sequentially formed in the opening of the pixel defining layer by means of inkjet printing.
  • the side surface and the first electrode located in the opening form a capillary structure.
  • the solution is The capillary structure can spread more evenly under the force of the capillary structure.
  • the ink is not easy to climb on the side of the pixel defining layer away from the base substrate, which can effectively inhibit the climbing of the ink, thereby reducing the coffee ring effect of the film.
  • the probability of increasing the uniformity of ink film formation in the pixel area That is, the film uniformity of the hole injection layer, the hole transport layer and the organic light emitting material layer formed by the inkjet printing technology is improved.
  • step 404B an electron transport layer and an electron injection layer are sequentially formed on the side of the organic light-emitting material layer away from the base substrate by evaporation.
  • a second electrode is formed on the base substrate on which the light-emitting layer is formed, and the second electrode is in contact with the electrode material in the electrode repair material layer of the pixel defining layer.
  • the second electrode is formed on the entire surface of the pixel defining layer away from the base substrate by evaporation.
  • the first electrode and the second electrode are one of the anode and the cathode respectively.
  • step 406 the electrode repair material layer is used to repair the second electrode.
  • the preparation material of the capsule shell of the microcapsule in the electrode repair material layer is an organic polymer doped with titanium dioxide.
  • ultraviolet light is used to irradiate the side of the pixel defining layer away from the base substrate to rupture the capsule shell of the microcapsule, so that the electrode material in the microcapsule flows out and The second electrode contacts.
  • an electrode repair material layer is formed on the side of the pixel defining body away from the base substrate. The electrode repair material layer can repair the fracture position of the second electrode, thereby improving the yield and reliability of the subsequently prepared array substrate .
  • the angle between the side surface of the pixel defining layer and the first electrode located in the pixel area is an acute angle, the side surface of the pixel defining layer and the first electrode located in the pixel area are sharp.
  • the first electrode constitutes a capillary structure.
