WO2020251010A1 - 凍結輸送容器、極低温液化ガス吸収材ケース - Google Patents

凍結輸送容器、極低温液化ガス吸収材ケース Download PDF

Info

Publication number
WO2020251010A1
WO2020251010A1 PCT/JP2020/023187 JP2020023187W WO2020251010A1 WO 2020251010 A1 WO2020251010 A1 WO 2020251010A1 JP 2020023187 W JP2020023187 W JP 2020023187W WO 2020251010 A1 WO2020251010 A1 WO 2020251010A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
liquefied gas
main body
liquid nitrogen
transport container
Prior art date
Application number
PCT/JP2020/023187
Other languages
English (en)
French (fr)
Inventor
輝 馬瀬
滋弘 吉村
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to US17/614,809 priority Critical patent/US20220228789A1/en
Priority to EP20822402.2A priority patent/EP3984908A4/en
Publication of WO2020251010A1 publication Critical patent/WO2020251010A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0252Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
    • A01N1/0257Stationary or portable vessels generating cryogenic temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/105Movable containers

Definitions

  • a frozen transport container that stores and transports biological samples in the medical and biotechnology fields such as cells in a frozen state, and an ultra-low temperature liquefied gas absorber that is placed in the frozen transport container and used to keep the inside of the container at a low temperature. Regarding the case.
  • Patent Document 1 discloses a cryopreservation container using an impregnating material impregnated with a cryogenic liquefied gas such as liquid nitrogen.
  • the cryopreservation container of Patent Document 1 has a structure in which an impregnating material is arranged on the bottom and inner peripheral walls of a heat insulating container in which a large-diameter cylindrical storage area is formed below a small-diameter sample inlet / outlet.
  • the sample entrance / exit has a smaller diameter than the storage area for storing the sample. Therefore, it is not possible to put a large sample such as a bag shape. Further, since the impregnating material is arranged on the peripheral wall of the sample storage area, the inner diameter of the sample storage area becomes small, and an elongated sample such as a vial can be stored, but a large sample such as a bag shape cannot be stored. There is also.
  • the impregnating material of Patent Document 1 is fixed in a heat insulating container and has a structure that cannot be removed. However, it is conceivable that the impregnating material gradually deteriorates to reduce the amount of liquid nitrogen absorbed or become contaminated, and a replaceable structure is required.
  • the present invention has been made to solve such a problem, and can store a large sample such as a bag shape, and can easily take out and install a cryogenic liquefied gas absorber impregnated with a cryogenic liquefied gas such as liquid nitrogen. It is an object of the present invention to provide a cryogenic transport container and a cryogenic liquefied gas absorber case that can be installed in the freeze transport container.
  • the present invention provides the following frozen transport container and cryogenic liquefied gas absorber case.
  • a frozen transport container having a bottomed tubular main body having a heat insulating structure and an opening at the top, and a lid that can be opened and closed at the opening of the main body.
  • the main body has the same diameter at the top opening and at the bottom.
  • a cryogenic liquefied gas absorbing material case is provided at the bottom of the main body so as to be removable.
  • the cryogenic liquefied gas absorbing material case is a cryogenic transport container having a bottomed tubular case portion and a cryogenic liquefied gas absorbing material exchangeably arranged inside the case portion.
  • the case portion is formed by a heat transfer body, has a side wall portion arranged along the inner peripheral wall of the main body portion, and the inner space of the side wall portion functions as a sample storage portion, and the height of the side wall portion.
  • the case portion is provided with a fixing plate, and the fixing plate and the cryogenic liquefied gas absorber are formed with sample insertion holes for inserting a sample to be stored (1) to (3). ) Is described in any of the frozen transport containers.
  • It has a bottomed tubular shape having a heat insulating structure and an opening at the top, and can be opened and closed at the top opening, the main body having the same diameter at the bottom, and the opening of the main body.
  • An ultra-low temperature liquefied gas absorber case that is removably arranged at the bottom of a frozen transport container having a lid.
  • a cryogenic liquefied gas absorbing material case characterized by having a bottomed tubular case portion and a cryogenic liquefied gas absorbing material exchangeably arranged inside the case portion.
  • the case portion is formed by a heat transfer body and has a side wall portion arranged along the inner peripheral wall of the main body portion.
  • the inner space of the side wall portion functions as a sample storage portion, and the height of the side wall portion is high.
  • the freezing transport container according to the present invention is a freezing transport container having a heat insulating structure, a bottomed tubular main body having an opening at the top, and a lid that can be opened and closed at the opening of the main body.
  • the main body portion has an upper opening and a bottom portion having the same diameter, and further includes an ultra-low temperature liquefied gas absorbent case which is arranged so as to be removable from the bottom portion of the main body portion.
  • the low-temperature liquefied gas absorbing material case is characterized by having a bottomed tubular case portion and an extremely low-temperature liquefied gas absorbing material which is replaceably arranged inside the case portion.
  • cryogenic liquefied gas absorber case can be taken out and the cryogenic liquefied gas absorber can be easily replaced, these can be recovered against deterioration and contamination of the cryogenic liquefied gas absorber. Further, since the main body portion has the same diameter as the upper opening and the bottom portion, the inner space is wide and a large sample such as a bag can be accommodated, which makes it possible to transport a large sample which was difficult in the past.
  • the frozen transport container according to this embodiment will be described with reference to FIGS. 1 to 6.
  • the case where the main body of the frozen transport container is cylindrical will be taken as an example, and liquid nitrogen will be taken as an example as the cryogenic liquefied gas.
  • the present invention is not limited thereto.
  • the frozen transport container 1 is for transporting the sample while holding it in a frozen state.
  • the frozen transport container 1 according to the present embodiment has a heat insulating structure, a main body 3 having a bottomed cylindrical shape and an opening 3a at the top, and a lid that can be opened and closed from the opening 3a of the main body 3. It includes a body 5 and a liquid nitrogen absorber case 7 that is removably arranged at the bottom of the main body 3.
  • a liquid nitrogen absorber case 7 that is removably arranged at the bottom of the main body 3.
