WO2020007268A1 - 发光二极管及其制备方法、显示装置 - Google Patents

发光二极管及其制备方法、显示装置 Download PDF

Info

Publication number
WO2020007268A1
WO2020007268A1 PCT/CN2019/094260 CN2019094260W WO2020007268A1 WO 2020007268 A1 WO2020007268 A1 WO 2020007268A1 CN 2019094260 W CN2019094260 W CN 2019094260W WO 2020007268 A1 WO2020007268 A1 WO 2020007268A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition layer
layer
metal transition
metal
cathode
Prior art date
Application number
PCT/CN2019/094260
Other languages
English (en)
French (fr)
Inventor
禹钢
陈卓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to KR1020207030765A priority Critical patent/KR20200133798A/ko
Priority to US16/630,595 priority patent/US11133487B2/en
Priority to JP2020560220A priority patent/JP7409584B2/ja
Priority to EP19830773.8A priority patent/EP3819957A4/en
Priority to KR1020227016075A priority patent/KR102673280B1/ko
Publication of WO2020007268A1 publication Critical patent/WO2020007268A1/zh
Priority to US17/411,691 priority patent/US11716871B2/en
Priority to US18/312,313 priority patent/US20230276653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a light emitting diode, a method for manufacturing the same, and a display device including the light emitting diode.
  • AMOLED Active-Matrix Organic Light Emitting Diode
  • an embodiment of the present disclosure provides a light emitting diode including an anode, a light emitting layer, an electron transport layer, a cathode, and a metal transition layer between the electron transport layer and the cathode.
  • the cathode includes a transparent conductive oxide material.
  • the work function W F of the material of the metal transition layer is between the LUMO of the material of the electron transport layer and the work function W F of the material of the cathode.
  • the roughness Rms of the surface where the metal transition layer is in contact with the cathode is greater than 1.0 nm, where the roughness Rms is measured in the AFM diagram and calculated as the mean square The roughness represented by the root.
  • the roughness Rms of the surface of the metal transition layer in contact with the cathode is 1.0 nm to 5.0 nm.
  • the metal transition layer is made of at least one metal of Al, In, Ag, and Sn.
  • the metal transition layer is made of metal Sn, Sn-Al, or Sn-Ag alloy.
  • the metal transition layer is made of a mixed material of metal tin and an oxide of tin.
  • the molar ratio of the metallic tin in the mixed material is 50% or more.
  • the thickness of the metal transition layer is 0.5 nm to 15 nm.
  • the surface of the metal transition layer in contact with the cathode has a discontinuous island-like topography, and the protruding height of the island-like topography is less than or equal to 10 nm.
  • the present disclosure provides a display device including the light emitting diode according to any one of the above.
  • the present disclosure provides a method for manufacturing a light emitting diode, including:
  • the metal transition layer is located between the electron transport layer and the cathode, and the work function W F of the material of the metal transition layer is between the LUMO of the material of the electron transport layer and the work function W F of the material of the cathode. between.
  • the roughness Rms of the surface where the metal transition layer is in contact with the cathode is greater than 1.0 nm, where the roughness Rms is measured in the AFM diagram and calculated as the mean square The roughness represented by the root.
  • the metal transition layer is made of at least one metal of Al, In, Ag, and Sn.
  • the metal transition layer is made of a mixed material of metal tin and an oxide of tin.
  • the step of preparing a metal transition layer on the electron transport layer includes: depositing a metal transition layer on the electron transport layer by a sputtering process, a thermal decomposition process, or an atomic layer deposition process.
  • a deposition rate of the metal transition layer is 0.5 to 3 angstroms / second, and the deposition rate is expressed by a thickness of a layer formed by deposition per unit time.
  • the metal transition layer is made of a mixed material of metal tin and an oxide of tin, and the method further includes: performing oxygen plasma treatment on the deposited tin to obtain an oxide of tin and tin And the metal transition layer.
  • the step of preparing a metal transition layer on the electron transport layer includes: depositing metal Sn by thermally decomposing an SnH 4 adduct, and depositing a metal transition layer on the electron transport layer.
  • FIG. 1 is a schematic structural diagram of a light emitting diode according to an embodiment of the present disclosure
  • FIG. 2 is an AFM diagram of depositing aluminum at a thickness of 8 nm on the electron transport layer
  • FIG. 3 is an AFM image of 8 nm thick indium deposited on the electron transport layer
  • FIG. 4 is an AFM diagram of depositing a tin thickness of 8 nm on the electron transport layer
  • FIG. 5 is an AFM image of 8 nm thick indium deposited on a blank glass
  • FIG. 6 is an AFM diagram of depositing a tin thickness of 8 nm on a blank glass
  • FIG. 7 is a schematic cross-sectional view of a metal transition layer according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a light emitting diode according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for manufacturing a light emitting diode according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a light emitting diode according to another embodiment of the present disclosure.
  • the “metal transition layer” described in the present disclosure refers to a transition layer including a metal material.
  • the metal transition layer may be composed of a metal material, or may be composed of a material including a metal and a metal oxide.
  • the metal transition layer refers to a transition layer including a metal material whose main content is, for example, 50% or more.
  • an electron transport layer (Electron Transport Layer, ETL for short) is usually made of metal oxide nanoparticles having a high refractive index, such as zinc oxide, magnesium zinc oxide, and the like. If the light-emitting diode adopts a thin metal transparent cathode, it will face problems such as insufficient light transmittance and serious interface total reflection. If the light-emitting diode is made of a completely transparent material (such as ITO, IZO, etc.) for the cathode, carrier injection is difficult due to the high work function of such materials (4.7eV for ITO and 5.1eV for IZO). Therefore, how to make the carrier injection of the cathode easy is a problem to be solved in related technologies.
  • a light emitting diode including an anode, a light emitting layer, an electron transport layer, a cathode, and a metal transition layer between the electron transport layer and the cathode.
  • the cathode includes a transparent conductive oxide material. a cathode material and the LUMO transition metal work function material W F between the electron transport layer material between the work function W F.
  • the embodiments of the present disclosure can produce the following beneficial technical effects:
  • the work function W of the material of the metal transition layer F is between the LUMO of the material of the electron transport layer and the work function W F of the material of the cathode, which can make the carrier injection of the cathode easier. This can reduce the operating voltage applied to the light-emitting diode, which can further increase the life of the light-emitting diode.
  • the light emitting diode is a quantum dot light emitting diode
  • the light emitting layer is a quantum dot light emitting layer
  • FIG. 1 is a schematic structural diagram of a light emitting diode according to an alternative embodiment of the present disclosure.
  • the light emitting diode 10 includes an anode 11, a quantum dot light emitting layer 12, an electron transport layer (ETL) 13, a metal buffer layer 14, and a cathode 15 (Transparent Cathode) 15 disposed in this order.
  • the cathode 15 is made of a material including a transparent conductive oxide. Made of a material between the metal work function W F W F transition layer 14 interposed between the electron transport layer and the LUMO material work function cathode material is made.
  • the material of the metal transition layer may be at least one of the metals Al, In, Ag, and Sn; or a mixed material of tin and an oxide of tin.
  • the transition layer made of the above materials can not only adjust the work function difference between the transparent conductive oxide layer (that is, the cathode) and the electron transport layer, but also can increase the effective area of carrier injection of the cathode, thereby enabling the Cathode carrier injection is easier.
