WO2020253432A1 - 有源矩阵式有机发光显示器的反射阳极及制作方法 - Google Patents

有源矩阵式有机发光显示器的反射阳极及制作方法 Download PDF

Info

Publication number
WO2020253432A1
WO2020253432A1 PCT/CN2020/090723 CN2020090723W WO2020253432A1 WO 2020253432 A1 WO2020253432 A1 WO 2020253432A1 CN 2020090723 W CN2020090723 W CN 2020090723W WO 2020253432 A1 WO2020253432 A1 WO 2020253432A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
metal
layer
thickness
photoresist
Prior art date
Application number
PCT/CN2020/090723
Other languages
English (en)
French (fr)
Inventor
杨建兵
秦昌兵
张阳
彭劲松
殷照
Original Assignee
南京国兆光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京国兆光电科技有限公司 filed Critical 南京国兆光电科技有限公司
Publication of WO2020253432A1 publication Critical patent/WO2020253432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • the invention relates to a reflective anode electrode structure and a manufacturing method, in particular to a manufacturing method of a reflective anode electrode used in an organic light-emitting device and a reflective anode electrode manufactured by the method.
  • An organic light emitting diode (OLED) display is a self-luminous display device that displays images by using organic light emitting diodes that emit light. Light is produced by controlling the energy generated when excitons fall back from an excited state. Excitons are generated by combining electrons and holes in the organic emission layer.
  • an organic light emitting diode display includes a transistor drive matrix and an organic light emitting diode display unit.
  • the display size of an organic light-emitting diode display manufactured using monocrystalline silicon as a substrate is usually less than 1 inch, and belongs to a miniature active matrix organic light-emitting diode display. In order to realize the higher resolution of the micro display device, the size of the anode pixel of the device is usually on the order of 2um to 20um.
  • a silicon substrate is used as a substrate, and a top-emitting organic light-emitting diode device needs to be fabricated.
  • Patent CN 101459226 and others report the use of Al, Mo, Cr, Ti, etc. as anodes, but materials such as Mo and Cr are usually not used in semiconductor foundries. Therefore, in order to achieve compatibility between the OLED electrode process and the foundry process, while also achieving high-performance OLED device processes, new electrode structures and manufacturing processes need to be developed.
  • the purpose of the present invention is to solve the problem that the current organic light-emitting diode anode cannot be produced on a large scale due to the materials used, and to invent a two-time patterning metal method that can be manufactured using Al and TiN commonly used in semiconductor foundries
  • the OLED device reflects the anode while providing its manufacturing method.
  • the method is compatible with the semiconductor foundry process, and the reflective anode produced meets the following conditions: firstly, it has high reflectivity, secondly maintains stability in the air, and thirdly has extremely low surface roughness, which meets the requirements of AMOLED devices Process requirements.
  • a reflective anode for an active matrix organic light-emitting display which is characterized in that it is composed of a substrate 4 and a first metal layer 1, a second metal layer 2 and a filling material 3 which are sequentially grown on the substrate 4.
  • the filling material 3 is filled in In the groove of the second metal layer 2, the second metal layer 1 is separated into pixel electrodes separated from each other, and the first metal layer 2 is deposited on the second metal layer 1.
  • the substrate 4 is silicon wafer or glass.
  • the material of the second metal layer 2 is aluminum with a thickness of 100 nm to 700 nm; the material of the first metal layer 1 is titanium nitride with a thickness of 5 nm to 20 nm.
  • the thickness of the filling material 3 is 100 nm to 700 nm; the material used is inorganic material SiO2.
