WO2020253277A1 - Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium - Google Patents

Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium Download PDF

Info

Publication number
WO2020253277A1
WO2020253277A1 PCT/CN2020/079090 CN2020079090W WO2020253277A1 WO 2020253277 A1 WO2020253277 A1 WO 2020253277A1 CN 2020079090 W CN2020079090 W CN 2020079090W WO 2020253277 A1 WO2020253277 A1 WO 2020253277A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium salt
microwave drying
ultra
vacuum
Prior art date
Application number
PCT/CN2020/079090
Other languages
English (en)
Chinese (zh)
Inventor
陈新滋
谢文健
童祖基
李镇锋
辛伟贤
Original Assignee
广州理文科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州理文科技有限公司 filed Critical 广州理文科技有限公司
Priority to PCT/CN2020/079090 priority Critical patent/WO2020253277A1/fr
Priority to CN202080002482.8A priority patent/CN112204329A/zh
Publication of WO2020253277A1 publication Critical patent/WO2020253277A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/048Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum in combination with heat developed by electro-magnetic means, e.g. microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing ultra-dry lithium battery lithium salt by vacuum microwave drying.
  • lithium-ion batteries have high energy density, high voltage and cycle Long life, no memory effect, good safety performance and other advantages;
  • Lithium hexafluorophosphate is currently the main electrolyte for lithium-ion batteries. It can form an appropriate SEI film on the carbon negative electrode and has the advantages of a wide electrochemical stability window; lithium hexafluorophosphate will react with a small amount of water in the electrolyte to produce pentafluoride Phosphorus, phosphorus oxyfluoride and hydrogen fluoride and other harmful substances cause serious harm to lithium-ion batteries;
  • Lithium bistrifluoromethanesulfonimide, lithium bisfluorosulfonimide and 4,5-dicyano-2-trifluoromethylimidazole lithium are emerging lithium-ion battery electrolytes. These compounds have good Electrochemical stability and thermal stability, superior conductivity and good compatibility with electrode materials; in the process of preparing these compounds, it is inevitable to use or produce water, carboxylic acids and various organic solvents Etc., the residues of these substances added to the electrolyte will cause great hidden dangers to the safety of lithium-ion batteries;
  • lithium hexafluorophosphate As an example, its quality index requires water content ⁇ 20ppm, the best value is less than 10ppm, HF content ⁇ 20ppm, and the best value is less than 5ppm, the content of organic acids, alcohols, aldehydes, ketones, amines, amides and other impurities containing active hydrogen atoms in the molecule is less than 20ppm; the removal of the above substances is generally eluted with a low boiling point solvent, and then heated to vacuum Method of drying.
  • Patent US 9079780 and CN 103868330 B describe various methods for concentrating LiFSI to overcome the formation of by-products, drying under a stream of dry inert gas or concentrating the LiFSI solution through a thin film evaporator. This method does not dry completely, and some moisture in the package cannot be effectively taken away.
  • Patent CN 109923063 A discloses a method of using an organic solvent to form an azeotrope with water to remove water. This method will be repeated many times, and a large amount of organic solvent will be wasted, which will increase the difficulty of solvent recovery and operation in the later stage.
  • Patent CN 103836885 B also uses chemical drying to remove water, but the desiccant used in this method is metal alkyls that easily react with water, but these compounds are expensive, and they are too active and difficult to prepare and store. Moreover, the entire reaction process is difficult to control and is relatively dangerous. Third, most of these compounds are toxic, flammable and explosive, and cause great harm to the human body, so this method is difficult to apply to actual production.
  • Microwave drying is a relatively novel drying method. Compared with the traditional vacuum heating and drying method, microwave heating has the advantages of high thermal efficiency, fast heat transfer, and uniform heating of materials. It can overcome the slow heat transfer when heating under traditional vacuum. Uneven heating, unable to provide enough and suitable heat exchange surface and other problems, therefore, microwave drying has been widely used in food thawing, drying, baking, sterilization, sterilization and lignite, titanium concentrate, etc., but microwave is used There are no reports and applications on the drying of lithium batteries, and the present invention breaks through the current limitations of lithium battery drying, and obtains dried lithium salt in a more efficient, energy-saving and environmentally friendly way.
  • patent CN 108771156 A mentions that the water content of kidney beans is 7 ⁇ 1% by microwave drying; the patent CN 103234339 B mentions that the moisture content of the titanium concentrate can be reduced to less than 1 wt% by drying the titanium concentrate with a microwave device; Patent CN 108041152 A mentions the use of microwave drying to prepare dried pineapple, and the moisture content of pineapple slices can reach 8-16%.
  • microwave drying is applied to lithium batteries, which can reduce the moisture content to less than 20 ppm.