  • a cathode of a light emitting diode is prepared by using a transparent conductive oxide material such as ITO or IZO, since such a material has a higher work function (for example, ITO is 4.7eV and IZO is 5.1eV), A metal transition layer can be prepared between the electron transport layer and the cathode to adjust the work function. This can reduce the difficulty of carrier injection.
  • a surface of the metal transition layer made of the above-mentioned material in contact with the cathode has a higher surface roughness. The surface roughness is a roughness measured in an AFM diagram and expressed as a calculated root mean square.
  • the roughness of the present disclosure refers to the roughness measured and calculated according to this method unless otherwise specified.
  • the surface of the metal transition layer made of the above material has a discontinuous island-like morphology, and further optionally, the protruding height of the island-like morphology is less than or equal to 10 nm, and this morphological feature improves the cathode
  • the effective area of carrier injection makes carrier injection easier.
  • FIG. 7 is a cross-sectional view taken in a direction perpendicular to a surface where the metal transition layer is in contact with the electron transport layer. As shown in FIG.
  • the selection criterion of the standard line s1 is that the sum of the areas of the protrusions protruding outside the metal transition layer is equal to the sum of the areas of the depressions recessed into the metal layer.
  • the distance between the standard line s1 and the surface in contact with the metal transition layer and the electron transport layer is the thickness h1 of the metal transition layer, and the distance between the highest point of each protrusion protruding outward from the standard line s1 is the protrusion height h2,
  • the distance between the lowest point of each recessed portion inwardly recessed and the standard line s1 is the recessed height h3 of the recessed portion.
  • metal aluminum (Al), indium (In), and tin (Sn) having similar work functions are used to fabricate the metal transition layer of the QLED device.
  • Al aluminum
  • In indium
  • Sn tin
  • a metal transition layer with a thickness of 5 to 10 nm is deposited on the electron transport layer in a manner of 0.5 to 3 angstroms / second by sputtering or evaporation.
  • the work functions of aluminum, indium, and tin are 4.3eV, 4.1eV, and 4.4eV, respectively.
  • All three metals can form a rough surface with a discontinuous island-like morphology; and from aluminum, indium to tin, the surface roughness of the metal transition layer formed by deposition increases in order (1.3nm, 1.6nm, and 2.7, respectively) nm). That is, the surface of the metal transition layer made of tin has a discontinuous columnar morphology and has a relatively high roughness, especially the surface of the metal transition layer made of metal Sn is the roughest. This result can also be proven from Figure 5-6. 5 and FIG.
  • FIGS. 5 to 6 and FIG. 2 are metal layers with a thickness of 5 to 10 nm deposited on a blank glass by sputtering or evaporation in a vacuum deposition system at a rate of 0.5 to 3 angstroms / second, that is, FIGS. 5 to 6 and FIG. 2 Compared to -4, only the substrates deposited are different, and other deposition processes are exactly the same. It can be seen from FIGS. 5-6 that both the metals In and Sn can form a rough surface with discontinuous island-like morphology, and the roughness is 4.0 nm and 5.0 nm, respectively.
  • the metal transition layer formed in the present disclosure has such a morphological feature, which improves an effective area of carrier injection of a cathode, and makes carrier injection easier.
  • light-emitting diodes QLED-1 and QLED shown in FIG. 9 having metal transition layers made of metal aluminum, indium, and tin are prepared, respectively.
  • the metal transition layer was deposited using the thermal decomposition method of the present disclosure at a deposition rate of 2 Angstroms / second.
  • One of the configurations of the light emitting diode of the present disclosure is as follows: glass substrate / ITO (200nm) / PEDOT: PSS (10nm) / TFB (20nm) / TCTA (10nm) / ZnO (200nm) / Sn (10nm) / IZO (200nm), other devices differ only in the composition of the metal transition layer, QLED-0 does not have a metal transition layer. Power up QLED-1, QLED-2, QLED-3 and QLED-0 respectively, measure the brightness and current of these four devices and calculate the current efficiency. As shown in FIG. 8, the Luminance-Current Efficiency curves of QLED-1, QLED-2, QLED-3, and QLED-0 are obtained.
  • the QLED-1, QLED-2, and QLED-3 have improved the luminous efficiency compared to QLED-0, and in particular, the current efficiency of QLED-3 has been significantly improved.
  • the performance test results are consistent with the surface roughness results observed in Figure 2-4: the roughness of the metal transition layers in QLED-1, QLED-2, and QLED-3 increases in order. Therefore, the roughness of the deposited metal transition layer is positively related to the current efficiency of the QLED device.
  • the rough surface of the metal transition layer prepared from the above materials has a discontinuous island shape, and the island shape has a height h2 calculated from the surface of the metal transition layer of less than or equal to 3 nm, 4 nm, 5 nm, 8 nm , Or even a protrusion of less than or equal to 10 nanometers.
  • the height of this protrusion depends on the thickness of the metal transition layer prepared.
  • the discontinuous island-like morphology has a positive effect on the light output, making it difficult for the light to be reflected by the mirror. Moreover, the light exits at different angles, and these rays can also form interference of light, making the intensity of the transmitted light high, which has a positive effect on the light.
  • the material for preparing the metal transition layer is: at least one of the metals Al, In, Ag, and Sn; or a mixed material of tin and an oxide of tin.
  • the material for preparing the metal transition layer is: Al, In, Sn, Ag, Sn-Al or Sn-Ag alloy, and metal tin and tin oxide.
  • the metal transition layer when the metal transition layer is composed of an alloy material or an oxide material of tin and tin, the ratio between each metal or the ratio between tin and tin oxide can be further adjusted between the electron transport layer and the cathode. Work function difference. Therefore, the metal transition layer of the present disclosure improves the efficiency of QLED devices.
  • the alloy material is at least one of tin and other metals such as silver, aluminum, and indium.
  • the atomic ratio of tin to other metals such as silver, aluminum or indium is 5: 1 to 1: 1, and even the atomic ratio can be selected from 3: 1 to 1: 1. The atomic ratio ultimately depends on the material of the electron transport layer and the material of the cathode, as long as the ratio is suitable for adjusting the work function difference between the metal transition layer and the electron transport layer.
  • the material for preparing the metal transition layer is a mixture of tin and an oxide of tin.
  • Tin has a high degree of matching with the electron transport layer. Tin oxide can improve the matching between the metal transition layer and the cathode (transparent conductive oxide). Therefore, using a mixture of tin and tin oxide can further reduce the difficulty of carrier injection.
  • the molar content of metallic tin can be selected to be 50% or more, for example, 60%, 70%, 80%, or 90%.
  • the thickness of the metal transition layer is 0.5 nm to 15 nm, and the thickness of the metal transition layer is relatively thin, which is beneficial to enhancing light transmission. Further optionally, the thickness of the metal transition layer is 3.5 nanometers to 15 nanometers, or even 5 nanometers to 10 nanometers, and the surface roughness of the metal transition layer can be selected from 1 nanometer to 10 nanometers, or even 3 nanometers to 10 nanometers. Nanometers, and even 3 nanometers to 8 nanometers.
  • the protruding height of the island morphology is less than or equal to 10 nm. Therefore, in order to take into account the light transmittance of the metal transition layer and the embedding degree of the metal transition layer into the electron transport layer, the thickness of the metal transition layer may be selected from 5 nm to 10 nm. At this time, the metal transition layer has strong light transmittance, and has a high degree of embedding in the electron transport layer. The effective area of carrier injection is large, which helps to reduce the difficulty of carrier injection.