  • the solution can be spread more evenly under the force of the capillary structure, and because the side of the pixel defining layer is arranged obliquely, when inkjet printing in the pixel area, the ink is not easy to climb on the side
  • the pixel defining layer is far away from the second surface of the base substrate, which can effectively inhibit ink climbing, thereby reducing the probability of coffee ring effect in the film layer and improving the uniformity of ink film formation in the pixel area.
  • the angle between the side surface of the pixel defining layer and the second surface is an acute angle, it is easy to cause the second electrode prepared on the side of the pixel defining layer away from the base substrate to intersect the side surface of the pixel defining layer and the second surface.
  • an electrode repair material layer is formed on the side of the pixel defining body away from the base substrate, and the electrode repair material layer can repair the fracture position of the second electrode, thereby improving the yield and reliability of the array substrate.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

公开了一种阵列基板及其制造方法、显示装置。阵列基板包括:衬底基板,以及依次设置在衬底基板上的第一电极、像素界定层、发光层和第二电极。像素界定层具有多个开口。开口具有两个相对面。两个相对面包括靠近衬底基板的第一面和远离衬底基板的第二面。第二面与像素界定层远离衬底基板的一面共面。第二面在衬底基板上的正投影位于第一面在衬底基板上的正投影的内部。像素界定层包括层叠设置的像素界定本体和电极修复材料层,电极修复材料层位于像素界定本体远离衬底基板的一侧,电极修复材料层用于对第二电极进行修复。本公开提高了像素区域内墨水成膜的均一性,从而提高了阵列基板和显示装置的良品率和可靠性。摘要附图为图1。

Description

阵列基板及其制造方法、显示装置
本公开要求于2019年06月19日提交的申请号为201910533607.9、发明名称为“像素界定层、显示装置、阵列基板及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光电技术领域,特别涉及一种阵列基板及其制造方法、显示装置。
背景技术
有机发光二极管(organic light emitting diode,OLED)显示器具有自发光、反应快、视角广、亮度高、色彩艳和轻薄等特点。OLED显示技术被认为是下一代显示技术。
发明内容
本公开提供了一种阵列基板及其制造方法、显示装置。
一方面,提供了一种阵列基板,包括:衬底基板,以及依次设置在所述衬底基板上的第一电极、像素界定层、发光层和第二电极,所述像素界定层具有多个开口,所述开口具有两个相对面,所述两个相对面包括靠近所述衬底基板的第一面和远离所述衬底基板的第二面,所述第二面与所述像素界定层远离所述衬底基板的一面共面,所述第二面在所述衬底基板上的正投影位于所述第一面在所述衬底基板上的正投影的内部;
其中,所述像素界定层包括层叠设置的像素界定本体和电极修复材料层,所述电极修复材料层位于所述像素界定本体远离所述衬底基板的一侧,所述电极修复材料层用于对所述第二电极进行修复,所述第一电极和所述第二电极中的一个电极为阴极,另一个电极为阳极。
可选地,所述电极修复材料层中包括微胶囊,所述微胶囊的囊腔内填充有电极材料,所述微胶囊的囊壳的一部分露出所述像素界定层远离所述衬底基板的一面。
可选地,所述电极材料为纳米银。
可选地,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物。
可选地,所述有机聚合物的密度小于所述像素界定本体的制备材料的密度。
可选地,所述有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种。
可选地,所述像素界定本体的制备材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种。
可选地,所述像素界定层的高度范围为0.5微米至3微米。
可选地,所述像素界定层的纵截面包括多个倒等腰梯形,所述纵截面垂直于所述衬底基板。
可选地,所述第二电极与所述电极修复材料层中的电极材料接触。
可选地,所述第一电极为阳极,所述第二电极为阴极。
可选地,所述第二电极为整层结构。