  • the sample is mainly a biological sample contained in a vial, a blood bag, or the like.
  • the volume of the vial, bag, etc. is, for example, 25, 50, 100 ml.
  • the frozen transport container 1 contains 10 or about 10 of these vials, bags, and the like.
  • the main body 3 has a heat insulating structure, has a bottomed cylindrical shape as shown in FIGS. 1 to 3, and has an opening 3a at the upper end.
  • the diameter of the opening 3a at the upper end is the same as the diameter of the bottom.
  • the main body 3 preferably has a vacuum double structure made of stainless steel.
  • An example of the external dimensions of the main body 3 is as follows. External dimensions: ⁇ 200 x H300 mm Opening and bottom: ⁇ 189 mm
  • the lid 5 is attached to the opening 3a of the main body 3 so as to be openable and closable. Further, as shown in FIG. 1, the lid 5 has a cylindrical portion 9 having the same diameter as the opening 3a. The cylindrical portion 9 is inserted into the opening 3a of the main body portion 3.
  • the columnar portion 9 is formed of, for example, a heat insulating material made of polyurethane foam or polystyrene foam to prevent heat from entering through the opening 3a.
  • the liquid nitrogen absorbent case 7 has a bottomed cylindrical case portion 11 and a liquid nitrogen absorbent 13 that is replaceably arranged inside the case portion 11.
  • the liquid nitrogen absorbent case 7 is removably arranged at the bottom of the main body 3.
  • the liquid nitrogen absorber 13 is formed of a plurality of circular sheets. As shown in FIGS. 4 and 5, circular sheets are arranged so as to be stacked on the bottom of the case portion 11.
  • the liquid nitrogen absorbent 13 has, for example, a material of polypropylene, a diameter of ⁇ 180 mm, and a thickness of 50 mm when stacked.
  • the liquid nitrogen absorber 13 is provided with a plurality of holes 15 in order to increase the speed at which liquid nitrogen is immersed therein (see FIG. 5). Further, the plurality of holes 15 can directly insert a vial-shaped sample, and also function as a sample insertion hole.
  • the shape of the hole 15 is not limited to a circular shape when the sample or the like is a vial, and may be, for example, a rectangular shape into which a bag-shaped sample 16 is inserted, as shown in FIG.
  • the liquid nitrogen absorbent case 7 is provided with a fixing plate 19 described later as shown in FIGS. 4 and 5. Is preferable.
  • the fixing plate 19 is provided with an opening 17 having the same shape at a position corresponding to the hole 15 provided in the liquid nitrogen absorber 13.
  • the fixing plate 19 is placed on the upper surface of the liquid nitrogen absorbent 13.
  • the fixing plate 19 is fixed to the case portion 11 with a fixing screw 23 via a spacer 21 provided so as to penetrate the laminated liquid nitrogen absorbent 13 in the thickness direction.
  • the liquid nitrogen absorbent 13 in which a plurality of sheets are laminated is fixed inside the case portion 11.
  • the spacer 21 is a thin cylindrical metal fitting, and is threaded inside. A screw hole corresponding to the spacer 21 is formed at the bottom of the case portion 11.
  • the fixing screw 23 is screwed into the spacer from the lower surface side of the bottom of the case portion 11. As a result, the spacer 21 is erected on the bottom of the case portion 11.
  • the liquid nitrogen absorbent 13 composed of a plurality of sheets is placed in the case portion 11. Since the liquid nitrogen absorber 13 has a spacer insertion hole formed in a portion corresponding to the spacer 21, the liquid nitrogen absorber 13 is placed so that the spacer is inserted into the spacer insertion hole.
  • the fixing plate 19 After mounting, the fixing plate 19 is arranged on the liquid nitrogen absorber 13, and the fixing screw 23 is screwed into the spacer 21 from the upper surface side of the fixing plate 19. As a result, the liquid nitrogen absorber 13 can be attached to the case portion 11 with the spacer 21 and the fixing plate 19.
  • the fixing plate 19 By installing the fixing plate 19, the liquid nitrogen absorbent 13 is sandwiched between the bottom of the case portion 11 and the fixing plate 19 and does not fall off from the case portion 11.
  • the liquid nitrogen absorbent case 7 may be taken out from the main body 3 and the fixing plate 19 may be removed.
  • the fixing plate 19 is formed with a large number of passing holes 25 through which liquid nitrogen passes when the liquid nitrogen is impregnated into the liquid nitrogen absorber 13. Further, as described above, when the hole 15 provided in the liquid nitrogen absorber 13 functions as a sample insertion hole, the fixing plate 19 is provided with an opening 17. The opening 17 is provided at a position corresponding to the hole 15 provided in the liquid nitrogen absorbent 13. For example, a sample such as a vial can be inserted into the opening 17. As the fixing plate 19, a metal heat transfer body such as aluminum or copper having high thermal conductivity is used as in the case portion 11 described later.
  • the case portion 11 has a bottom portion and a side wall portion 27 provided upright from the periphery of the bottom portion.
  • the side wall portion 27 is preferably arranged so that its outer peripheral surface is in contact with the inner peripheral wall of the main body portion 3. That is, it is preferable that there is no space between the inner peripheral wall of the main body 3 and the side wall portion 27 of the case portion 11. As a result, a wide sample storage space can be secured. Furthermore, since there is no space, for example, an air layer, the heat insulation efficiency can be improved.
  • the case portion 11 including the side wall portion 27 and the bottom portion is formed of a heat transfer body made of a metal such as aluminum or copper having high thermal conductivity.
  • the cold heat of liquid nitrogen can be transferred to the upper part of the container faster and at a lower temperature.
  • the sample storage container is made of stainless steel, it is more preferably made of aluminum, which is less likely to cause rust.
  • An example of the dimensions of the case portion 11 is ⁇ 183 mm ⁇ H200 mm.
  • the thickness of the case portion is 0.5 mm, and the inner diameter of the side wall portion 27 is ⁇ 182 mm.
  • the case portion 11 has a function of transmitting the cold heat of the liquid nitrogen absorber 13 and effectively cooling the sample contained therein.
  • the case portion 11 having such a function comes into contact with the cylindrical portion 9 made of the heat insulating material of the lid body 5, the heat of the heat insulating material itself is transferred to the inside of the container, so that the case portion 11 and the cylindrical portion 9 come into contact with each other. It is preferable not to make contact with each other, and it is preferable to set a gap of 2 to 3 mm between the two.
  • the side wall portion 27 of the case portion 11 has a height such that the upper end thereof is the same as the upper end of the inner wall surface of the main body portion 3, the cold heat of liquid nitrogen can be efficiently transmitted to the upper portion of the main body portion 3. Therefore, the inside of the main body 3 can be kept at a lower temperature.