  • the metal transition layer is prepared by depositing a material on the electron transport layer by using a sputtering method, a thermal decomposition method, or an atomic layer deposition method.
  • the transparent conductive oxide material is ITO or IZO.
  • the layer thickness of the cathode is 50-5000 nm.
  • the electron transport layer is made of zinc oxide (ZnO).
  • the light emitting diode 10 may further include a hole injection layer 16 (Hole injection layer (HIL)) and a hole transport layer 17 (Hole transport layer) HTL), as shown in Figure 9.
  • HIL hole injection layer
  • HTL hole transport layer
  • the hole injection layer 16 is located between the hole transport layer 17 and the anode 11, and the hole transport layer 17 is located between the hole injection layer 16 and the light emitting layer 12.
  • the hole injection layer is made of polyethylene dioxythiophene-polystyrene sulfonate (PEDOT: PSS).
  • the hole transport layer is made of poly (9,9-dioctylfluorene-Co-N- (4-butylphenyl) diphenylamine) (TFB).
  • the light emitting diode is a light emitting diode with a top emission structure.
  • the light-emitting diodes of the top emission structure can realize narrow-band emission, and further improve the color purity of light emission.
  • the light emitting diode includes a metal transition layer, thereby forming a microcavity.
  • the cavity length of the microcavity can be adjusted as required. Specifically, by adjusting the thickness of the cathode, the electron transport layer, the light emitting layer, the hole transport layer, and / or the hole injection layer, a microcavity with adjustable cavity length can be formed. As a result, the light distribution is regulated, which has a further positive impact on the light output.
  • a display substrate is further provided, including any one of the above light emitting diodes.
  • the display device shown may include a substrate, a thin film transistor array formed on the substrate, an anode located on the thin film transistor array, a hole injection layer formed on the anode, and formed on the substrate.
  • a method for manufacturing a light emitting diode includes:
  • transition metal material W F between the work function and LUMO material made of the cathode material of the electron transport layer interposed between the work function W F is made;
  • a cathode is prepared, which is made of a transparent conductive oxide material.
  • FIG. 10 is a schematic flowchart of a method for manufacturing a light emitting diode according to an embodiment of the present disclosure. The method includes the following steps S81-S83.
  • Step S81 An anode, a light emitting layer, and an electron transporting layer are sequentially prepared.
  • the anode, the light-emitting layer, and the electron-transporting layer can be sequentially prepared by spin coating, coating, or the like in a dry environment of nitrogen.
  • Step S82 Preparation of a metal transition layer on the electron transport layer, the metal transition layer material interposed between the work function W F made of material LUMO and the cathode material of the electron transport layer by a work function W F to make.
  • Step S83 A cathode is prepared on the metal transition layer, and the cathode is made of a transparent conductive oxide material.
  • a light-emitting diode having a structure as shown in FIG. 1 can be prepared by first preparing an anode, then a metal light-emitting layer and an electron transport layer, and then a metal transition layer and a cathode. A metal transition layer and an electron transport layer are prepared, and then a light emitting layer and an anode are prepared to obtain a light emitting diode having a structure as shown in FIG. 11.
  • Embodiment of the present disclosure made of a light emitting diode prepared in Example, the transition metal material W F between the work function and LUMO material made of the cathode material of the electron transport layer interposed between the work function W F, so that the cathode can be
  • the carrier injection is easier, so that the operating voltage applied to the light emitting diode can be reduced, and the service life can be improved.
  • the light-emitting layer in step S81 is a quantum dot light-emitting layer
  • the light-emitting diode manufactured by using the manufacturing method of the embodiment of the present disclosure is a quantum-dot light-emitting diode.
  • the material of the metal transition layer is metal Al, In, Ag, or Sn.
  • the step of preparing a metal transition layer on the electron transport layer includes: depositing a metal or an alloy on the electron transport layer by a sputtering method, a thermal decomposition method, or an atomic layer deposition method to obtain The metal transition layer made of metal or the alloy. From the viewpoint of the efficiency of the prepared light-emitting diode, metal Sn, In or Al can be selected, and metal Sn is even better.
  • tin may be deposited by means of SnH 4 adduct annealing. That is, the SnH 4 solution is sprayed or spin-coated on the electron transport layer.
  • the SnH 4 solution contains the adduct SnH 4 and is decomposed into tin and H 2 by heating to obtain the metal transition layer made of tin.
  • the adduct is a nitrogen-containing adduct to maintain the stability of the SnH 4 solution, and to make SnH 4 exist in the liquid form in the solution, which is beneficial to the subsequent reaction.
  • the substrate may be placed in a vacuum deposition system to deposit 5 to 10 nm metal Sn, and the deposition rate may be 0.5 to 3 Per second, for example, 1 to 2 /second.
  • the tin-containing material is an alloy of tin and other metals.
  • the step of preparing a metal transition layer on the electron transport layer includes: using a sputtering method, a thermal decomposition method, or an atomic layer deposition method, evaporating tin and other metals on the electron transport layer to obtain tin from The metal transition layer is made of an alloy with other metals.
  • tin and other metals can be deposited in the form of co-evaporation.
  • a metal alloy of a desired ratio can be obtained.
  • a metal transition made of an alloy or solid solution of tin and other metals is obtained.
  • the other metal includes at least one of silver, aluminum, and indium. Further use metal aluminum or indium as other metals.
  • the tin-containing material is a combination of tin and an oxide of tin
  • the step of preparing a metal transition layer on the electron transport layer includes adopting a sputtering method, a thermal decomposition method, or an atomic layer deposition method. , Depositing tin on the electron transport layer, and performing oxygen plasma treatment on the deposited tin to obtain the metal transition layer made of tin and tin oxide.
  • tin oxide in the metal transition layer can improve the matching degree between the metal transition layer and the cathode, thereby further reducing the difficulty of carrier injection.
  • the transparent conductive oxide material is ITO or IZO.
  • the transparent conductive oxide material layer can be prepared by a sputtering deposition method. The parameters of the deposition process are: depositing 50 to 500 nm of ITO or IZO at a flow rate of 0.1 to 15 Pa and 10 to 100 sccm of argon (Ar).
  • the above-mentioned preparation method is used to prepare a light emitting diode with a top emission structure, which can realize narrow-band emission and further improve the color purity of light emission.
  • the above step S81 includes sequentially preparing an anode, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer on the base substrate.
  • the anode, the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer can be sequentially prepared under a dry environment of nitrogen.
  • PEDOT: PSS can be deposited on the anode to make a hole injection layer.
  • TFB may be deposited on the hole injection layer to make a hole transport layer.
  • zinc oxide may be deposited on the light emitting layer to make an electron transporting layer.
  • the prepared light emitting diode includes a metal transition layer, thereby forming a microcavity.
  • the cavity length of the microcavity can be adjusted as required. Specifically, by adjusting the thickness of the cathode, the electron transport layer, the light emitting layer, the hole transport layer, and / or the hole injection layer, a microcavity with adjustable cavity length can be formed. This regulates the light distribution and has a further positive impact on light output.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种发光二极管及其制备方法、和显示装置,该发光二极管包括:阳极、发光层、电子传输层、阴极以及位于电子传输层和阴极之间的金属过渡层,所述阴极包括透明导电氧化物材料,所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间。