可选地,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物;
所述有机聚合物的密度小于所述像素界定本体的制备材料的密度;
所述有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种;
所述像素界定本体的制备材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种;
所述像素界定层的纵截面包括多个倒等腰梯形,所述纵截面垂直于所述衬底基板;
所述第二电极与所述电极修复材料层中的电极材料接触;
所述第一电极为阳极,所述第二电极为阴极,所述第二电极为整层结构。
另一方面,提供了一种显示装置,包括:如一方面任一所述的阵列基板。
可选地,所述显示装置为有机发光二极管OLED显示装置。
又一方面,提供了一种阵列基板的制造方法,所述方法包括:
提供衬底基板;
在所述衬底基板上形成第一电极;
在形成有所述第一电极的衬底基板上形成像素界定层,所述像素界定层具有多个开口,所述开口具有两个相对面,所述两个相对面包括靠近所述衬底基板的第一面和远离所述衬底基板的第二面,所述第二面与所述像素界定层远离 衬底基板的一面共面,所述第二面在所述衬底基板上的正投影位于所述第一面在所述衬底基板上的正投影的内部,所述像素界定层包括层叠设置的像素界定本体和电极修复材料层,所述电极修复材料层位于所述像素界定本体远离所述衬底基板的一侧;
在形成有所述像素界定层的衬底基板上形成发光层;
在形成有所述发光层的衬底基板上形成第二电极;
采用所述电极修复材料层对所述第二电极进行修复;
其中,所述第一电极和所述第二电极中的一个电极为阴极,另一个电极为阳极。
可选地,在形成有所述第一电极的衬底基板上形成像素界定层,包括:
采用掺杂有微胶囊的液化材料,在形成有所述第一电极的衬底基板上形成液化材料层,所述微胶囊的囊腔内填充有电极材料,所述微胶囊的囊壳的密度小于所述液化材料的密度;
在所述微胶囊的囊壳的一部分露出所述液化材料层远离所述衬底基板的一面后,对所述液化材料层进行固化处理,得到固化材料层;
通过构图工艺对所述固化材料层进行图案化处理,得到所述像素界定层。
可选地,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物,所述采用所述电极修复材料层对所述第二电极进行修复,包括:
采用紫外光照射所述像素界定层远离所述衬底基板的一侧,使所述微胶囊的囊壳破裂,以使所述微胶囊中的电极材料流出与所述第二电极接触。
可选地,所述在形成有所述发光层的衬底基板上形成第二电极,包括:
通过蒸镀的方式在所述像素界定层远离所述衬底基板的一侧整面形成所述第二电极。
可选地,所述第一电极为阳极,所述第二电极为阴极,所述在形成有所述像素界定层的衬底基板上形成发光层,包括:
通过喷墨打印的方式在所述像素界定层的开口内依次形成空穴注入层、空穴传输层和有机发光材料层;
通过蒸镀的方式在所述有机发光材料层远离所述衬底基板的一侧依次形成电子传输层和电子注入层。
附图说明
图1是本公开实施例提供的一种阵列基板的结构示意图;
图2是本公开实施例提供的一种像素界定层的俯视示意图;
图3是本公开实施例提供的一种微胶囊的结构示意图;
图4是本公开实施例提供的一种阵列基板的制造方法流程图;
图5是本公开实施例提供的一种形成像素界定层的工艺流程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
OLED显示器中有机材料膜层的制备方式主要有真空蒸镀和溶液制程这两种。真空蒸镀适用于有机小分子,其特点是成膜不需要溶剂,膜厚度均一,但是设备投资大、材料利用率低、不适用于大尺寸产品的生产。溶液制程包括旋涂、喷墨打印、喷嘴涂覆法和丝网印刷法等,适用于聚合物材料和可溶性小分子,其特点是设备成本低,在大规模、大尺寸生产上优势突出。其中,喷墨打印技术能将溶液精准地喷墨到像素区域。由于喷墨打印技术的材料利用率较高且可以实现大尺寸生产,被作为实现大尺寸OLED显示器量产的重要方式。
但是,在采用喷墨打印技术制备OLED显示器中的有机材料膜层时,墨水会在像素界定层上攀爬,影响像素区域内墨水成膜的均一性,从而影响OLED显示器的显示效果。
图1是本公开实施例提供的一种阵列基板的结构示意图。如图1所示,该阵列基板包括:衬底基板00,以及依次设置在衬底基板00上的第一电极20、像素界定层10、发光层30和第二电极40。第一电极20和第二电极40中的一个电极为阴极,另一个电极为阳极。
参见图1,像素界定层10具有多个开口M。开口M具有两个相对面。该两个相对面包括靠近衬底基板00的第一面A和远离衬底基板00的第二面B,该第二面B与像素界定层10远离衬底基板00的一面共面,该第二面B为开口面(非实体结构上的面)。可选地,该开口M可以是通孔,则开口M的第一面A与像素界定层10靠近衬底基板00的一面共面。第二面B在衬底基板00上的正投影位于第一面A在衬底基板00上的正投影的内部。也即是,开口M的侧面C 与第一面A的夹角α为锐角。示例地,参见图1,像素界定层10的纵截面包括多个倒等腰梯形,该纵截面垂直于衬底基板00。或者,像素界定层10的纵截面也可以包括其它形状的倒梯形,例如该倒梯形的一条腰的长度大于另一条腰的长度,本公开实施例对此不作限定。
像素界定层10的每个开口M对应一个像素区域,即每个开口形成有一个子像素。例如,该子像素可以是红色子像素、绿色子像素或蓝色子像素。由于像素界定层的开口的侧面与第一面的夹角为锐角,一方面,使得该侧面与位于开口内的第一电极构成毛细结构,在后续喷墨打印过程中,溶液在毛细结构的作用力下能够较均匀地铺展。另一方面,在开口内进行喷墨打印时,墨水不容易在侧面上攀爬到像素界定层远离衬底基板的一面上,能够有效地抑制墨水的攀爬,从而降低膜层出现咖啡环效应的概率,提升像素区域内墨水成膜的均一性。