  • the heat from the opening 3a is easily transferred to the inside of the container, so that the amount of evaporation loss of liquid nitrogen increases. Therefore, it is preferable that the height of the side wall portion of the case portion 11 satisfies the following relationship. (Distance from the upper end of the liquid nitrogen absorber 13 to the bottom of the columnar portion 9 of the lid 5): (Height of the side wall portion) is preferably 100: 0 to 95, more preferably 100: 70 to 90.
  • the height of the side wall portion is 100: 0, as shown in FIG. 7, the side wall portion 27 of the case portion 11
  • the height of the liquid nitrogen absorber 13 is the same as the height of the liquid nitrogen absorber 13.
  • the height of the side wall portion 27 of the case portion 11 is the height of the liquid nitrogen absorber 13. Even if the height is the same, the storage space (hole 15 provided in the liquid nitrogen absorber 13) is sufficiently cooled by the vaporized nitrogen.
  • the case The height of the side wall portion 27 of the portion 11 may be the same as the height of the liquid nitrogen absorber 13.
  • the outer diameter of the side wall portion 27 of the case portion 11 is substantially the same as the inner diameter of the main body portion 3. Further, when it is desired to rapidly cool the inside of the container or lower the temperature, fins may be provided on the inner wall of the side wall portion 27 in order to improve the heat transfer performance.
  • the liquid nitrogen absorbent case 7 is installed in the main body 3 so that it can be taken out easily, but it is preferable that the liquid nitrogen absorbent case 7 can be taken out easily.
  • an annular case fixture 29 that is detachably attached in the vicinity of the opening 3a of the main body 3 (see FIGS. 1 and 3).
  • the case fixture 29 preferably has an outer diameter slightly larger than the inner diameter of the opening 3a of the main body 3.
  • a member having heat insulating properties and flexibility such as polyurethane foam or polystyrene foam.
  • the case fixture 29 is installed in the vicinity of the opening 3a of the main body 3 with the liquid nitrogen absorbent case 7 arranged inside the main body 3.
  • the case fixture 29 Since the outer diameter of the case fixture 29 is slightly larger than the inner diameter of the main body 3, it can be detachably attached to the main body 3 in a compressed state. In this way, the case fixture 29 is press-fitted into the main body 3 and is arranged in close contact with the inner wall of the main body 3 at the upper part of the liquid nitrogen absorber case 7. Therefore, the frozen transport container 1 The liquid nitrogen absorbent case 7 does not come out even if it is tilted. On the other hand, when the liquid nitrogen absorbent case 7 is taken out by exchanging the liquid nitrogen absorbent 13 or the like, the case fixture 29 may be slightly bent and removed.
  • the liquid nitrogen absorbent case 7 can be taken out and the liquid nitrogen absorbent 13 can be easily replaced. Therefore, if the liquid nitrogen absorber 13 is deteriorated or contaminated, it can be replaced.
  • the side wall portion 27 of the case portion 11 when the height of the side wall portion 27 of the case portion 11 is higher than the height of the cryogenic liquefied gas absorber 13, the side wall portion 27 is along the inner wall of the main body portion 3, and the liquid nitrogen absorber 13 is Since it is arranged only at the bottom of the case portion 11, the internal space is wide and a large sample such as a bag can be accommodated, which makes it possible to transport a large sample, which has been difficult in the past.
  • a 50 ml bag-shaped sample requires a space of 95 mm (length) x 85 mm (width) x 10 mm (thickness), but some conventional general dry shippers have an opening compared to the outer diameter.
  • the opening Since the diameter is narrowed, for example, the opening is designed to have a diameter of 50 mm to 70 mm, a back-shaped sample cannot be stored in a dry shipper having such a size.
  • a dry shipper having a larger outer diameter In order to store a back-shaped sample with a dry shipper whose opening diameter is narrower than that of the outer diameter, a dry shipper having a larger outer diameter must be used, so that the amount of liquid nitrogen used is large. There are inconveniences such as an increase.
  • the opening and the bottom of the main body 3 have the same diameter, the opening 3a has a diameter of 189 mm, and the inner diameter of the side wall 27 has a diameter of ⁇ 182 mm. It is possible to store in the mode shown in 6.
  • FIG. 8 shows the temperature state inside the frozen transport container 1 of the present embodiment, but a temperature state of about ⁇ 150 ° C. can be realized even in the upper part of the side wall portion 27. That is, in the conventional example, the impregnating material (liquid nitrogen absorbing material) was arranged on the bottom portion and the inner peripheral wall of the main body portion 3 made of the heat insulating container.
  • the frozen transport container 1 of the present embodiment includes a bottomed tubular case portion 11 having a side wall portion 27, and the liquid nitrogen absorbent 13 is housed in the case portion 11.
  • the height of the side wall portion is higher than the height of the cryogenic liquefied gas absorber, low temperature maintenance is realized while ensuring a large volume of the sample storage space.
  • liquid nitrogen absorber 13 When the liquid nitrogen absorber 13 is arranged at the bottom of the main body 3 without providing the liquid nitrogen absorbent case 7 in the main body 3 having the same shape, that is, in the conventional frozen transport container, liquid nitrogen absorption
  • the cold heat of the material 13 is transmitted to the inner wall made of stainless steel of the main body 3.
  • stainless steel since stainless steel has a low thermal conductivity, the upper part does not easily cool, and as shown in FIG. 9, the upper part temperature is about ⁇ 30 ° C. From this, a great effect can be expected when the case portion 11 includes the side wall portion 27 having a height larger than the height of the liquid nitrogen absorber 13. Since FIG. 9 does not have the liquid nitrogen absorber case 7, the case fixing tool 29 is unnecessary, and the case fixing tool 29 is also not provided.
  • the frozen transport container 1 shown in FIG. 8 it takes about 30 minutes for the temperature inside the main body 3 to reach ⁇ 150 ° C. or lower after the liquid nitrogen absorbent case 7 is installed in the main body 3.
  • the temperature in 3 could be maintained at ⁇ 150 ° C. or lower for about 300 minutes.
  • the main body 3 of the frozen transport container 1 is cylindrical
  • the liquid nitrogen absorbent case 7 housed in the main body 3 also has a similar cylindrical shape.
  • the main body 3 of the frozen transport container 1 is not limited to a cylindrical shape, and may be, for example, a rectangular cylinder.
  • the liquid nitrogen absorber case 7 housed in the main body 3 is also the same. It is preferable that it has a rectangular cylinder shape.
  • liquid nitrogen is taken as an example as the cryogenic liquefied gas, but the cryogenic liquefied gas of the present invention is not limited to liquid nitrogen, and as long as a suitable absorbent material is used, for example, liquid helium, liquid argon, etc. It is also possible to use a liquefied gas of the inert gas of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Packages (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