Description

发光二极管及其制备方法、显示装置
相关申请的交叉参考
本申请主张在2018年7月2日在中国提交的中国专利申请号No.201810706678.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其是涉及一种发光二极管及其制备方法、包含该发光二极管的显示装置。
背景技术
当今社会生活中,人们对显示装置的要求也越来越高。虽然有源矩阵有机发光二极管(Active-matrix organic light emitting diode,简称AMOLED)显示技术被称为下一代新型显示技术,但由于受限于使用寿命等因素,目前主要采用掩膜蒸镀的方法制备AMOLED,而该制备方法面临技术难度高、量产化难、产品良率低、商品价格高等问题。
发明内容
一方面,本公开的实施例提供一种发光二极管,包括阳极、发光层、电子传输层、阴极以及位于电子传输层和阴极之间的金属过渡层,所述阴极包括透明导电氧化物材料,所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间。
可选地,所述金属过渡层与阴极接触,并且所述金属过渡层与阴极接触的表面的粗糙度Rms大于1.0nm,其中所述粗糙度Rms是在AFM图中测量并以计算的均方根表示的粗糙度。
可选地,所述金属过渡层与阴极接触的表面的粗糙度Rms为1.0nm至5.0nm。
可选地,所述金属过渡层由金属Al、In、Ag和Sn中的至少一种金属制成。
可选地,所述金属过渡层由金属Sn、Sn-Al或Sn-Ag合金制成。
可选地,所述金属过渡层由金属锡与锡的氧化物的混合材料制成。
可选地,所述金属锡在混合材料中的摩尔比含量为50%以上。
可选地,所述金属过渡层的厚度为0.5纳米至15纳米。
可选地,所述金属过渡层与阴极接触的表面具有不连续的岛状形貌,并且岛状形貌的突出高度小于或等于10nm。
另一方面,本公开提供一种显示装置,包括上述任一项所述的发光二极管。
再一方面,本公开提供一种制备发光二极管的方法,包括:
制备阳极、发光层和电子传输层;
制备金属过渡层;以及
制备阴极,所述阴极由包括透明导电氧化物的材料制成,
其中,所述金属过渡层位于电子传输层和阴极之间,并且所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间。
可选地,所述金属过渡层与阴极接触,并且所述金属过渡层与阴极接触的表面的粗糙度Rms大于1.0nm,其中所述粗糙度Rms是在AFM图中测量并以计算的均方根表示的粗糙度。
可选地,所述金属过渡层由金属Al、In、Ag和Sn中的至少一种金属制成。
可选地,所述金属过渡层由金属锡与锡的氧化物的混合材料制成。
可选地,所述在所述电子传输层上制备金属过渡层的步骤包括:通过溅射工艺、热分解工艺或原子层沉积工艺,在所述电子传输层上沉积金属过渡层。
可选地,所述金属过渡层的沉积速率为0.5~3埃/秒,所述沉积速率是以单位时间内沉积形成的层的厚度来表示。
可选地,所述金属过渡层由金属锡与锡的氧化物的混合材料制成,并且所述方法进一步包括:对沉积后的锡进行氧等离子体处理,以制得由锡与锡的氧化物制成的所述金属过渡层。
可选地,所述在所述电子传输层上制备金属过渡层的步骤包括:通过热分解SnH 4加合物来沉积金属Sn,在所述电子传输层上沉积金属过渡层。
附图说明
图1为根据本公开的实施例的发光二极管的结构示意图;
图2为在电子传输层上沉积8纳米厚度的铝的AFM图;
图3为在电子传输层上沉积8纳米厚度的铟的AFM图;
图4为在电子传输层上沉积8纳米厚度的锡的AFM图;
图5为在空白玻璃上沉积8纳米厚度的铟的AFM图;
图6为在空白玻璃上沉积8纳米厚度的锡的AFM图;
图7为根据本公开的实施例的金属过渡层的截面示意图;
图8为根据本公开的实施例的QLED-1、QLED-2和QLED-3与QLED-0的亮度-电流效率关系图;
图9为根据本公开的另一实施例的发光二极管的结构示意图;
图10为根据本公开的实施例的发光二极管的制备方法的流程示意图;
图11为根据本公开的另一实施例的发光二极管的结构示意图.
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然地,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的其他实施例都属于本公开保护的范围。
本公开所述的“金属过渡层”是指包括金属材料的过渡层。例如,金属过渡层可以是由金属材料构成,也可以是由包括金属和金属氧化物的材料构成。可选地,所述金属过渡层是指包括主要含量如50%以上的金属材料的过渡层。
在采用溶液法制成的顶发射的发光二极管中,电子传输层(Electron Transport Layer,简称ETL)通常采用具有高折射率的金属氧化物纳米颗粒, 如:氧化锌、氧化镁锌等制成。如果该发光二极管采用很薄的金属半透明阴极(Metal Transparent Cathode),则面临着透光率不够、界面全反射严重等问题。如果该发光二极管采用全透明材料(如:ITO、IZO等)制备阴极,由于这类材料具有较高的功函数(ITO为4.7eV,IZO为5.1eV),使得载流子注入困难。因此,如何使阴极的载流子容易注入,是相关技术亟待解决的问题。
根据本公开的实施例,提供一种发光二极管,包括阳极、发光层、电子传输层、阴极以及位于电子传输层和阴极之间的金属过渡层,所述阴极包括透明导电氧化物材料,所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间。
本公开的实施例可以产生如下有益的技术效果:在本公开实施例的发光二极管中,通过在电子传输层与阴极之间设置合适的金属过渡层,即,金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间,能够使阴极的载流子注入更容易。这能够降低给发光二极管施加的操作电压,进而能够提高发光二极管的使用寿命。
在本公开的可选实施例中,所述发光二极管为量子点发光二极管,所述发光层为量子点发光层。
图1为本公开可选实施例的发光二极管的结构示意图。该发光二极管10包括依次设置的阳极(Anode)11、量子点发光层12、电子传输层(ETL)13、金属过渡层(Metal buffer layer)14和阴极(Transparent Cathode)15。所述阴极15由包括透明导电氧化物的材料制成。所述金属过渡层14由功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间的材料制成。例如,所述金属过渡层的材料可以为金属Al、In、Ag和Sn中的至少一种;或者锡与锡的氧化物的混合材料。由上述材料制成所述过渡层不仅可以调节透明导电氧化物层(即阴极)与电子传输层之间的功函数差异,而且可以提高所述阴极的载流子注入的有效面积,从而能够使阴极的载流子注入更容易。