  • the present invention provides a method for preparing ultra-dry lithium battery lithium salt by vacuum microwave drying, which can effectively remove the water or solvent added, generated or residual during the preparation process of lithium battery lithium salt, and effectively solve the problem of traditional drying methods in the production process.
  • the heat exchange surface is insufficient and the heat exchanger is difficult to design and process. It effectively solves the defects of traditional drying methods such as uneven heating, and can efficiently and energy-savingly prepare ultra-low moisture lithium salts for lithium-ion batteries.
  • the present invention provides a method for preparing lithium salt of ultra-dry lithium battery by vacuum microwave drying.
  • the wet product of lithium salt is placed in a vacuum microwave drying device, the device is activated to make the vacuum degree less than 500mmHg, and the microwave heating device is activated. After the microwave operation is over, the evaporable impurities in the lithium salt can be removed to obtain an ultra-dry lithium salt suitable for lithium ion batteries.
  • the lithium salt in the lithium salt wet product is lithium hexafluorophosphate (LiPF 6 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bisfluorosulfonimide (LiFSI), and bisoxalic acid boric acid.
  • the properties of the wet product of the lithium salt can be a solution, slurry, paste or wet solid with a solid content of more than 30%, but it is not limited to the above mentioned properties;
  • the vaporizable impurities in the lithium salt wet product are water and organic solvents such as carboxylic acids, alcohols, ketones, esters, ethers, halogenated hydrocarbons, nitriles, etc., one or more than two Mixture, but not limited to the above solvent types or mixed solvents;
  • the vacuum of the device during the drying process is less than 500 mmHg, most preferably 0.1-100.0 mmHg;
  • the working temperature of the microwave heating device is -40 to 300°C; the preferred working temperature is 0-150°C, and the most preferred working temperature is 30-60°C;
  • the microwave frequency of the microwave heating device is 300MHz-50GHz, preferably 1000-10000MHz, most preferably 2400-2500MHz;
  • the microwave working mode can be continuous or intermittent
  • the crude product of lithium hexafluorophosphate (LiPF 6 ) (water content ⁇ 5%) was recrystallized in toluene, and the crystals were filtered out. 100g of the crystals were added to the flask and placed in a microwave dryer with a microwave frequency of 2450MHz. Set the maximum working temperature of the microwave dryer to 60°C, start the microwave dryer; after the microwave operation is completed, use high-purity nitrogen to break the air and take samples to determine the moisture and toluene content; test results: water 1.2ppm, toluene 2.3ppm.
  • LiDTI 4,5-dicyano-2-trifluoromethylimidazolium
  • Lithium bisfluorosulfonimide (LiFSI) crude product (water content ⁇ 5%) was dissolved in ether, the insoluble matter was filtered out, and concentrated into a paste. 20g of the paste was added to the flask and placed in the microwave frequency. In a 2450MHz microwave dryer, vacuumize to 60.0mmHg, set the maximum operating temperature of the microwave dryer to 60°C, and start the microwave dryer; after the microwave operation is completed, use high-purity nitrogen to break the air and sample to determine the moisture and ether content; Test results: water 20.0ppm, ether 0.5ppm.
  • Lithium bisfluorosulfonimide (LiFSI) crude product (water content ⁇ 5%) was dissolved in ether, the insoluble matter was filtered out, and concentrated into a paste. 20g of the paste was added to the flask and placed in the microwave frequency.
  • a 2450MHz microwave dryer vacuumize to 20.0mmHg under the protection of inert gas, set the maximum working temperature of the microwave dryer to 60°C, and start the microwave dryer; after the microwave operation, use high-purity nitrogen to break the air and sample Determine the content of water and ether; test results: water 20.0ppm, ether 0.5ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé d'utilisation de séchage par micro-ondes sous vide pour préparer un sel de lithium ultra-sec pour une batterie au lithium, le procédé comprenant les étapes consistant à placer un produit humide de sel de lithium dans un appareil de séchage par micro-ondes sous vide, à amener l'appareil à obtenir un degré de vide inférieur à 500 mmHg, et à amener les micro-ondes à chauffer l'appareil. Une fois l'opération par micro-ondes achevée, les impuretés évaporables dans le sel de lithium peuvent être éliminées, pour obtenir un sel de lithium ultra-sec convenant à une batterie au lithium-ion. Le produit humide de sel de lithium peut être une solution ayant une teneur en solides supérieure ou égale à 30%, une bouillie ou un solide. Le séchage par micro-ondes sous vide permet de chauffer très efficacement et de manière homogène un sel de lithium et d'éliminer efficacement les impuretés évaporables dans le sel de lithium.
PCT/CN2020/079090 2020-03-13 2020-03-13 Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium WO2020253277A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/079090 WO2020253277A1 (fr) 2020-03-13 2020-03-13 Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium
CN202080002482.8A CN112204329A (zh) 2020-03-13 2020-03-13 一种利用真空微波干燥制备超干锂电池锂盐的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079090 WO2020253277A1 (fr) 2020-03-13 2020-03-13 Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium

Publications (1)

Publication Number Publication Date
WO2020253277A1 true WO2020253277A1 (fr) 2020-12-24

Family

ID=74033781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079090 WO2020253277A1 (fr) 2020-03-13 2020-03-13 Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium

Country Status (2)

Country Link
CN (1) CN112204329A (fr)
WO (1) WO2020253277A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310425A (ja) * 1997-05-07 1998-11-24 Honjiyou Chem Kk 無水塩化リチウムの製造方法
CN104129773A (zh) * 2013-08-15 2014-11-05 多氟多化工股份有限公司 一种六氟磷酸锂干燥方法及设备
CN204944124U (zh) * 2015-08-07 2016-01-06 赣州腾远钴业有限公司 一种钴酸锂真空微波干燥设备
CN107204466A (zh) * 2017-03-31 2017-09-26 宁波中车新能源科技有限公司 一种超低温电池电容及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310425A (ja) * 1997-05-07 1998-11-24 Honjiyou Chem Kk 無水塩化リチウムの製造方法
CN104129773A (zh) * 2013-08-15 2014-11-05 多氟多化工股份有限公司 一种六氟磷酸锂干燥方法及设备
CN204944124U (zh) * 2015-08-07 2016-01-06 赣州腾远钴业有限公司 一种钴酸锂真空微波干燥设备
CN107204466A (zh) * 2017-03-31 2017-09-26 宁波中车新能源科技有限公司 一种超低温电池电容及其制备

Also Published As

Publication number Publication date
CN112204329A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2020134773A1 (fr) Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium
WO2010082261A1 (fr) Procédé de fabrication d'électrode positive pour batterie secondaire à électrolyte non aqueux et batterie secondaire à électrolyte non aqueux
CN114229816B (zh) 一种从废旧磷酸铁锂电池中回收制备正极材料的方法
WO2020143364A1 (fr) Procédé de préparation de nanotubes de bcn dans un matériau d'électrode de supercondensateur lithium-ion
CN114242998A (zh) 一种提升富锂锰基氧化物正极材料电化学性能的方法
CN110759379B (zh) 一种0d/2d异质结构复合负极材料的制备方法及其应用
CN112978790B (zh) 一种具有电化学振荡效应的钛酸锂制备方法
WO2020253277A1 (fr) Procédé d'utilisation du séchage par micro-ondes sous vide pour préparer du sel de lithium ultra-sec pour batterie au lithium
CN107492648B (zh) 棉花基碳纤维/MnO/C材料、制备方法及应用
CN110713187A (zh) 一种硅材料的制备方法及其在锂离子电池负极的应用
CN108448069B (zh) 一种高镍锂离子电池正极材料改性方法
CN108615870A (zh) 低成本且能规模化生产的高比容量多孔硅材料的制备方法
CN114314537A (zh) 一种磷化锂基复合材料的制备方法及其作为补锂材料的应用
CN103715427B (zh) 磷酸铁锂纳米单晶材料的制备方法
CN108649193B (zh) 改性锂离子电池正极材料及其制备方法
CN111129423B (zh) 一种锂离子电池负极材料及其制备方法、锂离子电池负极和锂离子电池
CN107519666B (zh) 一种铁离子吸附柱及其应用
CN115939359B (zh) 硅基负极材料、其制备方法以及锂离子二次电池
CN114583148B (zh) 一种锂离子电池用氧化硅基石墨复合负极材料的制备方法
CN115406187B (zh) 一种钠离子电池电芯干燥方法
CN113415794B (zh) 一种通过磷化工艺制备的水系锌电池正极材料及其制备方法与应用
CN114772627B (zh) 一种固态电解质的脱水提纯方法和应用
CN109461905B (zh) 一种锂硫电池正极材料及其制备方法
CN115602455A (zh) 一种钠离子电容器制备的预钠化方法及其制备的钠离子电容器
JPH04253161A (ja) 非水電解質電池用正極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825527

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2023)