バッグ形状等の大型の試料が収納でき、液体窒素等の極低温液化ガスを含浸する極低温液化ガス吸収材の取り出し、設置が容易にできる凍結輸送容器、凍結輸送容器に設置可能な極低温液化ガス吸収材ケースを提供することを目的とし、本発明は、断熱構造を有し、上部に開口部(3a)を有する有底筒形の本体部(3)と、前記本体部(3)の開口部(3a)に開閉可能に取り付けられる蓋体(5)とを有する凍結輸送容器(1)であって、前記本体部(3)は、上部開口部(3a)と、底部とが同径であり、さらに、前記本体部(3)の底部に取り出し可能に配設された極低温液化ガス吸収材ケース(7)を具備し、前記極低温液化ガス吸収材ケース(7)は、有底筒形のケース部(11)と、該ケース部(11)の内部に交換可能に配設された極低温液化ガス吸収材(13)とを有することを特徴とする凍結輸送容器(1)を提供する。

Description

凍結輸送容器、極低温液化ガス吸収材ケース
 細胞など医療・バイオ分野の生体試料等を凍結状態で収容して輸送する凍結輸送容器、及び凍結輸送容器内に配設されて容器内を低温に保持するために用いられる極低温液化ガス吸収材ケースに関する。
 生体試料を凍結輸送する手段として真空断熱構造のドライシッパーがある。ドライシッパー内部には極低温液化ガスである液体窒素の吸収材が配設され、液体窒素は吸収材に吸収されているので、輸送時に転倒しても液体窒素をこぼす恐れがない。
 液体窒素等の極低温液化ガスを含浸させる含浸材を用いた凍結保存容器としては、例えば特許文献1に開示されている。
 特許文献1の凍結保存容器は、小径の試料出入口の下方に大径の円筒形の格納領域が形成された断熱容器内に、その底部及び内周壁に含浸材を配設した構造である。
特許第4881046号公報
 特許文献1に開示されたものは外気温の影響を受けにくくするため、試料を格納する格納領域よりも試料出入口が小径になっている。このため、バッグ形状等の大型の試料を入れることができない。
 また、試料の格納領域の周壁に含浸材を配設しているため、試料格納領域の内径が小さくなり、バイアル等の細長い試料は収納できるが、バッグ形状等の大型の試料が収納できないという問題もある。
 また、特許文献1の含浸材は、断熱容器内に固定され、取り外せない構造になっている。しかし、含浸材が次第に劣化して液体窒素の吸収量が少なくなったり、汚染されたりすることが考えられ、交換可能な構造が求められている。
 本発明はかかる課題を解決するためになされたものであり、バッグ形状等の大型の試料が収納でき、液体窒素等の極低温液化ガスを含浸する極低温液化ガス吸収材の取り出し、設置が容易にできる凍結輸送容器、凍結輸送容器に設置可能な極低温液化ガス吸収材ケースを提供することを目的としている。
 上記目的を達成するために、本発明は以下の凍結輸送容器および極低温液化ガス吸収材ケースを提供する。
(1)断熱構造を有し、上部に開口部を有する有底筒形の本体部と、前記本体部の開口部に開閉可能に取り付けられる蓋体とを有する凍結輸送容器であって、
 前記本体部は、上部開口部と、底部とが同径であり、
 さらに、前記本体部の底部に取り出し可能に配設された極低温液化ガス吸収材ケースを具備し、
 前記極低温液化ガス吸収材ケースは、有底筒形のケース部と、該ケース部の内部に交換可能に配設された極低温液化ガス吸収材とを有することを特徴とする凍結輸送容器。
(2)前記ケース部は伝熱体によって形成され、前記本体部の内周壁に沿って配置される側壁部を有し、側壁部の内側空間は試料収納部として機能し、側壁部の高さは、前記極低温液化ガス吸収材の高さよりも高い上記(1)に記載の凍結輸送容器。
(3)前記断熱構造を有する本体部が、ステンレス製の真空二重構造を有し、前記ケース部がアルミニウム又は銅で形成されている上記(1)または(2)の凍結輸送装置。
(4)前記ケース部は固定用プレートを具備し、固定用プレート及び極低温液化ガス吸収材には、収納対象試料を挿入するための試料挿入孔が形成されている上記(1)から(3)のいずれかに記載の凍結輸送容器。
(5)断熱構造を有し、上部に開口部を有する有底筒形であり、上部開口部と、底部とが同径である本体部と、前記本体部の開口部に開閉可能に取り付けられる蓋体とを有する凍結輸送容器の底部に取り出し可能に配設される極低温液化ガス吸収材ケースであって、
 有底筒形のケース部と、該ケース部の内部に交換可能に配設された極低温液化ガス吸収材とを有することを特徴とする極低温液化ガス吸収材ケース。
(6)前記ケース部は、伝熱体によって形成され、前記本体部の内周壁に沿って配置される側壁部を有し、側壁部の内側空間は試料収納部として機能し、側壁部の高さは、前記極低温液化ガス吸収材の高さよりも高い上記(5)に記載の極低温液化ガス吸収材ケース。
(7)前記ケース部がアルミニウム又は銅で形成されている上記(5)または(6)に記載の極低温液化ガス吸収材ケース。
 本発明に係る凍結輸送容器は、断熱構造を有し、上部に開口部を有する有底筒形の本体部と、前記本体部の開口部に開閉可能に取り付けられる蓋体とを有する凍結輸送容器であって、前記本体部は、上部開口部と、底部とが同径であり、さらに、前記本体部の底部に取り出し可能に配設された極低温液化ガス吸収材ケースを具備し、前記極低温液化ガス吸収材ケースは、有底筒形のケース部と、該ケース部の内部に交換可能に配設された極低温液化ガス吸収材とを有することを特徴とする。
 極低温液化ガス吸収材ケースを取り出して、極低温液化ガス吸収材を簡単に交換することができるので、極低温液化ガス吸収材の劣化や汚染に対して、これらを回復させることができる。
 また、本体部が上部の開口部と、底部とが同径であるため、内側空間が広く、バック等の大型の試料を収容することができ、従来難しかった大型試料の輸送が可能となる。
本発明の実施形態に係る凍結輸送容器の断面図である。 本発明の実施形態に係る凍結輸送容器の外観を示す図である。 本体部から液体窒素吸収材ケースと、ケース固定具とを取り出した状態の斜視図である。 本発明の実施形態に係る凍結輸送容器に配設される液体窒素吸収材ケースを示す平面図(a)と断面図(b)とである。 液体窒素吸収材ケースに配設される液体窒素吸収材の配設方法の説明図である。 発明の実施形態に係る凍結輸送容器に配設される液体窒素吸収材に設ける試料挿入穴の他の態様の説明図である。 本発明の実施形態に係る凍結輸送容器における液体窒素吸収材ケースの他の態様の説明図である。 本発明の実施形態に係る凍結輸送容器における内部の伝熱状態の説明図である。 液体窒素吸収材ケースを具備しない従来の凍結輸送容器内部の伝熱状態の説明図である。
 本実施形態に係る凍結輸送容器を図1~図6に基づいて説明する。なお、以下の説明では凍結輸送容器の本体部が円筒形である場合を例に挙げ、また極低温液化ガスとして液体窒素を例に挙げて説明する。しかしながら、本発明はこれらに限定されるものではない。