在可选的实施例中,当采用透明导电氧化物材料如ITO或IZO制备发光二极管的阴极时,由于这类材料具有较高的功函数(例如,ITO为4.7eV,IZO为5.1eV),可以在电子传输层与阴极之间制备一层金属过渡层,以起到调节 功函数的作用。这可以降低载流子注入的难度。此外,在本公开可选实施例的发光二极管中,由上述材料制成的金属过渡层与阴极接触的表面具有较高的表面粗糙度。所述表面粗糙度是通过在AFM图中测量并以计算的均方根表示的粗糙度,本公开的粗糙度如无特别说明,均是指按照此方法测量和计算的粗糙度。可选地,由上述材料制成的金属过渡层的表面具有不连续的岛状形貌,进一步可选地,该岛状形貌的突出高度小于或等于10nm,这种形貌特征提高了阴极的载流子注入的有效面积,使得载流子注入更为容易。图7是以垂直于金属过渡层与电子传输层接触的表面的方向而截取的截面图。如图7所示,标准线s1的选取标准为,向金属过渡层外突出的各突出部的面积之和与向金属层内凹陷的各凹陷部的面积之和相等。该标准线s1与金属过渡层和电子传输层接触的表面之间的距离为金属过渡层的厚度h1,各突出部向外突出的最高点与标准线s1的距离为突出部的突出高度h2,各凹陷部向内凹陷的最低点与标准线s1的距离为凹陷部的凹陷高度h3。计算所有突出部的高度h2和所有凹陷部的深度h3的均方根,即得本公开的表面粗糙度Rms。
具体地,采用功函数类似的金属铝(Al)、铟(In)、锡(Sn)制作QLED器件的金属过渡层。例如,在真空沉积系统中通过溅射或者蒸镀方式以0.5~3埃/秒的方式在电子传输层上沉积5~10nm厚的金属过渡层。铝、铟、锡的功函数分别为4.3eV、4.1eV和4.4eV。通过原子力显微镜(Atomic Force Microscope,简称AFM)对由这三种金属分别制成的金属过渡层进行观察,具体参见图2(Al)、图3(In)以及图4(Sn),可以发现:三种金属都能形成具有不连续的岛状形貌的粗糙表面;并且从铝、铟到锡,沉积形成的金属过渡层的表面的粗糙度依次递增(分别为:1.3nm、1.6nm和2.7nm)。即:由锡制成的金属过渡层的表面具有不连续的柱状形貌且具有较高的粗糙度,尤其是由金属Sn制成的金属过渡层的表面最为粗糙。该结果也可以从图5-6得到证明。图5和图6是在在真空沉积系统中通过溅射或者蒸镀方式以0.5~3埃/秒的方式在空白玻璃上沉积5~10nm厚的金属层,即,图5-6与图2-4相比,仅仅沉积的基板不同,而其他沉积工艺完全相同。由图5-6可以看出,金属In和Sn都能形成具有不连续的岛状形貌的粗糙表面,其粗糙度分别为4.0nm和5.0nm。在本公开中形成的金属过渡层具有这种形貌特征,这提高 了阴极的载流子注入的有效面积,使得载流子注入更为容易。
进一步地,在其它膜层的材料、结构和厚度完全相同的情况下,分别制备得到具有由金属铝、铟和锡制成的金属过渡层的如图9所示的发光二极管QLED-1、QLED-2和QLED-3以及没有金属过渡层的发光二极管QLED-0。金属过渡层采用本公开的热分解方法来沉积的,沉积速率为2埃/秒。本公开的所述发光二极管的构成之一如下所示:玻璃衬底/ITO(200nm)/PEDOT:PSS(10nm)/TFB(20nm)/TCTA(10nm)/ZnO(200nm)/Sn(10nm)/IZO(200nm),其它器件仅仅在金属过渡层的构成材料不同,QLED-0没有金属过渡层。给QLED-1、QLED-2、QLED-3和QLED-0分别通电,测量这四个器件的亮度和电流并计算出电流效率。如图8所示,得到QLED-1、QLED-2、QLED-3和QLED-0的亮度(Luminance)-电流效率(Current Efficiency)曲线图。由图8可知,QLED-1、QLED-2、QLED-3相对于QLED-0发光效率都得到改善,尤其是QLED-3的电流效率得到显著改善。该性能测试结果与图2-4中所观察的表面粗糙度结果相一致:QLED-1、QLED-2和QLED-3中的金属过渡层的粗糙度依次递增。因此,沉积形成的金属过渡层的粗糙度与QLED器件的电流效率正相关。
由上述材料制备的金属过渡层的粗糙表面具有不连续的岛状形貌,且该岛状形貌具有从金属过渡层表面计算的高度h2小于或等于3纳米、4纳米、5纳米、8纳米,或甚至小于或等于10纳米的突出体。该突出体的高度依赖于所制备的金属过渡层的厚度。该不连续的岛状形貌对出光具有正面影响,使得光线不容易被镜面反射。而且,光线的出射角度不同,这些光线还能形成光的干涉,使得透射的光线的强度高,这对出光起到正面影响。
在本公开可选实施例的发光二极管中,采用由功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间的材料制备金属过渡层。可选地,所述制备金属过渡层的材料为:金属Al、In、Ag和Sn中的至少一种;或者锡与锡的氧化物的混合材料。进一步可选地,所述制备金属过渡层的材料为:Al、In、Sn、Ag、Sn-Al或Sn-Ag合金、以及金属锡与锡的氧化物。通过由这些材料制成的金属过渡层,可以调节电子传输层与阴极之间的功函数差异。而且,在由合金材料或者锡与锡的氧化物材料构成金属过 渡层时,还可以通过调整各金属之间的比例或者锡与锡氧化物之间的比例来进一步调节电子传输层与阴极之间的功函数差异。因此,本公开的金属过渡层改善了QLED器件的效率。可选地,所述合金材料为锡与其他金属如银、铝和铟中的至少一种。进一步可选地,锡与其他金属如银、铝或铟的原子比为5∶1至1∶1,甚至原子比可选为3∶1至1∶1。该原子比最终依赖于电子传输层的材料和阴极的材料,只要该比例适合于调节金属过渡层与电子传输层的功函数差异。
可选地,所述制备金属过渡层的材料为锡与锡的氧化物的混合物。锡与电子传输层匹配度高,氧化锡能提高金属过渡层与阴极(透明导电氧化物)之间的匹配度。因此,采用锡与锡的氧化物的混合物可以进一步降低载流子注入的难度。在锡与锡的氧化物的混合物中,金属锡的摩尔含量可选为50%以上,例如,为60%、70%、80%或90%。
可选地,所述金属过渡层的厚度为0.5纳米至15纳米,金属过渡层的厚度较薄,有利于增强光线的透光。进一步可选为,所述金属过渡层的厚度为3.5纳米至15纳米,甚至5纳米至10纳米,并且所述金属过渡层的表面粗糙度可选为1纳米至10纳米,甚至3纳米至10纳米,更甚至为3纳米至8纳米。
在电子传输层上沉积金属过渡层而形成的不连续的岛状形貌中,该岛状形貌的突出高度小于或等于10nm。所以为了兼顾金属过渡层的透光性和金属过渡层嵌入电子传输层的嵌入程度,所述金属过渡层的厚度可选为5纳米至10纳米。此时,金属过渡层的透光性强,且嵌入电子传输层的程度高,载流子注入的有效面积大,有助于降低载流子注入的难度。
可选地,所述金属过渡层是通过采用溅射方式、热分解方式或原子层沉积方式,在所述电子传输层上沉积材料来制得上述金属过渡层。
可选地,所述透明导电氧化物材料为ITO或者IZO。
可选地,所述阴极的层厚度为50~5000nm。
可选地,电子传输层由氧化锌(ZnO)制成。