请继续参见图1,像素界定层10包括层叠设置的像素界定本体101和电极修复材料层102。电极修复材料层102位于像素界定本体101远离衬底基板00的一侧。该电极修复材料层102用于对第二电极40进行修复。
可选地,第二电极40与电极修复材料层102中的电极材料接触。参见图1,第二电极40为整层结构。
由于像素界定层的开口的侧面与第一面的夹角为锐角,容易导致在像素界定层远离衬底基板的一侧整层制备的第二电极在开口的侧面与第二面的交线处出现断层,导致断路缺陷。本公开实施例通过在像素界定本体远离衬底基板的一面形成电极修复材料层,该电极修复材料层能够对第二电极的断裂位置进行修复,从而提高后续制备的阵列基板的良品率和可靠性。
本公开实施例中,以第一电极为阳极,第二电极为阴极为例进行说明。则发光层30包括沿远离衬底基板00的方向依次设置的空穴注入层(Hole Injection Layer,HIL)、空穴传输层(Hole Tranport Layer,HTL)、有机发光材料层、电子传输层(Electron Transport Layer,ETL)和电子注入层(Electron Injection Layer,EIL)。
综上所述,本公开实施例提供的阵列基板,由于像素界定层的开口的侧面与第一面的夹角为锐角,一方面,使得该侧面与位于开口内的第一电极构成毛细结构,在后续喷墨打印过程中,溶液在毛细结构的作用力下能够较均匀地铺展。另一方面,在开口内进行喷墨打印时,墨水不容易在侧面上攀爬到像素界定层远离衬底基板的一面上,能够有效地抑制墨水的攀爬,从而降低膜层出现 咖啡环效应的概率,提升像素区域内墨水成膜的均一性。另外,本公开实施例通过在像素界定本体远离衬底基板的一面形成电极修复材料层,该电极修复材料层能够对第二电极的断裂位置进行修复,从而提高后续制备的阵列基板的良品率和可靠性。
可选地,图2是本公开实施例提供的一种像素界定层的俯视示意图。图1所示的像素界定层10为图2中的像素界定层10在AA’位置的截面图。如图2所示,该像素界定层10具有阵列排布的多个开口M。例如,该多个开口M在行方向等间隔排布,且在列方向等间隔排布,即该多个开口M呈矩阵状排布,从而实现像素的均匀分布。
可选地,请继续参见图1,电极修复材料层102中包括多个微胶囊1021。图3是本公开实施例提供的一种微胶囊的结构示意图。如图3所示,微胶囊1021包括囊壳1021A,囊壳1021A的内部设置有囊腔,囊腔内填充有电极材料1021B。囊壳1021A的一部分露出像素界定层10远离衬底基板00的一面。
本公开实施例中,由于电极修复材料层中包括多个微胶囊,后续在像素界定层远离衬底基板的一侧整层制备第二电极后,使囊壳破裂,以使囊腔内的电极材料流出到像素界定层远离衬底基板的一面上,对开口的侧面与第二面的交线处的第二电极进行修复,保证了第二电极的导电性能,从而提高后续制备得到的阵列基板的良品率以及可靠性。通过使微胶囊的囊壳的一部分露出像素界定层远离衬底基板的一面,以使得囊壳破裂后,囊腔内的电极材料能够顺利流到像素界定层远离衬底基板的一面上。
可选地,电极材料为纳米银。纳米银具备尺寸效应等特性而且具有较高的表面能,颗粒细腻,柔韧性好,耐摩擦,化学稳定性好,能够减少第二电极之间的空隙,并增加位于像素界定层上的第二电极与位于发光层上的第二电极之间的界面接触,降低二者之间的接触电阻,提高第二电极的整体导电性。
可选地,囊壳的制备材料为掺杂有二氧化钛的有机聚合物。该有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种。也即是,囊壳的制备材料为加入二氧化钛的聚胺、加入二氧化钛的聚酰胺、加入二氧化钛的聚酰亚胺、加入二氧化钛的酚醛树脂、加入二氧化钛的聚氨酯、加入二氧化钛的聚烯烃和加入二氧化钛的聚硅烷中的任一种或者多种的组合。由于囊壳中掺杂有二氧化钛,因此在紫外光(Ultraviolet Rays,UV)的照射下,囊壳会产生破裂,使得囊壳内的电极材料能够流出,操作简单。
可选地,用于制备微胶囊的囊壳的有机聚合物的密度小于像素界定层中像素界定本体的制备材料的密度。使得在采用掺杂有微胶囊的液化材料制备像素界定层时,微胶囊能够上浮,使得囊壳的一部分露出像素界定层的表面(即像素界定层远离衬底基板的一面)。实现通过一次构图工艺制备得到像素界定层,制备工艺简单。
可选地,像素界定本体的制备材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种。
可选地,像素界定层的高度范围为0.5微米至3微米。像素界定层的高度不能过高,否则会影响蒸镀第二电极的连续性,且需要蒸镀过厚的第二电极。像素界定层的高度不能过低,否则在像素区域内进行喷墨打印时,墨水容易越过像素界定层。该像素界定层的高度指该像素界定层靠近衬底基板的一面到远离衬底基板的一面的距离。
综上所述,本公开实施例提供的阵列基板,由于像素界定层的开口的侧面与第一面的夹角为锐角,一方面,使得该侧面与位于开口内的第一电极构成毛细结构,在后续喷墨打印过程中,溶液在毛细结构的作用力下能够较均匀地铺展。另一方面,在开口内进行喷墨打印时,墨水不容易在侧面上攀爬到像素界定层远离衬底基板的一面上,能够有效地抑制墨水的攀爬,从而降低膜层出现咖啡环效应的概率,提升像素区域内墨水成膜的均一性。另外,本公开实施例通过在像素界定本体远离衬底基板的一面形成电极修复材料层,该电极修复材料层能够对第二电极的断裂位置进行修复,从而提高后续制备的阵列基板的良品率和可靠性。
本公开实施例还提供了一种显示装置,包括本公开实施例提供的阵列基板。该显示装置可以是OLED显示装置。
可选地,该显示装置包括电子纸、手机机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
图4是本公开实施例提供的一种阵列基板的制造方法流程图。如图4所示,该方法包括以下工作过程:
在步骤401中,提供衬底基板。
该衬底基板可以为透明基板,其具体可以是采用玻璃、石英或透明树脂等 具有一定硬度的导光且非金属材料制成的基板。