 本実施形態に係る凍結輸送容器1は、図1~図6に示すように、試料を凍結状態に保持して輸送するためのものである。本実施形態に係る凍結輸送容器1は、断熱構造を有し、有底円筒形で上部に開口部3aが設けられた本体部3と、本体部3の開口部3aに開閉可能に取り付けられる蓋体5と、本体部3の底部に取り出し可能に配設された液体窒素吸収材ケース7とを備えている。
 以下、各構成を詳細に説明する。
<試料>
 試料は、主としてバイアル、血液バッグ等に収容された生体試料である。バイアル、バッグ等の容量は、例えば25、50、100mlである。凍結輸送容器1には、これらのバイアル、バッグ等を、10本、あるいは10枚程度が収容される。
<本体部>
 本体部3は断熱構造を有し、図1~図3に示すように、有底円筒形であり、上端に開口部3aを有する。上端の開口部3aの径と、底部の径とは同じである。本体部3としては、ステンレス製の真空二重構造のものが好ましい。
 本体部3の外形寸法の一例は以下の通りである。
外形寸法    :φ200×H300mm
開口部 および底部:φ189mm
<蓋体>
 蓋体5は、本体部3の開口部3aに開閉可能に取り付けられる。また、蓋体5は、図1に示すように、開口部3aと同径の円柱部9を有する。円柱部9が、本体部3の開口部3aに挿入される。円柱部9は、例えば発泡ポリウレタン、発泡ポリスチレン製の断熱素材で形成され、開口部3aからの熱侵入を防いでいる。
<液体窒素吸収材ケース>
 液体窒素吸収材ケース7は、図4に示すように、有底円筒形のケース部11と、ケース部11の内部に交換可能に配設された液体窒素吸収材13とを有する。液体窒素吸収材ケース7は、本体部3の底部に取り出し可能に配設される。
 液体窒素吸収材13は、複数枚の円形のシートで形成されている。図4および図5に示すように、ケース部11の底部に円形シートが積み重ねるように配置されている。
 液体窒素吸収材13は、例えば、材質がポリプロピレンで、径がφ180mmで重ねた状態での厚みが50mmである。
 液体窒素吸収材13には、内部に液体窒素が浸漬していく速度を上げるために、複数の穴15が設けられている(図5参照)。また、この複数の穴15は、バイアル状の試料を直接差すことができるものであり、試料挿入穴としても機能する。
 この穴15の形状は、試料等がバイアルの場合の円形状に限らず、例えば、図6に示すように、バッグ状の試料16が入るような矩形状でもよい。
 なお、液体窒素吸収材13に設けた穴15を試料挿入穴として機能させる場合、前記液体窒素吸収材ケース7は、図4および図5に示すように、後述する固定用プレート19を具備することが好ましい。固定用プレート19には、液体窒素吸収材13に設けた穴15に対応する位置に同形状の開口17が設けられている。
 前記固定用プレート19は、液体窒素吸収材13の上面に載置される。固定用プレート19は、積層された液体窒素吸収材13を厚み方向に貫通するように設けられるスペーサー21を介して固定用ネジ23でケース部11に固定されている。これにより、複数枚のシートが積層されてなる液体窒素吸収材13がケース部11の内部に固定される。スペーサー21および固定用プレート19を用いた液体窒素吸収材13の固定方法をより詳細に説明すると以下の通りである。
 スペーサー21は細い円筒形の金具であり、内部にはねじ切りがしてある。ケース部11の底部には、スペーサー21に対応するネジ穴が形成されている。まず、ケース部11の底部下面側から固定用ネジ23をスペーサー内部にねじ止めする。これにより、スペーサー21がケース部11の底部に立設する。次いで複数のシートからなる液体窒素吸収材13をケース部11内に載置する。液体窒素吸収材13には、スペーサー21に対応する部分にスペーサー挿入孔が形成されているので、このスペーサー挿入孔にスペーサーが挿入するようにして液体窒素吸収材13を載置する。載置後、液体窒素吸収材13上に固定用プレート19を配置し、固定用プレート19の上面側から固定用ネジ23をスペーサー21の内部にネジ止めする。これにより、スペーサー21をおよび固定用プレート19にて、液体窒素吸収材13をケース部11に取り付けることができる。固定用プレート19を設置することで、液体窒素吸収材13は、ケース部11の底部と固定用プレート19で挟まれた状態となり、ケース部11から脱落することがない。
 液体窒素吸収材13を取り換える際には、液体窒素吸収材ケース7を本体部3から取り出して、固定用プレート19を取り外せばよい。
 固定用プレート19には、固定用ネジ23の挿通孔の他に、液体窒素を液体窒素吸収材13に染み込ませる際に、液体窒素が通過する通過孔25が多数形成されている。
 また、前述したように、液体窒素吸収材13に設けた穴15を、試料挿入穴として機能させる場合には、固定用プレート19には開口17が設けられる。この開口17は、液体窒素吸収材13に設けた穴15と対応する位置に設けられている。例えばバイアル等の試料を開口17に挿入できる。
 固定用プレート19は、後述のケース部11と同様に、熱伝導率の高いアルミニウム又は銅等の金属伝熱体を用いる。
 ケース部11は、図4に示すように、底部と、底部の周囲から立設して設けられる側壁部27とを有する。前記側壁部27は、その外周面が前記本体部3の内周壁に沿って接するように配置されることが好ましい。つまり、前記本体3の内周壁と、ケース部11の側壁部27との間には、空間がないことが好ましい。これにより試料収納スペースを広く確保できる。さらには、空間、例えば空気層が存在しないため、断熱効率を高めることができる。
 側壁部27と、底部とを含むケース部11は、熱伝導率の高いアルミニウム又は銅等の金属からなる伝熱体によって形成されている。熱伝導率の高い金属を用いることで、液体窒素の冷熱を容器上部へより早く、より低温に伝えることができる。なお、試料収納容器がステンレス製の場合は錆の発生しにくいアルミニウム製がより好ましい。
 ケース部11の寸法の一例は、φ183mm×H200mmである。また、ケース部の厚みは0.5mmであり、側壁部27の内径はφ182mmである。
 なお、上記説明はケース部11の底部が円形である場合を例示したが、円形に限られることなく、用途および本体部3の形状に応じて、四角形、多角形など形状は選択することができる。
 ケース部11は、液体窒素吸収材13の冷熱を伝え、内部に収容される試料を効果的に冷却する機能を有している。このような機能を有するケース部11が、蓋体5の断熱素材からなる円柱部9と接触すると、断熱素材自体が持つ熱を容器内に伝えてしまうため、ケース部11と円柱部9とが接触しないようにすることが好ましく、両者間には2~3mmの隙間を設定することが好ましい。