可选地,在本公开的其他一些实施例中,所述发光二极管10还可以包括依次设置的空穴注入层16(Hole Inject Layer,简称HIL)和空穴传输层17 (Hole Transport Layer,简称HTL),具体如图9所示的。所述空穴注入层16位于所述空穴传输层17和所述阳极11之间,所述空穴传输层17位于所述空穴注入层16和所述发光层12之间。
可选地,空穴注入层由聚乙烯二氧噻吩-聚苯乙烯磺酸盐(PEDOT:PSS)制成。可选地,空穴传输层由聚(9,9-二辛基芴-Co-N-(4-丁基苯基)二苯胺)(TFB)制成。
可选地,所述发光二极管为顶发射结构的发光二极管。顶发射结构的发光二极管能够实现窄带发射,进一步提升发光的色纯度。
在本公开的实施例中,发光二极管包括金属过渡层,由此形成一个微腔。可以根据需求调节该微腔的腔长。具体地,通过调节阴极、电子传输层、发光层、空穴传输层和/或空穴注入层的厚度,可以形成腔长可调的微腔。由此,调控出光分布,对出光起到进一步的正面影响。
在本公开的可选实施例中,还提供了一种显示基板,包括任一上述发光二极管。
在本公开的可选实施中,还提供了一种显示装置,包括任一上述的发光二极管或者任一上述的显示基板。具体地但不限于以下实例,所示显示装置可以包括基板、形成于所述基板上薄膜晶体管阵列、位于薄膜晶体管阵列上的阳极、形成于所述阳极上的空穴注入层、形成于所述空穴注入层上的空穴传输层、形成于所述空穴传输层上的发光层、形成于所述发光层上的电子传输层、形成于所述电子传输层上的阴极、设于所述阴极上方并与所述基板相贴合的封装盖板、及粘结所述基板与封装盖板的密封胶框。
在本公开的实施方式中,提供一种制备发光二极管的方法,所述方法包括:
制备阳极、发光层和电子传输层;
制备金属过渡层,所述金属过渡层由功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间的材料制成;以及
制备阴极,所述阴极由透明导电氧化物材料制成。
图10示出了根据本公开实施例制备发光二极管的方法的流程示意图。该方法包括以下步骤S81-S83。
步骤S81:依次制备阳极、发光层和电子传输层。具体地,可以在氮气的干燥环境下依次通过旋涂、涂覆等方式制备阳极、发光层和电子传输层。
步骤S82:在所述电子传输层上制备金属过渡层,所述金属过渡层由功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间的材料制成。
步骤S83:在所述金属过渡层上制备阴极,所述阴极由透明导电氧化物材料制成。
上述制备方法仅仅是本公开的一种示例,不限于上述方法来制备本公开的发光二极管,还可以采用其它方法来制备。例如,可以通过先制备阳极,再制备金属发光层和电子传输层,然后再制备金属过渡层和阴极等,即制得如图1所示结构的发光二极管;也可以通过先制备阴极,再制备金属过渡层和电子传输层,然后再制备发光层和阳极等,即制得如图11所示结构的发光二极管。
采用本公开实施例的制备方法制成的发光二极管,金属过渡层由功函数W F介于电子传输层的材料的LUMO与制成阴极的材料的功函数W F之间的材料,能够使得阴极的载流子注入更容易,从而能够降低给发光二极管施加的操作电压,进而能够提高其使用寿命。
可选地,步骤S81中的发光层为量子点发光层,采用本公开实施例的制备方法制成的发光二极管为量子点发光二极管。
可选地,所述金属过渡层的材料为金属Al、In、Ag或Sn。并且所述在所述电子传输层上制备金属过渡层的步骤包括:采用溅射方式、热分解方式或原子层沉积方式,在所述电子传输层上沉积金属或合金,以制得由所述金属或所述合金制成的所述金属过渡层。从所制备的发光二极管的效率来看,可选采用金属Sn、In或Al,甚至更佳选用金属Sn。
可选地,当采用热分解方式时,可以采用SnH 4加合物退火的方式沉积锡。即,在电子传输层上喷射或旋涂SnH 4溶液。该SnH 4溶液含有加合物SnH 4,再加热分解成锡和H 2,得到由锡制成的所述金属过渡层。加合物为含氮加合物,以维持SnH 4溶液的稳定性,并使SnH 4以液态形式存在于溶液中,这利于后续反应。可选地,当采用原子层沉积方式时,可以将基板放入真空沉积 系统,沉积5~10nm金属Sn,沉积速率可以为0.5~3
Figure PCTCN2019094260-appb-000001
/秒,例如,1~2
Figure PCTCN2019094260-appb-000002
/秒。
可选地,所述含锡材料为锡与其他金属的合金。所述在所述电子传输层上制备金属过渡层的步骤包括:采用溅射方式、热分解方式或原子层沉积方式,在所述电子传输层上蒸镀锡和其他金属,以制得由锡与其他金属的合金制成的所述金属过渡层。
例如,可以将锡与其他金属以共蒸形式沉积,通过控制锡与其他金属的沉积速率,来获得所希望比例的金属合金,沉积后得到由锡与其他金属的合金或固溶体制成的金属过渡层。
可选地,所述其他金属包括银、铝和铟中的至少一种。进一步选用金属铝或铟作为其他金属。
可选地,所述含锡材料为锡与锡的氧化物的组合,并且所述在所述电子传输层上制备金属过渡层的步骤包括:采用溅射方式、热分解方式或原子层沉积方式,在所述电子传输层上沉积锡,对沉积后的锡进行氧等离子体处理,以制得由锡与锡的氧化物制成的所述金属过渡层。此时,金属过渡层中的氧化锡能提高金属过渡层与阴极之间的匹配度,从而进一步降低载流子注入的难度。
可选地,所述透明导电氧化物材料为ITO或者IZO。可选地,可以采用溅射沉积方式来制备透明导电氧化物材料层。沉积工艺的参数为:在0.1~15Pa、氩气(Ar)10~100sccm的流速下,沉积50~500nm的ITO或者IZO。
可选地,采用上述制备方法制备顶发射结构的发光二极管,能够实现窄带发射,进一步提升发光的色纯度。
可选地,上述步骤S81包括在所述衬底基板上依次制备阳极、空穴注入层、空穴传输层、发光层和电子传输层。进一步可选地,可以在氮气的干燥环境下依次制备阳极、空穴注入层、空穴传输层、发光层和电子传输层。
可选地,可以在阳极上沉积PEDOT:PSS,以制成空穴注入层。
可选地,可以在空穴注入层上沉积TFB,以制成空穴传输层。
可选地,可以在发光层上沉积氧化锌,以制成电子传输层。
采用本公开实施例的发光二极管的制备方法,所制备的发光二极管包括 金属过渡层,由此形成一个微腔。可以根据需求调节该微腔的腔长。具体地,通过调节阴极、电子传输层、发光层、空穴传输层和/或空穴注入层的厚度,可以形成腔长可调的微腔。由此调控出光分布,对出光起到进一步的正面影响。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利发明说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以上所述是本公开的可选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (18)