在步骤402中,在衬底基板上形成第一电极。
可选地,采用氧化铟锡(indium tin oxide,ITO)通过一次构图工艺在衬底基板的承载面上形成图案化的第一电极。构图工艺包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
在步骤403中,在形成有第一电极的衬底基板上形成像素界定层。
该像素界定层具有多个开口。该开口具有两个相对面,该两个相对面包括靠近衬底基板的第一面和远离衬底基板的第二面。第二面与像素界定层远离衬底基板的一面共面。该第二面在衬底基板上的正投影位于第一面在衬底基板上的正投影的内部。该像素界定层包括层叠设置的像素界定本体和电极修复材料层,该电极修复材料层位于像素界定本体远离衬底基板的一侧。
可选地,步骤403的实现过程包括以下步骤403A至步骤403C,该工艺流程如图5所示:
在步骤403A中,采用掺杂有微胶囊1021的液化材料,在形成有第一电极20的衬底基板00上形成液化材料层P。
该微胶囊的囊腔内填充有电极材料。该微胶囊的囊壳的密度小于液化材料的密度。可以通过涂覆方式在衬底基板形成有第一电极的一侧形成液化材料层。该液化材料层的厚度范围为0.5微米至3微米。液化材料层的厚度指液化材料层远离衬底基板的一面到液化材料层靠近衬底基板的一面的距离。
可选地,电极材料为纳米银。囊壳的制备材料为掺杂有二氧化钛的有机聚合物。该有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种。液化材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种。
在步骤403B中,在微胶囊1021的囊壳的一部分露出液化材料层P远离衬底基板00的一面后,对液化材料层P进行固化处理,得到固化材料层Q。
由于微胶囊的囊壳的密度小于液化材料的密度,在形成的液化材料层静置一段时间后,微胶囊会上浮至液化材料层的表面,使得微胶囊的囊壳露出液化材料层的表面。
在步骤403C中,通过构图工艺对固化材料层Q进行图案化处理,得到像素界定层10。
可选地,当液化材料为正性光刻胶时,固化材料层需要曝光的区域为像素 界定层的开口区域(即像素区域)。可以从衬底基板未形成有膜层的一侧对固化材料层进行曝光。由于感光材料能够吸收一定成分的光,当使用一定剂量的光从衬底基板未形成有膜层的一侧对固化材料层进行曝光时,从固化材料层靠近衬底基板的表面到固化材料层远离衬底基板的表面,其曝光程度呈逐渐减弱的趋势。进而在显影过程中,固化材料层在距离衬底基板由近至远方向上与显影液的反应程度也相应减小,也即是,固化材料层在距离衬底基板由近至远方向上被去除的部分逐渐减小,使得显影后得到的像素界定层的纵截面包括如图1所示的多个倒梯形。
在步骤404中,在形成有像素界定层的衬底基板上形成发光层。
可选地,第一电极为阳极,第二电极为阴极。步骤404的实现过程包括以下步骤404A至步骤404B:
在步骤404A中,通过喷墨打印的方式在像素界定层的开口内依次形成空穴注入层、空穴传输层和有机发光材料层。
参见图1,由于像素界定层的开口的侧面与第一面的夹角为锐角,一方面,使得该侧面与位于开口内的第一电极构成毛细结构,在后续喷墨打印过程中,溶液在毛细结构的作用力下能够较均匀地铺展。另一方面,在开口内进行喷墨打印时,墨水不容易在侧面上攀爬到像素界定层远离衬底基板的一面上,能够有效地抑制墨水的攀爬,从而降低膜层出现咖啡环效应的概率,提升像素区域内墨水成膜的均一性。也即是,提高了采用喷墨打印技术形成的空穴注入层、空穴传输层和有机发光材料层的膜层均一性。
在步骤404B中,通过蒸镀的方式在有机发光材料层远离衬底基板的一侧依次形成电子传输层和电子注入层。
在步骤405中,在形成有发光层的衬底基板上形成第二电极,该第二电极与像素界定层的电极修复材料层中的电极材料接触。
可选地,通过蒸镀的方式在像素界定层远离衬底基板的一侧整面形成第二电极。第一电极和第二电极分别为阳极和阴极中的一极。
在步骤406中,采用电极修复材料层对第二电极进行修复。
可选地,电极修复材料层中微胶囊的囊壳的制备材料为掺杂有二氧化钛的有机聚合物。在像素界定层远离衬底基板的一侧形成第二电极后,采用紫外光照射像素界定层远离衬底基板的一侧,使微胶囊的囊壳破裂,以使微胶囊中的电极材料流出与第二电极接触。
由于像素界定层的开口的侧面与第一面的夹角为锐角,容易导致在像素界定层远离衬底基板的一侧整层制备的第二电极在开口的侧面与第二面的交线处出现断层,导致断路缺陷。本公开实施例通过在像素界定本体远离衬底基板的一面形成电极修复材料层,该电极修复材料层能够对第二电极的断裂位置进行修复,从而提高后续制备的阵列基板的良品率和可靠性。
需要说明的是,本公开实施例提供的阵列基板的制造方法的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的阵列基板的制造方法,由于像素界定层的侧面与位于像素区域内的第一电极的夹角为锐角,使得像素界定层的侧面与位于像素区域内的第一电极构成毛细结构。在喷墨打印过程中,溶液在毛细结构的作用力下能够较均匀地铺展,且由于像素界定层的侧面倾斜设置,在像素区域内进行喷墨打印时,墨水不容易在侧面上攀爬到像素界定层远离衬底基板的第二面上,能够有效地抑制墨水的攀爬,从而降低膜层出现咖啡环效应的概率,提高像素区域内墨水成膜的均一性。另外,由于像素界定层的侧面与第二面的夹角为锐角,容易导致在像素界定层远离衬底基板的一侧整层制备的第二电极在像素界定层的侧面与第二面的交线处出现断层,导致断路缺陷。本公开实施例通过在像素界定本体远离衬底基板的一面形成电极修复材料层,该电极修复材料层能够对第二电极的断裂位置进行修复,从而提高阵列基板的良品率和可靠性。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本公开中,术语“第一”和“第二”仅用于描述目的,而不能理解为指 示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