 ケース部11の側壁部27は、その上端が本体部3の内壁面の上端と同じとなるような高さを有すると、液体窒素の冷熱を高効率に本体部3の上部まで伝えることができるため、より本体部3内を低温に保つことができる。
 その一方で、上記の通り、開口部3aからの熱を容器内部に伝えやすくなってしまうため液体窒素の蒸発損失量が増大する。
 そこで、ケース部11の側壁部の高さは、以下の関係を満たすことが好ましい。
(液体窒素吸収材13の上端から蓋体5の円柱部9の底部までの距離):(側壁部の高さ)は、100:0~95が好ましく、100:70~90がより好ましい。
 (液体窒素吸収材13の上端から蓋体5の円柱部9の底部までの距離):(側壁部の高さが100:0とは、図7に示すように、ケース部11の側壁部27の高さが、液体窒素吸収材13の高さと同じ場合である。本体部3における収納部分の高さが低いときは、ケース部11の側壁部27の高さが、液体窒素吸収材13の高さと同じであっても、気化した窒素で収納スペース(液体窒素吸収材13に設けられた穴15)が十分冷やされる。液体窒素吸収材13の穴15に試料を挿入する場合には、ケース部11の側壁部27の高さが、液体窒素吸収材13の高さと同じであってもよい。
 スペースを広く確保するため、ケース部11の側壁部27の外径は、本体部3の内径とほぼ同じにすることが好ましい。
 また、容器内を急速に冷却、または低温にしたい場合は伝熱性能を高めるために、側壁部27の内壁にフィンを設けてもよい。
 液体窒素吸収材ケース7は、本体部3内に取り出し可能に設置されるが、簡易に取り出しが可能にすることが好ましい。例えば、本体部3の開口部3aの近傍に着脱可能に取り付けられる円環状のケース固定具29を用いるのが好ましい(図1、図3参照)。
 ケース固定具29は、本体部3の開口部3aの内径よりも若干だけ外径が大きいことが好ましい。また、発泡ポリウレタンまたは発泡ポリスチレン等の、断熱性があり可撓性のある部材を用いることが好ましい。ケース固定具29は、図1に示すように、液体窒素吸収材ケース7を本体部3の内部に配設した状態で、本体部3の開口部3a近傍に設置する。
 ケース固定具29は、その外径が本体部3の内径より若干だけ大きいため、圧縮された状態で本体部3に着脱可能に取り付けられる。このようにすれば、ケース固定具29が、本体部3に圧入されて、液体窒素吸収材ケース7の上部で本体部3の内壁に対して密接して配設されるので、凍結輸送容器1を傾けても液体窒素吸収材ケース7が抜け出すことがない。
 一方、液体窒素吸収材13の交換等で液体窒素吸収材ケース7を取り出す際には、ケース固定具29を少し撓ませて取り外せばよい。
 以上のように、本実施形態の凍結輸送容器1においては、液体窒素吸収材ケース7を取り出して、液体窒素吸収材13を簡単に交換することができる。このため、液体窒素吸収材13が劣化または汚染した場合には、交換することができる。
 また、ケース部11の側壁部27の高さが、極低温液化ガス吸収材13の高さよりも高い場合には、側壁部27が本体部3の内壁に沿っており、液体窒素吸収材13はケース部11の底部にのみ配設されているので、内部空間が広く、バック等の大型の試料を収容することができ、従来難しかった大型試料の輸送が可能となる。
 例えば、50mlのバッグ形状の試料は95mm(縦)×85mm(横)×10mm(厚み)のスペースが必要であるが、従来の一般的なドライシッパーの一部は外径に比べて開口部の径が絞られており、例えば開口部がφ50mm~70mmで設計されているので、このような寸法のドライシッパーには、バック形状の試料を収納することができない。或いは、外径に比べて開口部の径が絞られたドライシッパーでバック形状の試料を収納するためには、さらに外径の大きいドライシッパーを使用しなければならないため、液体窒素の使用量が増加する等の不都合がある。
 これに対して、本実施形態のものでは、本体部3の開口部と底部とが同径とされており、開口部3aがφ189mmであり、また側壁部27の内径がφ182mmであるため、図6に示した態様での収納が可能である。
 また、ケース部11の側壁部27の高さが、液体窒素吸収材13の高さより大きい場合には、蓋体5からの伝熱や外気温の影響を受けるため温度が下がりにくい容器収納スペース上部においても、内容容積を狭くすることなく、低温を保つことができる。
 図8は、本実施形態の凍結輸送容器1の内部の温度状態を示すものであるが、側壁部27の上部においても約-150℃の温度状態を実現できる。
 すなわち、従来例であれば、断熱容器からなる本体部3の底部及び内周壁に含浸材(液体窒素吸収材)を配設していた。これに対して本実施形態の凍結輸送容器1においては、側壁部27を有する有底筒形のケース部11を具備し、液体窒素吸収材13がケース部11に収容されている。特に、側壁部の高さが極低温液化ガス吸収材の高さよりも高い場合には、試料収納空間の容積を大きく確保しつつ低温保持を実現している。
 なお、同形状の本体部3内に、液体窒素吸収材ケース7を設けることなく本体部3底部に液体窒素吸収材13を配設した場合、つまり、従来の凍結輸送容器においては、液体窒素吸収材13の冷熱は本体部3のステンレス製の内壁を伝わることになる。しかしながらステンレスは熱伝導率が低いため上部が冷えにくく、図9に示すように上部温度は約-30℃の状態となる。このことから、ケース部11が、液体窒素吸収材13の高さより大きい高さを有する側壁部27を具備することには、大きな効果が期待できる。
 なお、図9は、液体窒素吸収材ケース7を有していないことから、ケース固定具29は不要であり、ケース固定具29も有していない。
 図8に示す凍結輸送容器1の場合、液体窒素吸収材ケース7を本体部3に設置してから本体部3の内部の温度が-150℃以下到達するのに約30分要し、本体部3内の温度を-150℃以下保持できるのは約300分間であった。
 上記の説明では凍結輸送容器1の本体部3が円筒形である例を挙げて説明した。この場合、本体部3内に収容される液体窒素吸収材ケース7も同様の円筒形となる。
 もっとも、凍結輸送容器1の本体部3は円筒形に限られず、例えば矩形筒形のものであってもよく、この場合には、本体部3内に収容される液体窒素吸収材ケース7も同様の矩形筒形のものとするのが好ましい。
 また、上記の説明では、極低温液化ガスとして液体窒素を例に挙げたが、本発明の極低温液化ガスは液体窒素に限られず、適した吸収材を用いる限り、例えば液体ヘリウムや液体アルゴン等の不活性ガスの液化ガスを用いることもできる。
1   凍結輸送容器
3   本体部
3a  開口部
5   蓋体
7   液体窒素吸収材ケース
9   円柱部
11  ケース部
13  液体窒素吸収材
15  穴
16  バッグ状の試料
17  開口
19  固定用プレート
21  スペーサー
23  固定用ネジ
25  通過孔
27  側壁部
29  ケース固定具