  1. 一种发光二极管,包括阳极、发光层、电子传输层、阴极以及位于电子传输层和阴极之间的金属过渡层,所述阴极包括透明导电氧化物材料,所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与所述阴极的材料的功函数W F之间。
  2. 如权利要求1所述的发光二极管,其中,所述金属过渡层与阴极接触,并且所述金属过渡层与阴极接触的表面的粗糙度Rms大于1.0nm,其中所述粗糙度是在AFM图中测量并以计算的均方根表示的粗糙度。
  3. 如权利要求2所述的发光二极管,其中,所述金属过渡层与阴极接触的表面的粗糙度为1.0nm至5.0nm。
  4. 如权利要求1-3中任一项所述的发光二极管,其中,所述金属过渡层由金属Al、In、Ag和Sn中的至少一种金属制成。
  5. 如权利要求4所述的发光二极管,其中,所述金属过渡层由金属Sn、Sn-A1或Sn-Ag合金制成。
  6. 如权利要求1-3中任一项所述的发光二极管,其中,所述金属过渡层由金属锡与锡的氧化物的混合材料制成。
  7. 如权利要求6中任一项所述的发光二极管,其中,所述金属锡在混合材料中的摩尔比含量为50%以上。
  8. 如权利要求1-6中任一项所述的发光二极管,其中,所述金属过渡层的厚度为1.5纳米至15纳米。
  9. 如权利要求1-7中任一项所述的发光二极管,其中,所述金属过渡层与阴极接触的表面具有不连续的岛状形貌,并且岛状形貌的突出高度小于或等于10nm。
  10. 一种显示装置,包括权利要求1-9中任一项所述的发光二极管。
  11. 一种制备发光二极管的方法,包括:
    制备阳极、发光层和电子传输层;
    制备金属过渡层;以及
    制备阴极,所述阴极由包括透明导电氧化物的材料制成,
    其中,所述金属过渡层位于电子传输层和阴极之间,并且所述金属过渡层的材料的功函数W F介于电子传输层的材料的LUMO与所述阴极的材料的功函数W F之间。
  12. 如权利要求11所述的方法,其中,所述金属过渡层与阴极接触,并且所述金属过渡层与阴极接触的表面的粗糙度大于1.0nm,其中所述粗糙度是在AFM图中测量并以计算的均方根表示的粗糙度。
  13. 如权利要求11或12所述的方法,其中,所述金属过渡层由金属Al、In、Ag和Sn中的至少一种金属制成。
  14. 如权利要求11-13中任一项所述的方法,其中,所述金属过渡层由金属锡与锡的氧化物的混合材料制成。
  15. 如权利要求11-14中任一项所述的方法,其中,所述制备金属过渡层的步骤包括:
    通过溅射工艺、热分解工艺或原子层沉积工艺,沉积金属过渡层。
  16. 如权利要求15所述的方法,其中,所述金属过渡层的沉积速率为0.5~3埃/秒,所述沉积速率是以单位时间内沉积形成的层的厚度来表示。
  17. 如权利要求15或16所述的方法,其中,所述金属过渡层由金属锡与锡的氧化物的混合材料制成,并且所述方法进一步包括:
    对沉积后的锡进行氧等离子体处理,以制得由锡与锡的氧化物制成的所述金属过渡层。
  18. 如权利要求15所述的方法,其中,所述在所述电子传输层上制备金属过渡层的步骤包括:
    通过热分解SnH 4加合物来沉积金属Sn,在所述电子传输层上沉积金属过渡层。
PCT/CN2019/094260 2018-07-02 2019-07-01 发光二极管及其制备方法、显示装置 WO2020007268A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207030765A KR20200133798A (ko) 2018-07-02 2019-07-01 발광 다이오드, 발광 다이오드의 제조 방법 및 표시 장치
US16/630,595 US11133487B2 (en) 2018-07-02 2019-07-01 Light emitting diode, method for preparing the same, and display device
JP2020560220A JP7409584B2 (ja) 2018-07-02 2019-07-01 発光ダイオード及びその作製方法、表示装置
EP19830773.8A EP3819957A4 (en) 2018-07-02 2019-07-01 LIGHT EMITTING DIODE, METHOD FOR THE PREPARATION AND DISPLAY DEVICE
KR1020227016075A KR102673280B1 (ko) 2018-07-02 2019-07-01 발광 다이오드, 발광 다이오드의 제조 방법 및 표시 장치
US17/411,691 US11716871B2 (en) 2018-07-02 2021-08-25 Light emitting diode, method for preparing the same, and display device
US18/312,313 US20230276653A1 (en) 2018-07-02 2023-05-04 Light emitting diode and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810706678.XA CN108807709A (zh) 2018-07-02 2018-07-02 一种发光二极管及其制作方法、显示基板、显示装置
CN201810706678.X 2018-07-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/630,595 A-371-Of-International US11133487B2 (en) 2018-07-02 2019-07-01 Light emitting diode, method for preparing the same, and display device
US17/411,691 Continuation US11716871B2 (en) 2018-07-02 2021-08-25 Light emitting diode, method for preparing the same, and display device