显然,本公开的上述实施例仅仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本公开的技术方案所引伸出的显而易见的变化或变动仍处于本公开的保护范围之列。

Claims (20)

  1. 一种阵列基板,包括:衬底基板(00),以及依次设置在所述衬底基板(00)上的第一电极(20)、像素界定层(10)、发光层(30)和第二电极(40),所述像素界定层(10)具有多个开口,所述开口具有两个相对面,所述两个相对面包括靠近所述衬底基板(00)的第一面和远离所述衬底基板(00)的第二面,所述第二面与所述像素界定层(10)远离所述衬底基板(00)的一面共面,所述第二面在所述衬底基板(00)上的正投影位于所述第一面在所述衬底基板(00)上的正投影的内部;
    其中,所述像素界定层(10)包括层叠设置的像素界定本体(101)和电极修复材料层(102),所述电极修复材料层(102)位于所述像素界定本体(101)远离所述衬底基板(00)的一侧,所述电极修复材料层(102)用于对所述第二电极(40)进行修复,所述第一电极(20)和所述第二电极(40)中的一个电极为阴极,另一个电极为阳极。
  2. 根据权利要求1所述的阵列基板,所述电极修复材料层(102)中包括微胶囊(1021),所述微胶囊(1021)的囊腔内填充有电极材料,所述微胶囊(1021)的囊壳的一部分露出所述像素界定层(10)远离所述衬底基板(00)的一面。
  3. 根据权利要求2所述的阵列基板,所述电极材料为纳米银。
  4. 根据权利要求2或3所述的阵列基板,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物。
  5. 根据权利要求4所述的阵列基板,所述有机聚合物的密度小于所述像素界定本体(101)的制备材料的密度。
  6. 根据权利要求4或5所述的阵列基板,所述有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种。
  7. 根据权利要求1至6任一所述的阵列基板,所述像素界定本体(101) 的制备材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种。
  8. 根据权利要求1至7任一所述的阵列基板,所述像素界定层(10)的高度范围为0.5微米至3微米。
  9. 根据权利要求1至8任一所述的阵列基板,所述像素界定层(10)的纵截面包括多个倒等腰梯形,所述纵截面垂直于所述衬底基板(00)。
  10. 根据权利要求1至9任一所述的阵列基板,所述第二电极(40)与所述电极修复材料层(102)中的电极材料接触。
  11. 根据权利要求1至10任一所述的阵列基板,所述第一电极(20)为阳极,所述第二电极(40)为阴极。
  12. 根据权利要求1至11任一所述的阵列基板,所述第二电极(40)为整层结构。
  13. 根据权利要求3所述的阵列基板,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物;
    所述有机聚合物的密度小于所述像素界定本体(101)的制备材料的密度;
    所述有机聚合物包括聚胺、聚酰胺、聚酰亚胺、酚醛树脂、聚氨酯、聚烯烃和聚硅烷中的至少一种;
    所述像素界定本体(101)的制备材料包括氟化聚甲基丙烯酸甲酯和氟化聚酰亚胺中的至少一种;
    所述像素界定层(10)的纵截面包括多个倒等腰梯形,所述纵截面垂直于所述衬底基板(00);
    所述第二电极(40)与所述电极修复材料层(102)中的电极材料接触;
    所述第一电极(20)为阳极,所述第二电极(40)为阴极,所述第二电极(40)为整层结构。
  14. 一种显示装置,包括:如权利要求1至13任一所述的阵列基板。
  15. 根据权利要求14所述的显示装置,所述显示装置为有机发光二极管OLED显示装置。
  16. 一种阵列基板的制造方法,所述方法包括:
    提供衬底基板;
    在所述衬底基板上形成第一电极;
    在形成有所述第一电极的衬底基板上形成像素界定层,所述像素界定层具有多个开口,所述开口具有两个相对面,所述两个相对面包括靠近所述衬底基板的第一面和远离所述衬底基板的第二面,所述第二面与所述像素界定层远离衬底基板的一面共面,所述第二面在所述衬底基板上的正投影位于所述第一面在所述衬底基板上的正投影的内部,所述像素界定层包括层叠设置的像素界定本体和电极修复材料层,所述电极修复材料层位于所述像素界定本体远离所述衬底基板的一侧;
    在形成有所述像素界定层的衬底基板上形成发光层;
    在形成有所述发光层的衬底基板上形成第二电极;
    采用所述电极修复材料层对所述第二电极进行修复;
    其中,所述第一电极和所述第二电极中的一个电极为阴极,另一个电极为阳极。
  17. 根据权利要求16所述的制造方法,在形成有所述第一电极的衬底基板上形成像素界定层,包括:
    采用掺杂有微胶囊的液化材料,在形成有所述第一电极的衬底基板上形成液化材料层,所述微胶囊的囊腔内填充有电极材料,所述微胶囊的囊壳的密度小于所述液化材料的密度;
    在所述微胶囊的囊壳的一部分露出所述液化材料层远离所述衬底基板的一面后,对所述液化材料层进行固化处理,得到固化材料层;
    通过构图工艺对所述固化材料层进行图案化处理,得到所述像素界定层。
  18. 根据权利要求17所述的制造方法,所述囊壳的制备材料为掺杂有二氧化钛的有机聚合物,所述采用所述电极修复材料层对所述第二电极进行修复,包括:
    采用紫外光照射所述像素界定层远离所述衬底基板的一侧,使所述微胶囊的囊壳破裂,以使所述微胶囊中的电极材料流出与所述第二电极接触。
  19. 根据权利要求16至18任一所述的制造方法,所述在形成有所述发光层的衬底基板上形成第二电极,包括:
    通过蒸镀的方式在所述像素界定层远离所述衬底基板的一侧整面形成所述第二电极。
  20. 根据权利要求16至19任一所述的制造方法,所述第一电极为阳极,所述第二电极为阴极,所述在形成有所述像素界定层的衬底基板上形成发光层,包括:
    通过喷墨打印的方式在所述像素界定层的开口内依次形成空穴注入层、空穴传输层和有机发光材料层;
    通过蒸镀的方式在所述有机发光材料层远离所述衬底基板的一侧依次形成电子传输层和电子注入层。
PCT/CN2020/096876 2019-06-19 2020-06-18 阵列基板及其制造方法、显示装置 WO2020253793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,290 US11588130B2 (en) 2019-06-19 2020-06-18 Array substrate, method of manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910533607.9 2019-06-19
CN201910533607.9A CN110233169B (zh) 2019-06-19 2019-06-19 像素界定层、显示装置、阵列基板及其制造方法

Publications (1)

Publication Number Publication Date
WO2020253793A1 true WO2020253793A1 (zh) 2020-12-24

Family

ID=67856264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096876 WO2020253793A1 (zh) 2019-06-19 2020-06-18 阵列基板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11588130B2 (zh)
CN (1) CN110233169B (zh)
WO (1) WO2020253793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333625A (zh) * 2021-08-06 2022-04-12 友达光电股份有限公司 显示装置及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233169B (zh) * 2019-06-19 2021-08-03 京东方科技集团股份有限公司 像素界定层、显示装置、阵列基板及其制造方法
CN114854418A (zh) * 2022-03-28 2022-08-05 北京京东方技术开发有限公司 量子点混合物、图案化的方法、量子点膜及发光器件
CN115224071A (zh) * 2022-07-21 2022-10-21 厦门天马微电子有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165906A (zh) * 2006-10-19 2008-04-23 元太科技工业股份有限公司 薄膜晶体管阵列基板及电子墨水显示装置
JP4826119B2 (ja) * 2005-03-31 2011-11-30 凸版印刷株式会社 有機el素子の製造方法
US20160020404A1 (en) * 2014-07-10 2016-01-21 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same
CN109509782A (zh) * 2019-01-02 2019-03-22 京东方科技集团股份有限公司 像素界定层及其制造方法、自发光显示面板、显示装置
CN110233169A (zh) * 2019-06-19 2019-09-13 京东方科技集团股份有限公司 像素界定层、显示装置、阵列基板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095425A (ja) * 2005-09-28 2007-04-12 Seiko Epson Corp 成膜方法および機能性膜、並びに電気光学装置
JP6248288B2 (ja) * 2014-11-27 2017-12-20 株式会社Joled 表示装置および表示装置の製造方法
CN106409152B (zh) * 2016-09-26 2019-03-08 昆山工研院新型平板显示技术中心有限公司 一种金属线、金属线自修复的方法以及柔性显示屏
CN107706317A (zh) 2017-09-26 2018-02-16 京东方科技集团股份有限公司 一种oled显示基板的制备方法
CN109994643B (zh) * 2018-01-02 2021-02-02 京东方科技集团股份有限公司 有机发光二极管器件及其制造方法、显示基板、显示装置
CN108172605B (zh) * 2018-01-03 2020-11-03 京东方科技集团股份有限公司 有机发光二极管基板及其制备方法、显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826119B2 (ja) * 2005-03-31 2011-11-30 凸版印刷株式会社 有機el素子の製造方法
CN101165906A (zh) * 2006-10-19 2008-04-23 元太科技工业股份有限公司 薄膜晶体管阵列基板及电子墨水显示装置
US20160020404A1 (en) * 2014-07-10 2016-01-21 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same