Claims (7)

  1.  断熱構造を有し、上部に開口部を有する有底筒形の本体部と、前記本体部の開口部に開閉可能に取り付けられる蓋体とを有する凍結輸送容器であって、
     前記本体部は、上部開口部と、底部とが同径であり、
     さらに、前記本体部の底部に取り出し可能に配設された極低温液化ガス吸収材ケースを具備し、
     前記極低温液化ガス吸収材ケースは、有底筒形のケース部と、該ケース部の内部に交換可能に配設された極低温液化ガス吸収材とを有することを特徴とする凍結輸送容器。
  2.  前記ケース部は伝熱体によって形成され、前記本体部の内周壁に沿って配置される側壁部を有し、側壁部の内側空間は試料収納部として機能し、側壁部の高さは、前記極低温液化ガス吸収材の高さよりも高い請求項1記載の凍結輸送容器。
  3.  前記断熱構造を有する本体部が、ステンレス製の真空二重構造を有し、前記ケース部がアルミニウム又は銅で形成されている請求項1または2記載の凍結輸送装置。
  4.  前記ケース部は固定用プレートを具備し、固定用プレート及び極低温液化ガス吸収材には、収納対象試料を挿入するための試料挿入孔が形成されている請求項1~3のいずれかに記載の凍結輸送容器。
  5.  断熱構造を有し、上部に開口部を有する有底筒形であり、上部開口部と、底部とが同径である本体部と、前記本体部の開口部に開閉可能に取り付けられる蓋体とを有する凍結輸送容器の底部に取り出し可能に配設される極低温液化ガス吸収材ケースであって、
     有底筒形のケース部と、該ケース部の内部に交換可能に配設された極低温液化ガス吸収材とを有することを特徴とする極低温液化ガス吸収材ケース。
  6.  前記ケース部は、伝熱体によって形成され、前記本体部の内周壁に沿って配置される側壁部を有し、側壁部の内側空間は試料収納部として機能し、側壁部の高さは、前記極低温液化ガス吸収材の高さよりも請求項5記載の極低温液化ガス吸収材ケース。
  7.  前記ケース部がアルミニウム又は銅で形成されている請求項5または6記載の極低温液化ガス吸収材ケース。
PCT/JP2020/023187 2019-06-14 2020-06-12 凍結輸送容器、極低温液化ガス吸収材ケース WO2020251010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/614,809 US20220228789A1 (en) 2019-06-14 2020-06-12 Freezing transport container, and cryogenic liquefied gas absorber case
EP20822402.2A EP3984908A4 (en) 2019-06-14 2020-06-12 FREEZER TRANSPORT CONTAINER AND CRYOGENIC LIQUEFIED GAS ABSORBER HOUSING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110855A JP7272874B2 (ja) 2019-06-14 2019-06-14 凍結輸送容器、極低温液化ガス吸収材ケース
JP2019-110855 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020251010A1 true WO2020251010A1 (ja) 2020-12-17