  • a second metal layer with grooves is deposited and prepared, and the thickness of the second metal layer is controlled to be 100 nm to 500 nm;
  • step (3) After the production of step (2) is completed, a chemical vapor deposition method is used to deposit a layer of SiO 2 to fill the trench.
  • the thickness of the SiO 2 deposition layer should be greater than the thickness of the second metal layer;
  • step (3) polish the SiO 2 layer on top of the second metal layer until the metal anode layer is exposed;
  • step (4) use the sputtering metal deposition method to deposit and prepare the first metal layer at the position corresponding to the patterned positive plate of the second metal layer, and control the thickness of the first metal layer to be 5nm-20nm, Spin-coating i-line photoresist on the first metal layer, perform exposure and development, and realize the required anode electrode pattern on the photoresist; then dry etching is used to etch the metal film, and finally The photoresist is removed to realize the patterning of the metal thin film.
  • the first metal layer and the second metal layer are formed by a two-time patterning method.
  • the invention realizes the process compatibility between the OLED electrode process and the foundry, and can also realize the high-performance OLED device process.
  • the electrode of the invention has simple structure, good reliability, simple and easy manufacturing process, which is beneficial to improve production efficiency, increase yield, and reduce process cost.
  • Figure 1 is a schematic diagram of the anode structure of the present invention.
  • a reflective anode of an active matrix organic light-emitting display which is prepared by the following method:
  • the metal Al layer 2 is deposited and prepared, and the thickness of the Al layer is 100 nm to 500 nm.
  • i-line photoresist is spin-coated, and the steps of exposure and development are performed to realize the required anode electrode pattern on the photoresist. Then, dry etching is used to etch the metal film, and finally the photoresist is removed to realize the patterning of the metal film.
  • step (3) After the production of step (2) is completed, a SiO 2 layer is deposited using methods such as chemical vapor deposition to fill the gap between the metal anodes to form the filling material 3.
  • step (3) the SiO 2 layer deposited on the surface of the second metal layer (top of the back plate) is polished until the metal anode Al layer 1 is exposed.
  • the first metal layer 1 (metal TiN layer) is deposited and prepared, and the thickness of the TiN layer is 5 nm-20 nm.
  • i-line photoresist is spin-coated, and the process of exposure and development is performed to realize the required anode electrode pattern on the photoresist.
  • dry etching is used to etch the metal film, and finally the photoresist is removed to realize the patterning of the metal film.
  • the anode structure shown in Figure 1 is obtained, which is composed of a substrate 4, a first metal layer 1, a second metal layer 2 and a filler 3 located between the electrodes, which are sequentially grown on the substrate 4 (silicon wafer or glass) ,
  • the filling material 3 is filled in the groove of the second metal layer 2 and separates the first metal layer 1 into pixel electrodes separated from each other.
  • the first metal layer is deposited on the second metal layer, and the second metal layer 2
  • the material is aluminum with a thickness of 100 nm to 700 nm; the material of the first metal layer 1 is titanium nitride with a thickness of 5 nm to 20 nm.
  • the thickness of the filling material 3 is 100 nm to 700 nm; the material used is inorganic material SiO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有源矩阵式有机发光显示器中的反射阳极的结构和制作方法,其特征是采用两次图形化方法形成反射阳极,由基板(4)和依次生长在基板(4)上第一金属层(1)、第二金属层(2)和填充材料(3)组成,填充材料(3)填充在第二金属层(2)上的开槽中,并将第二金属层(1)分隔成一个个相互隔离的像素电极,第一金属层沉积在第二金属层上。本发明实现了OLED电极工艺与代工厂之间的工艺兼容,同时具有高反射率、高空气稳定性、低表面粗糙度等特点,能够实现高性能的OLED器件工艺。