Publications (1)

Publication Number Publication Date
WO2020007268A1 true WO2020007268A1 (zh) 2020-01-09

Family

ID=64073990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094260 WO2020007268A1 (zh) 2018-07-02 2019-07-01 发光二极管及其制备方法、显示装置

Country Status (6)

Country Link
US (3) US11133487B2 (zh)
EP (1) EP3819957A4 (zh)
JP (1) JP7409584B2 (zh)
KR (2) KR102673280B1 (zh)
CN (1) CN108807709A (zh)
WO (1) WO2020007268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807709A (zh) 2018-07-02 2018-11-13 京东方科技集团股份有限公司 一种发光二极管及其制作方法、显示基板、显示装置
US20220208873A1 (en) * 2020-12-24 2022-06-30 Sharp Kabushiki Kaisha Spatial light-modified grid to enhance display efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822730A (zh) * 2004-09-24 2006-08-23 株式会社丰田自动织机 有机el器件
CN1883062A (zh) * 2003-09-15 2006-12-20 通用电气公司 用于电子设备的复合电极
CN102185111A (zh) * 2011-04-21 2011-09-14 河北工业大学 过渡金属氧化物的反转有机发光二极管
JP5828518B2 (ja) * 2011-07-15 2015-12-09 国立大学法人九州大学 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
CN108807709A (zh) * 2018-07-02 2018-11-13 京东方科技集团股份有限公司 一种发光二极管及其制作方法、显示基板、显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007064A1 (en) * 1999-12-31 2012-01-12 Lg Chem, Ltd. Organic electroluminescent device and method for preparing the same
JP3859155B2 (ja) * 2003-03-06 2006-12-20 富士電機ホールディングス株式会社 有機el素子およびその製造方法
GB2404284B (en) * 2003-07-10 2007-02-21 Dainippon Printing Co Ltd Organic electroluminescent element
JP2005044799A (ja) * 2003-07-10 2005-02-17 Dainippon Printing Co Ltd 有機電界発光素子
JP2005259469A (ja) * 2004-03-10 2005-09-22 Sharp Corp 有機エレクトロルミネッセンス表示装置
KR100890862B1 (ko) * 2005-11-07 2009-03-27 주식회사 엘지화학 유기 발광 소자 및 이의 제조 방법
JP2007141602A (ja) * 2005-11-17 2007-06-07 Toppan Printing Co Ltd 有機電界発光素子及びその製造方法及びその透明電極成膜方法
US8969126B2 (en) 2006-03-15 2015-03-03 Lg Chem, Ltd. Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP2009245787A (ja) 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP5333121B2 (ja) * 2009-09-28 2013-11-06 大日本印刷株式会社 有機エレクトロルミネッセンス素子、その製造方法及び発光表示装置
WO2018103749A1 (zh) * 2016-12-08 2018-06-14 广州华睿光电材料有限公司 三嗪类稠环衍生物及其在有机电子器件中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883062A (zh) * 2003-09-15 2006-12-20 通用电气公司 用于电子设备的复合电极
CN1822730A (zh) * 2004-09-24 2006-08-23 株式会社丰田自动织机 有机el器件
CN102185111A (zh) * 2011-04-21 2011-09-14 河北工业大学 过渡金属氧化物的反转有机发光二极管
JP5828518B2 (ja) * 2011-07-15 2015-12-09 国立大学法人九州大学 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
CN108807709A (zh) * 2018-07-02 2018-11-13 京东方科技集团股份有限公司 一种发光二极管及其制作方法、显示基板、显示装置

Also Published As

Publication number Publication date
JP2021529429A (ja) 2021-10-28
US20200176704A1 (en) 2020-06-04
KR20220066436A (ko) 2022-05-24
JP7409584B2 (ja) 2024-01-09
KR20200133798A (ko) 2020-11-30
KR102673280B1 (ko) 2024-06-05
CN108807709A (zh) 2018-11-13
US11133487B2 (en) 2021-09-28
US20230276653A1 (en) 2023-08-31
EP3819957A1 (en) 2021-05-12
US11716871B2 (en) 2023-08-01
US20210384458A1 (en) 2021-12-09
EP3819957A4 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
US20230276653A1 (en) Light emitting diode and display device
WO2017118102A1 (zh) 电致发光二极管及其制备方法、显示装置
WO2019075856A1 (zh) 钙钛矿发光二极管及其制作方法
CN102651455A (zh) Oled器件、amoled器件及其制造方法
CN105895816B (zh) 一种倒置蓝光量子点薄膜电致发光器件及其制造方法
WO2020253432A1 (zh) 有源矩阵式有机发光显示器的反射阳极及制作方法
WO2019218555A1 (zh) Oled显示面板及其制作方法
Jiao et al. 61‐2: Weakening Micro‐Cavity Effects in White Top‐Emitting WOLEDs with Semitransparent Metal Top Electrode
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
EP3070758A1 (en) Organic electroluminescent and preparation method thereof
TW200539263A (en) Composite optical destructive electrode for high contrast electroluminescent devices
US8502205B2 (en) Organic light emitting diode device and method of manufacturing the same
EP1996672B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
CN111584751B (zh) 封装结构及封装方法、电致发光器件、显示设备
CN111384255A (zh) 一种量子点发光二极管及其制备方法
KR20110107447A (ko) 플렉서블 유기 발광 다이오드 및 그 제조 방법
US10818869B2 (en) Top-emitting type organic electroluminescent device, manufacturing method thereof and display apparatus
Chen et al. Highly-luminous performance of polymer light-emitting devices utilizing platinum/nickelous oxide as the anode material
US20230078114A1 (en) Light-emitting diode device and manufacturing method thereof, and display panel
CN113054142A (zh) 一种硅基oled微显示器阳极及其制备方法和应用
Wang et al. High-performance top-emitting quantum dot light-emitting diodes by balancing electrical conductance and light outcoupling
WO2019227732A1 (zh) Oled发光器件及oled显示装置
CN107871825A (zh) 一种有机发光器件及制备方法
WO2022252052A1 (zh) 量子点发光二极管及其制备方法、显示装置
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207030765

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2020560220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019830773

Country of ref document: EP

Effective date: 20210202