Family

ID=73781264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023187 WO2020251010A1 (ja) 2019-06-14 2020-06-12 凍結輸送容器、極低温液化ガス吸収材ケース

Country Status (4)

Country Link
US (1) US20220228789A1 (ja)
EP (1) EP3984908A4 (ja)
JP (1) JP7272874B2 (ja)
WO (1) WO2020251010A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285181A (ja) * 2007-05-16 2008-11-27 Taiyo Nippon Sanso Corp 凍結保存容器
JP4881046B2 (ja) 2006-03-30 2012-02-22 独立行政法人海洋研究開発機構 凍結保存器
US20120325826A1 (en) * 2010-12-21 2012-12-27 Savsu Techonologies Llc Insulated storage system with balanced thermal energy flow
WO2014027412A1 (ja) * 2012-08-16 2014-02-20 株式会社ミラプロ 金属製の密閉二重容器
CN205352821U (zh) * 2015-12-30 2016-06-29 妙通(上海)生物科技有限公司 便携式生物样品液氮冻存器
JP2017165487A (ja) * 2016-03-15 2017-09-21 大陽日酸株式会社 生体試料輸送容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053967A1 (en) * 2000-12-29 2002-07-11 Cryoport Systems, Llc Cryogenic shipping container
GB2377985A (en) * 2001-04-03 2003-01-29 Brian Clarke A disposable container for refrigerated animal/human tissue or fluid
JP6689583B2 (ja) * 2015-07-31 2020-04-28 大陽日酸株式会社 シート状生体試料の収納具、収納ラック及び収納棚
WO2017083164A1 (en) * 2015-11-10 2017-05-18 Entegris, Inc. Dry shipping container
US11596148B2 (en) * 2017-11-17 2023-03-07 Savsu Technologies, Inc. Dry vapor cryogenic container with absorbent core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881046B2 (ja) 2006-03-30 2012-02-22 独立行政法人海洋研究開発機構 凍結保存器
JP2008285181A (ja) * 2007-05-16 2008-11-27 Taiyo Nippon Sanso Corp 凍結保存容器
US20120325826A1 (en) * 2010-12-21 2012-12-27 Savsu Techonologies Llc Insulated storage system with balanced thermal energy flow
WO2014027412A1 (ja) * 2012-08-16 2014-02-20 株式会社ミラプロ 金属製の密閉二重容器
CN205352821U (zh) * 2015-12-30 2016-06-29 妙通(上海)生物科技有限公司 便携式生物样品液氮冻存器
JP2017165487A (ja) * 2016-03-15 2017-09-21 大陽日酸株式会社 生体試料輸送容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984908A4

Also Published As

Publication number Publication date
EP3984908A1 (en) 2022-04-20
EP3984908A4 (en) 2023-07-05
JP2020204476A (ja) 2020-12-24
US20220228789A1 (en) 2022-07-21
JP7272874B2 (ja) 2023-05-12

Similar Documents

Publication Publication Date Title
JP6653283B2 (ja) 生体試料輸送容器
US10850047B2 (en) Insulated storage system with balanced thermal energy flow
US10618695B2 (en) Contents rack for use in insulated storage containers
JP2007271279A (ja) 凍結保存器
JP2008285181A (ja) 凍結保存容器
JP2006038220A (ja) 極低温デュアー瓶
US11596148B2 (en) Dry vapor cryogenic container with absorbent core
JP6689583B2 (ja) シート状生体試料の収納具、収納ラック及び収納棚
US10378695B2 (en) Cryogenic storage container
WO2020251010A1 (ja) 凍結輸送容器、極低温液化ガス吸収材ケース
JP2018054420A (ja) 凍結保存器具
JP2006030144A (ja) 試料管保温トレー及びマルチウエルプレート用保温箱
JP2018112354A (ja) 凍結保冷器
CN210610866U (zh) 一种长途运输用蔬菜或粮油保鲜装置
JP2005271949A (ja) 低温輸送梱包装置及びその製作方法
US20230097551A1 (en) Container for cryopreservation and transportation
JP2020050395A (ja) 試料容器及びこれを用いた凍結保存器
CN216637206U (zh) 一种远程储存运输少量生物细胞样品的存储器
JP7539610B2 (ja) 真空断熱二重容器に用いる輸送試料の固定装置
JP7083586B1 (ja) 保冷剤ケース
JP2023102316A (ja) 凍結試料用搬送台車、浸漬容器、及び凍結試料の搬送方法
WO2021131057A1 (ja) 真空断熱二重容器
CN210642161U (zh) 一种细胞冻存管转移盒
JP2017172825A (ja) 保冷方法
RU2194224C2 (ru) Устройство для хранения продуктов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020822402

Country of ref document: EP