Description

有源矩阵式有机发光显示器的反射阳极及制作方法 技术领域
本发明涉及一种反射阳极电极结构及制造方法,具体涉及一种用于有机发光装置的反射阳极电极的制造方法及由该方法制造的反射阳极电极。
背景技术
有机发光二极管(OLED)显示器是一种通过使用发光的有机发光二极管来显示图像的自发光显示装置。通过控制激子从激发态回落时产生的能量来产生光。通过电子和空穴在有机发射层中结合来产生激子。通常有机发光二极管显示器包括晶体管驱动矩阵和有机发光二极管显示单元。
使用单晶硅作为衬底制作晶体管驱动矩阵,由于单晶硅具有非常高的迁移率,所以可以实现非常高的分辨率。使用单晶硅作为衬底制作的有机发光二极管显示器的显示尺寸通常小于1英寸,属于微型有源矩阵有机发光二极管显示器。为了实现微显示器件的较高分辨率,通常器件的阳极像素大小在2um~20um的量级。同时使用硅基板作为衬底,需要制作顶发射的有机发光二极管器件。因此希望器件阳极,第一要具有较高的反射率,第二要保持空气中的稳定性,第三要具有极低的表面粗糙度。专利CN 101459226等报道使用Al、Mo、Cr、Ti等作为阳极使用,但是Mo、Cr等材料在半导体代工厂中通常不使用。因此为了实现OLED电极工艺与代工厂工艺实现兼容,同时还能实现高性能的OLED器件工艺,需要开发新型的电极结构和制作工艺。
发明内容
本发明的目的是针对目前的有机发光二极管阳极因所使用的材料不能实现规模化生产的问题,发明一种两次图形化金属方法,能使用半导体代工厂中的通常使用的Al和TiN制造的OLED器件反射阳极,同时提供其制作方法。该方法实现与半导体代工厂工艺兼容,同时制作的反射阳极满足以下条件:第一具有较高的反射率,第二保持空气中的稳定性,第三具有极低的表面粗糙度,满足AMOLED器件工艺要求。
本发明的技术方案之一是:
一种有源矩阵式有机发光显示器的反射阳极,其特征是它由基板4和依次生长在基板4上的第一金属层1、第二金属层2和填充材料3组成,填充材料3填充在第二金属层2的开槽中,并将第二金属层1分隔成一个个相互隔离的像素电极,第一金属层2沉积在第二金属层1上。
所述的基板4为硅片或玻璃。
所述的第二金属层2材料为铝,厚度为100nm~700nm;第一金属层1材料为氮化钛,厚度为5nm~20nm。
所述的填充材料3的厚度为100nm~700nm;所用的材料为无机材料SiO2。
本发明的技术方案之二是:
一种有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是它包括以下步骤:
(1)在基板上使用溅射金属沉积的方法,沉积制备出带沟槽的第二金属层,控制第二金属层的厚度为100nm~500nm;
(2)在第二金属层上旋涂上i-line的光刻胶,进行曝光显影工序,在光刻胶上形成需要的阳极电极图形;然后使用干法刻蚀方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现第一金属层的图形化;
(3)在步骤(2)制作完成之后,使用化学汽相沉积方法,沉积一层SiO 2层将沟槽填充,SiO 2沉积层的厚度应大于第二金属层的厚度;
(4)在步骤(3)之后,对第二金属层顶部的SiO 2层进行抛光,直到露出金属阳极层;
(5)在步骤(4)之后,使用溅射金属沉积的方法,在第二金属层的图形化阳板对应位置处沉积制备第一金属层,控制第一金属层的厚度为5nm~20nm,在第一金属层上旋涂上i-line的光刻胶,进行曝光显影,在光刻胶上实现需要的阳极电极图形;然后使用干法刻蚀,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。
所述的第一金属层和第二金属层采用两次图形化方法形成。
本发明的有益效果是:
本发明实现了OLED电极工艺与代工厂之间的工艺兼容,同时还能实现 高性能的OLED器件工艺。
本发明电极结构简单,可靠性好,制造工艺简单易行,有利于提高生产效率,提高成品率,降低工艺成本。
附图说明
图1是本发明阳极结构示意图。
具体实施方式
下面结构附图和实施例对本发明作进一步的说明。
如图1所示:
一种有源矩阵式有机发光显示器的反射阳极,它采用以下方法制备而成:
(1)在硅基(或玻璃)底板4上使用溅射金属沉积的方法,沉积制备金属Al层2,Al层的厚度为100nm~500nm。
(2)在金属Al层2上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。
(3)在步骤(2)制作完成之后,使用化学汽相沉积等方法,沉积一层SiO 2层,用于将金属阳极之间的间隙填充,形成填充材料3。
(4)在步骤(3)之后,对沉积在第二金属层表面(背板顶部)的SiO 2层进行抛光,直到露出金属阳极Al层1停止。
(5)在步骤(4)之后,使用溅射金属沉积的方法,沉积制备第一金属层1(金属TiN层),TiN层的厚度为5nm~20nm。在金属TiN层上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。并得到如图1所示的阳极结构,它由基板4和依次生长在基板4(硅片或玻璃)上的第一金属层1、第二金属层2和位于电极之间的填充材料3组成,填充材料3填充在第二金属层2的开槽中,并将第一金属层1分隔成一个个相互隔离的像素电极,第一金属层沉积在第二金属层上,第二金属层2材料为铝,厚度为100nm~700nm;第一金属层1材料为氮化钛,厚度为5nm~20nm。所述的填充材料3的厚度为100nm~700nm;所用的材料为无机材料SiO 2
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (6)