CN109509782A (zh) * 2019-01-02 2019-03-22 京东方科技集团股份有限公司 像素界定层及其制造方法、自发光显示面板、显示装置
CN110233169A (zh) * 2019-06-19 2019-09-13 京东方科技集团股份有限公司 像素界定层、显示装置、阵列基板及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333625A (zh) * 2021-08-06 2022-04-12 友达光电股份有限公司 显示装置及其制造方法
CN114333625B (zh) * 2021-08-06 2024-04-12 友达光电股份有限公司 显示装置及其制造方法

Also Published As

Publication number Publication date
US20210399256A1 (en) 2021-12-23
CN110233169A (zh) 2019-09-13
CN110233169B (zh) 2021-08-03
US11588130B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2020253793A1 (zh) 阵列基板及其制造方法、显示装置
US10886343B2 (en) Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
US9466650B2 (en) Display panel with pixel defining layer and manufacturing method of pixel defining layer
US11114514B2 (en) Organic electroluminescent display panel, manufacturing method thereof, and display device
US10115775B2 (en) OLED display device and manufacturing method thereof, and display apparatus
US9825256B2 (en) Display panel having a top surface of the conductive layer coplanar with a top surface of the pixel define layer
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
WO2022016658A1 (zh) 一种显示面板及其制备方法、显示装置
US20160293683A1 (en) Pixel unit and method of manufacturing the same, light emitting device and display device
US20190051712A1 (en) Base plate, method for manufacturing the same and display panel
US9054345B2 (en) Pixel defining layer, preparation method thereof, organic light-emitting diode substrate and display
WO2017012309A1 (zh) 有机电致发光显示基板及制备方法、显示面板、显示装置
US11495779B2 (en) Pixel defining layer and manufacturing method thereof, array substrate and display device
US10505138B2 (en) Organic light-emitting diode structure
WO2020238410A1 (zh) 像素界定层和制作方法、显示面板和制作方法、显示装置
CN107275513B (zh) Oled器件阴极和显示面板的制作方法、显示面板及显示装置
CN109887960B (zh) 阵列基板及其制备方法
WO2020248979A1 (zh) 像素界定层及其制作方法、显示面板
JP2007206686A (ja) カラーフィルタ製造方法
WO2021258474A1 (zh) 显示面板及其制造方法
US11539020B2 (en) Display substrate and preparation method thereof, and display apparatus
US20220271108A1 (en) Display Substrate, Ink Jet Printing Method Thereof and Display Apparatus
US20210335966A1 (en) Oled display panel, manufacturing method thereof, and oled display device
WO2021223298A1 (zh) Oled像素排布结构、oled显示面板及显示面板的制作方法
US20220190066A1 (en) Method of manufacturing display panel and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827132

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.07.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20827132

Country of ref document: EP

Kind code of ref document: A1