  1. 一种有源矩阵式有机发光显示器的反射阳极,其特征是它由基板(4)和依次生长在基板(4)上第一金属层(1)、第二金属层(2)和填充材料(3)组成,填充材料(3)填充在第二金属层(2)上的开槽中,并将第二金属层(1)分隔成一个个相互隔离的像素电极,第一金属层沉积在第二金属层上。
  2. 如权利要求1所述的反射阳极,其特征是所述的基板(4)为硅片或玻璃。
  3. 如权利要求1所述的反射阳极,其特征是所述的第二金属层(2)材料为铝,厚度为100nm~700nm;第一金属层(1)材料为氮化钛,厚度为5nm~20nm。
  4. 如权利要求1所述的反射阳极,其特征是所述的填充材料(3)的厚度为100nm~700nm;所用的材料为无机材料SiO 2
  5. 一种权利要求1所述的有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是它包括以下步骤:
    (1)在基板上使用溅射金属沉积的方法,沉积制备出带沟槽的第二金属层,控制第二金属层的厚度为100nm~500nm;
    (2)在第二金属层上旋涂上i-line的光刻胶,进行曝光显影工序,在光刻胶上形成需要的阳极电极图形;然后使用干法刻蚀方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现第一金属层的图形化;
    (3)在步骤(2)制作完成之后,使用化学汽相沉积方法,沉积一层SiO 2层将沟槽填充,SiO 2沉积层的厚度应大于第二金属层的厚度;
    (4)在步骤(3)之后,对第二金属层顶部的SiO 2层进行抛光,直到露出金属阳极层;
    (5)在步骤(4)之后,使用溅射金属沉积的方法,在第二金属层的图形化阳板对应位置处沉积制备第一金属层,控制第一金属层的厚度为5nm~20nm,在第一金属层上旋涂上i-line的光刻胶,进行曝光显影,在光刻胶上实现需要的阳极电极图形;然后使用干法刻蚀,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。
  6. 根据权利要求5所述的方法,其特征是所述的第一金属层和第二金属层采用两次图形化方法形成。
PCT/CN2020/090723 2019-06-17 2020-05-17 有源矩阵式有机发光显示器的反射阳极及制作方法 WO2020253432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910519503.2A CN110246982A (zh) 2019-06-17 2019-06-17 有源矩阵式有机发光显示器的反射阳极及制作方法
CN201910519503.2 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020253432A1 true WO2020253432A1 (zh) 2020-12-24

Family

ID=67887399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090723 WO2020253432A1 (zh) 2019-06-17 2020-05-17 有源矩阵式有机发光显示器的反射阳极及制作方法

Country Status (2)

Country Link
CN (1) CN110246982A (zh)
WO (1) WO2020253432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675344A (zh) * 2021-08-20 2021-11-19 电子科技大学 有机光电探测器用金属电极材料及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246982A (zh) * 2019-06-17 2019-09-17 南京国兆光电科技有限公司 有源矩阵式有机发光显示器的反射阳极及制作方法
CN211654862U (zh) * 2019-12-13 2020-10-09 南京国兆光电科技有限公司 一种硅基有源矩阵式有机发光显示器的反射阳极结构
CN112310178B (zh) * 2020-10-27 2022-05-03 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法与显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735289A (zh) * 2004-08-13 2006-02-15 株式会社半导体能源研究所 用发光元件的发光器件、发光元件的驱动方法及照明设备
CN101593766A (zh) * 2008-05-28 2009-12-02 三星移动显示器株式会社 有机发光显示装置
US20140361261A1 (en) * 2013-06-07 2014-12-11 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN104934548A (zh) * 2015-06-04 2015-09-23 中国电子科技集团公司第五十五研究所 有源矩阵式有机发光显示器的反射阳极及制作方法
CN107331786A (zh) * 2017-06-23 2017-11-07 安徽熙泰智能科技有限公司 Oled微显示器件阳极结构及该阳极结构的制造方法
CN110246982A (zh) * 2019-06-17 2019-09-17 南京国兆光电科技有限公司 有源矩阵式有机发光显示器的反射阳极及制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590269B1 (ko) * 2004-05-10 2006-06-19 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그의 제조 방법
KR100810640B1 (ko) * 2007-03-07 2008-03-06 삼성에스디아이 주식회사 유기전계발광표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735289A (zh) * 2004-08-13 2006-02-15 株式会社半导体能源研究所 用发光元件的发光器件、发光元件的驱动方法及照明设备
CN101593766A (zh) * 2008-05-28 2009-12-02 三星移动显示器株式会社 有机发光显示装置
US20140361261A1 (en) * 2013-06-07 2014-12-11 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN104934548A (zh) * 2015-06-04 2015-09-23 中国电子科技集团公司第五十五研究所 有源矩阵式有机发光显示器的反射阳极及制作方法
CN107331786A (zh) * 2017-06-23 2017-11-07 安徽熙泰智能科技有限公司 Oled微显示器件阳极结构及该阳极结构的制造方法
CN110246982A (zh) * 2019-06-17 2019-09-17 南京国兆光电科技有限公司 有源矩阵式有机发光显示器的反射阳极及制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675344A (zh) * 2021-08-20 2021-11-19 电子科技大学 有机光电探测器用金属电极材料及制备方法
CN113675344B (zh) * 2021-08-20 2023-09-05 电子科技大学 有机光电探测器用金属电极材料及制备方法

Also Published As

Publication number Publication date
CN110246982A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020253432A1 (zh) 有源矩阵式有机发光显示器的反射阳极及制作方法
WO2021114573A1 (zh) 一种硅基有源矩阵式有机发光显示器的反射阳极结构
WO2016074554A1 (zh) 一种像素单元及其制备方法、发光器件、显示装置
WO2018107524A1 (zh) Tft背板及其制作方法
US11081680B2 (en) Pixel structure, method for forming the same, and display screen
CN104934548A (zh) 有源矩阵式有机发光显示器的反射阳极及制作方法
US20100065831A1 (en) Hybrid organic light-emitting transistor device and manufacturing method thereof
WO2013127180A1 (zh) Oled器件、amoled显示器件及其制造方法
WO2015062297A1 (zh) 发光器件、阵列基板、显示装置及发光器件的制造方法
WO2014146364A1 (zh) 掩膜板、oled透明显示面板及其制造方法
TWI503051B (zh) 有機發光二極體及其製備方法
WO2018086194A1 (zh) 用于打印oled显示器件的凹槽结构及oled显示器件的制作方法
WO2021120324A1 (zh) 一种显示面板及其制备方法
WO2018112992A1 (zh) 有机发光器件及其制作方法
WO2018090444A1 (zh) Oled基板及其制作方法
CN111341943A (zh) 用于制造oled微型显示器的像素的方法
JP2018536961A (ja) 有機エレクトロルミネッセンス素子及びその作製方法、表示装置
TWI239790B (en) Organic light-emitting device and fabrication method thereof
CN113793908A (zh) 一种硅基有源矩阵式有机发光显示器及其制作方法
WO2020007268A1 (zh) 发光二极管及其制备方法、显示装置
CN107394056B (zh) 一种硅基发光器件电极结构及其制备工艺
CN116018034A (zh) 一种显示器件像素电极结构的制备方法
KR20030014062A (ko) 유기 el 소자의 격벽 제조방법
CN111048698B (zh) 一种有机发光二极管结构的制造方法
JP2005258361A (ja) パネル基板、表示パネル、有機elパネル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825809

Country of ref document: EP

Kind code of ref document: A1